
1 The Erdős-Rényi Phase Transition

In their great 1960 work On the Evolution of Random Graphs, Paul Erdős
and Alfred Rényi expressed a special interest in the behavior of Γn,N(n), the
random graph with n vertices and N(n) edges, when N(n) was near n

2 :

Thus the situation may be summarized as follows: the largest
component of Γn,N(n) is of order log n for N(n)

n → c < 1
2 , of order

n2/3 for N(n)
n → c ∼ 1

2 , and of order n for N(n)
n → c > 1

2 . This
double “jump” of the size of the largest component when N(n)

n
passes the value 1

2 is one of the most striking facts concerning
random graphs.

Striking, indeed. The past half century have certainly confirmed the excite-
ment that Erdős and Rényi expressed in their discovery.

1.1 An Overview

We favor the more modern viewpoint, examining the random graph G(n, p).
The behavior of Erdős and Rényi’s Γn,N(n) then corresponds to that of
G(n, p) with p = N(n)/

(n
2

)
. We shall assume p = Θ(n−1) throughout this

chapter.
We shall call

p =
c

n
(1)

the coarse parametrization. The value 1
2 in the Erdős-Rényi formulation

corresponds to the value c = 1 in our parametrization. Values c < 1 and
c > 1 give G(n, p) that are essentially different. We shall call

p =
1
n

+ λn−4/3 (2)

the fine parametrization. The importance of this parametrization is not a
priori at all obvious. Indeed, its “discovery” was one of the great advances
in the field. In §1.7 we give a heuristic argument why this is the appropriate
fine parametrization. Along with the fine parametrization we also define

ε = λn−1/3 so that p =
1 + ε

n
(3)

We shall express various results in terms of either λ or ε (or both), whichever
best illustrates the result. We shall think of ε, λ as functions of n. To avoid
negative numbers we shall sometimes parametrize p = 1−ε

n with ε = λn−1/3.
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This includes functions such as p = 1
n − 100n0.01n−4/3. Of course, for n

small this would give p < 0 and so would be nonsense. For n sufficiently
large we will have p ∈ [0, 1]. As our results are always asymptotic we shall
allow this slight abuse of notation and consider G(n, p) defined only for n
appropriately large.

In describing the nature of G(n, p) we shall refer to the complexity of
components, as defined below. Observe that complexity zero and one corre-
spond to tree components and unicyclic components respectively.

Definition 1 A connected component of a graph G with v vertices and e
edges is said to have complexity e−v +1. Components with complexity zero
or one are called simple; components with complexity greater than one are
called complex.

Let C(v) denote the component containing a given vertex v. Its size |C(v)|
has a distribution. From the symmetry of G(n, p) the distribution of all
|C(v)| are the same. We shall be concerned with the sizes of the largest
components. We shall let Ci denote the i-th largest component and Li de-
note its number of vertices. Thus L1 = maxv |C(v)|. We shall be particularly
interested in L1, L2 and whether or not they are close together.

The study of G(n, p) when p = Θ(n−1) splits into five regions. We de-
scribe them in order of increasing p, thus giving some sense of the evolution.
Very Subcritical. Here we employ the coase parametrization p = c

n and
assume c is a constant with c < 1. Example: p = 1

2n .

1. All components are simple.

2. L1 = Θ(ln n).

3. Lk ∼ L1 for all fixed k.

Barely Subcritical. Here we employ the fine parametrization. p = 1−ε
n

with ε = λn−1/3. We assume ε = o(1). We assume that λ → ∞. Example:
p = 1

n − n−4/3n0.01.

1. All components are simple.

2. L1 = Θ(ε−2 ln(λ)) = Θ(n2/3λ−2 ln(λ)).

3. Lk ∼ L1 for all fixed k.

The Critical Window. Here λ is a real constant. Example: p = 1
n−2n−4/3.

The value λ = 0, perhaps surprisingly, has no special status. The largest
k components (k fixed) all have size Lk = Θ(n−4/3). Parametrizing Lk =
ckn

2/3 and letting dk denote the complexity of Ck there is a nontrivial joint
distribution for c1, . . . , ck, d1, . . . , dk.
Barely Supercritical. Here we employ the fine parametrization. We
assume ε, λ > 0. We assume ε = o(1). We assume that λ → +∞. Example:
p = 1

n + n−4/3n0.01.

1. L1 ∼ 2εn = 2λn2/3.

2. The largest component has complexity approaching infinity.
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3. All other components are simple

4. L2 = Θ(ε−2 ln(λ)) = Θ(n2/3λ−2 ln(λ)).

Note that the ratio L1/L2 goes to infinity. For this reason, in this regime
we call the largest component the dominant component.
Very Supercritical. We employ the coarse parametrization and assume
c > 1.

1. L1 ∼ yn where y = y(c) is that positive real satisfying the implicit
equation

e−cy = 1− y (4)

2. The largest component has complexity approaching infinity.

3. All other components are simple.

4. L2 = Θ(ln n).

Following the terminology made famous by Erdős and Rényi, we call the
largest component the giant component.

We shall give arguments for only some of the above statements, and
then often in limited form. Other results are given in the exercises. Full
arguments for these results, and much much more, can be found in the
classic texts of Bollobas [?] and of Janson,  Luczak and Rucinski [?].

