
game and its reversal tend to be quite similar.
The reversal of the Liar Game is particularly intriguing. Lets call it the

Prediction Game: it has the same rules as the Liar Game except that if at the
end of the game there is at most chip remaining then Carole is the winner
instead of the loser. Surprisingly, this game has come up independently
in examination of Abstract Prediction in a study (in preparation) of on-
line learning by Yoav Freund David Helbold, Manfred Warmuth and Nicolo
Cesa-Bianchi. We let w be the same weight function as before. Now Carole
can play to minimize the weight of a position. If the initial weight is less
than two then Carole can assure that the �nal weight (the number of chips
remaining) is less than two, hence at most one and she has won. Freund et.al.

have examined partial converses of this result analogous to the theorems for
the Liar Game.
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the xi into two groups so that each group has sum at least a=2. Applying
this Paul can repeatedly assure that the weight is at least a and at the end
of the game the weight is the number of faculty that have received tenure.
Thus V � a. But these together imply V = bwc. 2

Now we reverse the Tenure Game. The rules are the same and the payo�
is the number of faculty receiving tenure but now the payo� is to Carole.
That is, Paul is trying to minimize the number of faculty receiving tenure
while Carole is trying the maximize that number. Let V r denote the value
of this reversed game. We de�ne the �- reversed Tenure Game to be a win
for Carole if at least � faculty receive tenure. It is perhaps surprising that
the analysis of the reversed game is quite similar to the original game.
Theorem 9. Let w =

P
ak2

�k be the weight of the initial position in
the generalized reversed Tenure Game. Then the value V r of the game (to
Carole) is dwe.
Proof. Let a be an integer with w � a and consider the a-Tenure Game.
When Carole plays randomly any strategy of Paul gives an expected number
w faculty receiving tenure so that the probability of Paul winning is less than
one and therefore Carole must have a winning strategy. Hence V r � a.

Let a = dwe and consider the a-Tenure Game. We need the following
reversal of the Splitting Lemma: Let x1; . . . ; xl be negative powers of two
with sum at most a. Then there is a partition of the xi into two groups each
of sum at most a=2. To show this add on xl+1; . . . until the sum is precisely
a and then apply the previous Splitting Lemma. Now applying this Paul
can repeatedly assure that the weight is at most a and at the end of the
game the weight is the number of faculty that have received tenure. Thus
V r � a, and hence V r = dwe. 2

6 More Reversals

The reversing of the objects of Paul and Carole can be applied to the other
games as well. For the Balancing Vector game it makes most sense when
Carole is trying to maximize the number of coordinates of absolute value at
least �, as she may trivially make one coordinate equal to n. These Paul-
Carole games have a \Paul splits, Carole chooses" nature. In some games
Carole will take the \bigger piece", in the reversals she will take the \smaller
piece", but in either case Paul's best strategy is to make as even a split as
possible. (The notion of size is given by the weight function.) With that
strategy of Paul's, Carole's role is limited and therefore the end result of the
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two. But w�(P (c)) is the number of nonpennies with c moves remaining.
That is, with c moves remaining there are either no nonpennies or precisely
one nonpenny.

Paul now employs a simple endgame strategy for the �nal c moves. Let
0 � d < c and suppose with d+1 moves remaining there are no nonpennies.
Then Paul simply splits the pennies in half. Otherwise there is precisely
one nonpenny and some a pennies. Let f(x) be what the weight would
become if Paul selects the nonpenny and x pennies and the Carole chooses
Option One. Then f(0) � 1 since only one chip would remain on the board.
f(a) � 1 since all the chips would remain where they were but their weights
would not decrease. For any x the di�erence f(x+1)�f(x) = 2�d, the new
weight of a penny. As f(0); f(a) are multiples of 2�d there will be an x with
f(x) = 1 and Paul makes this split.

