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Abstract

We consider the asymptotic behavior of the following model: balls
are sequentially thrown into bins so that the probability that a bin
with n balls obtains the next ball is proportional to f(n) for some
function f . A commonly studied case where there are two bins and
f(n) = np for p > 1. In this case, one of the two bins eventually
obtains a monopoly, in the sense that it obtains all balls thrown past
some point. This model is motivated by the phenomenon of positive
feedback, where the “rich get richer.” We derive a simple asymptotic
expression for the probability that bin 1 obtains a monopoly when bin
1 starts with x balls and bin 2 starts with y balls for the case f(n) =
np. We then demonstrate the effectiveness of this approximation with
some examples and demonstrate how it generalizes to a wide class of
functions f .

1 Introduction

We consider the following balls and bins model: balls are sequentially thrown
into bins so that the probability that a bin with n balls obtains the next ball
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is proportional to f(n) for some function f . For example, a common case to
study is when f(n) = np for some constant p > 1. Specifically, we consider
the case of two bins, in which case the state (x, y) denotes that bin 1 has x
balls and bin 2 has y balls. In this case, the probability that the next ball
lands in bin 1 is xp

xp+yp .
This model is motivated by the phenomenon of positive feedback. In

economics, positive feedback refers to a situation where a small number of
companies compete in a market until one obtains a non-negligible advantage
in the market share, at which point its share rapidly grows to a monopoly or
near-monopoly. One loose explanation for this principle, commonly referred
to as Metcalfe’s Law, is that the inherent potential value of a system grows
super-linearly in the number of existing users. Positive feedback also occurs
in chemical and biological processes. For example, the above model is used
in [4] to develop a model for neuron growth. For further examples, see e.g.
[1]. Here we consider positive feedback between two competitors, with the
strength of the feedback modeled by the parameter p, although our methods
can also easily be applied to similar problems with more competitors.

It is known that for the model above that when p > 1 eventually one bin
obtains a monopoly in the following sense: with probability 1 there exists
a time after which all subsequent balls fall into just one of the bins [2, 7].
Given this limiting behavior, we now ask what is the probability that bin 1
will eventually obtain the monopoly starting from state (x, y). We provide
an asymptotic analysis, based on examining the appropriate scaling of the
system. This approach is reminiscent of techniques used to study phase
transitions in random graphs, as well as other similar phenomena.

Our main result for the case where f(n) = np and p > 1 can be stated as
follows. Let a = (x+ y)/2. We show that in the limit as a grows large, when
x = a + λ√

4p−2

√
a, the probability that x obtains the monopoly converges

to Φ(λ), where Φ is the cumulative distribution function for the normal
distribution with mean 0 and variance 1.

The rest of the paper proceeds as follows. We first prove the theorem
above for the specific case of f(n) = np and p > 1. We show that the
asymptotic approximation is extremely accurate with a pair of numerical
examples. We follow with a more general statement that can be applied to
a larger family of functions f . Related results and possible extensions are
discussed in final section.
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2 The case of f(n) = np

This section is devoted to the following theorem:

Theorem 1 For the balls-and-bins process described above with f(n) = np

and p > 1, from the state (x, y) with a = x + y and x = a + λ√
4p−2

√
a, the

probability that bin 1 obtains the eventual monopoly is Φ(λ) + O(1/
√

a).

Proof: The argument utilizes an interesting embedding of the throwing
process into time, apparently originally due to Rubin (as reported by Davis
in [2]) and rediscovered by Spencer and Wormald [7]. With this embedding,
if bin 1 has z balls at time t, it receives its next ball at a time t + Tz, where
Tz is a random variable exponentially distributed with mean z−p. Similarly,
if bin 2 has z balls at time t, it receives its next ball at a time t + Uz, where
Uz is a random variable exponentially distributed with mean z−p. From the
properties of the exponential distribution, we can deduce that this maintains
the property that in any state (x, y), the probability that the next ball lands
in bin 1 is proportional to xp. Specifically, the probability that the minimum
of the two exponentially distributed random variables Tx with mean x−p

and Uy with mean y−p is Tx with probability xp

xp+yp . Moreover, from the
memorylessness of the exponential distribution, when a ball arrives at state
(x, y) to bin 1 (respectively, bin 2), the time Uy (Tx) until the next ball arrives
at bin 2 (bin 1) is still exponentially distributed with the same mean.