1.2 Three Processes

We place here in concise form three classes of probability spaces that we
shall contrast and analyze.
• The Poisson Branching Model
Parameter: Nonnegative real c
Underlying Space: An infinite sequence Zt, t = 1, 2, . . . of independent iden-
tically distributed random variables, each having Poisson Distribution with
mean c.
Auxilliary Yt, t ≥ 0, given by initial value Y0 = 1 and recursion Yt =
Yt−1 + Zt − 1.
Auxilliary T : T is that minimal t with Yt = 0. If no such t exists we write
T = ∞.
Nomenclature: Zt is the number nodes born at time t, Yt is the queue size
at time t, T is the total size.
Interpretation: T is the total size of a Galton-Watson process, as described
in §1.3, using a Poisson distribution with mean c.
• The Binomial Branching Model
Parameters: Positive Integer m, Real p ∈ [0, 1].
Underlying Space: An infinite sequence Zt, t = 1, 2, . . . of independent
identically distributed random variables, each having Binomial Distribution
B[m,p]
Auxilliary Yt, t ≥ 0, given by initial value Y0 = 1 and recursion Yt =
Yt−1 + Zt − 1.
Auxilliary T : T is that minimal t with Yt = 0. If no such t exists we write
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T = ∞.
Nomenclature: Zt is the number of nodes born at time t, Yt is the queue
size at time t, T is the total size.
Interpretation: T is the total size of a Galton-Watson process, as descirbed
in §1.3 using a Binomial distribution with parameters m,p.
• The Graph Branching Model
Parameters: Positive Integer n, Real p ∈ [0, 1].
Underlyng Space: A sequence Z1, . . . , Zn. Zt has Binomial Distribution with
parameters Nt−1, p, with Nt−1 as given below.
Auxilliary Yt, t ≥ 0, given by initial value Y0 = 1 and recursion Yt =
Yt−1 + Zt − 1.
Auxillary Nt, t ≥ 0, given by initial value N0 = n − 1 and recursion
Nt = Nt−1 − Zt. Equivalently: Nt = n− t− Yt.
Auxilliary T : T is that minimal t with Yt = 0 or, equivalently, Nt = n − t.
1 ≤ T ≤ n always.
Nomenclature: Zt is the number of nodes born at time t, Yt is the queue
size at time t, Nt is number of neutral vertices at time t, T is total size.
Interpretation: T is the size of the component C(v) of a given vertex v in
G(n, p), as found by the BFS process described in §1.5

We use the superscripts po (Poisson), bin (Binomial), and gr (graph) to
distinguish these three processes when necessary.

1.3 The Galton-Watson Branching Process

Let Z be a distribution over the nonnegative integers. The Galton-Watson
process begins with a single root rode, we can call her Eve. Eve has Z
children. Each of her children (if there are any) now independently have Z
children. The process continues, each new offspring having an independent
number Z children. Let T be the total number of nodes (including Eve
herself) created in the process. It is possible that the process goes on forever,
in which case we write T = ∞.

Our analysis of the Galton-Watson process uses fictional continuation.
Let Zi, i = 1, 2, . . ., be a countable sequence of independent identically dis-
tributed variables, each having distribution Z. This defines our probability
space. We think of the children being born in a Breadth First Search man-
ner. That is: Eve has her children which are ordered in some way. Now the
children, in order, have children. Each child’s children are ordered in some
way and this gives an ordering of Eve’s grandchildren. Now the grandchil-
dren have children in order, and the process continues. We count Eve as
node number 1, her children have node numbers 2, . . . , 1 + Z1 and, more
generally, each node is given a distinct poistive integer as its node number.
We let Zi be the number of children of the i-th node. Since the Zi are in-
dependent and have distribution Z this corresponds to the Galton-Watson
process. Imagine the i-th node having Zi children and then dying. By time
t we mean the process after the t-th node has had her children and died. Let
Yt be the number of living children at time t. We set initial value Y0 = 1,
corresponding to the node Eve. We have the recursion

Yt = Yt−1 + Zt − 1 for all t ≥ 1 (5)
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There are two essentially different cases:
• Yt > 0 for all t ≥ 0. In this case the Galton-Watson process goes on forever
and T = ∞.
• Yt = 0 for some t ≥ 0. In this case let T be the least integer for which
YT = 0. Then the Galton-Watson process stops with the death of the T -th
node and T is the total number of nodes in the process.

Our fictional continuation enables us to consider the Yt as an infinite
random walk, with step size Z − 1. When c < 1 the walk has negative drift
and so tends to minus infinity. When c > 1 the walk has positive drift and
tends to plus infinity. The process when c < 1 is called subcritical and the
process when c > 1 is called supercritical. When c = 1 the walk has zero
drift and the situation is especially delicate.

The above is quite general. When Z is Poisson or Binomial (the only
cases of interest to us) this yields the Poisson branching process and the
Binomial branching process of §1.2.

1.4 Analysis of the Poisson Branching Process

In this section we study T = T po
c . We often drop the value c and the

superscript po for notational simplicity.

Theorem 1.1 If c < 1, T is finite with probability one. If c = 1, T is finite
with probability one. If c > 1 then T is infinite with probability y = y(c)
where y is that unique positive real satisfying the equation (4)

Proof: Suppose c < 1. If T > t then Yt > 0 so that Z1 + . . . + Zt ≥ t.
Chernoff bounds give that Pr[Yt > 0] < e−kt for a constant k. In particular,
Pr[Yt > 0] → 0 so that Pr[T > t] → 0 and T is finite with probability one.

Suppose c ≥ 1. Set z = 1 − y = Pr[T < ∞]. Given that Eve has i
children the probability that the branching process is finite is zi as all i
branches must be finite. Thus

z =
∞∑
i=0

Pr[Z1 = i]zi =
∞∑
i=0

e−c cizi

i!
= ec(z−1)

Setting y = 1 − z gives the equation (4). For c = 1, e−y > 1 − y for y > 0
so the solution must be y = 0. For c > 1 the function f(y) = 1 − y − e−cy

has f(0) = 1, f(1) < 0 and f ′(0) = c − 1 > 0 so there is a y ∈ (0, 1) with
f(y) = 0. Further, as f is convex, there is precisely one y. We have shown
that either Pr[T < ∞] = 1 or Pr[T < ∞] = y > 0. The argument that
Pr[T < ∞] 6= 1 (not surprising as the walk has positive drift) is left for the
Exercises.

Theorem 1.2 For any positive real c and any integer k, setting T = T po
c ,

Pr[T = k] =
e−ck(ck)k−1

k!

