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Abstract

This paper describes an adaptive network infrastructure, Composable Adaptive Network Services (CANS), for bridging the bandwidth and

resource gap between network services and mobile clients. CANS enables construction of service access paths augmented with ‘impedance

matching’ components that handle operations such as caching, protocol conversion, and content transcoding. The CANS infrastructure

focuses on the automatic creation and efficient dynamic reconfiguration of such network-aware access paths, relying upon three key

mechanisms: (a) a high-level integrated type-based specification of components and network resources; (b) an automatic path creation

strategy; and (c) system support for low-overhead path reconfiguration.

We evaluate the CANS infrastructure over a range of network and end-device characteristics using two application scenario: web access

and image streaming. Our results validate the effectiveness of the CANS approach for enabling network-aware service access to mobile

clients, verifying that (1) communication paths automatically generated by CANS bring considerable performance advantages to

applications; (2) desirable adaptation can be achieved using our flexible path creation mechanisms, which consider both underlying network

conditions and different performance preferences of applications; and (3) despite their flexibility, both run-time overheads of CANS

communication paths and reconfiguration time are negligible for most applications, providing applications with agile adaptation to dynamic

changes in networks.
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1. Introduction

Advances in wireless networking and communication-

enabled portable devices such as lightweight laptop compu-

ters, PDAs, and cell phones, raise the prospect of a mobile

user being able to interact with network-based services in a

seamless, ubiquitous fashion. To consider a scenario, a

mobile user who initiates a teleconference using a laptop at

his office desk can continue to participate in it even when he

needs to step away from his desk or altogether leave the

building, relying upon a wireless LAN in the first case and a

metro-area or cellular wireless network in the second.

However, several challenges need to be addressed

before this vision can become reality. First, many services
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assume that they will be accessed by relatively powerful

clients using high bandwidth, low latency connections.

This assumption is at odds with the low-bandwidth

networks and resource-constrained portable devices used

by mobile clients. Furthermore, a mobile user may also

experience very different connection characteristics over

time, which may be caused by dynamic network load in

shared network environments or mobility of the user. The

user’s interactions with the service should continually

adapt to such changes; unfortunately, current infrastruc-

tures that rely either on differentiated service for different

user groups or a close coupling between the service and

client applications to adapt to changing network con-

ditions, are incapable of ensuing this. Differentiated

services, used in popular news and stock trading services,

cannot satisfactorily handle users with connections

exhibiting big variations in available bandwidth (e.g. a

wireless LAN user at different distances from an access
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point). The approach of including application specific

adaptation logic into client and server applications,

exemplified by automatic stream selection mechanisms

in commercial media players, also has several limitations.

First, encoding the adaptation into end applications make

it hard to extend to cope with new problems. More

importantly, the constraint that adaptation can only occur

at end points may exclude good candidates for adaptation,

and in many cases, such mechanisms may compromise

adaptation agility to changes that occur in the middle of

the network. For example, a media player that switches to

a lower quality stream upon detecting congestion in the

network middle could have avoided doing so if the stream

was rerouted along a different path. Finally, building an

effective adaptation solution using such explicit

approaches requires considerable programming effort and

comprehensive knowledge of network communication.

This paper describes a different approach to address this

problem. Our approach, embodied in the Composable

Adaptive Network Services (CANS) infrastructure, permits

the dynamic insertion of application-specific components

along the network path between the service and the client

application. These components, which can transparently

handle stream degradation, reconnection, and path rerouting

in our example, and in general support arbitrary transcoding,

caching, and protocol conversion operations, serve to

‘impedance match’ a user’s performance requirements

with underlying network conditions making it network-

aware. CANS supports flexible mapping of these com-

ponents to the hosts along a communication path. This

flexibility permits CANS to uniformly cope with both

diverse network conditions as well as changing load on

shared resources. Although most mobile user scenarios are

likely to benefit from components deployed in the last one

or two networks hops, CANS can also be used in wide-area

overlay networks to achieve increased control over the

entire network path.

Other researchers have recently proposed similar pro-

grammable network infrastructures [1,5,8,12,24,27], how-

ever, CANS distinguishes itself by striving to create and

dynamically reconfigure network-aware paths completely

automatically. CANS achieves this goal using three

mechanisms:
†
 A high-level integrated type-based specification of

components and network resources, which enables late

binding of components to paths, essential for flexibility

of dynamic compositions.
†
 An automatic path creation strategy for constructing

custom network-aware access paths according to appli-

cation’s specific performance preferences and underlying

network conditions.
†
 System support for low-overhead dynamic path reconfi-

guration, providing applications with semantic continu-

ity on data transmissions.
We have developed a prototype Java-based implemen-

tation of the CANS infrastructure, which is used in this

paper to evaluate our approach, both in terms of the

capabilities and performance of the constructed paths as

well as the overheads for runtime component management,

and communication path reconfiguration. We report on a

series of experiments using two representative applications,

web access and image streaming, in environments with

different network and end-device characteristics. Our results

validate the CANS approach, verifying that (1) automatic

path creation and reconfiguration are achievable and do in

fact yield substantial performance benefits; (2) our approach

is effective at providing applications with fine tuned,

desirable adaptation behaviors; (3) despite the flexibility,

the overhead incurred by CANS infrastructure is negligible,

and the cost to reconfigure communication paths is

acceptable for most applications, which can be further

substantially reduced by employing local planning and

reconfiguration mechanisms.

The rest of this paper is organized as follows. Section 2

presents the overall CANS architecture. Sections 3–5

focus on the three mechanisms that enable automatic

creation and efficient reconfiguration of network-aware

paths, describing in turn the type framework, path creation

strategy, and system support for path reconfiguration.

Section 6 evaluates these mechanisms using the two

applications. We discuss related work in Section 7 and

conclude in Section 8.
2. CANS architecture

CANS is an application-level infrastructure for injecting

application-specific components into the communication

path between a client and a service. Traditionally, the

functionality of a communication path has been restricted to

transmitting data between the end points. The CANS

infrastructure extends this notion to include various

application specific functionality, which makes the access

network aware. Such functionality, organized in the form of

components, customizes the communication path with

respect to the characteristics of the underlying network

resources as well as enable it to automatically adapt to

dynamic changes in these characteristics (see Fig. 1).

The CANS network view consists of applications,

stateful services, and communication paths between them

built up from mobile soft-state objects called drivers. Drivers

serve as the basic building block for constructing adaptation-

capable, customized communication paths. Drivers are

standalone mobile code modules adhering to a restricted

interface to permit their efficient composition and dynamic

low-overhead reconfiguration. Specifically,
1.
 Drivers consume and produce data using a standard data

port interface, called a DPort. DPorts are associated

with type information (see Section 3 for details).



Fig. 1. Logical view of a CANS network showing data paths constructed from typed components.
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2.
 Drivers are passive, moving data from input ports to

output ports in a purely demand-driven fashion. Driver

activity is triggered only when an output DPort is checked

for data or an input DPort receives data.
3.
 Drivers consume and produce data at the granularity of an

integral number of application-specific units, called

semantic segments, e.g. an HTML page or an MPEG

frame.
4.
 Drivers contain only soft state, which can be recon-

structed simply by restarting the driver. Stated differ-

ently, given a semantically equivalent sequence of input

segments, a soft-state driver always produces a semanti-

cally equivalent sequence of output segments.

