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9.4 SZEMERÉDI’S REGULARITY LEMMA

In this section we describe a fundamental result, theRegularity Lemma, proved by
Endre Szemerédi in the 70s. The original motivation for proving it has been an
application in Combinatorial Number Theory, leading, together with several addi-
tional deep ideas, to a complete solution of the Erdős-Tuŕan conjecture discussed
in Appendix B.2: every set of integers of positive upper density contains arbitrar-
ily long arithmetic progressions. It took some time to realize that the lemma is an
extremely powerful tool in Extremal Graph Theory, Combinatorics and Theoretical
Computer Science. Stated informally, the regularity lemmaasserts that the vertices
of every large graph can be decomposed into a finite number of parts, sothat the
edges between almost every pair of parts form a random-looking graph. The power
of the lemma is in the fact it deals with an arbitrary graph, making no assumptions,
and yet it supplies much useful information about its structure. A detailed survey of
the lemma and some of its many variants and fascinating consequences can be found
in Komlós and Simonovits (1996).

Let G = (V,E) be a graph. For two disjoint nonempty subsets of vertices
A,B ⊂ V , let e(A,B) denote the number of edges ofG with one end inA and one
in B, and letd(A,B) = e(A,B)

|A||B| denote thedensityof the pair(A,B). For a real
ε > 0, a pair(A,B) as above is calledε-regular if for everyX ⊂ A andY ⊂ B that
satisfy |X| ≥ ε|A|, |Y | ≥ ε|B| the inequality|d(A,B) − d(X,Y )| ≤ ε holds. It
is not difficult to see that for every fixed positiveε, p, a fixed pair of two sufficiently
large disjoint subsetsA andB of a random graphG = G(n, p) are very likely to
beε-regular of density roughlyp. (This is stated in one of the exercises at the end
of the chapter.) Conversely, anε-regular pairA,B with a sufficiently small positive
ε is random-looking in the sense that it shares many properties satisfied by random
(bipartite) graphs.

A partitionV = V0 ∪ V1 ∪ · · · ∪ Vk of V into pairwise disjoint sets in whichV0
is called theexceptional setis anequipartitionif |V1| = |V2| = · · · = |Vk|. We view
the exceptional set as|V0| distinct parts, each consisting of a single vertex. For two
partitionsP andP ′ as above,P ′ is a refinementof P, if every part inP is a union
of some of the parts ofP ′. By the last comment on the exceptional set this means,
in particular, that ifP ′ is obtained fromP by shifting vertices from the other sets in
the partition to the exceptional set, thenP ′ is a refinement ofP. An equipartition is
calledε-regular if |V0| ≤ ε|V | and all pairs(Vi, Vj) with 1 ≤ i < j ≤ k, except at
mostεk2 of them, areε-regular.

Theorem 9.4.1 (The Regularity Lemma of Szemerédi (1978)) For every ε > 0
and every integert there exists an integerT = T (ε, t) so that every graph with
at leastT vertices has anε-regular partition(V0, V1, . . . , Vk), wheret ≤ k ≤ T .

The basic idea in the proof is simple. Start with an arbitrarypartition of the set of
vertices intot disjoint classes of equal sizes (with a few vertices in the exceptional
set, if needed, to ensure divisibility byt). Proceed by showing that as long as the
existing partition is notε-regular, it can be refined in a way that increases the weighted
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average of the square of the density between a pair of classesof the partition by at
least a constant depending only onε. As this average cannot exceed1, the process
has to terminate after a bounded number of refinement steps. Since in each step we
control the growth in the number of parts as well as the numberof extra vertices
thrown to the exceptional set, the desired result follows. The precise details require
some care, and are given in what follows.

Let G = (V,E) be a graph on|V | = n vertices. For two disjoint subsets
U,W ⊂ V , defineq(U,W ) = |U ||W |

n2 d2(U,W ). For partitionsU of U andW of W ,
define

q(U ,W) =
∑

U ′∈U,W ′∈W
q(U ′,W ′).