Paul has managed to �nd perfect splits for the entire game so that with
no moves remaining the weight is still one and therefore precisely one chip
remains and Paul has won. 2

The natural opening situation for the Liar Game is when a0 = n and
ai = 0 for 1 � i � k. Of course, the conditions of the above theorems do
not apply in this case. For k �xed and q su�ciently large necessary and
su�cient conditions on n are found in [4] for Paul to win with this opening
position. This result is essentially a corollary of the above theorems.

5 The Tenure Game Revisited and Reversed

We �rst generalize the goal of the Tenure Game { let the payo� to Paul be
the number of faculty receiving tenure. That is, Paul is trying to maximize
the number of faculty receiving tenure while Carole is trying to minimize
this number. As with the Balancing Vector Game we de�ne the �-Tenure
Game to be a win for Paul if at least � faculty receive tenure.
Theorem 8. Let w =

P
ak2�k be the weight of the initial position in the

generalized Tenure Game. Then the value V of the game (to Paul) is bwc.
Proof. Let a be an integer with w < a and consider the a-Tenure Game.
When Carole plays randomly any strategy of Paul gives an expected number
w faculty receiving tenure so that the probability of Paul winning is less than
one and therefore Carole must have a winning strategy. Hence V < a.

Let a be an integer with w � a and consider the a-Tenure Game. A
straightforward generalization of the Splitting Lemma is that if x1 � . . . � xl
are negative powers of two with sum at least a then there is a partition of

14



j rounds to go a positive proportion of them, 
(2jj�k), are pennies. If

(2jj�k) were all pennies then each round the number of pennies is at least
half minus

�j+k
k

�
what it was before so with j rounds remaining one still has


(2jj�k) � O(jk) = 
(2jj�k) pennies. We �x c with c � 2k so that for
j � c these two expressions are both at least

�j
k

�
.

Note c depends only on k, not on q. Now we want to show that for q
su�ciently large the position with c moves remaining will be particularly
simple. De�ne a new weight w�(P ) of a position P to be the expected
number of nonpennies that will remain when there are c moves remaining
in the game if Carole plays randomly. With P = (x0; . . . ; xk) and r moves
remaining this means

w�(P ) =
k�1X
i=0

xi Pr[i+ B(r � c;
1

2
) � k � 1]

For i; k; c �xed asymptotically in q we note that

Pr[i+B(q;
1

2
) � k] = �(qk�i2�q)

Pr[i+B(q � c;
1

2
) � k � 1] = �(qk�i�12�q)

so that the second will be smaller for q su�ciently large. With c; k already
�xed we let q0 be such that for q � q0 and every 0 � i < k the second is
smaller.

For q � r � c let P (r) denote the position with r moves remaining. Our
choice of q0 assures that initially

w�(P (q)) < w(P (q)) = 1

For q > r � c we de�ne

�(r) = w�(P (r))� w�(P (r+1))

As in the Splitting Lemma every even pile of chips cancels out and �(r) is an
alternate sum of the e�ects of a single chip. As c � 2k the largest possible
term would come from a chip on square zero so that we may bound

�(r) � Pr[B(r � c;
1

2
) � k � 1]� Pr[B(r + 1� c;

1

2
) � k � 1]

so that �(q�1)+. . .+�(c) is bounded by a telescoping sum which is at most
one. Then w�(P (c)) is at most one more that w�(P (q)), hence is less than

13



Pr[i+ B(r; 12) � k] and so the di�erence is Pr[i+B(r; 12) = k], or
� r
k�i

�
2�r.

If the chip is left o� L the e�ects are reversed and � is decreased by the
same amount. When there are an even number bi chips on square i placing
ci = bi=2 of them on the list L has zero e�ect on �. For those 0 � i < k
where bi is odd Paul alternately places the odd chip in or out of L, splitting
the remaining chips in half. The e�ect on � is then an alternating series
of terms. With r � 2k the values

� r
k�i

�
decrease for 0 � i < k so these

terms are decreasing in absolute value. It will be convenient to call the
chips on square k pennies and the others nonpennies. After placing all the
nonpennies the absolute value of � is at most