The first two properties enable dynamic composition and

efficient transfer of data segments between multiple drivers

that are mapped to the same physical host (e.g. via shared

memory). Moreover, they permit driver execution to be

orchestrated for optimal performance. For example, a single

thread can be employed to execute, in turn, multiple driver

operations on a single data segment. The overhead between

invocations of adjacent drivers is basically a few function

calls, as if driver operations were statically combined into a

single procedure call. The only additional overhead

compared to using a statically linked module is the use of

virtual functions. Finally, the passive operation greatly

simplifies and enhances the efficiency of resource manage-

ment among multiple paths by enabling control over

resource consumption of individual paths within an

execution environment. The semantic segments and soft-

state properties enable low-overhead dynamic adaptation, a

topic discussed in more detail in Section 5.2.

Services are the second core component. Unlike the

constrained driver interface, services can export data using

any standard protocol (e.g. TCP or HTTP), encapsulate

heavyweight functions, process concurrent requests, and

maintain persistent state. Relaxing interface requirements

permits use of legacy services. However, CANS does not

explicitly support service migration, requiring a service to

manage its own state transfer.
The CANS network is realized by partitioning service

and driver components belonging to multiple communi-

cation paths onto physical hosts, connected using existing

communication mechanisms. Drivers run in CANS

Execution Environments (EE) running on hosts along the

network route.

To illustrate these concepts, let us consider the kinds of

drivers that would enable the teleconference example we

described earlier. The communication path for the mobile

user should include a driver to handle network handoff. In

addition, drivers that can reduce bandwidth requirements,

for example by degrading the video quality, can be

automatically inserted into the communication path in

case of heavy cross traffic in the network. Furthermore, if

the path crosses an unsecured link (e.g. a shared wireless

network), encryption/decryption drivers should also be

injected to protected sensitive data transmitted along the

path.

Assumptions. We need to point out that there are two

assumptions in the current version of the CANS infrastruc-

ture. First, we assume, there exists some support for

distributed authentication and trust management among

different network domains. Existing mechanisms, such as

those used in PolicyMaker [4], KeyNote [3], Taos [25], and

dRBAC [10], etc. can be integrated to allow users to express

distributed trust relationships, and control downloading

foreign code in CANS. Second, we assume that resource-

monitoring functionality is available via some external

entities. Mechanisms such as Refs. [6,18,19] can be

incorporated in CANS, an issue we intend exploring in the

near future.
3. Type-based component and resource specification

In CANS, the composability of components is deter-

mined by compatibility of type information of the input and

output ports being connected. The basic idea is the notion

that all data flowing along a data path is typed, and that this
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type is affected both by components along the communi-

cation path as well as network resources making up the

route.
3.1. Representing component properties

CANS types integrate two concepts: data types and

stream types. A related notion, data type ranks, helps

capture application-specific composition constraints.

Data types are the basic unit of type information,

represented by an object that in addition to a unique name

can contain arbitrary attributes and operations for checking

type compatibility. The CANS infrastructure assumes that

in most application domains, it is possible to define a closed,

semantically unambiguous set of types, e.g. MIME types to

represent common media objects.

Traditional type hierarchies can still be used to organize

data types; however, our scheme permits flexible type

compatibility relationships not easily expressed just by

matching type names. For instance, it is possible to define a

customized MPEG type, which contains a frame size

attribute such that it is compatible with any MPEG types

with smaller frame size, naturally capturing the behavior

that a lower resolution MPEG stream can be played on a

client platform capable of displaying a higher resolution

stream.

Stream types capture the aggregate effect of multiple

drivers operating upon a data stream. Stream types are

constructed at run time, and represented as a stack of data

types. For example, after an MPEG type passes through an

encryption driver, the stream type of its output port is a stack

in which the type Encryption is placed on top of the type

MPEG (Fig. 2).

The primary reason for using stream types is for

eliminating the requirement for complete knowledge of

the whole path when path segments need to be adjusted

independently. By using stream types, any segment of a path

only needs to consult its incoming and outgoing stream type

instances.

This point is highlighted in Fig. 2 in which an MPEG

type passes through an Encryption driver and a

Decryption driver. If components were just modeled

as consuming data of a particular type and producing data of

another, if would be difficult to express the behavior of the

Encryption and Decryption drivers in a way that

permits their use with generic types without losing

information about the original type at the output of the

Decryption driver. Specifically, without stream types,
Fig. 2. An example o
the Encryption driver will set its output as being of the

Encrypted type, and the output of the Decryption
driver ends up being of the BaseStream type (unless the

entire communication path is examined). This will cause a

type compatibility problem at some downstream point

because the client requires a more specific type (MPEG) than

the incoming type (BaseStream). In contrast, the stream

type representation preserves information about the specific

type and thereby permits local decision making, which is

important for run-time adaptation via dynamic component

composition, especially for the cases where long communi-

cation paths are used.

Operations allowed on stream types included standard

push, peek, and clone. From the type point of view, each

CANS component with m input ports and n output ports

defines a function that maps its input stream types into

output stream types: f ðTin1
;.; Tinm

Þ/ ðTout1
;.; Toutn

Þ

where Tini
is the required data type set for the ith input

port, and Toutj
is the resulting stream type produced on the

jth output port. The type compatibility between an input

and an output port is determined by checking the top of

the output port’s stream type against the required data

type of the input port. Stream type information flows

downstream automatically when two ports get connected

at run time.

Data type ranks helps express application-specific

constraints on the order of composition by requiring that

only types of monotonically increasing ranks can be stacked

into a stream type. For instance, giving the encryption type a

higher rank, ensures that for any communication path

requiring both encryption and compression, that encryption

always happens after compression.

To simplify use of CANS in typical usage scenarios, our

infrastructure predefines certain common data types encod-

ing common operations such as encryption, compression,

image transcoding, etc. These types are currently organized

into a linear rank lattice. When a new type is added in the

lattice, its constraints on type ranks will also be automati-

cally checked by the system. Constraints on composition

order, of course, can also be expressed using some rule-

based mechanisms; however, our scheme is simple to use

with our type model and quite expressive in describing

various composition constraints. By using the notion of type

ranks, valid composition patterns can be identified by only

checking type compatibility between adjacent components

and the type stacks that appear along the communication

path.
f stream types.



Fig. 3. A simple example of augmented types.
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3.2. Representing network resource properties

Network resource characteristics can introduce

additional constraints affecting both which components

must be present along a communication path and how these

can be composed. For example, the risk of packet

interception on a shared wireless link necessitates the

presence of encryption and decryption drivers to preserve

privacy for data transmission. Since these drivers are not

required if one just examines the type properties of the

communication path source and sink locations, it is clear

that one needs to factor in network resource characteristics

into the component selection process. Unfortunately, prior

research has usually modeled these resources in an ad hoc

fashion, inserting components necessitated by character-

istics such as link properties as a separate pass. While this

approach works, it compromises optimality because of poor

or redundant placement of these components.

In contrast, our approach unifies both type compatibility

and network resource characteristics in the same frame-

work. The basic idea of our approach is to represent network

resource requirements implicitly by modeling how network

resources affect the types of data that go across them.

