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Abstract

Nonrobustness is a well-known problem in many areas
of computational science. Until now, robustness tech-
niques and the construction of robust algorithms have
been the province of experts in this �eld of research. We
describe a new C/C++ library (Core) for robust numeric
and geometric computation based on the principles of
Exact Geometric Computation (EGC). Through our li-
brary, for the �rst time, any programmer can write ro-
bust and eÆcient algorithms. The Core Library is based
on a novel numerical core that is powerful enough to
support EGC for algebraic problems. This is coupled
with a simple delivery mechanism which transparently
extends conventional C/C++ programs into robust codes.
We are currently addressing eÆciency issues in our li-
brary: (a) at the compiler and language level, (b) at the
level of incorporating EGC techniques, as well as the
(c) the system integration of both (a) and (b). Pilot
experimental results are described. The basic library is
available at http://cs.nyu.edu/exact/core/ and the
C++-to-C compiler is under development.

1 INTRODUCTION

Numerical non-robustness is well-known in many areas
of computational sciences and engineering [7]. Non-
robustness in this paper1 refers to what is sometimes
known as \catastrophic errors": errors that cause pro-
grams to enter unanticipated states and hence crash. In
applications areas such as physical simulation and geo-
metric modeling and design, the underlying geometry

1We are only interested in catastrophic errors that arise from nu-
merical approximations. The computing literature often refers to
preformance issues such as scalability of algorithms as \robustness
issues". Such issues are also outside our scope.

grows increasingly complicated, and non-linear mod-
els are increasingly used. Both these trends imply an
acute need for solving non-robustness in a systematic
and scienti�cally sound way. Although there have been
many research e�orts to create robust algorithms, such
solutions are rarely used in practice: ad hoc epsilon-

tweaking rules remain the mainstay of practitioners.

Without going into the relative merits of the various
proposed solutions, there is one overriding reason for
this unfortunate state of a�airs: most previous solu-
tions apparently require programmers to change their
programming behavior, sometimes in radical ways. It is
one thing to demonstrate that a technique that can pro-
duce a robust algorithm for a particular problem. But
it may be another problem when potential users need
to (i) modify the technique for their particular require-
ments, or (ii) extend it to related problems. Robust
solutions, especially those based2 on \�xed-precision ge-
ometry", are particularly resistant to (i) and (ii). See
[33] for a survey of robustness literature.

In this paper, we describe the Core Library (Core
for short), a new C/C++ library for robust numeric and
geometric computation. Our library API (\application
programmer interface") model, as �rst proposed in [32],
is able to deliver powerful robustness techniques in a
relatively transparent manner. Thus, to construct a
stand-alone robust algorithm, the Core API allows the
programmer to code the algorithm without explicitly
worrying about robustness. We do require the program-
mer to design his or her algorithm assuming exact real
arithmetic in the standard Euclidean geometry. But
this is almost no requirement at all, as Euclidean geom-
etry is the default model of most geometric concepts in
practice. This avoids, for instance, the many highly un-
intuitive surprises when researchers use �xed-precision
geometries. The programmer may pay only minimal at-
tention to our library, only making sure that the �nal
C/C++ program contains a short (e.g., 2-line) preamble

2These are the \geometries" that researchers need to de�ne to
approximate the standard Euclidean geometry when they operate in
�xed-precision arithmetic.



to invoke our library. If this program is now compiled
with a C++ compiler and linked with our library, this
code will be robust. In general, such a library API
allows us to convert most stand-alone programs into
robust programs with minimal e�ort.

The reader familiar with object-oriented program-
ming languages may suspect that our library will re-
place standard number types (such as int or double) by
some bigNumber class. This is correct as far as it goes,
but as we shall see, something fundamentally deeper is
going on. To give a hint of this, it may be noted that
the \preambled" code is robust even if it involves non-
rational operations such as square roots. No bigNumber
package alone can ensure this behavior.