Finally, for a partitionP of V , with an exceptional setV0, defineq(P) =∑ q(U,W ),
where the sum ranges over all unordered pairs of distinct partsU,W in the partition,
with each vertex of the exceptional setV0 forming a singleton part in its own.
Therefore,q(P) is a sum of

(
k+|V0|

2

)
terms of the formq(U,W ). The quantityq(P)

is called theindexof the partitionP. Sinced2(U,W ) ≤ 1 for all U,W , and since the
sum

∑ |U ||W | over all unordered pairs of distinct partsU,W is at most the number
of unordered pairs of vertices, it follows that the index of any partition is smaller than
1/2.

Lemma 9.4.2
(i) Let U,W be disjoint nonempty subsets ofV , let U be a partition ofU andW a
partition ofW . Thenq(U ,W) ≥ q(U,W ).
(ii) If P ′ andP are partitions ofV andP ′ is a refinement ofP, thenq(P ′) ≥ q(P).
(iii) Supposeε > 0, and supposeU,W are disjoint nonempty subsets ofV and the
pair (U,W ) is not ε-regular. Then there are partitionsU = {U1, U2} of U and
W = {W1,W2} ofW so thatq(U ,W) > q(U,W ) + ε4 |U ||W |

n2 .

Proof.
(i) Define a random variableZ as follows. Letu be a uniformly chosen random
element ofU , and letw be a uniformly chosen random element ofW . LetU ′ ∈ U
andW ′ ∈ W be those members of the partition so thatu ∈ U ′, w ∈ W ′. Then
Z = d(U ′,W ′).

The expectation ofZ is

∑

U ′∈U,W ′∈W

|U ′||W ′|
|U ||W | d(U

′,W ′) =
∑

U ′∈U,W ′∈W

|U ′||W ′|
|U ||W |

e(U ′,W ′)

|U ′||W ′| = d(U,W ) .

By Jensen’s Inequality,E
[
Z2
]
≥ (E [Z])

2, and the desired result follows, as

E
[
Z2
]
= n2

|U ||W |q(U ,W) and(E [Z])
2
= d2(U,W ) = n2

|U ||W |q(U,W ).

(ii) This is an immediate consequence of (i).

(iii) Since the pair(U,W ) is not ε-regular, there are subsetsU1 ⊂ U,W1 ⊂ W
so that|U1| ≥ ε|U |, |W1| ≥ ε|W | and |d(U1,W1) − d(U,W )| > ε. PutU2 =
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U − U1, W2 =W −W1 and define the partitionsU = {U1, U2},W = {W1,W2}.
LetZ be the random variable defined in the proof of part (i). Then, as shown in that
proof

Var[Z] = E
[
Z2
]
− (E [Z])

2
=

n2

|U ||W | (q(U ,W)− q(U,W )) .

However, asE [Z] = d(U,W ) it follows that with probability |U1||W1|
|U ||W | , Z deviates

fromE [Z] by more thanε, implying that

Var(Z) >
|U1||W1|
|U ||W | ε

2 ≥ ε4.

This provides the desired result. �

Proposition 9.4.3 Suppose0 < ε ≤ 1/4, letP = {V0, V1, . . . , Vk} be an equiparti-
tion ofV whereV0 is the exceptional set,|V0| ≤ εn, and|Vi| = c for all 1 ≤ i ≤ k.
If P is notε-regular then there exists a refinementP ′ = {V ′

0 , V
′
1 , . . . , V

′
ℓ } of P, in

which k ≤ ℓ ≤ k4k, |V ′
0 | ≤ |V0| + n

2k
all other setsVi are of the same size, and

q(P ′) ≥ q(P) + ε5

2 .