To capture the effect of network resource properties on

data types, we introduce the notion of augmented types:

each data type is extended with a set of network resource

properties that can take values from a fixed set such as

security (used here to denote transmission privacy),

reliability, and timeliness, etc. Network resources are

modeled in terms of the same property set and have the

effect of modifying, in a type-specific fashion, values of the

corresponding properties associated with different data

types. To consider an example, consider transmission of

MPEG data over an insecure link. Our type framework

captures this as follows: the data type produced at the source

is represented by MPEG(secureZtrue), the network link is

represented by the property secureZfalse, and the effect

of the link property secure on the MPEG data type by the

type-specific rule (i.e. defined by the MPEG type) that the

augmented type MPEG(secureZtrue) is modified to

MPEG(secureZfalse) upon crossing a link with the

property secureZfalse.

This base scheme is extended to stream types by

introducing the notion of isolation. Stated informally,

specific data types have the capability of isolating others

below them in the stream’s type stack from having their

properties be affected by network resources. For example,

an Encrypted type can isolate the secure property of
types that it ‘wraps’, i.e. this type of encrypted data still

remains secure after crossing insecure links, irrespective of

what specific type(s) the data corresponds to. Fig. 3 shows

an example where an MPEG type crosses an insecure link.

With type compatibility to determine what component

sequences are valid, the next step is to choose one of them

and map it to underlying network resources to optimize

desired performance metrics.
4. Automatic path creation strategy

Creation of a network-aware communication path in

general consists of two steps: route selection where a graph

of nodes and links is selected for deploying the path, and

component selection where appropriate components are

selected and mapped to the selected route. Route selection is

typically driven by external factors (such as connectivity

considerations of wireless hops, ISP-level agreements, etc.)

and so we focus only on the component selection problem

here.

The CANS path creation strategy automatically selects

and maps a type-compatible component sequence to

underlying network resources. In addition to satisfying

type requirements, the strategy respects constraints imposed

by node and link capacities and optimizes some overall path

metric such as response time, data quality, or throughput.

We restrict our attention to single input, single output

components; i.e. all selected plans consist of a sequence of

components. Most of the application scenarios we have

experimented will fall into this category.

The heart of our strategy is a dynamic programming

algorithm. We first describe a base version of the algorithm

in which a single performance metric needs to be optimized.

We then present an extension for applications that require

the value of some performance metric to be in an acceptable

range. For such applications, only after that range has been

met does the application worry about other preferences. For

example, most media streaming applications usually

demand a suitable data transmission rate (in some range);

once the transmission rate is kept in that range, other factors

such as data quality become the concern for the application.

We use the terms range metrics and performance metrics to

refer to the two types of preferences. After that, we discuss a

local planning mechanism, which allows disjointed seg-

ments of a communication path to change their behavior

independently and concurrently while maintaining some
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performance guarantee for the overall path. Lastly, we

describe a distributed implementation of this strategy.
4.1. Base algorithm

To describe the dynamic programming algorithm, we

first need to introduce some terminology.

A driver c is modeled in terms of its computation load

factor(load(c)), the average per-input byte cost of running

the component, and its bandwidth impact factor (bwf(c)),

the average ratio between input and output data volume. We

have found this simple model to be a reasonable

approximation of the behavior of components in our

experiments. We discuss incorporation of a more refined

component model at the end of this subsection.

A communication path, DZ{c1,.cn}, is a sequence of

type-compatible components. Type compatibility is defined

in a type graph (Gt): vertices in the graph represent types,

and edges represent components that can transform form the

source type into the sink type.

A route, RZ{n1,n2,.,np}, is a sequence of nodes. Each

node ni is modeled in terms of its computation capacity,

comp(ni), and a link between two adjacent node nj and njC1,

denoted by lj, is modeled in terms of its bandwidth, bw(lj).

Both comp(ni) and bw(lj) are defined in terms of route

resources available for a particular path.

A mapping, M:D/R, associates components on com-

munication path D with nodes in route R. We are only

interested in mappings that satisfy the following restriction:

M(ci)Znu, MðciC1ÞZnq0u%q : sending data back and

forth between nodes in a route usually results in poor

performance and resource waste.

The component selection process takes as its input a

route R, a source data type ts, a destination data type td, and

attempts to find a communication path D that transforms ts
to td and can be mapped to R to yield optimal value of some

performance metrics, e.g. maximum throughput or minimal

latency.

The problem as stated above is NP-hard. To make the

problem tractable, we take a simplified view that the

computation capacity can be partitioned into a fixed number

of discrete load intervals; i.e. capacity is allocated to

components only at interval granularity. This practical

assumption allows us to define, for a route R, the notion of

an available computation resource vector, ~AðRÞZ ðr1; r2;

.; rpÞ; where ri reflects the available capacity intervals on

node ni (normalized to the interval [0,1]).

In the description that follows, we use maximum

throughput as the goal of performance optimization
Fig. 4. Map c to n3 and loo
(other performance metrics can also be used); we use p to

denote the number of hosts in route R (i.e. pZjRj); m for the

total number of types (i.e. mZjV(Gt)j); and n for the total

number of components.
4.1.1. Dynamic programming strategy

The intuition behind the algorithm is to incrementally

construct, for different amounts of route resources, optimal

mappings with increasing numbers of components, say iC1,

using as input optimal partial solutions involving i or fewer

components.

To construct a solution with iC1 (or fewer components)

for a given destination type t and resource vector ~A; consider

all possible intermediate type t 0 that can be transformed to t;

i.e. all those types for which an edge (t 0, t) is present in the

type graph. For each such t 0, consider all possible mappings

of the associated component c on nodes along the route that

use no more than ~A resources. For each such mapping that

transforms the available resource vector to ~A
0

(after

accounting for load(c)), combine this component with

the previously calculated solution for t 0 with i (or fewer)

components with resource vector ~A: The combined mapping

that yields the maximum throughput is deemed the solution.

Because this procedure runs backwards from the sink to

the source (i.e. cjC1 is mapped before cj), consequently,

only resource vectors of the form (1,.,1, rj2[0,1], 0,.,0)

will be used in the calculation. These set of resource vectors

is designated RA. The size of RA is O(p).

Formally, the algorithm fills up a table of partial optimal

solutions ðs½ts; t; ~A; i�Þ in the order iZ0,1,2,.. The solution

s½ts; t; ~A; i� is the data path that yields maximum throughput

for transforming the source type ts to type t, using i or fewer

components and requiring no more resources that ~A ð~A 2
RAÞ: Fig. 4 shows the moment during the calculation of

s½ts; t0; ð1; 1; 3=4; 0Þ; iC1� when the component c is mapped

to node n3, and appended with previously calculated partial

solution s½ts; t
0; ð1; 1; 2=4; 0; 0Þ; i�: Note that in this example,

computation capacity of nodes is partitioned into four

intervals.

The algorithm is shown in Fig. 5. Line 3 of the algorithm

handles the base case: only the case tZts achieves non-zero

throughput. Lines 8–14 represent the induction step,

examining different drivers to extend the current partial

solution for each specific intermediate type t and resource

vector ~A: Lines 12–14 ensure that the component achieving

the maximum throughput defines the next-level partial

solution.