We defer the proof of this classic result to §1.6 when we will give a proba-
bilistic proof!
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When c = 1 Stirling’s Formula gives

Pr[T1 = k] =
e−kkk−1

k!
∼ 1√

2π
k−3/2 (6)

This perforce approaches zero but it does so only at polynomial speed. In
general

Pr[Tc = k] ∼ 1√
2π

k−3/2c−1(ce−c)k

For any c 6= 1 (whether larger or smaller than one) ce−c < 1 and therefore
Pr[Tc = k] approaches zero at exponential speed. This gives a bound on the
tail distribution

Pr[Tc ≥ u] < e−u(α+o(1)) (7)

where α = c− ln c > 0.
We are particularly interested in the Poisson branching process when c

is near one. Let us parametrize

c = 1 + ε

When ε > 0, Pr[T1+ε = ∞] is that y = y(ε) ∈ (0, 1) satisfying f(y) =
1− y − e−(1+ε)y = 0. Some fun Calculus gives

Pr[T1+ε = ∞] ∼ 2ε as ε → 0+ (8)

Suppose c → 1+ so that ε → 0+. We have

ln(ce−c) = ln(1 + ε)− ε ∼ −ε2

2

Thus
Pr[T1+ε = u] ∼ 1√

2π
u−3/2 for u = o(ε−2)

Note that Pr[T1+ε = u] ∼ Pr[T1 = u] in this range. When u reaches order
ε−2 there is a change. For u = Aε−2 and fixed A:

Pr[T1+ε = Aε−2] ∼ 1√
2π

ε3A−3/2e−A/2

When A →∞ we absorb smaller factors into the exponential term:

Pr[T1+ε = Aε−2] = ε3e−(1+o(1))A/2

When c is slightly less than one we can write c = 1 − ε where ε → 0+. We
have ln(ce−c) ∼ −1

2ε2, the same as for c = 1 + ε. Indeed when u = o(ε−3):

Pr[T1−ε = u] ∼ Pr[T1+ε = u]

For A →∞:
Pr[T1−ε = Aε−2] = ε3e−(1+o(1))A/2

The Poisson branching processes with means 1 + ε and 1 − ε look almost
the same, with the (important!) distinction is that the mean 1 + ε process
is sometimes infinite while the mean 1− ε process never is.
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In short: the Poisson branching process with mean 1 ± ε acts as if it
had mean 1 until reaching size on the order ε−2. Until then Pr[T1±ε] = u is
dropping at a polynomial rate. Upon reaching order ε−2 Pr[T1±ε] = u drops
exponentially in u.

We are particularly interested in the tail distribution. For ε → 0+ and
A →∞

Pr[T1−ε > Aε−2] < e−(1+o(1))A/2ε (9)

The same holds for the finite part of T1+ε

Pr[∞ > T1+ε > Aε−2] < e−(1+o(1))A/2ε (10)

When A →∞ this quantity is o(ε) so (8) gives

Pr[T1+ε > Aε−2] ∼ 2ε when ε → 0+ and A →∞ (11)

1.5 The Graph Branching Model

Abbreviation: We use BFS as an abbreviation for Breadth First Search.
BFS algorithms are a mainstay of Computer Science and central to our
approach.

Let C(v) denote the component, in G(n, p), containing a designated
vertex v. We generate C(v) using the (standard) BFS algorithm to find
C(v). We begin with root v. In this procedure all vertices will be live, dead,
or neutral. The live vertices will be contained in a queue. Initially, at time
zero, v is live, the queue consists of one vertex, v itself, and all other vertices
are neutral. At each time t we remove a live vertex w from the top of the
queue (in Computer Science parlance we “pop the queue”) and check all
pairs {w,w′}, w′ neutral, for adjacency in G. The popped vertex w is now
dead. Those neutral w′ (if any) adjacent to w are added to the bottom of
the queue and are now live. (They can be placed in any particular order.)
The procedure ends when the queue is empty. We let T denote that time.
At time T all vertices are neutral or dead and the set of dead vertices is
precisely the component C(v). That is, T = |C(v)|.

Let Zt denote the number of vertices added to the queue at time t. Let
Yt denote the size of the queue at the conclusion of time t. We set Y0 = 1,
reflecting the initial size of the queue. At time t we remove one vertex and
add Zt vertices to the queue so we have the recursion Yt = Yt−1 + 1 − Zt

Let Nt denote the number of neutral vertices at time t. As Zt vertices
switched from neutral to live at time t, Nt satisfies the recursion N0 = n−1,
Nt = Nt−1−Zt. Equivalently, as there are t dead and Yt live vertices at time
t, Zt = n−t−Yt. Zt is found by checking Nt−1 pairs for adjacency. As these
pairs have not yet been examined they remain adjacent with independent
probability p. That is,

Zt ∼ B[Nt−1, p] ∼ B[n− (t− 1)− Yt−1, p] (12)

The Graph Branching Process of §1.2 mirrors the above analysis until
time T and then continues until time n. This fictional continuation shall
be useful in the analysis of C(v). The graph branching process is similar
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to a Binomial branching process in that the Zt have binomial distributions
but dissimilar in that the parameter Nt−1 in the graph branching process
depends on previous values Zi.

As Nt = Nt−1 − Zt, (12) yields Nt ∼ B[Nt−1, 1 − p]. By induction we
find the distributions

Nt ∼ B[n− 1, (1 − p)t] for 0 ≤ t ≤ n (13)

If T = t it is necessary (though not sufficient, due to fictitious continuation)
that Nt = n− t. This yields the useful inequalities:

Theorem 1.3 In G(n, p)

Pr[|C(v)| = t] ≤ Pr[B[n− 1, (1 − p)t] = n− t (14)

or, equivalently,

Pr[|C(v)| = t] ≤ Pr[B[n− 1, 1 − (1− p)t] = t− 1 (15)

An Alternate Analysis The following analysis of C(v) on G(n, p) has been
explored by van der Hofstad and Spencer [?]. Each w 6= v flips a coin, heads
with probability p, reapeatedly until getting a head. Let Xw denote that flip
on which w gets a head. Suppose Xw = j. Then w enters the BFS at time j.
(However, it may have missed the boat if the BFS has already terminated.)
This reverses the usual randomness, we are here imagining the w 6= v trying
to get into the BFS tree, rather than the BFS tree trying to expand by
finding neutral vertices. Suppose t = |C(v)|. Every w 6= v which is in C(v)
must have entered by time t so Xw ≤ t. Every w 6= v which is not in C(v)
had t opportunities to enter C(v) and so Xw > t. Thus Pr[|C(v)| = t] is
at most the probability that Xw ≤ t for precisely t − 1 w 6= v. For each
w 6= v, Pr[Xw = t] = 1− (1− p)t and these events are independent over w,
yielding (15). In (??) this analysis is extended to give more precise bounds
on Pr[|C(v)| = t].