The explosion time for a bin is the time under this framework when a bin
receives an infinite number of balls. If we begin at state (x, y) at time 0, the
explosion time F1 for bin 1 satisfies

F1 =

+∞∑
j=x

Tj =

+∞∑
j=a+λ

√
a/(4p−2)

Tj

and similarly for bin 2. Note that E[F1] and E[F2] are finite; indeed, the
explosion time for each bin is finite with probability 1. Also, F1 and F2 are
distinct with probability 1. This is easily seen by noting that F1 = F2 if and
only if

Tx =
+∞∑
k=y

Uk −
+∞∑

j=x+1

Tj ,

a probability 0 event. It is therefore evident that the bin with the smaller
explosion time at some point obtains all balls thrown past some point, as
first noted by Rubin in [2].
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We first demonstrate that for sufficiently large a, F1 and F2 are approxi-
mately normally distributed. This would follow immediately from the Cen-
tral Limit Theorem if the sum of the variances of the random variables Tj

grew to infinity. Unfortunately,

+∞∑
j=x

Var[Tj ] =
+∞∑
j=x

j−2p < +∞,

and hence standard forms of the Central Limit Theorem do not apply.
Fortunately, we may apply Esseen’s inequality, a variation of the Central

Limit Theorem, which can be found in, for example, [5][Theorem 5.4].

Lemma 1 [Esseen’s inequality] Let X1, X2, . . . , Xn be independent random
variables with E[Xj ] = 0, Var[Xj] = σ2

j , and E[|Xj|3] < +∞ for j =

1, . . . , n. Let Bn =
∑n

i=0 σ2
j , F (x) = Pr(B

−1/2
n

∑n
j=1 Xj < x), and L =

B
−3/2
n

∑n
j=1 E[|Xj|3]. Then

sup
x
|F (x)− Φ(x)| ≤ cL

for some universal constant c.

In our setting, let Xj = Tx+j−1 − (x + j − 1)−p. We note that there are
no problems applying Esseen’s theorem to the infinite summations of our
problem. Consider

F x(z) = Pr


∑+∞

j=x(Tj − j−p)√∑+∞
j=x j−2p

< z


 .

That is, F x(z) is the probability that F1, appropriately normalized to match
a standard normal of mean 0 and variance 1, is less than or equal to z. Then
we have

sup
z
|F x(z)− Φ(z)| ≤ O(1/

√
x).

Hence F x(z) approaches a normal distribution as x grows large.
We also have

E[F1] =

+∞∑
j=x

E[Tj ] =

+∞∑
j=x

1

jp
=

x1−p

p− 1
+ O(x−p),
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and

Var[F1] =

+∞∑
j=x

Var[Tj ] =

+∞∑
j=x

1

j2p
=

x1−2p

2p− 1
+ O(x−2p).

We wish to determine the probability that F1 − F2 < 0. Now F1 − F2 is
(approximately) normally distributed with mean µ where

µ = E[F1]− E[F2] = −2
λ√

4p− 2
a1/2−p + O(a−p)

and variance σ2 where

σ2 = Var[F1] + Var[F2] =
2

2p− 1
a1−2p + O(a−2p).

Hence the probability that F1 − F2 < 0 is Φ(λ + O(1/
√

a)) + O(1/
√

a),
which is just Φ(λ) + O(1/

√
a). 2

3 Numerical Examples

We provide an example demonstrating the accuracy of Theorem 1 in Table 1.
We consider initial states with 200 balls in the system, with the first bin
containing between 101 and 110 balls. We estimate the exact probability
that the first bin achieves monopoly as follows. We first calculate the exact
distribution when there are 160,000 balls in the system for the case p = 2,
using the recursive equations described in [3]. With this data, we make the
very accurate approximation bin 1 eventually achieves monopoly if it has
53% of the balls at this point. We also apply symmetry for the remaining
cases; if at this point bin 1 has 80,000 ≤ k < 84,800 balls with probability p1

and bin 2 has k balls with probability p2 < p1, then bin 1 reaches monopoly
at least 1/2 out of this p1+p2 fraction of the time. This approach is sufficient
to accurately determine the probability that the first bin eventually reaches
monopoly to four decimal places. Comparing these results demonstrates
the accuracy of the normal estimate. This accuracy is somewhat surprising,
as our bound for the error of the estimate is O(1/