The algorithm terminates at Step p!n, with the solution

in s[ts, td, (1,.,1), p!n]. This follows from the observation
kup solution with ~A
0
:



Fig. 5. Base path creation algorithm.
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that there is no performance benefit from mapping multiple

copies of the same component to a node. The complexity of

this algorithm is O(n2!m!p3)ZO(n3!p3)1 as opposed to

O(pn) for an exhaustive enumeration strategy. n, the total

number of components, usually is a big number. Even for a

simple operation, such as compression, there may exist

many different candidates, not to mention that each

component may have multiple configurations. Therefore,

O(pn) is infeasible in practice. In most scenarios, p is

expected to be a small constant, therefore overall complex-

ity of our path creation algorithm is determined by the

number of components.
4.1.2. Refining the component model

The simple component model described earlier can be

extended in the following two ways. First, instead of

supplying a single configuration (load and bwf pair),

components are modeled ad possessing multiple configur-

ations, which can be determined when a path is created or

modified. Second, instead of being constant, the compu-

tation cost and compression ratio can be viewed as a

function of attributes of the actual incoming stream type.

For example, when an image resizing driver is placed after

an image filtering driver, its load and bwf factors are

determined by the image quality attributes contained in the

type object generated by the Filter component. The

values of these parameters can be obtained by an approach

we call class profiling, which basically groups possible

value of these data properties (for our example, the image

quality) into several classes, and profiles components with

representative data in each class. Values between different

classes are estimated using linear interpolation. Our

experiment results in Section 6 show this refined model is

important for obtaining desirable adaptation behaviors for

applications.
1 It is safe to assume that m!n.
4.2. Extension 1: planning for value ranges

Given that our planning algorithm constructs communi-

cation paths by incrementally filling in a solution table of

s½ts; t; ~A; i�; it is natural to extend this to check that retained

solutions satisfy two conditions: (1) values of range metrics

achieved on the current solution will lie within the desired

range, and (2) the value of any performance metrics is in

fact optimized.

Although this is the basic idea of the extension, for some

range metrics, such as path latency, additional work is

needed. For such range metrics, even if the current value of

the range metrics is not in the range for a partial solutions,

this does not exclude the possibility that this partial path

may actually become a part of the final solution (e.g.

appending compression components to a partial path can

bring down overall latency). To estimate whether the

desired range can in fact achieved by appending additional

components, we employ a procedure called complementary

planning, which just runs the planning algorithm in reverse,

providing information about whether or not the range

metrics can meet the requirement using residual resources

along a path that transforms type t to td. Using this

information, when calculating s½ts; t; ~A; i�; those partial

solutions that cannot meet the requirement will be discarded

in the first place. Heuristic functions are used for choosing

among candidate paths that can all meet the required range.

Note that complementary planning needs to be run just once.
4.3. Extension 2: planning for path segments

Using ‘local’ schemes that can replace small portions of

an existing communication path, disjoint segments of a

communication path can adjust their behaviors indepen-

dently and concurrently. Such support can considerably

improve adaptation agility because a small portion of a

communication path can be modified to respond to local

changes in the network. More importantly, this is
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indispensable for deploying path-based infrastructures in

situations where a communication path spans multiple

network domains.

The challenge here is doing so while still being able to

maintain some performance guarantee for the overall path:

for example, that range metrics will still fall within their

desired range. Note that local planning may compromise on

optimality of performance metrics, but we look it as a

reasonable tradeoff between the strict optimality of

communication paths and responsiveness and scalability

of such path-based infrastructures. We believe the latter is

equally, not more important for CANS-like infrastructures

to be used in networks of large scale.

Our local planning strategy is a straightforward extension

of the range planning mechanism described earlier. To

create a partial path for R 0, which is a segment of the original

route R, all we need to do is to run the range planning

algorithm on R 0 with localized parameters. Since the type

before and after R 0 is fixed (either statically or as observed at

run time), the only thing left is to adjust the range metrics for

R 0. Adjustments for throughput and latency are shown

below:
†
 For application that require a throughput range [thlow,

thhigh] for the overall path, this can be achieved by

ensuring that each disjoint region in the path plans with

the same range, which also gives them the most

flexibility for building paths.
†
 For applications that require a latency range [llow, lhigh],

the localized latency range is set to [l(low,R 0), l(high,R 0)],

where l(V,R 0) is the divided portion of latency lV over

segment R 0. One way of doing this division is to consider

the contribution of links in R 0 to overall latency or R.
2 Note that real-time applications can still detect a break in data

availability; we take the view that such applications are best handled by

inserting additional application-specific components that provide necessary

timeliness guarantees.
4.4. Distributed (incremental) planning

Through our path creation strategy has so far been

described in a centralized manner, it can easily be extended

to run in a distributed fashion. To do that, each node (ni) on

the route just needs to calculate

s ts; t; ~A ¼ ð1;.; 1|fflfflffl{zfflfflffl}
i

; 0;.; 0Þ;
Xi

j¼0

ðCNjÞ

2
4

3
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where CNj is the total number of components in node nj),

and send these partial solutions to the next mode. This

procedure starts from the server node and continues until it

reaches the client node.

The primary benefit of this distributed version is that

there is no need for a centralized planner that needs a

complete knowledge of components and types for all nodes

in the route. Instead, only knowledge of common types that

are used across different network domains is required. This

distributed version, combined with the local mechanisms

described earlier, is important for a path-based system to be
used in a wide area network, where a communication path

usually spans multiple administration domains.

The traffic incurred for the distributed planning is just

messages of partial solutions between adjacent nodes. It

should be noted here that only values of the performance

metrics needs to be present in the messages, transmission of

the components themselves is unnecessary.
5. System support for efficient path reconfiguration

Network-aware communication paths need to be recon-

figured to cope with dynamic changes in available

resources. Our approach relies on two kinds of system

support to enable low-overhead reconfiguration: (1) appro-

priate restrictions on component interfaces and (2) reconfi-

guration protocols that leverage these restrictions.

5.1. Reconfiguration semantics

The central question about reconfiguration is what the

application can assume about transmitted data after a

portion of the network path is reconfigured. CANS

reconfiguration protocols can be customized to provide

three levels of semantics:
†
 Level 1 semantics provides no guarantees, leaving it up to

the application to reconstruct any lost data.
†
 Level 2 semantics provides the guarantee of delivering

complete semantic segments, essentially simplifying the

task of the application recovery code.
†
 Level 3 semantics provide full continuity guarantees with

exactly once semantics, completely isolating the appli-

cation from the fact that the path has been reconfigured.2
5.2. Restrictions on the driver interface

To guarantee the above semantics, CANS relies upon the

semantic segment and soft state properties of drivers,

introduced in Section 2.

Semantic segments refer to demarcatable application-

specific units of data transmission, e.g. an HTML page or an

MPEG frame. CANS drivers are required to consume and

produce data at the granularity of an integral number of

semantic segments. Informally, this requirement ensures

that the data in an input semantic segment can only

influence data in a fixed number of output segments,

permitting construction of communication path reconfigura-

tion and error recovery strategies that rely upon retransmis-

sion at the granularity of semantic segments.



Fig. 6. An example of communication path reconfiguration using semantics segments.
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Soft state refers to the driver property, which allows

internal state to be reconstructed simply by restarting the

driver. Stated differently, given a semantically equivalent

sequence of input segments, a soft-state driver always

produces a semantically equivalent sequence of output

segments.

Together, these two properties enable low-overhead path

reconfiguration as described in Section 5.3.

5.3. Reconfiguration protocol

The reconfiguration process is triggered by dynamic

changes, and consists of three major steps:3 (1) generation of

a new plan; (2) ensuring required semantics prior to

suspending data transmission; and (3) deploying the new

plan and resuming data transmission. The primary problem is

that to maintain semantic continuity and exactly once

semantics,4 any scheme must take into account the fact that

the portion of the communication path being reconfigured can

have stream data that may be buffered in the internal state of

drivers, or in transit between execution environments.