Our library supports the Exact Geometric Com-
putation (EGC) approach [34] to robustness (although
a user is free to ignore EGC and use the Core API
and features for other purposes). As the name of the li-
brary suggests, the heart of our library is indeed a new
\numerical core". Just as the oating point package
(hardware) constitutes the heart of contemporary sci-
enti�c computation, our \numerical core" can serve as
the basis for EGC computing. In the EGC approach
to robustness, the key eÆciency principle is precision-
sensitivity (cf. [35, 29]). An algorithm is \precision-
sensitive" if its running time scales with the actual pre-
cision needed for each input instance. Precision sen-
sitive techniques take many forms. One is \oating-
point �lters" which several groups [14, 10, 2, 5] have
shown to be very e�ective. Indeed, exploiting precision-
sensitivity is what distinguishes the current EGC ap-
proaches [14, 6, 5, 3, 30, 21] from earlier attempts to
use \exact arithmetic". These early attempts (e.g.,
[23, 36]) inevitably fare badly against worse-case sce-
narios. Many of these EGC techniques will be available
through our library.

The main theme in our current development ofCore
is code eÆciency. We attack this at the level of EGC-
based techniques (e.g., oating point �lters) as well as
at the level of compiler optimization. The latter aims
at applying aggressive optimization techniques to auto-
matically produce robust code whose speed on \most in-
puts" is within a small constant factor of that achievable
by hand-coded optimizations. As we will see (Section
4), this optimization research involves a rich interplay of
EGC techniques and compiler optimizations (especially
in the context of an object-oriented language such as
C++).

The Core Library sources, with all the examples in
this paper, are available at our website [19].

OVERVIEW OF PAPER. In the next section, we
�rst give a user-viewpoint of the Core Library. In Sec-
tion 3, we describe the internal view. In Section 4, we
address compiler analysis and optimization issues. The
preliminary experimental results are shown in Section

5. We conclude in Section 6.

2 A NOVEL NUMERICAL CORE

This section provides a user (API) view of Core. The
key ideas from [32] are (a) a novel and deceptively sim-
ple proposal for a \number core" based on 4 accuracy
levels, and (b) a transparent \delivery mechanism" to
bring this core capability to users. First we describe the
four levels of core (numerical) accuracies:

� LEVEL I: Machine Accuracy. This may be
identi�ed with the IEEE-standard [26].

� LEVEL II: Arbitrary Accuracy. Users can
specify any desired accuracy. E.g., \200 bits" means
that numerical operations will not cause an over-
ow or underow until 200 bits are exceeded. This
feature is widely available in modern day computer
algebra systems such as Maple or Mathematica.

� LEVEL III: Guaranteed Accuracy. This is
the most interesting level: specifying \200 relative
bits" means that the �rst 200 signi�cant bits of
a computed quantity are correct. The Real/Expr
package [35, 24] is the �rst to achieve Level III
accuracy for a non-rational family of expressions.

� LEVEL IV: Mixed Accuracy. The previous
accuracy levels are intermixed and localized to in-
dividual variables, allowing �ner accuracy control.
This has not been implemented.

We next describe the mechanism for delivering these
core accuracies to the user. A normal C/C++ program
only have to be preceded by a suitable preamble. The
simplest preamble is:

#define Level N /* N=1,2,3 or 4 */

#include "CORE.h"

The program is then compiled in the usual way, al-
though its behavior now depends on the chosen accu-
racy level. In other words, a single program can \simul-
taneously" access the di�erent accuracy levels literally
at the ip of a switch (viz., setting a variable). Fine
tuning of accuracy via the setting of precision for indi-
vidual variables is possible. Our library supports the
setting of precision in both relative and absolute (or a
mixture thereof [35]) terms. In the following, we ex-
plain what our library framework means for the user,
and how it is can be used to achieve robustness.

