The function ACK P is called the Ackermann function. (There are sev-
eral similar formulations.) The extreme growth rate of ACK P is illustrated
in Figure 3. Note that

ACKP(6) = I'P3 = I’P4 = (I*P)*1 = I*P(I*P(4))

Set M = I?P4, a tower of twos of height 2'6. Then AC' K P(6) is a tower of
twos of height a tower of twos of height . . .of height one, where the statement
repeats “ tower of twos” M times.

Application of Theorem 1 to the AC'K P-search gives a convergent and
divergent series that are extremely close. While the ratio of their terms
approaches infinity it is at most 2° = 64 for the n-th term for all n <
ACK P(6).

References.
J. Bentley, A. Yao, An Almost Optimal Algorithm for Unbounded Search-
ing, Information Processing Letters 5, (1976), 82-87
D. Knuth, Supernatural Numbers, in The Mathematical Gardner (D. Klarner,
ed.), Wadsworth, pp 310-325

beginning with n, until the value becomes less than or equal one. We can
write

S(n) = Zﬂgin] -1
where the sum is over 1 < i < lg* n.
Corollary. Let

L(n) = Zﬂgi n] and U(n) = ZUgi nl,
both sums over all i > 1 with lg° n > 0. Then
Z 2= L() diverges while ZQ‘U(”) converges

Proof. Apply Theorem 1 to the I P-search. For convenience of presentation
we have used the equality [lg'n] — 1 = [lg’' n|. This fails only when n is a
power of two and those terms are too sparse to affect the convergence.

Ackermania. For any strictly increasing f with f1 = 2, f2 = 4 we have
induced an [f-search from an f-search. As I f has the same properties we
may now induce an I? f-search and continue. In particular, we induce from
our basic P-search an I‘P-search for each ¢ > 1 and, applying Theorem 1,
these give us examples “closer and closer to the edge of convergence”.

Lets take I?P as an example. Set F(n) = Y [lg'n] — 1, summed over
1 <¢<lg*n. Then we may write

S(n) = F(n) + F(lg" n) + F(lg*1g" n) + . ..

where the sum continues until the argument is less than one. The function
B(n) is then the number of times lg* is applied, beginning with n, until the
result becomes one.

We are able to diagonalize once again. Given any such f define ACK f
by ACK f(1) =2, ACK f(2) = 4 and

ACK J(1) = (I'"2))(3),0 2 3

Now we induce an ACK f-search. Clearly if ACK f1 < ¢ < ACK f2 we
ask if 2 < 3 and then stop. Suppose now ¢ > 3 and ACKf(t — 1) <
v < ACK f(t). Unravelling the definitions ACK f(t — 1) = (I'™3f)(3) and
ACK f(t) = (I'"21)(3) = (II'>F)(3) = (I 1 = (I3 F)(4) since, by
induction, I'=3f1 = 2 and I'"=3f2 = 4. In this case the AC' K f-search is
given by the I'~3 f-search.

Suppose that A(n) < S(n)+ ¢ for all but finitely many n, say for all n > ng.

Then
ZQ—A(n) > Z Q—S(n)—c - o0

n>no

But any method that determines n in A(n) steps can be written as a B-tree
and so, by the Lemma, any finite sum and therefore any infinite sum of the
terms 274" is at most one. Thus no such method can exist. O

By choosing rapidly growing functions f Theorem 1 gives series which lie
on the edge of convergence. In particular the P-search, P?-search and P>-
search defined earlier give (ignoring constants) the convergent and divergent
series of Preamble 2.

Beyond Infinity. For any f-search we induce an f’-search by induction as
follows. Given f'(i —1) < a < fi(i) set y = f~V2. Run an f-search to
find y and then, by induction, an f~!-search to find 2. When f = P this
duplicated the P2, P3, ... searches described earlier.

Assume now that f: N — N is strictly increasing and that f1 = 2, f2 =
4. Define a function If by If(i) = f'l. Note, e.g., (If)(1) = f(1) = 2,
(IN(2) = FA(1) = 4, (1)B3) = FFF1) = f(4).) We induce an 1f-

search as follows:

Given If(i—1) <2 < If(i) with i > 2
That is, f2(f(1)) < & < F2(f(f(1)))
That is, f72(2) < o < f'72(4)

Ask “Is o < fi=2377
With either answer run an f~2-search to find z.
(Fori=2,2< 2 <4, simply ask if 2 < 3.)

I P is usually called the tower function, I P(7) is an exponential tower of
i twos. Note that TP grows more rapidly than any P'. We think of IP as
a diagonalization, though verticalization may be more accurate.

