
The function ACKP is called the Ackermann function. (There are sev-
eral similar formulations.) The extreme growth rate of ACKP is illustrated
in Figure 3. Note that

ACKP (6) = I4P3 = I3P4 = (I2P )41 = I2P (I2P (4))

Set M = I2P4, a tower of twos of height 216. Then ACKP (6) is a tower of
twos of height a tower of twos of height . . .of height one, where the statement
repeats \ tower of twos"M times.

Application of Theorem 1 to the ACKP -search gives a convergent and
divergent series that are extremely close. While the ratio of their terms
approaches in�nity it is at most 26 = 64 for the n-th term for all n �
ACKP (6).

References.

J. Bentley, A. Yao, An Almost Optimal Algorithm for Unbounded Search-
ing, Information Processing Letters 5, (1976), 82-87
D. Knuth, Supernatural Numbers, in The Mathematical Gardner (D. Klarner,
ed.), Wadsworth, pp 310-325

5



beginning with n, until the value becomes less than or equal one. We can
write

S(n) =
X
dlgi ne � 1

where the sum is over 1 � i � lg� n.
Corollary. Let

L(n) =
X
dlgi ne and U(n) =

X
blgi nc;

both sums over all i � 1 with lgi n > 0. Then
X

2�L(n) diverges while
X

2�U(n) converges

Proof. Apply Theorem 1 to the IP -search. For convenience of presentation
we have used the equality dlgi ne � 1 = blgi nc. This fails only when n is a
power of two and those terms are too sparse to a�ect the convergence.

Ackermania. For any strictly increasing f with f1 = 2; f2 = 4 we have
induced an If -search from an f -search. As If has the same properties we
may now induce an I2f -search and continue. In particular, we induce from
our basic P -search an I tP -search for each t � 1 and, applying Theorem 1,
these give us examples \closer and closer to the edge of convergence".

Lets take I2P as an example. Set F (n) =
P
dlgi ne � 1, summed over

1 � i � lg� n. Then we may write

S(n) = F (n) + F (lg� n) + F (lg� lg� n) + . . .

where the sum continues until the argument is less than one. The function
B(n) is then the number of times lg� is applied, beginning with n, until the
result becomes one.

We are able to diagonalize once again. Given any such f de�ne ACKf

by ACKf(1) = 2; ACKf(2) = 4 and

ACKf(t) = (I t�2f)(3); t � 3

Now we induce an ACKf -search. Clearly if ACKf1 < x � ACKf2 we
ask if x � 3 and then stop. Suppose now t � 3 and ACKf(t � 1) <

x � ACKf(t). Unravelling the de�nitions ACKf(t � 1) = (I t�3f)(3) and
ACKf(t) = (I t�2f)(3) = (I(I t�3f))(3) = (I t�3f)31 = (I t�3f)(4) since, by
induction, I t�3f1 = 2 and I t�3f2 = 4. In this case the ACKf -search is
given by the I t�3f -search.

4



Suppose that A(n) � S(n)+c for all but �nitely many n, say for all n � n0.
Then X

2�A(n) �
X

n�n0

2�S(n)�c =1

But any method that determines n in A(n) steps can be written as a B-tree
and so, by the Lemma, any �nite sum and therefore any in�nite sum of the
terms 2�A(n) is at most one. Thus no such method can exist. 2

By choosing rapidly growing functions f Theorem 1 gives series which lie
on the edge of convergence. In particular the P -search, P 2-search and P 3-
search de�ned earlier give (ignoring constants) the convergent and divergent
series of Preamble 2.

Beyond In�nity. For any f -search we induce an f t-search by induction as
follows. Given f t(i� 1) < x � f t(i) set y = f�(t�1)x. Run an f -search to
�nd y and then, by induction, an f t�1-search to �nd x. When f = P this
duplicated the P 2; P 3; . . . searches described earlier.

Assume now that f : N ! N is strictly increasing and that f1 = 2; f2 =
4. De�ne a function If by If(i) = f i1. Note, e.g., (If)(1) = f(1) = 2,
(If)(2) = f(f(1)) = 4, (If)(3) = f(f(f(1))) = f(4).) We induce an If -
search as follows:

Given If(i� 1) < x � If(i) with i > 2
That is, f i�2(f(1)) < x � f i�2(f(f(1)))

That is, f i�2(2) < x � f i�2(4)
Ask \ Is x � f i�23?"

With either answer run an f i�2-search to �nd x.
(For i = 2, 2 < x � 4, simply ask if x � 3.)

IP is usually called the tower function, IP (i) is an exponential tower of
i twos. Note that IP grows more rapidly than any P i. We think of IP as
a diagonalization, though verticalization may be more accurate.