ILLUSTRATIVE EXAMPLES. We currently have
a prototype of Core in which the �rst three accuracy
levels can be accessed. This is basically achieved by con-
structing a wrapper around the Real/Expr package For
brevity, we only discuss Levels I and III in the examples
here.



� We wrote a basic geometry package. This allows
us to construct a plane P with equation x+y+z =
1 and to intersect P with the lines Lij (i; j =
1; : : : ; 50) through the origin (0; 0; 0) and the point
(i; j; 1). We then test if the intersection point
Pij = Lij \ P lies on the plane P . When run
at Level III, the answer is positive in all 2500
cases. At Level I, the answer is correct in 1538
cases (62.5%).

� Consider now the relationship between two lines
in 3-space. We wrote three predicates isSkew,
isParallel and intersects. Any pair of distinct
lines ought to make exactly one of these predi-
cates true. Let Lij (i; j = 1; : : : ; 50) be the line
through the origin and (i; j; 1) and let L0

ij be the
line through (1; 1; 0) and (i+1; j +1; 1). At Level
III, these (i; j) line-pairs are parallel in all 2500
cases, none skew or intersecting. At Level I, we get
2500 parallel pairs, but it also reported 1201 inter-
sections and none skew. If we replace i and j by
sqrt(i) and sqrt(j) in the same experiment, then
Level III is again perfect while Level I reported
2116 pairs parallel, 378 skew and 1023 intersect-
ing.

� We wrote a matrix package that included a straight-
forward Gaussian elimination algorithm (without
pivoting) for computing determinants where the
basic expression is

A(j,k) -= A(j,i)*A(i,k)/A(i,i).

This program will be further discussed in Section
4. Consider the following two matrices:

double A[] = { 3.0, 0.0, 0.0, 1.0,

0.0, 3.0, 0.0, 1.0,

0.0, 0.0, 3.0, 1.0,

1.0, 1.0, 1.0, 1.0 };

long B[] = { 512, 512, 512, 1,

512, -512, -512, 1,

-512, 512, -512, 1,

-512, -512, 512, 1 };

Level III correctly computes det(A) = 0 and det(B)
= 231. However, at Level I, det(A) is non-zero
because the Gaussian algorithm performs division
by 3:0. Similarly, det(B) in Level I leads to an
overow (shows up as a negative number). Gener-
ally for determinants that vanish, no matter how
convoluted the matrix entries (which may involve
nested square roots), Level III never fails to detect
0. Similar behavior was also observed with Hilbert
matrices.

HOW DO ACCURACY LEVELS SUPPORT
ROBUST COMPUTING? Specifying \1 relative
bit" in Level III amounts to guaranteeing the correct

sign of computed values. From EGC theory, this en-
sures the exactness (and hence consistency) of our geo-
metric structures. The more eÆcient Level II may suf-
�ce when we know �a priori the needed precision, as in
bounded-degree problems [34]. Even a speed-conscious
user who cannot a�ord Level III in actual applications
may use Level III accuracy to debug the program logic.
Note that this comes almost for free. Conversely, as
we have found, Level I is also useful for fast debugging
of the non-numeric part of a program, even if we are
ultimately interested in Level III.

WHAT IS THE DIFFERENCEBETWEEN LEV-
ELS II AND III? Level III accuracy is the key inno-
vation of Core. Its distinction from Level II may not
be obvious. Computer algebra systems deliver Level II
accuracy. But specifying \500 bits of accuracy" does
not mean that all the 500 bits in a quantity are signi�-
cant { in fact, it is easy to lose every bit of signi�cance.
One of the authors (C.Y.) relates an experience with
Maple's Level II accuracy: as a particular computation
is repeated with increased accuracy, the answers came
back in a wildly unpredictable manner (including com-
plex values when a real was expected). It was unclear
whether this was a Maple bug or a programming error.
On closer analysis, it turns out that the computation
went through a singularity. This is a stroke of luck as
it is usually tedious or infeasible to carry out such anal-
ysis. If the same computation could be carried out at
Level III, this singularity would be automatically de-
tected. Another qualitative di�erence is that Level III
achieves error-free comparisons of any two reals, x
and y. If x 6= y, then we could make this comparison in
Level II, using a loop with increasing precision. But if
x = y, then Level II is helpless: the loop is in�nite.