Fig. 6 shows an example highlighting this problem. To

introduce some terminology, we refer to the portion of a

communication path that needs to be modified due to

changes in the network as the reconfiguration portion, and

the components immediately upstream and downstream of

this portion as the upstream point and downstream point,

respectively. In the example, driver d0 is an HTML data

source, and d3 is a component receiving WML data. The

reconfiguration portion consists of drivers d1 and d2. In this

case, let’s assume that driver d1 converts every incoming

HTML page into three TXT pages, and driver d2 composes

every four incoming TXT pages into a WML deck. Consider

a situation where system conditions change after the

upstream point d0 has output two HTML pages, and the

downstream point d3 has received one WML deck. At this

point, the reconfiguration portion cannot be replaced

because doing so affects semantic continuity. It is incorrect

to retransmit either the second page from d0 whose effects

have been partially observed at d3, or the third page, which

would result in a loss of continuity at d3.

The basic idea of our solution is to delay the

reconfiguration to safe points in data transmission where
3 These steps may be overlapped with each other.
4 Since activities for Levels 1 and 2 are a subset of that for Level 3, our

description focuses on the latter.
the reconfiguration portion can be safely removed, and

semantic continuity can be achieved using selective

retransmission of data that has not been seen downstream

of the reconfiguration portion.

The key to detecting these ‘safe’ points is keep track of

the correspondence between segments received at the

downstream point and the segments sent from the

upstream point, which is determined by the driver

characteristics in the reconfiguration portion. If a reconfi-

guration portion contains a sequence of drivers DZ
{c1,.,cn} of which driver ci produces pi semantic

segments upon receiving qi input segments, we refer to

p=qZ
QiZn

iZ1 pi=qi as the synthesis factor of the reconfigura-

tion portion (here p and q are relative primes). For the

reconfiguration portion, the semantic information in the

jth outgoing segment from the upstream point is contained

in segments within the range of [bj!p/qc, bj!p/qc]

received by the downstream point. More interesting is

the fact that the boundary of each (i!q)th segment at the

upstream point is preserved at the downstream point,

which corresponds to the boundary of the (i!p)th

segment. This means that after the downstream point

receives such a segment, all segments (inclusively) before

the (i!q)th segment must have been seen at the

downstream point and there is no state of these segments

left in the reconfiguration portion. Such segments are

referred to as flushing segments in our reconfiguration

protocol to reflect the fact that these segments can in

effect completely push state (and data) remaining in the

reconfiguration portion (of previous segments) to the

downstream point.

Note that in practice pi/qi may not necessarily be a constant

number, so our framework exploits a flexible mechanism that

tracks these flushing segments by using marker messages,

which demarcate segment boundaries. All drivers along a

communication path are required to pass only incoming

markers that match their output segment boundary (others

will be discarded). Therefore, receipt of a marker at the

downstream point of a configuration portion signifies the end

of a flushing segment (sent by the upstream point).
5.4. Reconfiguration process

The state diagram of the path during reconfiguration is

depicted in Fig. 7. In this figure, bold font is used for

distinguishing control messages or data segments from



Fig. 7. State diagram of path reconfiguration. Numbers on arcs correspond

to the steps described in the text.
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actions taken by the path (shown in italics). The reconfi-

guration process includes the following steps.
1.
 Upon receiving a message signifying the start of a

reconfiguration (with the new plan), the downstream

point starts to monitor incoming data (1 0) (the Monitor
state); the upstream point starts to buffer outgoing

segments while continuing to deliver them downstream

(1) (the Buffering state). Besides, a marker is

appended at the end of each output segment from the

upstream point. Other nodes within the reconfiguration

portion do not change their state.
2.
 The downstream point continues monitoring until it

receives a marker from the upstream point, which

signifies the end of a flushing segment from the upstream

point. The downstream point then sends a Seg_Ack

message to the upstream point, and begins to discard any

further incoming data segments (2).
3.
 Upon receipt of the Seg_Ack from the downstream point,

the upstream point suspends (keeps buffering but does

not deliver data downstream) data transmission and

sends a Modify message to all nodes that are involved in

the reconfiguration (3).
4.
 Upon receipt of a Modify message, all nodes in the

reconfiguration portion enters the Recfg state, tearing

down the components in the old configuration and

replacing them with the new component graph. In this

stage, all drivers within the reconfiguration portion

except the upstream point discard any incoming data (4 0).

The upstream point continues buffering outgoing seg-

ments (4).
5.
 After the modification on a node is finished, an ACK

messages will be sent to the upstream point (5).
6.
 After receiving ACK messages from all nodes, the

upstream point resumes data transmission, starting
with retransmission from the segment that follows the

last flushing segment received by the downstream

point (6). Note that every driver is associated with a

unique ID, so the new components will not receive

the data in the network that is addressed to the old

ones.

The process described above achieves Level 3 reconfi-

guration semantics. For semantics Level 2, the data

buffering and retransmission actions can be omitted. For

semantics Level 1, step 1 and 2 can be further bypassed, i.e.

the upstream point need not wait for the Seg_Ack message

from the downstream point.

Example. For the example shown in Fig. 6, reconfiguration

works as follows. First, the upstream point (d0) starts

buffering every segment it produces after the reconfigura-

tion beings. The downstream point (d3) will receive a

marker after the third page form d2, which is the marker

appended at the end of the fourth page from the upstream

point. It then sends an acknowledgement to the upstream

point. After that, data transmission will be suspended at d0

so that d1 and d2 can be replaced with another compatible

driver graph. To resume data transmission, d0 retransmits

buffered data starting from the fifth page.
5.5. Error recovery

In addition to adapting to changes in resource avail-

ability, our scheme can also be used for ‘extreme’ cases

where link or node errors cause loss of data or driver state.

The only difference between the two situations is whether

the reconfiguration protocol is executed on demand or runs

all the time.

To gracefully recover from the failures of links and

nodes along a communication path, we need to do

buffering and monitoring all the time at the upstream

and downstream points of an unstable network segment.

Moreover, the downstream point needs to delay the

delivery of received segments until it receives a marker

from the upstream point. Meanwhile, the downstream also

needs to send acknowledgements of received markers to

the upstream point so that the upstream point can free

buffer space accordingly. Upon recovery from a network

failure, the downstream point discards its buffered data

and resends the acknowledgement of the last received

marker to the upstream point. The procedure that follows

is exactly the same as steps (3)–(6) in the reconfiguration

process described earlier.

5.6. Local reconfiguration

In addition to modifying a whole communication path

(global reconfiguration), the reconfiguration process can

also be applied to allow individual nodes or small portions

of a communication path to adjust their behaviors



Fig. 8. A typical network path between a mobile client and an internet services.

5 Our use of the term ‘edge server’ differs from its usage in content

distribution networks. We use the term to refer to a host on the frontier of

the network administrative domain within which CANS components can be

deployed.
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independently and concurrently. We refer to the latter as

local reconfiguration. By using local reconfiguration, every

segment of a communication path can independently and

concurrently adapt to dynamic changes in the network. This

not only results in better responsiveness, but more

importantly, also enables each network domain along the

path to control its portion independently, and is especially

important for infrastructures that run in a wide are network

where fine-grained coordination across different network

domains is either prohibitively expensive or infeasible due

to administration policies.