�r
k

�
2�k and is of the form

a2�r for some integer a. Paul now takes the �rst a pennies (as a � �rk� � bk
by assumption) and places them either all in or all out of L so as to make
� = 0. Now if there are an even number of pennies remaining Paul splits
them evenly and the splitting is complete. But we claim that must be the
case. If not Paul could split them except for one penny and therefore make
the �nal � = 2�r. As w(P �� v) + w(P +� v) = w(P ) = 1 this would give
w(P �� v) = (1+ 2�r)=2 but all weights with r moves remaining are clearly
multiples of 2�r, a contradiction. 2
Theorem 7. For every k there exists q0 = q0(k) so that for q > q0 the
following holds for the q move Liar Game: If P = (x0; . . . ; xk) is an initial
position vector with weight one and

xk � 2

 
q � 1

k

!
+ 22

 
q � 2

k

!
+ . . . + 2k

 
q � k

k

!

then Paul wins the Liar Game.
Proof. Paul applies the strategy of the Splitting Lemma repeatedly. For the
�rst k rounds the bound on the initial xk combined with the near-halving
given by the Splitting Lemma assure that the number of pennies remains
adequate. Let c = c(k) be a large constant to be chosen shortly. We now
show by induction on j from q�k to c that when there are j rounds remaining
the number of pennies is at least

�j
k

�
. This holds for j = q� k by the choice

of the initial xk. Assume by induction that it held for j0 > j so that in
particular with j + k moves remaining there was a position vector P with
(as all splits were perfect) w(P ) = 1. Now we do some rough asymptotics
in j for �xed k. The maximal weight of a chip with j + k moves remaining
was

�j+k
k

�
2�j�k so there were 
(2jj�k) chips and hence 
(2jj�k) chips on

some particular square. If they were on a square i < k then for i rounds
at least 
oor of half of them remained where they were and then for k � i

rounds at least 
oor of half of them moved forward one square so that with
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be calculated e�ciently. Each round Carole needs calculate only two such
weights.) The key point here is that

w(P ) =
1

2
(w(P +� v) + w(P �� v))

since playing randomly throughout is the average of playing Option One and
then randomly and playing Option Two and then randomly. The original
position had

w(P ) =
kX

i=0

ai Pr[i+ B(q;
1

2
) � k] > 1

by assumption. Carole's strategy assures that the weight does not decrease
so that the �nal weight is greater than one. But the �nal weight is the
number of chips remaining and so Carole has won. 2

Now we want to apply antirandomization to give a strategy for Paul. We
call a move vector v a perfect split if w(P +� v) = w(P �� v). The precise
Splitting Lemma of the Tenure Game can be duplicated in the context of
the Liar Game but only with some additional assumptions on the position.
Complicating matters, we need a Splitting Lemma that allows Paul to con-
tinue making perfect splits throughout the q moves of the game.
Splitting Lemma. Let P = (b0; . . . ; bk) be a position vector with r + 1
moves remaining with w(P ) = 1. Assume further that

bk �
 
r

k

!

and that r � 2k. Then there exists a perfect split v = (c0; . . . ; ck) such that

ci = bbi
2
c or ci = dbi

2
e for 0 � i < k

and ����ck � bk
2

���� < 1

2

 
r

k

!

Proof. It will be convenient to de�ne

� = w(P �� v)� w(P +� v)

Consider the e�ect on � or placing a single chip, initially on square i, on
Paul's list L. With Option One the chip goes to square i + 1 with weight
Pr[i+ 1 + B(r; 12) � k]; with Option Two it stays on square i with weight

11



Theorem 6. If
kX

i=0

aiPr[i+B(q;
1

2
) � k] > 1

then Carole wins the Liar Game.
Proof 1. Let us imagine that Carole plays randomly, i.e., each round after
Paul has determined the set L Carole 
ips a fair coin to decide whether to use
Option 1 or Option 2. Fix some deterministic strategy for Paul. Now each
chip has a probability of remaining on the board. Note critically that,For a
chip initially on square i, this probability is Pr[i + B(q; 12) � k] regardless
of Paul's strategy. This is because on each round whether Paul places the
chip in L or not it has probability 1