HOW IS CORE DIFFERENT FROM OTHER
ROBUST LIBRARY EFFORTS? The multi-
institution European Community project CGAL [18, 25],
and Max-Planck Institute of Computer Science project
LEDA [22, 6] are two major libraries also committed to
the EGC paradigm. Both aim at providing a com-
prehensive suite of eÆcient data structures and algo-
rithms. The CGAL and LEDA e�orts are very important
and address real needs. Our approach is motivated by
an orthogonal concern. We believe that no single li-
brary could possibly ful�ll all the demands and com-
plexities of potential applications. Rather, there is al-
ways a demand for small customized libraries in sup-
port of specialized applications. It is thus important
to o�er programmers the tools to achieve their robust-
ness goals, which is precisely what Core o�ers. Our
work stresses the \small"3 numerical core and support-
ing tools for constructing robust geometric software.

3Smallness is another quality that the name of our library is in-
tended to evoke.



To support various applications, we prefer to de�ne
core library extensions (Corex) that embed do-
main speci�c knowledge. With our partners, we are
currently building several such Corexs, including a
Corex for mesh generation. An additional di�erence
is our use of aggressive compiler techniques to mini-
mize the amount of hand-tuning required for eÆcient
implementation. NOTE: a simultaneous submission [4]
by the CGAL/LEDA group to this conference describes an
e�ort called leda real which has many similarities to
our work.

BENEFITS OF OUR APPROACH. Several ben-
e�ts accrue to users of our library. (1) We already
mentioned the advantages of working in an environ-
ment with access to di�erent accuracy levels for de-
bugging programming logic. (2) Another advantage
is automatic technology transfer. As EGC technology
improves, these improvement will be reected in our
library. Hence users of our library automatically en-
joy the fruits of such advances. (3) Many applications
must choose a trade-o� between robustness and speed.
Our accuracy levels greatly facilitate making or chang-
ing such choices.

3 HOW CORE WORKS

SinceCore is directly derived from the Real/Expr pack-
age they share many features. In particular, both use
\precision-driven mechanisms" [35, 24] for expression
evaluation, critical because in general, the worst case
bounds in EGC are not sustainable. Both packages
currently support the operators +;�;�;�;p�, but in
principle can be extended to any algebraic operation.
The main di�erence between Real/Expr and Core is
in their semantics of assignments. In Real/Expr, the
assignment \a = b+ c" is really asserting a permanent

relation (i.e., constraint) between three variables. This
results in highly unintuitive behavior (e.g., subsequent
assignments to b and c change the value of a). Core
removes all such surprises.

HOWDOTHE VARIOUS LEVELS INTERACT?
We provide more details on the delivery mechanism [32].
In the previous section, we have assumed the simplest
situation, where the program is a standard C/C++ pro-
gram. We call this a Level I program. Thus, its
primitive number types are basically int, long, float,
double. These are the Level I number types. Core
de�nes the new4 number types Real and Expr. These
are (respectively) Levels II and III number types. Ac-
tually, Level II number types include bigInt, bigRat,
or bigFloat. The number type Real is not a particular
representation of numbers, but a superclass of all the

4Another Level II number type is Complex which we ignore in this
paper for simplicity.

number representations found in the system. There is
a natural partial ordering � among these types:

int � long � bigInt � bigRat � Real;

float � double � bigFloat � bigRat

The automatic promotion or demotion of number types
may occur during assignments, as in conventional lan-
guages. E.g., if we assign a bigFloat to an int, the
value must be demoted before assignment. However,
promotion and demotion of number types also occur
when we set Core accuracy levels. The most interest-
ing case is when we run a Level I program at Level III:
then long and double both promote to Expr; however,
int and float remain unchanged. The motivation is
that, even at Level III, it is desirable to have machine-
precision variables for eÆciency. As another example,
if we run a Level III program at level II, then Expr

demotes to Real. Here are the general principles:

1. A program is said to be Level ` (`=I,II,III) if it
explicitly declares number types of Level `, but has
no number types of Levels > `. This de�nition of `
is \static", independent of the preamble which sets
the \run-time" accuracy Level. Note that there is
no static Level IV.