1.6 The Graph and Poisson Processes Compared

Set p = c
n . A key observation is that Z1 ∼ B[n− 1, c

n ] approaches (in n) the
Poisson distribution with mean c. Further, in a more rough sense, the same
holds for Zt as long as Nt−1 = o(n) or, equivalently, the number of live and
dead vertices is o(n). That is, the generation of C(v) mimics the Poisson
branching process with mean c as long as the number of vertices found is not
too large. This allows for a very accurate description in the Very Subcritical
regime c < 1. But in the Very Supercritical regime c > 1 the relationship
between the generation of C(v) and the Poisson branching process breaks
down. As the number Nt−1 of neutral vertices drops so does the expected
number E[Zt] of vertices added to the queue. Eventually the drift of the walk
Yt lowers from positive to negative, and this eventually causes the process
to halt. We call this phenomenon the ecological limitation. Indeed, there
must be an ecological limitation. The Poisson branching process becomes
infinite with positive probability, the component C(v) tautologically cannot
be greater than n.
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Theorem 1.4 For any positive real c and any fixed integer k

lim
n→∞Pr[|C(v)| = k in G(n, c/n)] = Pr[Tc = k]

Proof: Let Zpo
t , T po and Zgr

t , Zgr
t , T gr denote the values in the Poisson

branching process with parameter c and the graph branching process with
parameters n, p repsectively. Let Γ denote the set of k-tuples ~z = (z1, . . . , zk)
of nonnegative integers such that the recursion y0 = 1, yt = yt−1 + zt−1 has
yt > 0 for t < k and yk = 0. Then

Pr[T gr = k] =
∑

Pr[Zgr
i = zi, 1 ≤ i ≤ k]

Pr[T po = k] =
∑

Pr[Zpo
i = zi, 1 ≤ i ≤ k]

where both sums are over ~z ∈ Γ. Fix such a ~z.

Pr[Zgr
i = zi, 1 ≤ i ≤ k] =

k∏
i=1

Pr[B[Zgr
i−1, p] = zi]

As i, yi−1, zi are fixed Zi−1 = n−O(1) and

lim
n→∞Pr[B[Zi−1, p] = zi] = Pr[Z∗i = zi]

Further, as the products are of a fixed number of terms

lim
n→∞Pr[Zgr

i = zi, 1 ≤ i ≤ k] = Pr[Zpo
i = zi, 1 ≤ i ≤ k]

giving the theorem.
Now we prove Theorem 1.2. From Theorem 1.4,

Pr[T po
c = k] = lim

n→∞Pr[|C(v)| = k]

where the second probability is in G(n, p) with p = c
n and v is an arbitrary

vertex of that graph. There are
( n
k−1

)
choices for S := C(v). On any

particular S there is probability O(pn) = O(n−n) that G(n, p) has more than
n− 1 edges. If G(n, p) has precisely n− 1 edges on S they must form a tree.
There are kk−2 such trees. Each occurs with probability pk−1(1−p)(

k
2)−k+1 ∼

pk−1 = ck−1n1−k. Thus the total probability that G(n, p) restricted to
S forms a connected graph is ∼ kk−2ck−1n1−k. For S = C(v) we must
further have no edges between S and its complement, this has probability
(1− p)k(n− k) ∼ e−ck. Thus

Pr[C(v) = k] ∼
(

n

k − 1

)
kk−2ck−1n1−ke−ck → e−ck(ck)k−1

k!

as desired.
The graph branching process can be compared to the Binomial branch-

ing process in both directions. An important cautionary note: the event
T bin

n−1,p ≥ u in Theorem 1.5 (and similarly T bin
n−u,p ≥ u in Theorem 1.6) in-

cludes the possibity that the Binomial branching process is infinite. Indeed,
in application this will be the critical term.
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Theorem 1.5 For any u

Pr[T gr
n,p ≥ u] ≤ Pr[T bin

n−1,p ≥ u]

Proof: We modify the graph branching process by constantly replenishing
the supply of neutral vertices. That is, when we pop the vertex w and there
are n−1−s neutral vertices we create s fictional vertices w′ and allow w,w′

to be adjacent with probability p. This gives a component of size T bin
n−1,p,

the actual C(v) will be a subset of it. Thus T bin
n−1,p dominates T gr

n,p

Theorem 1.6 For any u

Pr[T gr
n,p ≥ u] ≥ Pr[T bin

n−u,p ≥ u]

Proof: We halt the graph branching process if and when the number of found
(live plus dead) vertices reaches u. This does not effect the probability of
finding at least u vertices. In this truncated graph process we diminish the
number of neutral vertices to n − u. That is, when we pop the vertex w
and there are n − 1 − s ≥ n − u neutral vertices we select n − u of them
and only allow adjacencies w,w′ to them. The truncated graph process
dominates this truncated Binomial n− u, p process and so has a greater or
equal probability of reaching u.
The Poisson Approximation. We are working in the range p = Θ(n−1).
There the Binomial B[n − 1, p] distribution and the Poisson distribution
with mean np are very close. The Poisson branching process is precisely
understood and, we feel, the “purest” branching process. Our goal in this
chapter is to give the reader a picture for the “why” of the various regimes.
To do this we shall often avoid the technical calculations and simply assume
that the Binomial n − 1, p branching process is very close to the Poisson
branching process with mean np.

1.7 The Parametrization Explained

The question most frequently asked about the Erdős-Rényi phase transition
is: Why is the exponent −1

3? Here is a heuristic that may (or may not!) be
helpful.

Parametrize p = 1+ε
n with ε = ε(n) positive and approaching zero.

We look for the following picture. Consider the Poisson branching process
T = T po

1+ε. It is infinite with probability ∼ 2ε, otherwise its probability of ex-
ceeding Aε−2 drops exponentially in A. The graph branching process mimics
the Poisson branching process as long as it is not too successful. The cases
when the Poisson branching process is finite are mimicked, yielding com-
ponents of size up to roughly ε−2. The cases when the Poisson branching
process is infinite are mimicked by components that “escape” until the eco-
logical limitation sets in. These components all join together. They form a
single component, the dominant component, of size 2εn.