Figure 2 illustrates the functions P, P7, I P and the I P-search when z =
a googol = 10190 ~ 233219 The encircled Binary Search is actually 332
queries required given that 2332 < 2 < 2333, There were 5 queries to bound
z and 14 3 + 8 + 332 = 344 further queries to determine z so B(z) = 5,
S(x) = 344. The function B(n) = IP~(n) is generally written lg* n (read:
log star n) and is the number of times one needs to “press the lg button”,

Searching and Convergence. Let f : N — N be a strictly increasing function.
By an f-search we mean for each 7 > 1 a search that uniquely determines
z € (f(e—1), f(¢)]. For n > f(1) let S(n) denote the number of queries
used in the search (given the interval n lies in) and let B(n) = f~!(n).
By asking f1, f2,... until receiving a Yes answer and then employing an
f-search all n > f1 are determined by S(n)+ B(n) queries. By P-search we
mean specifically the Binary Search on (P(i — 1), P(¢)] taking ¢ — 1 queries.

Theorem 1. For any f-search

T 2750 = oo while YT 27ISE0+B() _ L

n>f(1) n>f(1) 2

Moreover, for no constant ¢ is there a method to find an arbitrary positive
integer which finds n in at most S(n)+ ¢ queries for all but finitely many n.

A search on a finite interval I can be represented (in CS-lingo) as a B-
tree, a rooted tree in which each nonleaf has outdegree two. Here each leaf
represents a unique n € I and each nonleaf represents a query. Then S(n),
as defined above, is the distance from leaf n to the root.
Lemma. In any B-tree

S 275 =,

Imagine a particle beginning at the root and taking a random path to the

the sum over all leaves n.

leaves where at each node a fair coin is flipped to determine which direction
to take. The particle will reach leaf n with probability precisely 2=5(%) and
the events “The particle reaches n” are disjoint and cover the probability
space so that their probabilities sum to unity. O

Applying the Lemma

and so , N
Z 9—S(n) — Z 9=5(n) _ Z 1= oo
n>f(1) i=2 f(i—1)<n<f(5) i=2
while
o—[S()+BM] _ N pS(m)—i _ N _ L
nzzf%) ;m—l)mg(i) ; 2

On the Edge of Convergence
Joel Spencer

Preamble 1. An unknown integer x betweeen 1 and N can be determined
by [lg N queries of the form “Is 2 < a?” and this is best possible. Suppose
the protagonist states “I’'m thinking of a positive integer.” What is a good
strategy to find it.

1
nlgn

Preamble 2. The harmonic series) = L diverges but 3 % convergeS' >
diverges but > n1g12 W con-
verges. Calculus texts state that these example may be extended forever.
Here we go beyond forever, without calculus.

— converges; angl diverges but >

Notations. lg denote logarithm to the base two. P : N — N denotes the
power function, P(i) = 2'. When convenient parentheses are eliminated,
Pi = P(i). For any f : N — N, f' denotes f iterated ¢ times, e.g.,
P31 = P(P(P(1))) = 16. For any strictly increasing f, f~!(z) denotes the
least y with = < f(y) and f~! denotes (f*)~1. For example, P71(2) = [lgz]
and P73(z) = [lglglg z]. In searching for an unknown integers x, “to ask
a” is to ask “Is ¢ < a?”.

Basic Searches. How can we search for an unknown integer? Bentley and
Yao [2] gave the fundamental ideas, we note also a wonderful expository
paper by Knuth [1]. A basic strategy is to ask P1, P2, P3,... until receiving
a Yes answer and then running a Binary Search on (P(¢ — 1), P(i)]. The
number n is then determined by P~'n + P7'n — 1 = 2[lgn] — 1 queries.
To improve this: Set ¥y = P~'z and apply the above method to find y.
Then 2 € (P(y — 1), P(y)], run a Binary Search to find z. Here y is an
auxilliary variable - the query “Is y < a?” is actually asked “Is z < 2277,
Figure 1 illustrates the method with 100 the target number. Determination
of n takes [lglgn] 4 [lglgn| — 1 + [lgn] — 1 queries. (More precisely,
these searches determine any z > A where A depends on the search, here
A = 4.) A further improvement is given by setting » = P~ly, applying
the basic strategy to find z, then finding y by Binary Search, and finally
z. This method takes P=3n = [Iglglg n] queries to bound n and a further
lglglgn] — 14 [lglgn] — 14 [lgz] — 1 queries to determine n.