To support local reconfiguration, in addition to the

reconfiguration process described earlier, we need two more

things. First, we need a planning algorithm suitable for

generating a small path portion to replace a part of an

existing communication path while retaining some overall

performance guarantee. In Section 4.3, we have described

an algorithm that can provide such support. Second, we

need strategies to determine which part of a communication

path (i.e. nodes and links) should be involved in a local

reconfiguration. In this section, we focus on this issue.

To start with an example, if the bandwidth of a network

link changes, local reconfiguration may first try replanning

only the direct upstream node of that link. If the new

calculated plan can cope with the change, it will be

deployed without further action. Otherwise, the reconfigura-

tion portion has to be increased to involve more network

resources until the situation is handled. Note that this

propagation can be terminated at any time by just invoking a

global reconfiguration.

The tradeoff in choosing an appropriate point to switch

between local and global reconfiguration involves the length

of the segment selected for reconfiguration (which affects

reconfiguration cost), and the likelihood that the reconfi-

guration can successfully handle changes. Our framework

uses a three-level strategy. Upon a reconfiguration request,

the first reconfiguration attempt happens at a single node

whenever its load changes or the load on its direct

downstream link changes. If the first reconfiguration attempt

cannot meet the application requirements, then the second

reconfiguration attempt will be triggered, which includes

network segments comprising nodes connected with

relatively fast links (usually within a single network

domain). If both of these attempts fail, a global reconfigura-

tion will be started for the whole communication path.
6. Performance evaluation

To evaluate the effectiveness of CANS mechanisms

detailed in Sections 3–5 in enabling automatic creation and

reconfiguration, we built a Java-based prototype of the

CANS infrastructure and conducted a series of experiments

in the context of a web access application and an image

streaming application under typical mobile usage scenarios.

First, we measured the performance advantage brought

by automatically generated paths, using the web access

application, under a wide range of network conditions.

Second, we observed the continuous adaptation beha-

viors achieved with CANS, using the image application

within a shared wireless environment, where available

bandwidth changes frequently.

Last, we measured overhead of CANS mechanisms,

including reconfiguration costs and the overhead incurred

by the CANS run-time system for managing components

along communication paths.
6.1. Experimental platform

In this paper, we consider a typical network path

between a mobile client and an Internet server as shown

in Fig. 8. This platform models a mobile user using a

portable device (N2) such as a laptop or a pocket PC to

access network services in a shared wireless environment.

The communication path from the device to the service

typically spans three hops: a wireless link (L2) connecting

the user’s device to an access point, a wired link (L1)

between the wireless access point and a gateway to the

general Internet, and finally a WAN link between the

gateway and the host running the service. We assume that

CANS components can be deployed on three sites, the

mobile device (N2), a proxy server located close to the

access point (N1), or an edge server located near the

gateway (N0).5

The web access application is a browser client, which

downloads web pages (both HTML page and images). For

this application, short response time is the major perform-

ance concern.



Table 1

Twelve configurations representing different loads and mobile network connectivity scenarios, identifying the CANS plan automatically generated in each case

Platform Edge server (N0) L1 Proxy server (N1) L2 (bps) Client (N2) Plan

1 Medium Ethernet High 19.2 K Cell phone A

2 Medium Ethernet High 19.2 K Pocket PC A

3* High Fast Ethernet Medium 57.6 K Laptop B

4* High Fast Ethernet Medium 115.2 K Laptop B

5 Medium Ethernet High 384 K Pocket PC A

6* High Fast Ethernet Medium 576 K Laptop B

7* Medium Fast Ethernet High 1 M Laptop C

8 Medium Ethernet High 3.84 M Pocket PC D

9 Medium Ethernet High 3.84 M Laptop D

10 Medium DSL High 3.84 M Laptop B

11 Medium DSL Low 3.84 M Laptop B

12* Medium Fast Ethernet High 5.5 M Laptop E

Relative computation power of different node types (normalized to a 1 GHz Pentium III node with 256 MB 800 MHz RDRAM): HighZ1.0, mediumZ0.5,

laptopZ0.5, lowZ0.25, pocket PCZ0.1, cell phoneZ0.05. link bandwidths: fast ethernetZ100 Mbps, ethernetZ10 Mbps, DSLZ384 Kbps.
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The image streaming application is a simple Java-based

application that continuously fetches JPEG frames from an

image server. To perform appropriately, this application

requires that frames arrive at a certain throughput (i.e.

frames/s) and prefers high quality data.
Table 2

Component placement for the five automatically generated plans

Plan N0 (Img/Txt) N1 (Img/Txt) N2 (Img/Txt)

A –/Zip (Filter, Resizer)/– –/Unzip

B (Filter, Resizer)/Zip –/– –/Unzip
6.2. Effectiveness of automatic path creation

Components used with the web access application

include: ImageFilter and ImageResizer com-

ponents, which can reduce bandwidth usage for images by

degrading image quality to a factor of 0.2 and reducing

image size to a factor of 0.2, respectively, Zip and Unzip

components, which work together to compress text pages.

The load and bandwidth factor values were obtained by

profiling component execution on representative data

inputs: a web page containing 14 KB text and six 25 KB

JPEG images. In this experiments we used the same data

inputs that the components were profiled on. This is a

simplifying assumption, but reasonable given our primary

focus here was evaluating whether our approach could

effectively adapt to multiple network conditions. Evaluating

the effectiveness of the approach when component charac-

teristics may be imprecise is investigated in our second set

of experiments.

To model different network conditions likely to be

encountered along a mobile access path, we defined 12

different configurations listed in Table 1. These configur-

ations represent the network bandwidth and node capacity

available to a single client, and reflect different loading of

shared resources and different mobile connectivity

options.6 These configurations are grouped into three

categories, based on whether the mobile link L2 exhibits

cellular, infrared, or wireless LAN-like characteristics.

Five of the configurations correspond to real hardware
6 The bandwidth between the internet server and edge server available to

a single client is assumed to be 10 Mbps.
setups (tagged with a *), the remainder were emulated

using ‘sandboxing’ techniques that constrain CPU,

memory, and network resources available to an appli-

cation [7]. The computation power of different nodes is

normalized to a 1 GHz Pentium III node with 256 MB,

800 MHz RDRAM.

Table 1 also identifies, for each platform configuration,

the plan automatically generated by CANS for the web

access application. The plans themselves are shown in

Table 2, listing the components deployed along the Image

and Text paths. To take an example, consider platform

configuration 7 for which the path creation strategy

generates Plan C. The reason for this plan is as follows.

Since link L1 has high bandwidth while L2 has moderate

bandwidth, there is a need to reduce image transmission

size, which is accomplished using the ImageFilter
component. The Zip and Unzip drivers help improve

download speeds by trading off computation for network

bandwidth. Both the ImageFilter and Zip components

are placed on the proxy server, because it has more capacity

than the edge server.