Figure 2 illustrates the functions P; P j ; IP and the IP -search when x =
a googol = 10100 � 2332:19. The encircled Binary Search is actually 332
queries required given that 2332 < x � 2333. There were 5 queries to bound
x and 1 + 3 + 8 + 332 = 344 further queries to determine x so B(x) = 5,
S(x) = 344. The function B(n) = IP�1(n) is generally written lg� n (read:
log star n) and is the number of times one needs to \press the lg button",

3



Searching and Convergence. Let f : N ! N be a strictly increasing function.
By an f -search we mean for each i > 1 a search that uniquely determines
x 2 (f(i � 1); f(i)]. For n > f(1) let S(n) denote the number of queries
used in the search (given the interval n lies in) and let B(n) = f�1(n).
By asking f1; f2; . . . until receiving a Yes answer and then employing an
f -search all n > f1 are determined by S(n)+B(n) queries. By P -search we
mean speci�cally the Binary Search on (P (i� 1); P (i)] taking i� 1 queries.

Theorem 1. For any f -search

X

n�f(1)

2�S(n) =1 while
X

n�f(1)

2�[S(n)+B(n)] =
1

2

Moreover, for no constant c is there a method to �nd an arbitrary positive
integer which �nds n in at most S(n)+ c queries for all but �nitely many n.

A search on a �nite interval I can be represented (in CS-lingo) as a B-
tree, a rooted tree in which each nonleaf has outdegree two. Here each leaf
represents a unique n 2 I and each nonleaf represents a query. Then S(n),
as de�ned above, is the distance from leaf n to the root.
Lemma. In any B-tree X

2�S(n) = 1;

the sum over all leaves n.
Imagine a particle beginning at the root and taking a random path to the

leaves where at each node a fair coin is ipped to determine which direction
to take. The particle will reach leaf n with probability precisely 2�S(n) and
the events \The particle reaches n" are disjoint and cover the probability
space so that their probabilities sum to unity. 2

Applying the Lemma
X

f(i�1)<n�f(i)

2�S(n) = 1

and so
X

n�f(1)

2�S(n) =
1X

i=2

X

f(i�1)<n�f(i)

2�S(n) =
1X

i=2

1 =1

while

X

n�f(1)

2�[S(n)+B(n)] =
1X

i=2

X

f(i�1)<n�f(i)

2�S(n)�i =
1X

i=2

2�i =
1

2

2



On the Edge of Convergence

Joel Spencer

Preamble 1. An unknown integer x betweeen 1 and N can be determined
by dlgNe queries of the form \Is x � a?" and this is best possible. Suppose
the protagonist states \I'm thinking of a positive integer." What is a good
strategy to �nd it.

Preamble 2. The harmonic series
P 1

n
diverges but

P 1
n2

converges;
P 1

n lgn

diverges but
P 1

n lg2 n
converges;

P 1
n lg lgn diverges but

P 1
n(lg lgn)2 con-

verges. Calculus texts state that these example may be extended forever.
Here we go beyond forever, without calculus.

Notations. lg denote logarithm to the base two. P : N ! N denotes the
power function, P (i) = 2i. When convenient parentheses are eliminated,
Pi = P (i). For any f : N ! N , f t denotes f iterated t times, e.g.,
P 31 = P (P (P (1))) = 16. For any strictly increasing f , f�1(x) denotes the
least y with x � f(y) and f�t denotes (f t)�1. For example, P�1(x) = dlg xe
and P�3(x) = dlg lg lg xe. In searching for an unknown integers x, \to ask
a" is to ask \Is x � a?".

Basic Searches. How can we search for an unknown integer? Bentley and
Yao [2] gave the fundamental ideas, we note also a wonderful expository
paper by Knuth [1]. A basic strategy is to ask P1; P2; P3; . . . until receiving
a Yes answer and then running a Binary Search on (P (i � 1); P (i)]. The
number n is then determined by P�1n + P�1n � 1 = 2dlg ne � 1 queries.
To improve this: Set y = P�1x and apply the above method to �nd y.
Then x 2 (P (y � 1); P (y)], run a Binary Search to �nd x. Here y is an
auxilliary variable - the query \Is y � a?" is actually asked \Is x � 2a?".
Figure 1 illustrates the method with 100 the target number. Determination
of n takes dlg lgne + dlg lgne � 1 + dlg ne � 1 queries. (More precisely,
these searches determine any x � A where A depends on the search, here
A = 4.) A further improvement is given by setting z = P�1y, applying
the basic strategy to �nd z, then �nding y by Binary Search, and �nally
x. This method takes P�3n = dlg lg lg ne queries to bound n and a further
dlg lg lg ne � 1 + dlg lg ne � 1 + dlg xe � 1 queries to determine n.

1