2 of moving forward one square. Let T
be the number of chips remaining on the board. Then T =

P
Ix where Ix

is the indicator random variable for chip x remaining on the board and the
sum is over all chips. Then by Linearity of Expectation

E[T ] =
X

E[Ix] =
kX

i=0

aiPr[i+ B(q;
1

2
) � k]

Note that Paul wins if and only if T � 1. Our assumption is that E[T ] > 1
so that

Pr[Paul wins] = Pr[T � 1] < 1

The Liar Game is a perfect information game with no draws so that ei-
ther Paul or Carole has a perfect strategy. Had Paul had a perfect strategy
he could win with probability one, which is not the case. Hence, Carole
must have a perfect strategy. 2
Proof 2 (Derandomization) De�ne the weight of a position to be the ex-
pected number E[T ] of chips at the end of the game if Carole plays randomly
for the remainder of the game. Explicitly, the position P = (b0; . . . ; bk) with
r moves remaining has weight

w(P ) =
kX

i=0

biPr[i+B(r;
1

2
) � k]

(Again, the weight is formally a function of P and r.) At a position P

Paul now presents a move vector v to Carole. Carole's strategy is then to
play that option which gives the new position (P +� v or P �� v) with the
highest weight. (The weights are sums of binomial coe�cients and so may
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4 The Liar Game.

Here we begin, as with the Tenure Game, with ai chips on square i for
0 � i � k. The number of rounds is speci�ed in advance and denoted by q.
On each round Paul selects a set L of chips. In this game Carole again has
two options. Option One: move all chips in L up one square. Option Two:
move all chips not in L up one square. (Unlike the Tenure Game the \other"
chips remain on the board.) Chips that are moved forward from square k
are eliminated from the board. Paul wins if after the q rounds there is at
most one chip remaining on the board.

In vector format when there are bi chips on square i we call P =
(b0; . . . ; bk) the position vector. When the set L has ci chips on square i
we call v = (c0; . . . ; ck) Paul's move vector. We de�ne P +� v and P �� v to
be the new position vectors if Carole plays Options One or Two respectively.
Explicitly:

P +� v = (b0 � c0; b1 � c1 + c0; . . . ; bi � ci + ci�1; . . .bk � ck + ck�1)

P �� v = (c0; c1+ b0 � c0; . . . ; ci + bi�1 � ci�1; . . .ck + bk�1 � ck�1)

The above is a chip formulation of the following liar game. Let Ai be
disjoint sets of size ai, 0 � i � k and let 
 be their union. Suppose Paul is
trying to �nd an unknown x 2 
 by asking q questions of Carole, all of the
form \ Is x 2 L ?" When x 2 Ai we allow Carole to lie at most k� i times.
(We may think of this is an intermediate stage of a game in which initially
Carole was allowed to lie at most k times but where Ai is those x for which
if x is the answer Carole has already lied i times.) This becomes a perfect
information game by allowing Carole to play an adversary strategy of not
actually picking an x beforehand but rather answering in a way consistent
with at least one x. A \No" answer by Carole corresponds to moving all
chips in L up one square while a \Yes" answer corresponds to moving all
chips not in L up one square. The chips remaining at the end of q rounds
correspond to possible values x. When no chips remain Carole has cheated
but we adjust the rules by allowing her to cheat, insisting that if she cheated
she has lost. With this modi�cation Paul wins if there is at most one chip
remaining at the end of the game. Here we will concentrate on the chip
version. The results of this section have been given in [4] though the proofs
given here (especially for Paul's strategy) are somewhat di�erent.