In order for the above (admittedly rough) picture to hold there needs be a
distinction between the small components, up to size ε−2, and the dominant
component of size 2εn. That is, we need 2εn � ε−2. This heuristic leads us
to ε = n−1/3 as the breakpoint. When ε � n−1/3 we have the distinction
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between small and dominant and are in the supercritical regime. When
ε = O(n−1/3) there is no effective analogy to the Poisson branching process
being infinite, and there is no dominant component.

1.8 The Subcritical Regions

Let p = c
n with c < 1. Theorem 1.5 gives

Pr[T gr
n,p ≥ u] ≤ Pr[T bin

n−1,p ≥ u]

With the Poisson approximation, Pr[|C(v)| ≥ u] ≤ (1 + o(1)) Pr[Tc ≥ u].
From (7) this drops exponentially in u. Taking u = K ln n for appropriately
large K, Pr[|C(v)| ≥ u] < n−1.01. As this holds for each of the n vertices v,
the probability that any v v has |C(v)| ≥ u is less than nn−1.01 → 0. That
is, L1 = O(ln n) with probability tending to one.

Lets push this argument into the barely subcritical regime p = 1−ε
n with

ε = λn−1/3. Let Iv be the indicator random variable for C(v) having at
least u vertices, u to be determined below. As above Theorem 1.5 and our
Poisson approximation give the bound

Pr[|C(v)| ≥ u] ≤ (1 + o(1)) Pr[T1−ε ≥ u]

We now parametrize

u = Kε−2 ln λ = Kn2/3λ−2 ln λ

For an appropriately high constant K the bound (9) gives

Pr[T1−ε ≥ u] ≤ εe−3.1λ = ελ−3.1

Let X =
∑

v Iv be the number of vertices v in components of size at least
u and let Y be the number of components of G(n, p) of size at least u.
Linearity of Expectation gives

E[X] = nE[Iv] ≤ nελ−3.1 = n2/3λ−2.1

As Y ≤ Xu−1,
E[Y ] ≤ u−1E[X] ≤ K−1λ−0.1 → 0

With probability approaching one, Y = 0 and so

L1 ≤ u = Kε−2 ln λ = Kn2/3λ−2 ln λ

1.9 The Supercritical Regimes

In the supercritical regimes there are two salient points about the giant or
dominant component. First, it exists. Secondly, it is unique. Neither is
trivial.

We start with the very supercritical region, p = c
n , with c > 1 constant.

The ideas here will carry into the barely supercritical region. Let y = y(c)
be the positive real solution of the equation e−cy = 1 − y. Let δ be an
arbitrarily small constant and let K be an appropriately large constant. Set
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S = K ln n, L− = (y − δ)n, L+ = (y + δ)n. Call a component C(v) and
its size |C(v)| small if |C(v)| < S, giant if L− < |C(v)| < L+, awkward
otherwise.
No Middle Ground. We claim that the probability of having any awkward
component is o(n−20). (We could make 20 arbitrarily large by changing K.)
There are n choices for v and n choices for t = |C(v)|. Thus it suffices to
show that for any v and for any awkward t that Pr[|C(v)| = t] = o(n−18).
From Theorem 1.3 it suffices to bound Pr[B[n− 1, 1− (1− c

n)t] = t− 1]. We
indicate the technical calculations. When t = o(n) 1−(1− c

n)t ∼ cn
t and c > 1

so Pr[B[n−1, 1− (1− c
n)t] ≤ t−1] is exponentially small in t. As t ≥ K ln n

this is polynomially small in n. When t ∼ xn, 1 − (1 − c
n)t ∼ 1 − e−cx.

For x 6= y, 1 − e−cx 6= x so the mean of the Binomial is not near t and the
probability that it is equal to t is exponentially small in n. In all cases the
bounds on Pr[|C(v)| = t] follow from basic Chernoff bounds.
Escape Probability. Set α = Pr[C(v) not small]. (When this happens
we like to think that the BFS on G(n, p) starting with root v has escaped
an early death.) Theorems 1.5,1.6 sandwich

Pr[T bin
n−S,p ≥ S] ≤ α ≤ Pr[T bin

n−1,p ≥ S]

From our Poisson approximation both distributions are the upper and lower
bounds are asymptotic to Pr[Tc ≥ S]. Thus α ∼ Pr[Tc ≥ S]. As c is
assummed fixed and S →∞,

α ∼ Pr[Tc ≥ S] ∼ Pr[Tc = ∞] = y

with y as in (4).
Because there is no middle ground, not small is the same as giant. C(v)

is giant with probability ∼ y. Thus the expected number of vertices in giant
components is ∼ yn. Each giant component has size between (y − δ)n and
(y + δ)n. Our goal is a single giant component of size ∼ yn. We are almost
there. But maybe with probability one half there are two giant components.
Sprinkling. Set p1 = n−3/2. (Any p1 with n−2 � p1 � n−1 would do
here.) Let G1 ∼ G(n, p1) be selected independently from G ∼ G(n, p) on
the same vertex set and let G+ = G ∪ G1 so that G+ ∼ G(n, p+) with
p+ = p + p1 − pp1. (We “sprinkle” the relatively few edges of G1 on G to
make G+.) Suppose G(n, p) had more than one giant component and let
V1, V2 be the vertex sets of two of those components. There are Ω(n2) pairs
{v1, v2} with v1 ∈ V1, v2 ∈ V2. We have selected p1 large enough so that
with probability 1− o(1) at least one of these pairs is in the sprinkling G1.
Adding this edge merges components V1, V2 into a component of size at least
2y(1 − δ)n in G+. We have selected p1 small enough so that p+ ∼ p = c

n .
The probability that G+ has a component so large is therefore o(1). Thus
the probability that G had had more than one giant component is o(1).

Finally, we make δ arbitrarily small. G(n, p) has an expected number
∼ yn of points in giant components and giant components all have size
∼ yn. Further, by the sprinkling argument, there is o(1) probability of
having more than one giant component. Thus with probability 1 − o(1)
there is precisely one giant component. This gives the salient features of the
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very supercritical phase. There is a giant component so L1 ∼ yn. There is
only one giant component and no middle ground so L2 ≤ S = O(ln n).