√
a); we suspect tighter

provable bounds may be possible. Table 2 shows similar results for the case
of p = 1.5. Here we calculate exactly the distribution with 640,000 balls in
the system, use a 52% cutoff to estimate the probability of monopoly, and
again use symmetry; the resulting numbers are correct to four decimal places.
Again, the normal estimate provides a great deal of accuracy.
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x 101 102 103 104 105
Calc. 0.5955 0.6870 0.7682 0.8361 0.8896
Φ(λ) 0.5970 0.6883 0.7693 0.8370 0.8902

x 106 107 108 109 110
Calc. 0.9292 0.9569 0.9751 0.9863 0.9929
Φ(λ) 0.9297 0.9572 0.9753 0.9865 0.9930

Table 1: A calculation vs. the asymptotic estimate of our theorem when
a = 100 and p = 2.

x 101 102 103 104 105
Calc. 0.5794 0.6557 0.7261 0.7886 0.8419
Φ(λ) 0.5793 0.6554 0.7257 0.7881 0.8413

x 106 107 108 109 110
Calc. 0.8854 0.9197 0.9456 0.9644 0.9775
Φ(λ) 0.8849 0.9192 0.9452 0.9641 0.9772

Table 2: A calculation vs. the asymptotic estimate of our theorem when
a = 100 and p = 1.5.

4 A more general argument

We now prove a generalization of Theorem 1 to processes where the strength
of feedback is modeled by a positive non-decreasing function f : N →
(0, +∞). More precisely, the probability of bin 1 receiving the next ball

when the current state of the system is (x, y) is f(x)
f(x)+f(y)

. In this case we say
that f is the feedback function of the process. It is known that any such f
that satisfies

+∞∑
n=1

1

f(n)
< +∞ (1)

gives rise to a process for which with probability 1 one of the bins will receive
all balls beyond a certain finite time [2, 7]. The aim of this Section is to
characterize the asymptotic behavior of the probability of bin 1 achieving
monopoly in a way that is analogous to Theorem 1.

Our main result is more easily expressed when f is defined over all the
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Feedback
(f = f(n))

Scale
(q = q(a))

np lnα n
√

a
4p−2

np ln n ln lnα n
√

a
4p−2

np+lnα n
√

a
4(α+1) lnα a

Table 3: Different feedback functions f and the asymptotic form of their cor-
responding scale functions q. Here p and α can be any constants for which the
corresponding feedback function satisfies (1). The verification of the hypotheses
of Theorem 2 is left to the reader.

positive real numbers and is continuously differentiable, in which case we

say that q = q(a) is a scale function if q(a) ∼
√

a
4a(ln f)′(a)−2

as a → +∞.1

Theorem 2 states that if the process starts from initial state (x, y) with
a = x+y

2
, x = a + λq(a), and a large, the probability of monopoly by bin

1 is approximately Φ(λ). This is true whenever f satisfies certain technical
conditions on its logarithmic growth rate. This result subsumes the f(n) = np

case treated in Theorem 1 (except for the error bounds), and although it is
not completely general, it characterizes the scaling behavior of the monopoly
probability in most interesting examples with sub-exponential growth, such
as the ones given in Table 3 above.

The remainder of this Section is devoted to the proof of Theorem 2. We
begin with a probabilistic result (Lemma 2) that provides sufficient conditions
for such scaling behavior to be verified. The subsequent proof of Theorem
2 is analytic and consists of showing that the conditions of Lemma 2 are
satisfied whenever some easily verifiable conditions on f hold.

4.1 Sufficient conditions for scaling behavior

We generalize Theorem 1 with the following lemma.

Lemma 2 Let mon(x, y) be the probability that bin 1 achieves monopoly (i.e.
receives all balls beyond a certain time) in a balls-and-bins process started

1We shall sometimes speak of the scale function where in fact we are only referring to
one of the many possible scale functions, all of which are asymptotically equivalent.
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from state (x, y) whose feedback function f : N → (0, +∞) satisfies condition
(1). Let

Sr(n) =
∑
j≥n

1

f(j)r
(n ∈ N, r ∈ {1, 2, 3});

q0(n) =f(n)

√
S2(n)

2
(n ∈ N).