Fig. 9 shows the performance advantages of the

automatically generated plans when compared to

the response times incurred for direct interaction between

the browser client and the server (denoted Direct in the

figure). The bars in Fig. 9 are normalized with respect to the

best response time achieved on each platform (so lower is

better). In all 12 configurations, the generated plans improve

the response time metric, by up to a factor of seven. Note

that the lower response times come at the cost of degraded
C –/– Filter/Zip –/Unzip

D –/Zip –/– –/Unzip

E –/– –/Zip –/Unzip
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image quality, but this is to be expected. The point here is

that our approach automates the decisions of when such

degradation is necessary. Fig. 9 also shows that different

platforms require a different ‘optimal’ plan, stressing the

importance of automating the component selection and

mapping procedure. In each case, the CANS-generated plan

is the one that yields the best performance, also improving

performance by up to a factor of seven over the worst-

performing transcoding path.

6.3. Adaptation behaviors

To investigate the kinds of continuous adaptation

behaviors that can be achieved by CANS-like approaches,

we run a set of experiments with the image streaming

application. The experiment modeled the following scen-

ario: initially a user receives a bandwidth allocation of

150 KBps on the wireless link (L2), which then goes down to

10 KBps in increments of 10 KBps every 40 s (modeling

new user arrivals or movement away from the access point)

before rising back 150 KBps at the same rate (modeling user

departures or movement towards the access point). The

communication path is allocated a (fixed) computation

capacity of 1.0 (normalized to a 1 GHz Pentium III node) on

nodes N1 and N2, respectively, and a bandwidth of

500 KBps on L1. N1, N2, and L1 are wired resources and

consequently more capable of maintaining a certain

minimum allocation (e.g. by employing additional geo-

graphically distributed resources) than the wireless link L2.

The components used with this image streaming

application included the ImageFilter and ImageR-
esizer used before. To display incoming images appro-

priately, the throughput is required to be between 8 and 15
Fig. 9. Response times achieved by different plans for each of the 12 platform co

normalized to the best performing plan for each configuration.
frames/s. Within that range, better image quality is

preferred. We started with the base planning strategy

described in Section 4.1. Since it can only optimize one of

these metrics at a time, we chose to optimize throughput.

The component parameters were obtained by profiling their

behavior on a 25 KB JPEG image (quality assumed to be

1.0), one of a set of images repeatedly transmitted by the

server ranging in size from 20 to 30 KB.

Fig. 10 shows the throughput and image quality achieved

by the communication path over the 20 min run of the

experiment; the plans automatically deployed by CANS are

shown in the right table. The plot needs some explanation.

The light-gray staircase pattern near the bottom of the graph

shows the bandwidth of link L2 normalized to the throughput

of a 25 KB image transmitted over the link; so, a link

bandwidth of 150 KBps corresponds to a throughput of 6

frames/s, and a bandwidth of 10 KBps corresponds to a

throughput of 0.4 frames/s. The dashed black line corre-

sponds to the quality achieved by the path. The jagged curve

shows the number of frames received every second; because

of border effects (a frame may arrive just after the

measurement), this number fluctuates around the mean.

The plateaus in the quality curve are labeled with the plan that

is deployed during the corresponding time interval.

The results in Fig. 10 show that the plans automatically

created and dynamically deployed by CANS do improve

application throughput over what a static configuration

would have been able to achieve. However, it also points out

several deficiencies:
†

nfig
Always trying to maximizing the throughput may

sacrifice image quality unnecessarily, failing to meet

application performance preference.
urations compared to that achieved by direct interaction. All times are



Fig. 10. Performance of CANS base mechanisms.
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†
 The reconfiguration at 80 s from Plan A to Plan B is

seemingly unexplainable give that it was initiated to

improve application throughput, not to reduce it. A closer

examination identified this problem is caused by the fact

that component behavior for the ImageResizer
component did not match profiled behavior when the

input was a filtered image as opposed to the original.

Similar problem exists for Plan C.

To address the first problem, we applied the range

planning algorithm (Section 4.2) to this application, and

obtained the results shown in Fig. 11. Comparing with

Fig. 10, we can see two improvements. First, the range

planning system retains Plan A for much longer than before

(till 280 s into the experiment), choosing not to reconfigure

while the throughput is still within the desired range.

Second, the system employs an additional plan that falls

between Plan A and B chosen in Fig. 10 and represents a

tradeoff that compromises on achieved throughput (while

still ensuring that it is within the desired range) to improve

quality. Such gradual decrease/increase in image quality is

desirable adaptation expected by end users.

To address undesirable adaptation caused by inaccurate

component parameters, we exploited the refined component

model described earlier. In particular, we allowed both

components in our image streaming example to take on
Fig. 11. Performance with ra
multiple configuration: nine Filter configurations corre-

sponding to quality values 0.1–0.9, and four Resizer
configurations corresponding to scale factors of 0.2, 0.4, 0.6,

and 0.8. In additional, the components were profiled for

three different image classes (high, medium, low) (class

profiling). Fig. 12 shows the resulting performance and

associated plans. There are three obvious improvements

over Fig. 11. First, the throughput is kept in the required

range for the whole duration of the experiment (except for

transition points caused by reconfigurations). Second, the

image quality changes more smoothly than what was

previously shown in Fig. 11. Instead of three configurations

(quality levels), there are seven different plans, permitting

smoother variations in path quality. Finally, the low costs of

switching configurations is reflected in transitions from

Plans A to B, and B to C, which hardly disrupt the achieved

throughput unlike the associated cost for introducing a new

component (transition between Plan C and D).

6.4. Overhead of CANS mechanisms

6.4.1. Runtime overhead

To understand the run-time overheads incurred by the

CANS infrastructure, we first measured the impact on

bandwidth and latency of communication paths when

CANS execution environments are employed in the middle
nge planning support.



Fig. 12. Performance with multi-configuration components and class profiling.
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of the network. The results show that each intermediate

CANS execution environment along a communication path

introduces an extra 1.5 ms in the round trip time (i.e. 0.75 ms

one way) for a 4K packet (on a Pentium II 450 MHz with

128 MB PC 100 SDRAM). For bandwidth, such paths can

sustain about 70 Mbps where running in a 100 Mbps LAN

environment. Given that intermediate EEs are intended to be

used across different network domains in the Internet where

other factors dominate latency and bandwidth, such overhead

is unlikely to have much overall impact.

We also profiled both applications with our implemen-

tation to construct a detailed timeline of operations. CANS

incurs an average cost of 25 ms per driver invocation, which

is negligible for most data-processing components.
6.4.2. Reconfiguration overhead

We measured the cost of communication path reconfi-

guration using the image streaming application, with local

and global reconfiguration, respectively. In both cases, we

measure the cost for Level 3 reconfiguration.

To emphasize the difference in behaviors between local

and global reconfiguration, we closely examined the

portion of the experiment between 400 and 600 s (shown

in Figs. 13 and 14), corresponding to a bandwidth range of

50–10 KBps. Unlike global reconfiguration which partitions
Fig. 13. Performance of lo
the ImageResizer and ImageFilter portions of the

communication paths in Plans B, C, and D, so that they run

on both nodes N0 and N1 to obtain a slightly higher value of

throughput, local reconfiguration chooses to both calculate

the plan and deploy the components on the same node,

thereby avoiding the cost of coordination across nodes. The

cost, however, is that the local reconfiguration does not

quite achieve the same throughput as the global case,

achieving 10 frames/s instead of 12. Note that this is still

within the desired range, otherwise global reconfiguration

would have been triggered.

