1 The Rich Get Richer

Consider two bins, each of which initially have one ball. At each time $u = 1, 2, \ldots$ we add one ball to one of the bins. The ball is placed randomly, in proportion to the *square* of the number of balls already in the bin. (E. g. if the bins have 5 balls and 3 balls respectively the next ball is placed in the bin with 5 balls with probability $\frac{25}{25+9}$.)

Theorem 1.1 With probability one, one of the bins will get all but a finite number of the balls.

We move to a continuous time model. Let X_i be independent random variables, X_i having the exponential distribution with mean i^{-2} . (That is, X_i has density function $i^2 e^{-ti^2}$ for $t \ge 0$.) At time zero the first bin has one ball. It receives its second ball at time X_1 . In general, it receives its *i*-th ball time X_i after receiving its i-1-st ball. Let X'_i also be independent exponential distributions with mean i^{-2} , independently chosen from the X_i . The second bin receives its balls according to the X'_i . The process ends when an infinite number of balls have been placed. The fictitious continuation, of defining the X_i, X'_i for all $i \ge 1$, shall be helpful in the analysis.

We use two basic properties of exponential distributions. Both are easy Calculus exercises.

• Let X be exponential with mean μ and let a > 0. Then X - a, conditional on $X \ge a$, is also exponential with mean μ . This is often called the *forgetfulness* property.

• Let X, X' be independent exponentials with means μ, ν respectively. Then $\Pr[\min(X, X') = X] = \frac{\mu^{-1}}{\mu^{-1} + \nu^{-1}}$.

The continuous time process mirrors the sequential process. Clearly the first ball is equally likely to go into either of the two bins. Suppose at some time t > 0 the first (say) bin has just received its *i*-th ball and the second bin last received its *j*-th ball at time t' < t. (When the second bin has not yet received its second ball set j = 1 and t' = 0.) The waiting time for the first bin is then X_i . The waiting time for the second was X_j at time t'. By the forgetfulness property its conditional waiting time at time t is X_j^* , exponential with mean j^{-2} . The next ball goes into the first bin if and only if $\min(X_i, X_j^*) = X_i$ which occurs with probability $i^2/(i^2 + j^2)$ as desired.

Let $T = \sum_{i=1}^{\infty} X_i$, $T' = \sum_{i=1}^{\infty} X'_i$ be the total times for the bins to receive (under fictitious continuation) an infinite number of balls. As $E[X_i] = E[X'_i] = i^{-2}$ and (critically!) $\sum_{i=1}^{\infty} i^{-2}$ converges, both T, T' have finite means and so are finite with probability one. As sums of independent continuous distributions $\Pr[T = T'] = 0$. Suppose T < T', the other case being

identical. At time T the first bin has received an infinite number of balls. The second bin has not. Therefore, the second bin has received only a finite number of balls!