The Sprinkling for Complexity argument given below in the Barely Su-
percritical Phase can be easily modified to show that the giant component
has high complexity, indeed, complexity Ω(n).
The Barely Supercritical Phase. Set p = 1+ε

n with ε = λn−1/3 and
λ →∞. Note ε−2 = λ−2n2/3 � 2εn. The analysis of the barely supercritical
region becomes more difficult as λ = λ(n) approaches infinity more slowly.
We shall add the simplifying assumption that λ � ln n. Further we shall
find somewhat weaker bounds than stated on L2.

Let δ be an arbitrarily small constant and let K be an appropriately
large constant. Set S = Kε−2 ln n, L− = (1 − δ)2εn, L+ = (1 + δ)2εn.
Call a component C(v) and its size |C(v)| small if |C(v)| < S, dominant if
L− < |C(v)| < L+, awkward otherwise.
No Middle Ground. We claim that the probability of having any awkward
component is o(n−20). (We could make 20 arbitrarily large by changing K.)
There are n choices for v and n choices for t = |C(v)|. Thus it suffices to
show that for any v and for any awkward t that Pr[|C(v)| = t] = o(n−18).
Again we bound Pr[B[n− 1, 1− (1− p)t] = t− 1]. We indicate the technical
calculations. Let µ and σ2 denote the mean and of the Binomial. Then
µ = (n − 1)(1 − (1 − p)t) and, in this range, σ2 ∼ µ. When t = o(nε)
we estimate 1 − (1 − p)t by pt = t + tε. Then µ − t ∼ −tε and σ2 ∼ t.
This probability is roughly exp[−(tε)2/2t] = exp[−tε2/2]. As t ≥ S the
exponent is o(n−18) for K > 36. (To push S down to Kε−2 ln(λ) requires
a finer bound on Pr[|C(v)| = t].) Now suppose t ∼ xnε where x 6= 2.
The ecological limitation now has an effect and we estimate 1 − (1− p)t by
pt− 1

2p2t2 so

µ− t ∼ tε− 1
2
t2n−2 ∼ (nε)(x− 1

2
x2)

(Observe that when x = 2 the mean of the binomial is very close to t and
so we do not get a small bound on Pr[|C(v)| = t. This is natural when we
consider that there will be a dominant component of size ∼ 2εn.) Again
σ2 ∼ t so the probability is exp[−Ω((nε)2/t)] which is extremely small.
When t � nε the probability is even smaller.
Escape Probability. Set α = Pr[C(v) not small]. Theorems 1.5,1.6 sand-
wich

Pr[T bin
n−S,p ≥ S] ≤ α ≤ Pr[T bin

n−1,p ≥ S]

The Poisson approximation for T bin
n−1,p is T1+ε. As S � ε−2, bound (11)

gives
α ≤ Pr[T1+ε ≥ S] ∼ Pr[T1+ε = ∞] ∼ 2ε

Replacing n − 1 by n − S lowers the mean by ∼ Sn−1. But Sn−1/ε ∼
(ln n)/(nε3) = λ−3 ln n and we have made λ large enough that this is o(1).
That is, Sn−1 = o(ε). Therefore T bin

n−S,p is approximated by T1+ε−o(ε) and

α ≥ Pr[T1+ε+o(ε) ≥ S] ∼ Pr[T1+ε+o(ε) = ∞] ∼ 2ε

α has been sandwiched and α ∼ 2ε.
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Because there is no middle ground, not small is the same as dominant.
C(v) is dominant with probability ∼ 2ε. Thus the expected number of
vertices in dominant components is ∼ 2nε. Each giant component has size
between (1 − δ)2nε and (1 + δ)2nε. As in the very supercritical case, we
need worry about having more than one giant component.
Sprinkling. Set p1 = n−4/3. Let G1 ∼ G(n, p1) be selected independently
from G ∼ G(n, p) on the same vertex set and let G+ = G ∪ G1 so that
G+ ∼ G(n, p+) with p+ = p + p1 − pp1 = 1 + ε + o(ε). Suppose G(n, p) had
more than one giant component and let V1, V2 be the vertex sets of two of
those components. There are � n4/3 pairs {v1, v2} with v1 ∈ V1, v2 ∈ V2.
With probability 1 + o(1) at least one of these pairs is in the sprinkling
G1. Adding this edge merges components V1, V2 into a component of size
at least (1− δ)4εn in G+. The probability G+ has such a large component
is exp[−Ω((nε)2/t)] which is certainly o(n−10). Thus the probability G had
had two (or more) dominant components is o(n−10). Taking δ arbitrarily
small G has with probability 1 − o(1) precisely one dominant component.
Thus L1 ∼ 2nε and, as there is no middle ground, L2 ≤ Kε−2 ln n.
Sprinkling for Complexity. Take p1 = (1 + ε

2)/n and p2 ∼ ε
2/n so

that p1 + p2 − p1p2 = (1 + ε)/n. Let G1 ∼ G(n, p1), G2 ∼ G(n, p2), and
G3 = G1 ∪ G2 so that G3 ∼ G(n, (1 + ε)/n). G1, G3 will have a dominant
components V1, V3 of sizes ∼ nε and ∼ 2nε. As G3 has “no middle ground” in
its component sizes, V1 ⊆ V3. Now the sprinkling G2 adds ∼ p2

(nε
2

) ∼ nε3/2
edges internal to V1. Thus V3 will have complexity at least nε3/2 = λ3/2
which approaches infinity.

1.10 The Critical Window

We now fix a real λ and set p = 1
n + λn−4/3. There has been massive study

of this critical window, [?] and the monumental [?] being only two examples.
Calculations in this regime are remarkably delicate.

Fix c > 0 and let X be the number of tree components of size k = cn2/3.
Then

E[X] =

(
n

k

)
kk−2pk−1 (1− p)k(n−k)+(k

2)−(k−1) .

Watch the terms cancel!(
n

k

)
=

(n)k

k!
∼ nkek

kk
√

2πk

k−1∏
i=1

(
1− i

n

)

For i < k,

− ln
(

1− i

n

)
=

i

n
+

i2

2n2
+ O

(
i3

n3

)
,

so that
k−1∑
i=1

− ln(1− i

n
) =

k2

2n
+

k3

6n2
+ o(1) =

k2

2n
+

c3

6
+ o(1).