Choose some function q = q(n) and a fixed λ > 0. Assume that there is a
function 0 ≤ er(n) � 1 as n → +∞ such that

0 ≤
∣∣∣∣ q(n)

q0(n)
− 1

∣∣∣∣ ≤ er(n); (2)

0 ≤
∣∣∣∣f(n± λq(n))

f(n)
− 1

∣∣∣∣ ≤ er(n); (3)

0 ≤ S3(n)

S2(n)3/2
≤ er(n). (4)

Then

mon(a + λq(a), a− λq(a)) = Φ(λ) + O (er(n)) as a → +∞.

Proof: We essentially retrace the steps of the proof of Theorem 1. The
exponential embedding technique again applies. We now assume that if bin
1 has z balls at time t receives its next ball at time t + Tz, where Tz is
exponential with mean f(z)−1, and we have similar random variables Uz for
bin 2. As before, if we start from state (x, y), the elementary properties of
the exponential distribution imply that the probability of the first arrival
happening at bin 1 is

Pr(Tx = min{Tx, Uy}) =
f(x)

f(x) + f(y)
.

The memorylessness of the exponential implies that this same property holds
for all subsequent arrivals, which are therefore distributed as the original
balls-and-bins process. The explosion times F1 and F2 are again defined to
be the times at which respectively bin 1 and bin 2 receive infinitely many
balls in this modified framework. Hence

F1 =

+∞∑
j=x

Tj ,
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and F1 is almost surely finite by condition (1):

E[F1] =

+∞∑
j=x

1

f(j)
< +∞.

Of course similar equations hold for F2. It is clear that with probability 1
F1 6= F2 and that bin 1 receives all balls beyond a certain time if and only if
F1 < F2. Hence

mon(x, y) = Pr(F1 < F2). (5)

We compute the asymptotics of mon(x, y) with x = a + λq(a) and y =
a − λq(a) as a → +∞, where λ > 0 is fixed, under assumptions (2), (3)
and (4). As in the previous proof, we use Esseen’s Inequality (Lemma 1) to
prove that F1 and F2 can both be approximated in distribution by Gaussian
random variables with appropriate mean and variance. For F1 this can be
done by setting (using the notation of Lemma 1)

Xj = Tj − 1

f(x− 1 + j)
(j = 1, 2, 3, . . . )

and again noting that there are no problems in applying the Lemma to this
infinite sequence of random variables. Since

+∞∑
j=x

Var[Xj ] =

+∞∑
n=x

1

f(n)2
= S2(x),

+∞∑
j=x

E[|Xj|3] = O

(
+∞∑
n=x

1

f(n)3

)
= O (S3(x))

and by assumption (3), for r = 2, 3,

Sr(x) = Sr(a + λq(a)) = (1 + O (er(a)))Sr(a),

the error term in Esseen’s inequality is of the order of

L =
S3(x)

S2(x)3/2
= (1 + O (er(a)))

S3(a)

S2(a)3/2
= O (er(a)) .

This implies that the distribution of F1 is O (er(a))-close to the distribution
of a normal random variable with mean and variance given by

E[F1] = S1(x) and Var[F1] = S2(x) = (1 + O (er(a)))S2(a). (6)
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A analogous statement holds for F2. As a result, the distribution of F1−F2 is
O (er(a)) close to that of a normal random variable with mean and variance
given by

µ = E[F1]− E[F2] = −
a+λq(a)−1∑
n=a−λq(a)

1

f(n)
= −(1 + O (er(a)))

2λq(a)

f(a)
,

σ2 = Var[F1] + Var[F2] = (1 + O (er(a)))2S2(a).

It follows that

mon(x, y) = Pr(F1 − F2 < 0) = Φ
(
−µ

σ

)
+ O (er(a)) .

By (2) and the definition of q0

−µ

σ
= (1 + O (er(a)))

2λq0(a)

f(a)
√

2S2(a)
= (1 + O (er(a)))λ.

The above finally implies

mon(x, y) = Φ ((1 + O (er(a)))λ) + O (er(a)) = Φ(λ) + O (er(a)) ,

finishing the proof. 2

4.2 The general result

Let f : N → (0, +∞) be a a feedback function (i.e. positive and non-
decreasing). Letting g(n) = ln f(n), g can be easily extended to a piecewise
affine function over all positive real numbers by linear interpolation. As a
result, all feedback functions f can be extended to piecewise smooth functions
on the positive real numbers. That is the class of functions to which Theorem
2 applies.

