MIT

February 2009

Firing Neurons

Joel Spencer

Problem from Charles Peskin (Courant)

Robert DeVille (Courant \rightarrow Urbana)

Angelika Steger (ETH) & Students

Juliana Friere (Courant graduate student)

Fabian Kuhn (ETH \longrightarrow MIT \longrightarrow ??)

n nodes (neurons) $(n \rightarrow \infty)$ *k* regular levels (*k* fixed, *k* = 10) Levels $0, \ldots, k - 1$ and special *F* (fire) Firing Parameter *p*. Parametrize $p = \frac{ck}{n}$ State: Each neuron has level $0 \le i \le k - 1$ Initial State: You pick it! Transition: Pick random node. Increment level.

Firing

When neuron v incremented to FQueue set to $\{v\}$ PopQueue, neuron stays at F but spent Nonspent neurons:

increment with probability $p = \frac{ck}{n}$

Continue until Queue empty Reset all fired neurons to level zero

- F*: Firing
- F-: Already Fired, remains at F

7
7
7
8
8
8

burst size = 4

Big Burst, burst size $\Omega(n)$.

Small Burst, burst size $O(\ln n)$.

Asymptotic Description

State $(\alpha_0, \dots, \alpha_{k-3}, \beta, \alpha)$ $(n/k)\alpha_i$ at level i $(n/k)\beta$ at level k-2 $(n/k)\alpha$ at level k-1Level k-1 to FBasic Erdős-Rényi If $p(n/k)\alpha = c\alpha < 1$ small burst If $p(n/k)\alpha = c\alpha > 1$ big burst But, what happens *dynamically*??

The Dyanamic Picture

p = cn/k $(n/k)\alpha$ at level k - 1 $(n/k)\beta$ at level k - 2 $\beta > 1$ relatively fixed α increasing to $c\alpha = 1$.

> When α "reaches" $c\alpha = 1$ Big Burst fed by level k-2

Critical Window $c\alpha = 1 + \Theta(n^{-1/3})$

Underlying Walk

Parameter $p = n^{-1}$ $X_0 = 1$ $X_t = X_{t-1} + BIN[t, p] - 1$ If $X_t = 0$ reset $X_t \leftarrow 1$ For $t < (1 - \epsilon)n$ keep crashing For $t > (1 + \epsilon)n$ can go to infinity Last Crash at $n + \Theta(n^{-1/3})$ Longest Crash $\Theta(n^{2/3})$

Erdős-Rényi Double Jump

G(n,p). Traditional: $p = \frac{c}{n}$ c < 1 Subcritical. Components $O(\ln n)$ c > 1 Supercritical. Giant Component $\Theta(n)$ c = 1 Delicate. Largest $|C| = \Theta(n^{2/3})$

Erdős-Rényi Critical Window

$$p = \frac{1}{n} + \lambda n^{-4/3}$$

 $\lambda \rightarrow -\infty$ Barely Subrcritical.

•
$$|C_1| \sim |C_2| \sim \ldots \sim |C_{100}|$$

- Big components trees
- $\lambda \rightarrow +\infty$ Barely Supercritical.

Dominant Component $|C_1| \gg |C_2|$

 C_1 complex

 λ constant. Critical Window.

Erdős-Rényi and Neuron Firing

ER with $p = n^{-1} + \lambda n^{-4/3}$

Generate C(v) by BFS. $X_t =$ queue size Add Poisson $1 + \lambda n^{-1/3}$, Subtract one. Ecological Limitation. When $cn^{2/3}$ found, Poisson $1 + (\lambda - c)n^{-1/3}$. Neuron Firing X_t = queue size Add Poisson $1 + \lambda n^{-1/3}$, Subtract one. BUT: Suppose double at penultimate level. Ecological Positive Feedback. When $cn^{2/3}$ fire have $cn^{2/3}$ more! When $cn^{2/3}$ found, Poisson $1 + (\lambda + c)n^{-1/3}$. Limiting Brownian motion

Two Regimes

- \boldsymbol{c} is expected new to \boldsymbol{F} if uniform
- c > 1
 - With any initial state
 - Soon reach near periodic behavior
 - Big Burst
 - Buildup to Big Burst
- $\bullet c \text{ small}$
 - With any initial state
 - Soon reach quiet behavior
 - Only Small Burst
 - Approach Uniform Level Distribution

A Third Regime! c slightly less than one

Uniform is SemiStable

Takes Exponential Time to Leave

• • • Another Semistable Behavior

Big Burst

Buildup to Big Burst

Takes Exponential Time to Leave

Limiting Behavior

State
$$\vec{x} = (x_0, \dots, x_{k-1})$$
, $(n/k)x_i$ at level n .
Loading Phase
Merry Go Round (MGR)
 $x'_i = x_{i-1} - x_i$ for $1 \le i \le k - 1$
 $x'_0 = x_{k-1} - x_0$
Valid if no big bursts

 $ec{x}(t)
ightarrow (1, \dots, 1)$ (uniform)

Burst Equation (BST)

Start when $cx_{k-1}(t_0) = 1$ Auxilliary F(t) = proportion fired. $F(t_0) = 0$ $x'_{i} = x_{i-1} - x_{i}$ for $1 \le i \le k-1$ $x'_{0} = -x_{0}$ $F' = x_{k-1}$. So $F'(t_0) = c^{-1}$ END at first t_1 with $F(t_1) = c^{-1}(t_1 - t_0)$ MGR-BST Toggle Do MGR until $cx_{k-1} = 1$ Do BST until END Reset $x_0 \leftarrow x_0 + F$ Back to MGR

The Third Regime: k = 100, c = 0.99

Position (x_0, \ldots, x_k) good if

- (Dust) $x_i < k^{-10}$, $1 \le i \le k/2$
- (Zero) At least 99.9% at Zero
- (Right) Starting with only Right, MGR would

have $cx_k < 0.1$ forever.

Claim: good \longrightarrow good

Mass at Zero becomes moving Gaussian

Triggers BST

Huge Burst swallows Zero and Right

Dust either in Burst or at Right

Kuhn,JS,Steger,Panagiotou: $c < 2^{5/4} (k \ln k)^{-1/4} (1 - \epsilon)$: Quiet $c > 2^{5/4} (k \ln k)^{-1/4} (1 + \epsilon)$: Start all at 0. Stable state of big bursts.

Open Questions:

c > 1 Is there *unique* stable state of big bursts. Middle c: Are there only two stable states. I have no home, the world is my home.

– Paul Erdős