Proof. For every pair1 ≤ i < j ≤ k define a partitionVij of Vi andVji of Vj
as follows. If the pair(Vi, Vj) is ε-regular, then the two partitions are trivial. Else,
each partition consists of two parts, chosen according to Lemma 9.4.2, part (iii). For
each1 ≤ i ≤ k, let Vi be the partition ofVi obtained by the Venn Diagram of all
(k − 1)-partitionsVij . Thus eachVi has at most2k−1 parts. LetQ be the partition
of V consisting of all parts of the partitionsVi together with the original exceptional
setV0. By Lemma 9.4.2 parts (ii), (iii), and sinceP is not ε-regular, we conclude
that the index ofQ satisfies

q(Q) ≥ q(P) + εk2ε4
c2

n2
= q(P) + ε5

(kc)2

n2
> q(P) + ε5

2
,

where here we used the fact thatkc ≥ (1 − ε)n ≥ 3n/4. Note thatQ has at most
k2k−1 parts (besides the exceptional set), but those are not necessarily of equal sizes.
Defineb =

⌊
c/4k

⌋
and split every part ofQ arbitrarily into disjoint sets of sizeb,

throwing the remaining vertices in each part, if any, to the exceptional set. This
process creates a partitionP ′ with at mostk4k non-exceptional parts of equal size,
and a new exceptional setV ′

0 of size smaller than|V0|+ k2k−1b < |V0|+ kc/2k ≤
|V0| + n

2k
. Moreover, by Lemma 9.4.2, part (ii), the indexq(P ′) of P ′ is at least

q(Q) > q(P) + ε5

2 , completing the proof. �

Proof of Theorem 9.4.1.It suffices to prove the lemma forε ≤ 1/4 andt satisfying
2t−2 > 1

ε6 , hence we assume that these inequalities hold. Puts =
⌈

1
ε5

⌉
, and note

that for this choice1
2k
≤ ε

2s for all k ≥ t. Definek0 = t andki+1 = ki4
ki for all

i ≥ 0. We prove the lemma withT = ks.
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Let G = (V,E) be a graph with|V | = n ≥ T vertices. Start with an arbitrary
partitionP = P0 of its vertices intok = k0 = t pairwise disjoint parts, each of
size⌊n/t⌋, and let the exceptional set consist of the remaining vertices, if any. Note
that their number is less thant, which is (much) smaller thanεn/2. As long as the
partitionP we have already defined is notε-regular, apply Proposition 9.4.3 to refine
it to a new equipartitionP ′ with at mostk4k non-exceptional parts, whose index
exceeds that ofP by at leastε

5

2 , while the size of the exceptional set increases by at
most n

2k
< εn

2s . As the initial index is non-negative, and the index never exceeds1/2,
the process must terminate in at mosts steps, yielding anε-regular partition with at
mostT non-exceptional parts, and an exceptional set of size smaller thanεn. �

Remark. The proof shows thatT (ε, 1ε ) is bounded by a tower of exponents of height
roughly1/ε5. Surprisingly, as shown by Gowers (1997), this tower-type behavior is
indeed necessary.

Our next result both gives a good illustration of the near random nature ofǫ-
regularity and shall play a role in the next section.N(x), as usual, denotes the set of
neighbors ofx in the graphG. LetH be a graph on vertex set1, . . . , s. LetG be
a graph on vertex setV . Let A1, . . . , As be disjoint subsets ofV , each of sizem.
Let N denote the number of choices ofx1 ∈ A1,. . . , xs ∈ As such thatxi, xj are
adjacent inG wheneveri, j are adjacent inH. (Note: Otherxi, xj may or may not
be adjacent.) Setpij = d(Ai, Aj).

Theorem 9.4.4 For all ε there existsγ = γH(ε)with the following property: Assume,
using the above notation, that(Ai, Aj) is ε-regular for all i, j adjacent inH. Then

|Nm−s −
∏

{i,j}∈H

pij | ≤ γ (9.6)

Further, and critically, we may takeγ such that

lim
ε→0+

γH(ε) = 0 (9.7)

The proof has some technicalities and the reader may takeH as a triangle and
p12 = p13 = p23 = 1

2 to get the gist of the argument.