2. Features accessible at run-time level ` are also avail-
able at run-time Level j (` < j).

3. Variables and features of Level ` will be demoted
to corresponding variables and features at Level
j(j < `) when the program is run at Level j.

4. At run-time level IV, only assignments force pro-
motion or demotion of variables.

WHAT IS IN LEVEL II ACCURACY. Consider
the program fragment in �gure 1(a). At Level II accu-
racy, variables m; p; q are promoted to type Real (in-
ternally, m would be bigInt while p; q are bigFloat).
For eÆciency, we may prefer to keep p; q as double for
as long as possible. If so, we need a runtime check for
overows (and convert p or q to type bigFloat when it
happens).

q

p

m n

int n, long m, double p; q;

p = m+ n;

q = p � n;

�

+

23

Figure 1: (a) Program Fragment. (b) Expression dags
for p, q.



WHAT REALLY HAPPENS IN LEVEL III. If
the above program fragment (p = m+n; q = p�n) were
compiled with Level III accuracy, something completely
di�erent happens. As in Real/Expr [24], p is actually
made to point to an expression corresponding to m+n

and similarly for q. See �gure 1(b) where expressions
are represented as directed acyclic graphs (dag's). That
is, the dependence of p upon the values of m and n is
remembered. In turn, the values of m;n may depend
on other values. The reason for constructing such ex-
pressions is that we need to propagate the precision of
p into precisions for m and n. There is a downward
propagation of precision, upward propagation of errors,
and this may be iterated until the error is less than
the requested precision. Note the technical di�erence
between precision and error in this mechanism. This
is the precision-driven mechanism of [35]. We also
need to maintain bounds on the (algebraic) heights and
degrees of the algebraic quantities at each node of the
dag.

LIBRARY STRUCTURE AND USAGE
MODELS. The Core library is written in C++ using
an object-oriented programming style which encapsu-
lates underlying numerics from higher-level library and
application routines and additionally supports exten-
sibility. This library and its compilation infrastruc-
ture can be used in several modes. In Section 1, we
described the mode of writing stand-alone Core pro-
grams. One requirement was that exact real arithmetic
must be assumed { it implies the programmer should
avoid the temptation to manipulate bits in their num-
bers. Because double and long are promoted in Level
III, they should also be careful in using standard C func-
tions such as scanf. Note that some of these restrictions
could be removed by providing Core substitutions. In
practice, the stand-alone mode is ill-suited for meeting
the needs of existing application systems. For instance,
we are constructing a Meshing Corex for Card3d [17],
a meshing system for Computational Fluid Dynamics
(CFD). This system contains both FORTRAN and C code.
For minimal changes to such systems, we need rewrite
only a handful of robustness-critical primitive functions.
Since the Core library is in C++, it is interoperable
with languages such as FORTRAN. However, to take full
advantage of the optimizations described in Section 4,
the portion of the program that utilizes Core must be
recompiled using a special, but portable C++-to-C com-
piler. The compiler analyzes application usage patterns
to improve the implementation of internal Core library
structures, so its bene�ts are proportional to the pro-
gram portion that is recompiled.