Theorem 2 Assume that a function f is a positive, non-decreasing2, piece-
wise smooth function defined on the positive real numbers, and assume that
it satisfies (1). Define g(x) = ln f(x) and h(x) = xg′(x), where g′ is the right
derivative of g. Assume that

lim inf
x→+∞

h(x) >
1

2
, lim

x→+∞
g′(x) = lim

x→+∞
h(x)

x
= 0, (7)

2Condition (7) implies that f = f(x) is in fact increasing in x for x big enough.
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and also that there is a constant C > 0 such that for all 0 < ε < 1/2 and all
x big enough

sup
x≤t≤x1+ε

∣∣∣∣ h(t)

h(x)
− 1

∣∣∣∣ ≤ Cε. (8)

It then holds that
√

a
4h(a)−2

is the scale function of the balls-and-bins process

with feedback function f . That is, if

q(a) ∼
√

a

4h(a)− 2
as a → +∞

then for any fixed λ > 0 the probability of monopoly by bin 1 in such a
process started from state (x, y) = (a + λq(a), a− λq(a)) converges to Φ(λ)
as a → +∞.

Proof: We shall check that the conditions of Lemma 2 are satisfied. The
crucial step in checking these conditions is to estimate S2(n) and S3(n), which
we accomplish by evaluating corresponding integrals. Let r ≥ 2 and define

Ir(a) =

∫ +∞

a

dx

f(x)r
=

∫ +∞

a

dx

erg(x)
.

In what follows we will prove that

Sr(a) ∼ Ir(a) ∼ a

(rh(a)− 1)f(a)r
as a → +∞.

By integration by parts,

Ir(a) =
x

erg(x)

]x=+∞

x=a
+ r

∫ +∞

a

xg′(x) dx

erg(x)
= − a

f(a)r
+ r

∫ +∞

a

h(x) dx

erg(x)
.

Here we have used the fact that

f(x)r � x as x → +∞ for r ≥ 2, (9)

which can be deduced from the fact that lim infx→+∞ h(x) > 1
2
. We now

make use of the following claim, which we prove subsequently.

Claim 1 As a → +∞∫ +∞

a

h(x) dx

erg(x)
∼ h(a)

∫ +∞

a

dx

erg(x)
= h(a)Ir(a) (10)

2
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Claim 1 implies that a → +∞

Ir(a) = − a

f(a)r
+(1+o(1))rh(a)

∫ +∞

a

dx

erg(x)
= − a

f(a)
+(1+o(1))rh(a)Ir(a).

Assumption (7) tells us that rh(a) > 1 for r ≥ 2 and a big enough. This
permits us to write

Ir(a) = (1 + o(1))
a

(rh(a)− 1)f(a)r
.

Since by (7), a � h(a), we have

Ir(a) � 1

f(a)r
.

Noting that |Sr(a)− Ir(a)| ≤ 1
f(a)r , we can finally conclude

Sr(a) ∼ Ir(a) ∼ a

(rh(a)− 1)f(a)r
as a → +∞ (r ≥ 2). (11)

This gives us the asymptotic form of S2 and S3 as in Lemma 2. Moreover,
we can compute

q0(n) = f(n)

√
S2(n)

2
∼
√

n

4h(n)− 2
.

All that remains to be shown is that the assumptions of Lemma 2 hold
in this case. For convenience we simply show that er(a) = o(1). To this end,
we let

q(n) ∼
√

n

4h(n)− 2
as n → +∞

and note that this guarantees the validity of (2). To finish the proof, we show
that as a → +∞

S3(a) � S2(a)3/2; (12)

∀λ > 0 f(a± λq(a)) ∼ f(a). (13)

The first of these equations follows from (11) and equation (7) ( a
h(a)

� 1).

S3(a) ∼ a

(3h(a)− 1)f(a)3
� S2(a)3/2 ∼ 1

f(a)3

(
a

2h(a)− 1

)3/2

.
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To prove (13), fix an arbitrary λ > 0. By the definition of h,

|g(a± λq(a))− g(a)| ≤
∣∣∣∣∣
∫ a±λq(a)

a

h(t)
dt

t

∣∣∣∣∣ ≤ ln

(
a + λq(a)

a− λq(a)

){
sup

a−λq(a)≤t≤a+λq(a)

h(t)

}
.