Also pk−1 = nk−1(1+λn−1/3)k−1 and expanding ln(1+ ε) = ε− 1
2ε2 +O(ε3):

(k − 1) ln(1 + λn−1/3) = kλn−1/3 − 1
2
cλ2 + o(1).
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Also
ln(1− p) = −p + O(n−2) = − 1

n
− λ

n4/3
+ O(n−2)

and

k(n − k) +

(
k

2

)
− (k − 1) = kn− k2

2
+ O(n2/3),

so that

[k(n− k) +

(
k

2

)
− (k − 1)] ln(1− p) = −k +

k2

2n
− λk

n1/3
+

λc2

2
+ o(1)

and

E[X] ∼ nkkk−2

kk
√

2πknk−1
eA.

Here A = k − k2

2n − c3

6 + λk
n1/3 − λ2c

2 − k + k2

2n − λk
n1/3 + λc2

2 + o(1). Absorbing
the o(1) into the asymptotics we can give A the intriguing form

A = A(c)
(λ − c)3 − λ3

6
.

Stirling’s Formula then yields

E[X] ∼ n−2/3eA(c)c−5/2(2π)−1/2.

For any particular such k, E[X] → 0 but if we sum k between cn2/3 and
(c + dc)n2/3 we multiply by n2/3dc. Going to the limit gives an integral:
For any fixed a, b, λ let X be the number of tree components of size between
an2/3 and bn2/3. Then

lim
n→∞E[X] =

∫ b

a
eA(c)c−5/2(2π)−1/2 dc.

The large components are not all trees. [?] proved that for fixed l ≥ 0
there are asymptotically clk

k−2+ 3
2
l connected graphs on k points with k−1+l

edges, where c0 = 1, c1 =
√

π/8 and cl was given by a specific recurrence.
Asymptotically in l, cl = l−l/2(1+o(1)). The calculation for X(l), the number
of such components on k vertices, leads to extra factors of clk

3
2
l and n−l

which gives clc
3
2
l. For fixed a, b, λ, l the number X(l) of components of size

between an2/3 and bn2/3 with l − 1 more edges than vertices satisfies

lim
n→∞E[X(l)] =

∫ b

a
eA(c)c−5/2(2π)−1/2(clc

3
2
l) dc,

and letting X∗ be the total number of components of size between an2/3

and bn2/3

lim
n→∞E[X∗] =

∫ b

a
eA(c)c−5/2(2π)−1/2g(c) dc,

where

g(c) =
∞∑
l=0

clc
3
2
l,
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a sum convergent for all c. A component of size ∼ cn2/3 will have probability
clc

3
2
l/g(c) of having complexity l, independent of λ. As limc→0 g(c) = 1,

most components of size εn2/3 , ε � 1, are trees but as c gets bigger the
distribution on l moves inexorably higher.
An Overview. For any fixed λ the sizes of the largest components are of
the form cn2/3 with a distribution over the constant. This distribution
has support the positive reals. Thus, for example, For λ = −4 there is
some positive limiting probability that the largest component is bigger than
10n2/3 and for λ = +4 there is some positive limiting probability that the
largest component is smaller than 0.1n2/3, though both these probabilities
are miniscule. The c−5/2 term dominates the integral as c → 0+, reflecting
the notion that for any fixed λ there should be many components of size
near εn2/3 for ε = ε(λ) appropriately small. When λ is large negative (e.g.,
λ = −4) the largest component is likely to be εn2/3, ε small, and there
will be many components of nearly that size. The nontree components will
be a negligible fraction of the tree components. When λ is large positive
(e.g., λ = +4) the dominant component will have begun to emerge. The
largest component is likely to be ∼ 2λn2/3 and of moderately high (not zero
nor one) complexity and the second largest component will be considerably
smaller and simple.

Now consider the evolution of G(n, p) in terms of λ. Suppose that at
a given λ there are components of size c1n

2/3 and c2n
2/3. When we move

from λ to λ + dλ there is a probability c1c2dλ that they will merge. Com-
ponents have a peculiar gravitation in which the probability of merging is
proportional to their sizes. With probability (c2

1/2)dλ there will be a new
internal edge in a component of size c1n

2/3 so that large components rarely
remain trees. Simultaneously, big components are eating up other vertices.

With λ = −4, say, we have feudalism. Many small components (castles)
are each vying to be the largest. As λ increases the components increase
in size and a few large components (nations) emerge. An already large
France has much better chances of becoming larger than a smaller Andorra.
The largest components tend strongly to merge and by λ = +4 it is very
likely that a dominant component, a Roman Empire, has emerged. With
high probability this component is nevermore challenged for supremacy but
continues absorbing smaller components until full connectivity – One World
– is achieved.

1.11 Analogies to Classical Percolation Theory

The study of percolation has involved the intense efforts of both mathe-
maticians and physicists for many years. A central object of that study has
been bond percolation on Zd, as described below. Here we explore, without
proofs, the fruitful analogies between that percolation and the Erdős-Rényi
phase transition. Grimmett’s [?] Percolation is a classic text in this field
and we shall follow its treatment.

Let d ≥ 2. (All parameters below shall depend on the choice of d.) Let
Zd, as usual, represent the set of ~a = (a1, . . . , ad) with ai integers. The
d-dimensional cubic lattice, written Ld, is that graph with vertices Zd, two
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vertices ~a,~b being adjacent if they agree on d− 1 coordinates and differ by
one on the other coordinate. Let p ∈ [0, 1]. The random subgraph Ld(p)
contains each edge of Ld (and no others) with independent probability p.
We let C(~a) denote the connected component of Ld(p) containing the vertex
~a. We generally examine C(~0) as, by symmetry, all C(~a) look the same.
(In [?] and elsewhere the edges of Ld are called bonds and they are open
with probability p and closed otherwise. The word cluster is used in place of
connected component.) Naturally, as p becomes larger Ld(p) will have more
adjacencies. There is a critical probability, denoted by pc, at which Ld(p)
undergoes a macroscopic change.
• For p < pc, the subcritical region, all connected components are finite.
• For p > pc, the supercritical region, there is precisely one infinite compo-
nent.
• For p = pc, at the critical point, the situation is particularly delicate, as
discussed below.