4 EFFICIENT EXECUTION OF EGC PROGRAMS

The Core library e�ectively addresses the robustness
concerns in geometric computations. However, at higher
accuracy levels (III and IV), this robustness often comes
at the cost of eÆciency. For example, anecdotal evi-
dence [12, 20] shows that geometric primitives become
slower by factors of up to 150 and 10,000, respectively,
when exact integer computations and exact rational
number computations are used instead of machine
oating-point. While improved EGC techniques such
as oating-point �lters and precision-sensitive compu-
tation are capable of reducing these slowdowns, careful
hand-tuning of implementations is required to get good
performance. A novel aspect of our library is that it au-
tomates this tuning process, relying on an optimizing
compiler to customize the implementation of internal
Core library structures based on an analysis of ap-
plication usage patterns. In the rest of this section, we
�rst identify the primary reasons for implementation in-
eÆciency, and then describe our analysis and optimiza-
tion approach. The next section describes pilot studies
showing the performance advantages of this approach.

4.1 Sources of Overhead

To understand the various sources of overhead, let us
examine the run-time object structures that are created
for the expression A(j,k) -= A(j,i)*A(i,k)/A(i,i)

in the Gaussian elimination algorithm. In Figure 2,
the titles of boxes (e.g., Expr, ExprRep) correspond to
classes in the Core library: the container objects and
multiple levels of indirection encapsulate concrete im-
plementations of expression tree nodes (such as a bi-
nary subtraction operation). This encapsulation is con-
veniently expressed using class inheritance and virtual
functions in an object-oriented language such as C++.

Expression evaluation involves a recursive traversal
of the expression tree, and iterated traversals may be
necessary because of the precision-driven nature of Level
III evaluation. Maintaining the expression tree guar-
antees robustness, but it reduces execution eÆciency
on current-day systems with deep memory hierarchies.
Level III evaluation su�ers from three primary sources
of overhead absent in Level I:

� Function-call overhead: The object-oriented pro-
gramming style used inCore encourages programs
with small function (method) bodies that are dy-
namically dispatched using virtual functions. This
increases the relative contribution of function call
costs to overall execution time, and additionally
reduces the e�ectiveness of sequential compiler op-
timizations (such as constant propagation).

� Memory management overhead: Expression trees
in Level III are dynamic pointer-based structures
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Figure 2: Expression tree created in the innermost loop of the Gaussian elimination algorithm. The boxes represent
classes in the Core library and cascaded boxes show the inheritance hierarchy.

consisting of simple small objects. These struc-
tures incur overheads for memory allocation and
deallocation, and do not e�ectively utilize the mem-
ory hierarchies in current-day machines. Pointer
structures su�er from cache-line fragmentation, as
well as poor spatial locality.

� Operation overhead: Level III evaluation requires
several iterations of the downward propagation of
precision and upward propagation of errors. To
preserve encapsulation, both these steps are per-
formed at the granularity of individual operation
nodes in the expression tree (e.g., a subtraction op-
eration). The cost of iterations can be signi�cantly
reduced by exploiting knowledge of a global struc-
ture such as the subtraction-division-multiplication
tree in the Gaussian algorithm.

One source of the high overheads at Level III arise
from global program structures being constructed in
an object-oriented style from smaller component ob-
jects. This fact has been recognized by several other
researchers leading to the development of packages sup-
porting large expressions: LN [13], LEDA [6], and
Real/Expr [35].

4.2 Analysis and Optimization Approach

Our compiler-based approach reduces abstraction over-
heads using expression-level optimizations that break
down the encapsulation introduced by the object-oriented
style. The approach comprises three steps:

1. Identi�cation of expression structures used by the
program.

2. Propagation of precision requirements of a value
to expressions that produce and consume it.

3. Customization of expression structure based on
component operations and its leaf arguments.

The unifying analysis for the �rst two steps is a
context-sensitive global interprocedural ow analysis [27,
11] which propagates the type information about a value
to all the places that produce or consume the value.
In this analysis, type more generally refers to both im-
plementation type (e.g., int, long, or double) as well
as the precision requirements of the value [14]. To
prevent information loss, the analysis creates contexts
(representing program environments) for di�ering uses
of classes (for example, polymorphic containers), and
methods (for example, di�ering types for a given argu-
ment at given call sites). Since expression trees are built
up from individual expression tree nodes, the same anal-
ysis also detects expression \skeletons" even when these
are built across procedure boundaries. Similar to anal-
yses in object-oriented languages that resolve concrete
types of method invocation targets [27, 9], our analysis
helps identify the expression structures that are cre-
ated at run time (and precision constraints on values
consumed and produced by them). Identifying the ex-
pression structure permits its optimization using three
broad categories of specialization|code, data, and op-
erational:



CODE SPECIALIZATION. Information about the
expression skeleton (its structure, the types of input and
output values, and associated precision) enables several
static and dynamic optimizations that reduce object-
orientation overheads The most signi�cant bene�t is
the elimination [27, 9] or optimization [16] of dynamic
method dispatches, which in turns enable other opti-
mizations such as inlining and cloning [28] that increase
the e�ectiveness of traditional sequential optimizations.

DATA SPECIALIZATION. Knowledge of the ex-
pression structure also enables memory-eÆcient layout
employing optimizations such as object inlining [11] and,
in general, grouping of linked data structures. These
transformations atten the pointer-based data struc-
tures resulting in better cache-line utilization, improved
spatial locality behavior, and more e�ective prefetching.
These bene�ts are particularly important given the in-
creasing latency (in processor cycles) of accessing o�-
chip memory. Additionally, the cost of dynamic mem-
ory management can be signi�cantly reduced by cus-
tomizing memory allocators for expression structures
instead of relying on a generic memory allocator [15].

OPERATION SPECIALIZATION. The expres-
sion \skeleton" also provides a natural granularity at
which to perform domain-speci�c optimizations. As
discussed earlier, Level III precision and error prop-
agation may be more e�ective if performed with re-
spect to the global expression structure. Additional
optimizations include partial-evaluation of �xed inputs
(e.g., loop-invariant values), replacing a number repre-
sentation with a more eÆcient one (e.g., automatically
demoting Level II numbers to Level I numbers when
the analysis detects no loss in precision), and in gen-
eral, customizing the implementation for the concrete
expression structure.

Figure 3 demonstrates the cumulative e�ects of these
di�erent specializations for the expression tree in Fig-
ure 2. The analysis yields the concrete types of objects
making up the expression tree: SubRep, DivRep, and
MultRep. This information enables code specialization
where function invocations between these objects are
statically resolved and optionally inlined. Data special-
ization inline-allocates the storage for the DivRep and
MultRep objects in the SubRep object, reducing both
object allocation and method invocation costs. Opera-
tion specialization constructs a composite sub-div-mult
operator with an arity of four and customizes evalua-
tion functions to take advantage of the global expression
structure.

We are currently incorporating the techniques de-
scribed here into a C++-to-C compiler built on top of
the SUIF/OSUIF National Compiler Infrastructure [1].
The choice of C as the output language provides portable
optimization of application packages built using the

Core library. End users can then compile the library
using platform-speci�c native C compilers.

5 PILOT STUDIES

We conducted some basic experiments using Gaussian
elimination and 2D Delauney triangulation algorithms
to �rst quantify the current performance of Core EGC
techniques at di�erent accuracy levels, and then verify
the performance advantages of the compilation tech-
niques described in Section 4. For the latter, since our
compiler is still under development, we manually ap-
plied the analyses and transformations described in Sec-
tion 4 to Level III techniques. Speci�cally, we identi�ed
a handful of expression tree \skeletons" and optimized
their implementation by (1) replacing virtual function
calls to intermediate nodes with statically bound inlined
function calls, and by (2) providing custom memory al-
locators (customized to the size of the specialized struc-
tures). Our prototype implementation of the Core li-
brary is layered on top of the Real/Expr package which
in turn relies on a big-integer package supplied by GNU
libg++. The implementation of the GNU big-integer
package was not optimized. All experiments reported
in this section were conducted on a SUN UltraSparc.