A breakdown of the reconfiguration costs for the

bandwidth change event at 480 s in the two cases is

shown in Fig. 15. The total reconfiguration time is 1.08

and 0.35 s for the global and local case, respectively. This

figure shows that the major contributors to shorter

reconfiguration times in the local mechanism are the

first three stages of reconfiguration: shorter planning time,

which is the result of shorter network paths; and shorter

overheads for partitioning the plan, flushing data belong-

ing to the old plan, and deploying the new plan, all of

which benefit from the fact that all required coordination

occurs locally and there is less data in transit. It also

needs to be noted that during the first three stages

of reconfiguration, data keeps flowing downstream.
cal reconfiguration.



Fig. 14. Performance of global reconfiguration.
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So the suspension period of data transmission is about

0.18 s for the global case and 0.12 s for the local case.

The time for first three stages basically reflects the inertia

of communication paths, in which the existing path is still

in use after a new change is detected. The difference

(about 0.68 s) between global and local mechanisms

means that using local mechanisms can substantially

increase the responsiveness of the communication path.

From Figs. 13 and 14, we can observe that the use of

local reconfigurations does result in more stable through-

put during reconfiguration (look especially at the first

reconfiguration that happens 480 s into the experiment).

6.5. Summary

The experiment result described in this section verify that

(1) network-aware communication paths can be automati-

cally created and dynamically configure; (2) these auto-

matically created paths provide considerable performance

advantage for applications; (3) our mechanisms can provide

applications with fine tuned, desirable continuous adap-

tation behaviors; (4) the run-time overheads of CANS paths

is negligible, and reconfiguration cost is small for most

applications, and can be further reduced by our local

mechanisms.
Fig. 15. Reconfiguration cost.
7. Discussion and related work

Our work is related to works on adaptation frameworks

that can improve user experience by reacting to changes in

network conditions. Though many application-specific

approaches have been proposed and some of them have

gained tremendous success, we believe general application-

independent mechanisms are more attractive because of

their wider applicability. Furthermore, using such

approaches can also simplify the construction of approaches

aiming at one specific application. General adaptation

frameworks can be categorized into three groups: end-

point approaches, proxy-based, and path based approaches.
End-point approaches such as Odyssey [22], Rover [16],

and InfoPyramid [20] provide flexible platforms for

applications to adapt to changes in network environments.

However, limiting adaptation behaviors only at end points

hampers the responsiveness for coping with changes at

intermediate points in the network. Moreover, it is usually

hard to deploy such approaches on small portable devices

with strict resource constraints.

The cluster-based proxies in BARWAN/Daedalus [8],

TACC [9], MultiSpace [13], and Active Services [1] are

examples of systems where application-transparent adap-

tation happens in intermediate proxy nodes in the network.

Compared with end-point approaches, proxy-based infra-

structures provide resource sharing at proxy sites thus it can

work with servers or client devices with limited compu-

tation capability. But on the other hand, the limitation that

adaptation only happens at the last hop can cause

considerable resource waste in the middle of the network.

Path-based mechanisms provide more flexible and

responsive solutions. Our experiment results in Section 6

verify that adaptation occurring close to the actual change

point does significantly reduce the response time. More

importantly, injecting computation into the whole network

not only enables such an approach to work with small server

sites or weak clients, but also results in better performance

of the overall network. Detailed information about
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performance differences among these approaches can be

found in a study described in Ref. [11].

Among path-based infrastructures, the Ninja project’s

Automatic Path Creation (APC) service [12], also used by

Kiciman and Fox in their mediator-based path framework

[17], allows creation of paths between various end

devices and services. Both APC and CANS formulate

the component selection problem in terms of type compat-

ibility, however, unlike CANS performance-oriented focus,

APC is a function-oriented method, which ignores network

resource properties and constraints, and thus is not able to

provide applications with optimized performance. Other

differences include our support for path reconfiguration and

a more general notion of data, stream, and augmented types.

Template-based or reusable plan set are used in the Scout

project [21] and the Panda project [23]. Unlike our

approach, these approaches require a database of predefined

path templates (or reusable plan sets), simply instantiating

an appropriate template based on other programmer-

provided rules that decide whether or not a component

can be created on a resource. As our experimental results

show, such template-based approaches would need to rely

on a significant amount of domain knowledge that may or

may not be appropriate for network resources that can

change continually.

Recent work on multimedia content delivery [26] has

also proposed an approach to find a safest path (by mapping

a sequence of processing operators) on a media service

proxy network to minimize the possibility of failing to

deliver the content. Though resource availability is

considered in this work, such paths do not provide

optimized performance. Furthermore, since the approach

is designed for multimedia content delivery, the selection of

components benefits from more domain knowledge than

general application-neutral path-based approaches.

The same path construction problem exists in service

composition across a wide area network with QoS

requirements. The work [15] proposed the use of heuristic

strategies to map a given sequence of service instances for

required QoS parameters. Differing from this work that

focuses only on the mapping of service instances, our path

creation strategies solve component selection and mapping

as a combined problem. Dividing the component selection

and mapping into two separate stages may exclude valid

solutions and impair the optimality of the produced path.

Though these infrastructures can enhance application

performance to some extent, the network awareness

provided by them is limited in that they lack the

mechanisms for constructing communication paths with

optimized performance and dynamically modifying paths

when network conditions change. Differing from these

infrastructures, CANS focuses on providing network-aware

communication paths that can continually cope with

changes in dynamic network environments and provide

application with optimized performance, requiring only

minimum input from applications. We achieve this goal
using (1) effective data path creation strategies that satisfy

applications’ performance needs, and provide desirable

adaptation behavior, (2) low overhead communication path

reconfiguration, enabling agile adaptation to dynamic

changes, and (3) local and distributed schemes that make

CANS applicable for wide area networks.

Limitations of the CANS Approach. Our research using

the CANS infrastructure has currently focused on only a

core set of concerns, specifically the feasibility and

performance of automatic path creation and reconfiguration

strategies.

A complete solution to automatically building network-

aware access paths from application-level components

requires addressing several other equally important issues.

Three notable omissions in this work include (1) the issue

of encoding component semantics in a high-level fashion

(as opposed to just specifying its input and output data

types); (2) dealing with security concerns for paths

spanning multiple administrative domains (though our

local and distributed schemes considerably reduce depen-

dency between different network domains); and (3)

integrating resource monitoring information. The first

issue needs some clarification. In its current form, the

CANS infrastructure is most suitable for deploying

components that transform the format of data presentation,

but still retain the same semantic information (e.g. a

transcoded web page still represents the original). How-

ever, enabling use of semantics-transforming components

would require going beyond simple types, possibly

leveraging standard ontologies such as being developed

by the Semantic Web [2] and IEEE’s Standard Upper

Ontology [14] efforts.
8. Conclusion

This paper has presented and evaluated an automatic

approach for the dynamic deployment of intermediary

components along client–server paths, which can be

efficiently reconfigured at run time, to enable ubiquitous

network-aware access to services. In contrast to current-day

approaches relying on intermediate static proxies, our work

argues for a flexible approach where the entire paths leading

to these services are automatically and dynamically

reconfigured to satisfy user preferences and network

resource constraints. Using our approach, regular appli-

cations can easily be augmented with the capability of

adapting to changes in the network. The experimental

results show that such network-aware communication paths

cannot only bring applications considerable performance

benefits, but also provide desirable adaptation behaviors in

dynamic environments. The local and distributed schemes

built in the CANS infrastructure make it suitable for used in

wide area networks.
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