The constant probabilities of bond percolation correspond to probabil-
ities parametrized p = c/n in the Erdős-Rényi G(n, p). The value c = 1 is
then the critical probability in the Erdős-Rényi model.
• The infinite component in the bond percolation model is analogous to gi-
ant components, components of size Ω(n), in the Erdős-Rényi model.
• The finite components in the bond percolation model are analogous to
components of size O(ln n) in the Erdős-Rényi model.

The uniqueness of the infinite component in bond percolation was an
open question (though the physicists “knew” it was true!) for many years.
This corresponds to the uniqueness of the giant component in G(n, p).

In the bond percolation model there are only three choices for p, it can
be less than, greater than, or equal to pc. The barely subcritical and barely
supercritical phases of the Erdős-Rényi model correspond to an asymptotic
study of the bond percolation model as p approaches pc from below and from
above respectively. This study is done through the use of critical exponents
as described below.

Set θ(p) = Pr[C(~0) is infinite]. For p < pc, θ(p) = 0 as with probability
one there are no infinite components. For p > pc, θ(p) > 0. This corresponds
to the infinite component having positive density, strengthening the analogy
to the giant components of the Erdős-Rényi model. When p is barely greater
than pc there will be an infinite component but its density will be very small.
The critical exponent β is that real number so that

θ(p) = (p− pc)β+o(1) as p → p+
c

(Conceivably, θ(p) could behave erratically as p → p+
c and β might not exist.

Indeed, for all the critical exponents discusses we should add the caveat “if
they exist.”) Analogously, in the Erdős-Rényi model θ(c) is the proportion
of points in the giant component, that y = y(c) > 0 satisfying (4). From
(8), y(1 + ε) ∼ 2ε as ε → 0+. Therefore, β = 1.

The susceptibility, denoted by χ(p) (not to be confused with chromatic
number) is given by χ(p) = E[|C(~0)|]. For p > pc, χ(p) = ∞ as with
positive probability C(~0) is infinite. For p < pc, χ(p) is finite and χ(p) →∞
as p → p−c . That susceptibility approaches infinity at the same critical value
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for which an infinite component appears is not at all obvious, and was one
of the great developments of the field. When p is barely less than pc, χ(p)
will be finite but large. The critical number γ is that real number so that

χ(p) = (pc − p)−γ+o(1) as p → p−c

Analogously, in the Erdős-Rényi model we examine E[|C(v)|] in G(n, 1−ε
n ).

In the subcritical region this is well mirrored by T1−ε, the total size of a
subcritical Poisson branching process. We find E[T1−ε] by looking at each
generation. There is one root Eve, who has an expected number 1 − ε
children. They behave similarly and so Eve has an expected number (1−ε)2

grandchildren. This continues, there are an expected number (1− ε)i nodes
in the i-th generation so that

E[T1−ε] =
∞∑
i=0

(1− ε)i = ε−1

precisely. Therefore γ = 1.
While χ(p) is infinite in the supercritical region we can examine the

“finite portion” of Ld(p). The finite susceptibility χf is given by

χf (p) = E[|C(~0)| conditional on C(~0) being finite]

When p is barely greater than pc, χf (p) will be finite but large. The critical
number γ′ is that real number so that

χf (p) = (p− pc)−γ′+o(1) as p → p+
c

The Erdős-Rényi analogue is E[|C(v)|] in G(n, 1+ε
n ), conditional on v not

being in the giant component. In G(n, 1+ε
n ), |C(v)| has basically distribution

T po
1+ε, with the value T po

1+ε = ∞ corresponding to being in the giant compo-
nent. The finite analouge then corresponds to T po

1+ε, conditional on it being
finite. The probability T po

1+ε is finite approaches one as ε → 0+. The Pois-
son branching processes T po

1+ε,T
po
1−ε have nearly the same finite distribution.

Conditioning on v not being in the giant component, |C(v)| then behaves
like T po

1−ε. Therefore γ′ = 1.
At the critical value p = pc, all components are finite. The distribution

of |C(~0)| will have a heavy tail. The critical number δ is that real number
so that at p = pc

Pr[|C(~0)| ≥ s] = s−1/δ+o(1) as s →∞
For the Erdős-Rényi analogue we consider |C(v)| in G(n, 1

n). One needs be
cautious about the double limit. For any fixed s,

lim
n→∞Pr[|C(v)| ≥ s] = Pr[T po

1 ≥ s] = Θ(s−1/2)

from (6). Therefore δ = 2.
We further examine the gap exponent, denoted by ∆. In the subcritical

region the distribution of |C(~0)| drops off exponentially. For each k ≥ 1 it
has a finite k-th moment. The hypothetical quantity ∆ is such that

E[|C(~0)|k+1]
E[|C(~0)|k]

= (pc − p)−∆+o(1)
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The belief is that ∆ does not depend on the choice of k. In the supercrit-
ical region the belief is that the same asymptotics hold when the infinite
component is erased. More precisely, that

E[|C(~0)|k+1 given C(~0) is finite]
E[|C(~0)|k] given C(~0) is finite]

= (pc − p)−∆+o(1)

for all k ≥ 1. In the Erdős-Rényi analogue the distribution of C(v) in
G(n, 1−ε

n ) mirrors that of T po
1−ε. (The supercritical G(n, 1+ε

n ), with its giant
component erased, behaves similarly.) From §1.4, Pr[T po

1−ε = s] drops like
s−3/2 until k reaches Θ(ε−2) when it begins its exponential drop off. The
region of exponential drop off has negligible effect on the finite moments.
The k-th moment of T po

1−ε is basically the sum of s−3/2sk for s = O(ε−2),
which is of order (ε−2)k+ 1

2 , or ε−2k−1. The ratio of the k + 1-st and k-th
moments is then Θ(ε−2). Therefore ∆ = 2.

Hara and Slade [?] have shown that the critical exponent values β = 1,
γ = γ′ = 2, δ = 2, ∆ = 2 hold in the bond percolation model for sufficiently
high dimensions d. (Their argument works for d ≥ 19 and the statements are
believed to hold for all d ≥ 6.) Mathematical physicists have a term mean
field which, quoting Grimmett, “permits several interpretations depending
on context.” A commonly held requirement is that the critical exponents
have the values given above. Thus bond percolation for d ≥ 19 is regarded
as exhibiting mean field behavior. Using the analogues described above it
seems reasonable to say that the Erdős-Rényi model exhibits mean field
behavior.
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