GAUSSIAN ELIMINATION. Computing deter-
minants or the sign of determinants is perhaps the sin-
gle most important primitive in geometric computation.
We use the algorithm described in Section 2, modifying
the 4� 4 matrix B so that its entries have type double
instead of long. Table 1 reports the execution times
for 1000 determinant evaluations of matrix B at vari-
ous levels of accuracy. The column labeled Level III
(opt) corresponds to the optimization of the expression
A(j,k) -= A(j,i)*A(i,k)/A(i,i).

The results in Table 1 show clearly that there is a
performance penalty associated with using higher lev-
els of accuracy, and in particular Level III EGC which
runs up to 150 times slower than Level I. Of course, this
penalty must be balanced against the fact that EGC
is robust, and eliminates all qualitative errors in the
computation. What is very encouraging is that despite
applying the transformations described in Section 4 at
only a few places, performance of Level III evaluation
improves by as much as a factor of two (for higher pre-
cision). Since the rest of the Core library as well as
the GNU big-integer package lend themselves to sim-
ilar optimizations, signi�cant additional performance
improvements are likely.

2D DELAUNEY TRIANGULATION. We con-
ducted some basic experiments by \preambling" anO(n4)
code from Joe O'Rourke's book. While more eÆcient
algorithms exist, our interest here is in understanding
the relative eÆciency of di�erent accuracy levels. Ta-
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Figure 3: Code, data, and operation specializations for the Gaussian primitive.

Precision Level I Level II Level III Level III (opt)
1 3.29 3.94 2.32
10 3.42 3.94 2.36

IEEE double 0.03 3.46 3.99 2.38
100 3.48 4.15 2.39

Table 1: Execution times (in seconds) for 1000 determinant evaluations on a SUN UltraSparc at various accuracy
levels for di�erent amounts of precision (in bits).

Input Size Level I Level II Level III Level III (opt)
12 0.001 0.08 0.99 0.58
20 0.006 0.49 7.58 3.55
28 0.022 1.79 30.38 15.69
36 0.060 9.38 88.40 44.41

Table 2: Execution times (in seconds) for Delauney triangulation on a SUN UltraSparc at various accuracy levels
for di�erent numbers of cocircular points.

ble 2 reports the execution times for four input sizes,
corresponding to di�erent numbers of (exactly) cocir-
cular points. Note that cocircular points are the worst
case for Level III. Level III (opt) corresponds to the
optimization of expressions in the body of the triply
nested loop.

These results show the same trends as the Gaussian
example: Level II evaluation is up to 150 times slower
than Level I, and Level III contributes a further slow-
down of up to 10 times because of its use of expres-
sion trees. As before, the transformations described
in Section 4 are very e�ective, improving performance
of Level III by as much as a factor of two despite be-
ing applied on a very small portion of the overall pro-
gram. Similar techniques applied over the complete pro-
gram have the potential of approaching the performance

of hand-coded optimizations. As anecdotal evidence,
researchers have shown that pure object-oriented lan-
guages such as Smalltalk [31], SELF [8], Cecil [9], and
ICC++ [28], which share the same computation struc-
ture as EGC computations (and whose execution times
are often two to three orders of magnitude worse than C)
can, with aggressive compiler technology, achieve per-
formance within a factor of 2 to 5 of a comparable C

program.

6 CONCLUSION

Our Core Library represents a novel API for robust nu-
meric and geometric computation. Its most striking
feature is a nearly transparent integration with conven-
tional C/C++ programming. We believe such ease of use



is a necessary prerequisite for robustness research to im-
pact programs in the real world. This paper has also
demonstrated the eÆciency gains possible using several
automatic optimization techniques. In general, research
is just beginning in the area of optimizing Exact Ge-
ometric Computation (EGC) techniques in a context
that must balance the demands of object-oriented de-
sign with the need for code eÆciency.
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