Since q(a) = O (
√

a), (8) implies

sup
a−λq(a)≤t≤a+λq(a)

h(t) ∼ h(a).

We conclude (again using q(a) = O (
√

a)) that

|g(a± λq(a))− g(a)| ∼ h(a) ln

(
a + λq(a)

a− λq(a)

)
= O

(
h(a)

a
q(a)

)
= O

(√
h(a)

a

)
= o(1),

because a � h(a) by (7). Hence

f(a± λq(a))

f(a)
= eg(a±λq(a))−g(a) = eo(1)

This proves (13) and finishes the proof. 2

To conclude, we now prove Claim 1.
Proof: [of Claim 1] We first show that for any fixed 0 < ε < 1

2
, as a → +∞

∫ a1+ε

a
h(x) dx

erg(x)∫ +∞
a

h(x) dx

erg(x)

∼ 1 (14)

A change of variables permits us to rewrite∫ +∞

a1+ε

h(x) dx

erg(x)
= (1 + ε)

∫ +∞

a

h(u1+ε)uε du

erg(u1+ε)
. (15)

Equation (8) implies that for all u big enough, h(u1+ε) ≤ (1 + Cε)h(u).
Moreover, (7) allows us to choose an a such that h(u) ≥ h0 > 1

2
for all u ≥ a,

which implies

g(u1+ε)− g(u) =

∫ u1+ε

u

g′(u)du ≥ inf
t≥a

h(t)

∫ u1+ε

u

du

u
= h0ε ln u.

We therefore find

erg(u1+ε) ≥ urh0εerg(u).
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Also note rh0ε > ε.
Plugging this into (15) yields the following estimate as a → +∞∫ +∞

a1+ε

h(x) dx

erg(x)
≤ (1+ε)(1+Cε)

∫ +∞

a

h(u)uε du

erg(u)urhoε
= O

(
aε−rh0ε

) ∫ +∞

a

h(u) du

erg(u)
.

By (16) this implies

∫ +∞

a

h(x) dx

erg(x)
∼
∫ a1+ε

a

h(x) dx

erg(x)

as stated. Now note that, by assumption (8) on h,

(1− Cε)h(a)

∫ a1+ε

a

dx

erg(x)
≤
∫ a1+ε

a

h(x) dx

erg(x)
≤ (1 + Cε)h(a)

∫ a1+ε

a

dx

erg(x)

and by a similar reasoning as above

∫ a1+ε

a

dx

erg(x)
∼
∫ +∞

a

dx

erg(x)
.

Putting these facts together finishes the proof of the claim. 2

5 Final remarks

We have provided a full description of scaling behavior of the probability
of monopoly for a broad class of feedback functions satisfying condition (1),
which corresponds to p > 1 in the f(n) = np case. One is tempted to ask
whether similar results hold in the 0 < p ≤ 1 range; in particular, it seems
especially intriguing that the scale function

q(a) =

√
a

4p− 2

for the p > 1 case can in fact be defined for all p > 1/2. It turns out [4] that
any feedback function f satisfying

+∞∑
n=1

1

f(n)2
< +∞ (16)
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yields a process such that with probability 1, one of the bins has more balls
than the other at all sufficiently large times. In forthcoming work, Oliveira
and Spencer [6] prove that, if f(n) = np, p > 1/2, the probability a bin
obtains eventual leadership has a standard Gaussian limit precisely at the

λ
√

a
4p−2

scale, and similar results hold in the general context of Theorem 2

if assumption (1) is dropped. They also show that the limit of the leadership
probability, which is defined to be the probability that bin 1 has more balls
at all subsequent times, is 2Φ(λ)− 1 under the same scaling.

Many other natural questions remain open. For instance, are our methods
applicable to related non-linear models for Web graphs [3]? It seems likely
that this problem requires improvements on the error bounds for Gaussian
approximation, and our numerical data suggests that this is indeed possible.
However, it is also conceivable that large deviation bounds are enough for
treating many related problems. Finally, direct combinatorial proofs (i.e.
without resort to the exponential random variables) of the current results
presented here would also be of great interest.
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