Proof. Set, with foresight,κ such that(κ − ε)s ≥ ε. We say we are in Case 1 if
somepij ≤ κ (with i, j adjacent inH) and otherwise we are in Case 2. We will have
γ = max(γ1, γ2) whereγ1, γ2 handle two cases.

Case 1: Somepij ≤ κ. Setγ1 = κ. The product of thepij over edges{i, j} is
itself at mostκ. There arepijm2 ≤ κm2 choices of adjacentxi, xj and therefore
N ≤ κm2ms−2 = κms. AlsoN ≥ 0. Thus (9.6) is satisfied.

Case 2:pij ≥ κ for all adjacenti, j. For 1 ≤ r ≤ s we call a choicexi ∈ Ai,
1 ≤ i ≤ r a partial copy ifxi, xj are adjacent inG wheneveri, j are adjacent in
H. Further we call the choice normal (else abnormal) if the following holds for all
r < l ≤ s: Let U be the set ofu ≤ r which are adjacent tol in H. Let Y be the
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intersection of theN(xu), u ∈ U andAl. Then
∏

u∈U

(pul − ε) ≤ |Y |m−1 ≤
∏

u∈U

(pul + ε) (9.8)

Let x1, . . . , xr be a normal partial copy. We say it is destroyed byxr+1 ∈ Ar+1 if
x1, . . . , xr+1 is a partial copy but is not normal. We claim at most2sεm vertices
xr+1 can destroyx1, . . . , xr. How can this occur? Letl > r+1 be adjacent tor+1
and letU, Y be as above (looking only atx1, . . . , xr). ThenY ∩ N(xr+1) would
need to be either too big or too small. If more than2sεm verticesxr+1 destroyed
x1, . . . , xr then there would be a setX ⊂ Ar+1 of size at leastmε of suchxr+1, all
with the samel and with either allY ∩N(xr+1) too big or all too small. Assume the
former, the latter being similar. Thend(X,Y ) > pr+1,l + ε. But |Y | ≥ mε by our
choice ofκ. Fromε-regularity|X| ≤ mε, as claimed.

TheN choices ofxi ∈ Ai, 1 ≤ i ≤ s for whichxi, xj are adjacent inGwhenever
i, j are adjacent inH fall into two categories. There are at most2s2εms choices such
thatxr+1 destroysx1, . . . , xr for somer. The other choices are bounded in number
betweenms

∏
(pij−ε) andms

∏
(pij +ε), the products overi, j adjacent inH. Let

f(ε) denote the maximum distance between either of these products and
∏
pij . We

can then setγ2 = 2s2ε+ f(ε).
�

9.5 GRAPHONS

As in Section 9.3 we setNG(H) denote the number of labelled copies ofH as a (not
necessarily induced) subgraph ofG. We sett(H,G) = NG(H)n−a whereH,G
havea, n vertices respectively. This may naturally be interpreted as the proportion
of H in G, 0 ≤ t(H,G) ≤ 1 tautologically.

Definition 5 A sequence of graphsGn is called a limit sequence, iflimn→∞ t(H,Gn)
exists for all finite graphsH.

Definition 6 Two limit sequencesGn, G
′
n are called equivalent iflimn→∞ t(H,Gn) =

limn→∞ t(H,G′
n) for all finite graphsH. Agraphonis an equivalence class of limit

sequences.

A graphon is a subtle object, an abstract limit of a convergent (by Definition
5) sequences of graphs. (We call a limit sequenceGn a graphon even though,
technically, the graphon is the equivalence class.) It isnot itself an infinite graph,
though it may seem like one. It reflects the properties of verylarge graphs (formally,
in a limit sense) of similar nature. The excellent book (Lovász 2012) serves as a
general reference to graphons.

Surprisingly, and integral to the strength of this concept,there is a good charac-
terization of graphons. LetW : [0, 1] × [0, 1] → [0, 1] be a Lebesgue measurable
function withW (x, y) = W (y, x) for all x, y ∈ [0, 1]. For each positive integern
we define a random graph, denotedG(n,W ) on vertex set1, . . . , n as follows:


