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n generalized diagonals in the assertion of Theorem 2.) We achieve this using Theorem 3 as

follows.

We partition each Z�Z block into Z diagonals arbitrarily! De�ne two graphsH1 = (V;E1)

and H2 = (V;E2) on these diagonals as follows. Let V = fDj
i ; 1 � j �M 0; 1 � i � Zg, be the

set of diagonals from all the small blocks. In H1 , there is an edge between vertices representing

diagonals from the same Z � Z block. Thus E1 is a disjoint union of M 0 cliques, each of size

Z. In H2, there is an edge between Dj
i and Dj0

i0 if and only if there is an edge of G between a

member of the �rst diagonal and a member of the second.

Note that the maximum degree in H2 is � Z0:1, since that is the maximum number of

edges out of any small block. By Theorem 3, we know we can properly color the vertices of

H = (V;E1 [ E2) using Z colors. But each color class corresponds to a set of subdiagonals

that is independent in G. This completes the proof. 2
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This completes the proof of Part B. >From Parts A and B we conclude that

Pr[Aq] � 7

X7

Since we saw that each event is independent of all but at most X6 others, we can conclude

using the local lemma, that there exists a way of partitioning the X�X blocks into subblocks

of size X0:01 � X0:01 so that each subblock has at most X0:0001 edges incident with it. This

completes the proof of Step 2.

Step 3.

We now have subblocks of size Y � Y such that the number of edges incident with vertices in

each subblock is � Y 0:01. (Note that these edges may be within the same subblock or between

the subblock in consideration and another subblock.)

We want to achieve, via a �nal partition, small blocks of size Z�Z where Z = Y 0:1 so that

there are no edges at all within each small block. Although we no longer care for the number

of edges going out of each small block, we know it is, trivially, � Y 0:01 � Z0:1.

Thus the problem is independent in each Y � Y subblock. Consider a random partition of

rows (and columns) into Y 0:9 parts, yielding small blocks of size Y 0:1� Y 0:1. Denote the total

expected number of edges within all the
�
Y 0:9

�2
small blocks by E(Y; Z). Then

E(Y; Z)

� Pr[ an edge is trapped in a small block ]� Number of edges incident with a subblock

� 1

(Y 0:9)2
� Y 0:01 � 1

(Note that we used the fact that there are no vertical or horizontal edges, but in fact we do

not have to assume it here because 1
(Y 0:9) � Y 0:01 is still � 1.)

Thus there exists a way of partitioning so that each small block of size Z �Z has no edges

inside it.

Step 4. At this stage, we have n=Z chains of Mn=Z = M 0 (say) small blocks of size Z�Z

each, and each small block is an independent set. Furthermore, the number of edges out of each

small block to its chain is at most Z0:1. The idea now is to �nd subdiagonals in each small

block, and claim that we can put the subdiagonals together to form Z disjoint generalized

diagonals for the original problem. (All these diagonals arising from all n=Z chains supply the
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This is because we have to choose 100 out of the edges incident with the vertices of q, whose

number is at most Y 2X
 . Moreover, if 100 independent edges leave out of q, they must end on

at least either 10 rows or 10 columns. One can now check that the probability that all these

edges stay in our chain is bounded by (1=X0:99)10.

Part B ( edges within q).

Recall that we ignore the vertical and the horizontal edges in this step. This is because these

edges do not lie in any generalized diagonal, and can not cause any problem later. To bound

Pr[A00

q ] we apply a trick similar to the one used by Vapnik and Chervonenkis in [11]. Partition

R1 and C1 randomly into R11; R12 and C11; C12 respectively. (I.e. each r 2 R1 is in R11 with

probability 1=2 and each c 2 C1 is in C11 with probability 1=2.)

De�ne A000

q to be the event that A00

q occured AND that at least a tenth of the edges within the

same subblock q \cross", i.e. go either from R11 � C11 to R12 � C12 or from R12 � C11 to

R11 � C12.

Claim 3. Pr[A000

q ] � Pr[A00

q ] �
1

6

Proof. Note that

Pr[A000

q ] = Pr[A00

q ] � Pr[�
1

10
edges \cross" j A00

q ]

The expected number N� of edges that cross =
1
4 � the total number of edges within

the subblock.
If the probability that at least a tenth cross is p, then

p � 1 + (1� p) � 1

10
� 1

4

) p � 1

6
2

On the other hand,

Pr[A000

q ] � Pr[� 1

40
X0:0001 edges go from R11 � C11 to R12 � C12]

Choose �rst R11, C11 and then R12, C12 from the total X � X block. Then the same com-

putation as before (Part A) shows that the probability to get 100 independent edges is < 1
X7 .

Hence by Claim 3, we have, Pr[A00

q ] � 6Pr[A000

q ] � 6
X7 .
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to be an arbitrarily small positive constant provided � is su�ciently small.

For each block independently and randomly, partition the rows into R1 � � � � � Rr, and the

columns into C1 � � � � � Cr, where r = X0:99. Thus we get a chain of subblocks (of vertices),

each of size X :01 � X :01 = Y . More precisely, the vertex set of this (say, the ith) chain is

Rj � Cl, such that j + l � i (mod r).

We want to prove, using the local lemma, that with positive probability the number of edges

incident with each subblock in the subgraph induced on its chain is small (< X0:0001). For

each subblock q, de�ne Aq to be the event that the subblock has too many (> X0:0001) edges.

Clearly, each event Aq is independent of all other events but those corresponding to subblocks

from blocks whose distance from the block of q is at most 2. Here we de�ne, as before, the

distance between blocks as the distance between them in the graph whose vertices are the

blocks and two are adjacent if there is an edge of G joining a member of the �rst block with

one of the second. Thus, each event is independent of all others but at most b, where

b � ( number of blocks of distance 2 ) � ( number of subblocks in each block )

�
h
1 +X2 �X
 + (X2 �X
)2

i
� (X0:99)2

� X6

We now want to bound Pr[Aq]. Let A
0

q be the event that the number of edges from q to vertices

outside q is � X0:0001

2 , and let A00

q be the event that the number of edges within q is � X0:0001

2 .

Clearly,

Pr[Aq] � Pr[A0

q] + Pr[A00

q ]:

We bound the left hand side by bounding, separately, the two probabilities on the right hand

side. Assume the subblock we are dealing with is R1 � C1, without loss of generality.

Part A (edges between q and vertices outside it).

Pr[A0

q] � Pr[9 at least 200X
 edges going out of q]

� Pr[9100 independent edges going out of q]

�
 
Y 2X


100

!
�
�

1

X0:99

�10

� X2+�

X9:9
<

1

X7
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all but less than n7 other events Bp0 , and thus, by the Local Lemma (Lemma 1), the assertion

of Lemma 2 follows. 2

Repeated Partitioning. To complete step 1, apply Lemma 2 repeatedly until X becomes (1� )
1+�,

where � > 0. Note that we get independent problems of type (G(l); X;M � n=X; d(X)), for

l = 1; . . . ; n=X ; where d(X) is an upper bound on the maximum degree of all the induced

graphs G(l). We next bound this maximum degree d(X) after the repeated partitioning.

Claim 2. d(X)� 2�X as long as X � (1� )
1+� and � � �0(�).

Proof. We start with blocks of size n0 = n, and maximum degree d0 = �n. We
then apply Lemma 2 repeatedly, noting that its assertion holds as long as the
bound for our degree di is at least n

1+

i and ni > C1(
). In each application of

Lemma 2 we achieve

ni+1 =
ni
2
; di+1 � di

2
+ d

4=5
i

) ni =
n

2i
; de�ne zi = d

1=5
i so the recurrence becomes

z5i+1 �
z5i + 2z4i

2
� (zi + 1)5

2

) zi+1 � zi + 1

21=5

De�ne ti = zi + c so that c satis�es c = c�1
21=5

:

Then ti+1 � ti=2
1=5 and hence

ti � t0
2i=5

) zi � z0 + c

2i=5
� c;

di �
 
d
1=5
0 + c

2i=5
� c

!5

�
�
d
1=5
0 + 10

�5
2i

:

Therefore,

di � d0
2i

+ O(
d
4=5
0

2i
)

� 2d0
2i

;

where the last inequality holds since in our range d0=2
i is su�ciently large.

If we iterate till ni becomes X = (1� )
1+�, then di � 2�X and hence the claim. 2

Step 2.

At this stage we have a graph consisting of blocks of vertices of size X � X each; and the

maximum degree is at most 2�X � X
. Note that by the analysis in Step 1, 
 can be chosen
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independent of all but at most b = n2d+ (n2d)2 < n7 other events.

Claim 1. Pr[Av] < e�cd
0:1
, where c is some absolute constant.

Proof of Claim 1. We can clearly assume that v has exactly d neighbors.
Partition the set of d neighbors of v into at most 3

p
d sets of size at most

p
d each,

such that for each set either (a) all are in a row, or (b) all are in a column, or
(c) no two are in a row or in a column. To show that this is possible we argue as
follows. First we show that we can partition any set of d entries in a matrix into
at most g(d) � 2

p
d subsets (of any size), each satisfying either (a) or (b) or (c).

This is certainly true for d = 1. Assuming it holds for all d0 < d we prove it for
d, d > 1. By the Hall-K�onig theorem [8] either there are at least 2

p
d� 1 entries

on a diagonal (i.e. no two in a row or in a column), or at most 2
p
d lines su�ce

to cover all these entries. In the second case we are done, and in the �rst case we
conclude, by the induction hypothesis, that

g(d) � 1 + g(d� 2
p
d+ 1) � 1 + 2

q
d� 2

p
d+ 1 � 2

p
d:

Thus we have at most 2
p
d sets, each of type (a) or (b) or (c). Now break each set

with more than
p
d elements into sets of size

p
d each and, possibly, one smaller

set of the remaining elements. In the end of this process we obtain at most 2
p
d

of these smaller sets, since each of our original sets can contribute at most one
such set. The total number of sets of size

p
d we can have is clearly at most

p
d,

and thus the desired partition exists (and in fact the constants can be slightly
improved).
Without loss of generality suppose that v 2 V 0. Consider, now, a speci�c subset
A among the ones in the partition of the set of all neighbors of v described above,
and let a denote the number of its elements, a �

p
d. Since a is much smaller

than n, and since A satis�es (a),(b) or (c), it is not too di�cult to check that the
random variable that counts the number of members of A that lie in V 0 is well
approximated by a Binomial random variable with parameters a and 1=2. It thus
follows, from the standard estimates for Binomial distribution (see, e.g., [2]) that
the probability that this random variable exceeds a=2 + d4=5=3

p
d is at most

e�c
0 (d

0:3)2

a ;

for some absolute constant c0 > 0. Since a � p
d the last probability is bounded

by e�c
0d0:1 . Observe, now, that if Av occured then there must be a set A in the

partition with more than jAj=2+d4=5=3
p
d of its members chosen to V 0. Therefore,

the probability of the event Av is at most 3
p
de�c

0d0:1 � e�cd
0:1

for some c > 0.
This completes the proof of the claim.

Returning to the proof of Lemma 2, observe that by Claim 1 the probability of each event Bp

is at most n2e�cd
0:1
. By our assumption d � n
 and n > C1(
). Hence, the probability of each

Bp is much smaller than, say, 1=n8. As observed above, each Bp is mutually independent of
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(by choosing a su�ciently small � > 0) that the numbers we deal with are su�ciently large this

assumption is justi�ed. We also assume, whenever it is needed, that the number of vertices in

our graph and the bound we have for its maximum degree are su�ciently large.

Step 1.

Given a graph G = (V;E) whose set of vertices V is the one described above, let us identify

the blocks of vertices as follows. Put V = V1 � V2 � � � � � VM , where Vp = f(i; j; p) : i; j 2
N = f1; . . . ; ngg. (Here and in what follows we use the symbol � to denote disjoint union).

Suppose the maximum degree of G is at most d. The following lemma is the basic tool in the

repeated partitioning that we perform in this step. (Recall that we assume that the size n of

each block is a power of 2 and is thus even).

Lemma 2 For every positive (small) constant 
 > 0 there is a (large) C1 = C1(
) such that

if n > C1, d � n
 and G is as above, then there exists a partition V = V 0 � V 00 with the

following properties.

(a) 8p; 1 � p �M; 9Up;Wp � N; j Up j=jWp j= n=2,
V 0 \ Vp = f(i; j; p) : (i 2 Up and j 2 Wp) [ (i 2 N n Up and j 2 N nWp)g
and

(b) if G0 = G[V 0]; G00 = G[V 00] are the induced subgraphs of G on V 0 and on
V 00 respectively, then the maximum degree of G0 as well as that of G00 are
both at most d

2 + d4=5.

Proof. The method resembles the one used in [1] but some new ideas have to be incorporated.

For each p, let Up and Wp be random subsets of N of cardinality n=2 each, chosen uniformly

and independently, and let V = V 0 � V 00 be the corresponding partition of V (See Figure 1).

For each vertex v = (i; j; k), de�ne Av to be the event that the degree of v in its graph (G0

if v 2 V 0 or G00 if v 2 V 00) is bigger than d
2 + d4=5. For each p, 1 � p � M , let Bp be the

(bad) event that an event Av occured for some vertex v in block number p. Note that each

event Bp is independent of all other events but those that correspond to blocks whose distance

from block number p is at most 2. Here we de�ne the distance between blocks as the distance

between them in the graph whose vertices are the blocks in which two are adjacent i� there

is an edge of G connecting two members of these two blocks. It follows that each event Bp is

4



disjoint latin transversals. 2

The proof of Theorem 2 is rather complicated and is described in the next two sections.

2 An outlined proof of Theorem 2

We divide the proof into four steps. Let us denote the claim in the theorem by the problem

instance (G; n;M; �n). The following is an outline of the four steps of the proof. The details

are provided in the next section.

Step 1. Randomly split each n�n block into two, repeatedly, until n becomes
X = (1� )

1+� (where � is some small �xed positive constant), and M
becomes M � n

X , so that the maximum degree of each vertex in the
induced subgraph of G on the set of vertices in its part becomes at
most 2�X � 2(1� )

�. Thus, at the end of this step we are left with n=X
subproblems of type (G0; X;Mn=X; 2�X).
The aim of this step is to divide the problem into subproblems so that
the degree of each vertex in each subproblem is much smaller.

Step 2. Randomly split each block (of size X �X) further into subblocks of
size Y �Y = X0:01 so that the total number of edges in each induced
subgraph G0, which are not vertical or horizontal, and are incident
with any given subblock is at most Y 0:01.
Thus in this step we restrict the total degree of each subblock of
vertices.

Step 3. (Final Partition) Randomly split each subblock into small blocks of
size Z � Z = Y 0:1, so that each small block is an independent set
(besides, possibly the vertical or the horizontal edges, which we once
again ignore).

Step 4. Partition each small block of size Z�Z into Z transversals, arbitrarily.
De�ne two graphs on the same vertex set, the vertices representing all
these transversals, and the edges de�ned as follows. In the �rst graph
there is an edge between two vertices if and only if the corresponding
transversals belong to the same small block; in the second graph, an
edge denotes that there is an edge of G between a member of the �rst
transversal and a member of the second. The proof is completed by
invoking Theorem 3.

3 The Details

In order to make the presentation more coherent we do not use the integer signs b�c and d�e in
this section and assume that all quantities appearing here are integers. Since we may assume
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Let n and M denote positive integers. Let G = (V;E) denote a graph where V = f(i; j; k) :
1 � i; j � n; 1 � k � Mg. It is convenient to imagine the vertices partitioned into M blocks,

where each block has n2 vertices, arranged in an n� n array. Thus the index k denotes which

block a vertex (i; j; k) belongs to, and the indices i; j identify the vertex within a block.

De�nition. U � V is a generalized diagonal if (i) 8 i; k 9 a unique j such that (i; j; k) 2 U

and (ii) 8 j; k 9 a unique i such that (i; j; k) 2 U .

We prove the following generalization of Theorem 1.

Theorem 2 Let n = 2m and let G = (V;E) be as de�ned above, and suppose the maximum

degree of G is at most �n, where � is a small absolute constant, (any � � 10�10
10

will do).

Then there exists a proper coloring f : V ! f1; . . . ; ng such that f(i; j; k) : f(i; j; k) = �g is a

generalized diagonal, for all 1 � � � n.

The proof of the above theorem is probabilistic, the main tool being the Lov�asz Local

Lemma which can be stated as follows.

Lemma 1 (The local lemma [7]) Let A1; . . . ; An be events in an arbitrary probability space.

Suppose each Ai is mutually independent of all but at most b other events Aj and suppose the

probability of each Ai is at most p. If ep(b+ 1) < 1 then with positive probability none of the

events Ai holds.

The proof can also be found in, e.g., [9], [2]. Also crucial to our proof is the following result

of the �rst author.

Theorem 3 (Alon [1]) There exists an absolute positive constant c such that for any two

graphs G1 = (V;E1) and G2 = (V;E2) on the same set of vertices, where G1 has maximum

degree d, and G2 is a vertex disjoint union of cliques of size cd each, the chromatic number of

the graph G = (V;E1[E2) is precisely cd.

Proof of Theorem 1 from Theorem 2. Theorem 1 follows easily from Theorem 2. Given

an n� n matrix, we can associate the following graph with it. The vertices correspond to the

elements of the matrix, and there is an edge between two vertices whenever the elements have

the same value. Observe that a generalized diagonal of this graph corresponds to a transversal

in the matrix. Thus a proper coloring as in Theorem 2 supplies the existence of the desired n
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Covering with Latin Transversals

Noga Alon1, Joel Spencer2 and Prasad Tetali3

(�rst draft)

1 Introduction

Given an n�n matrix A = [aij ], a transversal of A is a set of elements, one from each row and

one from each column. A transversal is a Latin transversal if no two elements are the same.

There have been more conjectures than theorems on Latin transversals in the literature. Erd}os

et al. [6] provide a good overview of the work done on transversals. Previous work can be

found also in [10] and [4].

Recently, Erd}os and Spencer showed [5] that there always exists a latin transversal in any

n � n matrix in which no element appears more than s times, for s � (n � 1)=16. Here we

show that, in fact, all the elements of the matrix can be partitioned into Latin transversals,

provided n is a power of 2 and no element appears more than �n times for some �xed � > 0.

Theorem 1 Let n be 2m. Any n� n matrix in which no element appears more than s times

contains n disjoint latin transversals provided s � �n (for �; an absolute constant � 1).

The assumption that n is a power of 2 can be weakened, but at the moment we are unable to

prove the theorem for all values of n. On the other hand, our proof can be easily modi�ed to

prove the existence of many pairwise disjoint transversals in any n by n matrix in which no

entry appears more than �n times, without any restriction on n. Therefore our method implies

a strengthening of the result of [5] for any n, (apart from the actual value of the constant �).

We prove the above theorem in a more general framework, stated in terms of graphs.
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