Let B(s; 12) denote the usual binomial distribution, the number of heads
in s independent 
ips of a fair coin.
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3 Paul and Carole Games

The games we are considering have a common theme. In all cases Paul each
round makes a play and then Carole can either accept the play or do its
opposite.
� Randomization. We �rst analyze a random strategy for Carole. When we
can show that this strategy wins with positive probability this implies (as
the games are all perfect information with no draws) that Carole can always
win.
� Derandomization. We de�ne the weight function of a position as the ex-
pected number of bad things that will happen (and cause Carole to lose) if
Carole were to play randomly. Now we create a deterministic strategy for
Carole by having her always play so as to minimize this weight function.
� Antirandomization. Paul now uses this weight function for e�ective coun-
terplay. For any move by Paul the average of the weights of the potential
new positions is the weight of the old position. Paul now plays so as to
make these two potential new weights as close together as possible. Then
Carole cannot lower the weight very much and so if the initial weight was
su�ciently high it must end up greater than zero and Carole has lost.

The games have been motivated partially by consideration of on-line
algorithms { the Balancing Vector Game being the best example. Here Paul
is going to receive n vectors v1; . . . ; vn 2 f�1;+1gn and wants to choose
�1; . . . ; �n 2 f�1;+1g so that the signed sum �1v1 + . . . + �nvn is small.
Indeed this author [3] has shown that there exists a choice of �i so that
this signed sum has L1 norm O(

p
n). Here, however, Paul requires an on-

line algorithm that determines �i immediately upon seeing vi. Carole is an
adversary and her strategy shows that in the worst case analysis Paul cannot
keep the L1 norm lower that �(

p
n ln n).

These approaches have been used in the recent book [1]. The derandom-
ization approach, sometimes called the method of conditional expectations,
can be found in Raghavan [2].

The speci�c names Paul and Carole were not randomly chosen. The
initials P and C refer to Pusher-Chooser games investigated by this author.
Paul may be considered the great questioner, Paul Erd}os. And Carole may
be thought of by her acronym - Oracle!
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Approximate Splitting Lemma. With r + 1 moves remaining in the
Balancing Vector Game Paul can select v = (�1; . . . ; �n) such that

jw(P + v)� w(P � v)j �
 

r

br=2c

!
2�r

Proof. Select �i sequentially always minimizing the absolute value of the
partial sum �1z1+. . .+�lzl. With any bound K on jzij this greedy algorithm
assures that all such absolute values will be at most K. 2
Theorem 4. If

nPr[jSnj � �] >
1

2

n�1X
r=0

 
r

br=2c

!
2�r

then Paul wins the (�; n) Balancing Vector Game.
Proof. Paul's strategy is to select v such that w(P+v), w(P�v) are as close
together as possible. As w(P ) is always the average of w(P + v); w(P � v)
the v of the Approximate Splitting Lemma assures that

w(P � v) � w(P )� 1

2

 
r

br=2c

!
2�r

when there are r+1 rounds remaining. Initially w(0) = nPr[jSnj � �] so at
the end of the game w(P ) is still positive. But w(P final) is the number of
coordinates of absolute value at least � and when this is positive Paul has
won. 2

The asymptotics of V AL(n) are found from the above theorems by using
the approximation

Pr[jSnj > �] = e�
�
2

2n
(1+o(1))

which is valid (we omit details) when �n�1=2 ! 1 and � = n1=2+o(1). We
also use the approximation

n�1X
r=0

 
r

br=2c

!
2�r = �

 
n�1X
r=0

(1 + r)�1=2
!
= �(n1=2)

Together these results yield
Theorem 5.

p
n lnn(1 + o(1)) < VAL(n) <

p
2n lnn(1 + o(1))

Finding the correct constant in the asymptotic evaluation of V AL(n)
remains a vexing question.
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of binomial coe�cients and so may be calculated e�ciently. Each round
Carole needs calculate only two such weights.) The key point here is that

w(P ) =
1

2
(w(P + v) + w(P � v))

since playing randomly throughout is the average of playing P  P + v and
then randomly and playing P  P � v and then randomly. The original
P = 0 has w(P ) = nPr[jSnj � �] < 1 by assumption. With w(P ) < 1
either w(P + v) < 1 or w(P � v) < 1 so with this strategy Carole ensures
that the new w(P ) < 1. Continuing this at the end of the game w(P ) < 1.
But at the end of the game w(P final) is simply the number of coordinates
with absolute value at least �. An integer less than one must be zero and
so Carole has won. 2

Now we want to apply antirandomization to give a strategy for Paul.
The precise Splitting Lemma of the Tenure Game cannot be duplicated in
the context of the Balancing Vector Game but we can give an approximate
Splitting Lemma. Let P = (a1; . . . ; an) be the position vector with r + 1
rounds remaining. Suppose Paul then plays v = (�1; . . . ; �n). Then

w(P + v)� w(P � v) =
nX

i=1

Pr[jai + �i + Srj � �]� Pr[jai � �i + Srj � �]

The e�ect of 
ipping �i from +1 to �1 is to reverse its e�ect on w(P + v)�
w(P � v) so that

w(P + v)� w(P � v) =
nX

i=1

�izi

where we set

zi = Pr[jai + 1 + Srj � �]� Pr[jai � 1 + Srj � �]

Observe that we can now write

zi = Pr[Sr = w]� Pr[Sr = w0]

where w is the unique integer of the same parity of r such that ai+1+w � �

but ai� 1+w < � and w0 is the unique integer of the same parity of r such
that ai � 1 + w0 � �� but ai + 1 + w0 > ��. (Note any value of Sr must
have the parity of r.) We may therefore bound

jzij � max
w

Pr[Sr = w] =

 
r

br=2c

!
2�r
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Theorem 3. If
nPr[jSnj � �] < 1

then Carole wins the (�; n) Balancing Vector game.
Proof 1. Let us imagine that Carole plays randomly, i.e., each round after
Paul has determined v 2 Rn Carole 
ips a fair coin to decide whether to
change P to P + v or P � v. Fix some deterministic strategy for Paul.
Now each coordinate has a probability of having absolute value at least �
at the end of the game. Note critically that this probability is Pr[jSnj > �]
regardless of Paul's strategy; Paul can make the coordinate in v either +1
or �1 but either way the coordinate of P is changed by +1 or �1 with
probability 1

2 . Thus the coordinate in P final has distribution Sn. Let T be
the number of coordinates with absolute value at least � in P final so that T
is a random variable. For each coordinate 1 � i � n let Ii be the indicator
random variable for the i-th coordinate having absolute value at least � in
P final so that T =

P
Ii. Then by Linearity of Expectation

E[T ] =
nX

i=1

E[Ii] = nPr[jSnj � �]

Note that Paul wins if and only if T � 1. Our assumption is that E[T ] < 1
so that

Pr[Paul wins] = Pr[T � 1] < 1

The (�; n) game is a perfect information game with no draws so that
either Paul or Carole has a perfect strategy. Had Paul had a perfect strategy
he could win with probability one, which is not the case. Hence, Carole must
have a perfect strategy. 2

As with the Tenure Game we use this randomized strategy to yield a
weight function which gives a deterministic strategy.
Proof 2 (Derandomization) De�ne the weight of a position to be the
expected number E[T ] of coordinates of P final with absolute value at least �
if Carole plays randomly for the remainder of the game. Explicitly, suppose
P = (x1; . . . ; xn) and there are r rounds remaining in the game. Then P
has weight

w(P ) =
nX

i=1

Pr[jxi + Srj � �]

(Formally, the weight is a function of P and r.) At a position P Paul now
presents v 2 f�1;+1gn to Carole. Carole's strategy is to change P to either
P + v or P � v, whichever has the smaller weight. (The weights are sums
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Proof. If x1+. . .+xl > 1 then, since it is a multiple of xl, x1+. . .+xl�1 � 1.
Remove xl; xl�1; . . . until x1 + . . . + xr = 1 and apply the Splitting Lemma.
2

Theorem 2. If X
ak2

�k � 1

then Paul wins the Tenure Game.
Proof. Initially E[T ] � 1. From the Lemma Paul may create a list L so
that E[T 1] � 1 and E[T 2] � 1. (Note that E[T 1] is de�ned after Carole
plays Option One and so is double the sum of the original weights of the
faculty in list L.) Regardless of what Carole does E[T ] � 1 at the end of
the round. At the end of the game E[T ] � 1 and thus someone has received
tenure and Paul has won. 2

The Splitting Lemma enabled us to give a precise solution to the Tenure
Game. In future examples we will not be so fortunate but the notions of
randomization, derandomization and antirandomization will remain.

2 The Balancing Vector Game

This is a perfect information game between two players, again Paul and
Carole, with parameter n. There is a position vector P 2 Rn which is
originally set to 0. There are n rounds. (The more general situation in
which the number of rounds and the dimension are two separate parameters
is also interesting but we do not discuss it here.) On each round Paul �rst
selects a vector v 2 f�1;+1gn. Carole then resets P to either P + v or
P � v, her choice. Let P final denote the value of P at the end of the game.
The payo� to Paul (from Carole) is then jP finalj1, i.e., the largest absolute
value of the n coordinates of P final.

As a �nite perfect information zero-sum game there is a value, which we
will denote VAL(n). It will be convenient to de�ne for � � 0 the (�; n)-
game: Paul wins the (�; n) game if and only if jP finalj1 � �. Note that
Paul wins the (�; n) game if and only if V AL(n) � � so that determination
of the winner of the (�; n) game for various � will give bounds on VAL(n).
Notation. Sn is the random variable with distribution

Sn = X1 + . . . +Xn

where Pr[Xi = +1] = Pr[Xi = �1] = 1
2 and the Xi are mutually indepen-

dent.
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Then Carole simply checks if
P
bk2�k <

P
ck2�k and hence this is a very

e�cient strategy.) The key point here is that

E[T ] =
1

2

�
E[T 1] + E[T 2]

�
since playing randomly throughout is the average of playing Option One and
then randomly and playing Option Two and then randomly. As E[T ] < 1
either E[T 1] < 1 or E[T 2] < 1 and employing this strategy Carole ensures
that E[T ] < 1 at the end of the round. Continuing this at the end of the
game E[T ] < 1. But at the end of the game E[T ] is simply the number of
faculty who have received tenure. An integer less than one must be zero so
Carole has won. 2

The Tenure Game has the nice property that when the condition for
Carole winning does not hold Paul can use this same weight function to
give a winning strategy for himself. We coin the term antirandomization to
describe this process. We need in this case an amusing lemma.
Splitting Lemma. Let x1 � x2 � . . . � xr all be negative powers of two
with sum x1+ . . .+ xr = 1. Then there exists a partition of the xi into two
groups so that each group sums to at precisely one half.
Proof. We place the xi into groups largest �rst, always placing xi into the
group with the currently smaller sum. Let us say we are stuck at l if after
placing x1; . . . ; xl the di�erence of the sums of the groups (in absolute value)
is greater than the sum xl+1+. . .+xr of the as yet unplaced x's. We show by
induction on l, 0 � l � r, that we are never stuck. We are trivially not stuck
at l = 0, assume by induction that we are not stuck at l�1. Case 1: the two
groups currently have di�erent sums. As all x1; . . . ; xl�1 are multiples of xl
the di�erence of the sums of the groups must be a multiple of xl. Hence the
di�ence is at least xl and so placing xl in the smaller group cannot make us
stuck. Case 2: the two groups currently have the same sum. This sum, as
in Case 1, must be of the form Axl, A integral. Thus x1 + . . . + xl is of the
form (2A+ 1)xl and hence

xl+1 + . . . + xr = 1� (2A+ 1)xl � xl

so that after placing xl in either group we are not stuck. Hence we will not
be stuck at l = r which means that after placement of all x1; . . . ; xl the sums
are precisely the same. 2
Corollary. Let x1 � . . . � xl be negative powers of two with sum at least
one. Then there is a partition of the xi into two groups so that each group
sums to at least one half.

3



then Carole wins.
Proof 1. Let us imagine that Carole plays randomly, i.e., each round after
Paul has determined the promotion list L Carole 
ips a fair coin to decide
whether to use Option 1 or Option 2. Fix some deterministic strategy for
Paul. Now each faculty has a probability of reaching tenure { for the example
above FAN has probability 1

8 = 2�3 of receiving tenure since for the next
three years Carole must select the Option that promotes, rather than �res,
FAN. Note critically that this probability is 2�3 regardless of Paul's strategy;
when Paul puts FAN in L Carole must choose Option One while when Paul
leaves FAN out of L Carole must choose Option Two but each occurs with
probability 1

2 . Let T be the number of faculty receiving tenure so that T
is a random variable. For each faculty member f let If be the indicator
random variable for f receiving tenure so that T =

P
If . Then by Linearity

of Expectation
E[T ] =

X
E[If ] =

X
ak2

�k

as those f which are k rungs from tenure each have E[If ] = 2�k . Note that
Carole wins if and only if T = 0. Our assumption is that E[T ] < 1 and
hence

Pr[Carole wins] = Pr[T = 0] > 0

Now comes the slick part. The Tenure Game is a �nite perfect informa-
tion game with no draws so that either Paul or Carole has a perfect strategy.
Had Paul had a perfect strategy then by playing it the probability of Carole
winning would be zero, which is not the case. Hence, Carole must have a
winning strategy! 2

The above proof is a nice example of the probabilistic method, the use
of probabilistic analysis to prove a deterministic result. As often the case
with the probabilistic method it leaves open the question of actually �nding
the desired object { in this case Carole's strategy. The \removal of the coin

ip" to give a deterministic object is generally called derandomization.
Proof 2 (Derandomization). De�ne the weight of a position as the ex-
pected number E[T ] of faculty receiving tenure if Carole plays randomly.
Explicitly, with ak faculty k rungs from tenure the weight is

P
ak2

�k . Now
Paul presents a list L to Carole. Let T 1 be the number of faculty receiving
tenure if Carole now plays Option One and then plays randomly in all suc-
ceeding rounds. Let T 2 be the same with Carole �rst playing Option Two.
Carole's strategy is to pick Option One if E[T 1] < E[T 2], otherwise to pick
Option Two. (Suppose Option One leaves bk players k rungs from tenure
after its application while Option Two leave ck players k rungs from tenure.

2



Randomization, Derandomization, and
Antirandomization: Three Games

Joel Spencer1

Courant Institue, New York

1 The Tenure Game

DICK

RAV I FAN
SHAFI LACI DON

� �� �� �� �� �� � �� �� �� ��
PostD AP1 AP2 Assoc Tenure

The tenure game is a perfect information game between two players, Paul
- chairman of the department - and Carole - dean of the school. An initial
position is given in which various faculty (DICK , RAVI, etc.) are at var-
ious pre-tenured positions. Paul will win if some faculty member receives
tenure { Carole wins if no faculty member receives tenure. Each year (or
round if you will) Chair Paul creates a promotion list L of the faculty 2 and
gives it to Dean Carole who has two options. Option One: Carole may pro-
mote all faculty on list L one rung and simultaneously �re all other faculty.
Option Two: Carole may promote all faculty not on list L one rung and
simultaneously �re all faculty on list L. With the example above, suppose
L = fDON; SHAFIg. If Carole applies Option One DON receives tenure
and Paul has won. So Carole would apply Option Two: DON and SHAFI
would disappear, FAN and LACI would become level two Assistant Pro-
fessors and RAVI and DICK would become level one Assistant Professors.
The next year Paul presents another list L and Carole picks one of the two
options. The Tenure Game represents an extreme form of \publish or per-
ish", within four years all faculty will either have been promoted to tenure
or �red. With perfect play on both sides, who wins the Tenure Game?

Naturally we shall consider a general opening position, let us suppose
that there are ak faculty that are k rungs from tenure and that k can be
arbitrarily large, though bounded.
Theorem 1. If X

ak2
�k < 1

1Adapted from an Invited Lecture at the SIAM conference in Vancouver, BC, Canada,

June 1992
2The faculty are only pawns in this game!
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