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we start. Given any �nite graph G one can de�ne a similar process to Gn
1 , or

Gn
m, starting from G. Now the joint distribution of the degrees of vs+1; : : : ; vn

in Gn
m is independent of Gs

m. If G has s edges then, speaking loosely, for m = 1
we can just `pretend' that G has s vertices as well. As far as all new vertices
are concerned, the process starting from G is then indistinguishable from the
process (Gt

1)t>s, so asymptotic results such as Theorem 1 are una�ected by the
starting graph G.

We �nish by comparing the model considered here with one much older
random process and two new ones. Graphs in which each vertex (apart from
the �rst few) is joined to a �xed number m of randomly chosen earlier vertices
are known in the literature as random recursive dags, or random recursive trees

if m = 1 (see, e.g., [7]). For m > 1 only uniform random recursive dags have
been studied signi�cantly. For m = 1, however, nonuniform random recursive
trees with attachment probabilities proportional to the degrees (also known as
random plane-oriented recursive trees) have been studied; see [18, 16, 7], for
example. These objects are very close to the random graph Gm

1 considered
here. The only di�erences are that loops are not allowed, and that the root
vertex is sometimes treated in a slightly di�erent way. The expected number
of vertices of degree d = d(n) in these objects was found to within an additive
constant by Szyma�nski [18]; a concentration result for d �xed was given by Lu
and Feng [15]. For a survey of results on random recursive trees see [17].

Finally, a rather di�erent model for the world-wide web graph was introduced
in [12]. Again, vertices are born one at a time, but instead of preferential
attachment, each new vertex picks an old vertex to copy from, and copies a
randomly selected part of its neighbourhood, as well as choosing (uniformly)
new neighbours of its own. In [13, 14] it is shown that such models also give
power law degree distributions, as well as explaining the high number of dense
bipartite subgraphs found in the web graph.
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results are given suggesting that with uniform attachment the degrees with be
geometrically distributed. It is easy to prove a precise result for this case along
the lines of Theorem 1. As the argument is similar to but much simpler than
that given above, we only give a rough outline.

Consider a random process in which vertices are added one at a time, starting
from any given �nite graph G. Suppose that when the vertex vi is added, it is
joined to m earlier vertices, in such a way that the expected number of edges
from vi to vk is the same for all k < i. (It does not matter whether we allow
multiple edges or not.) Then the expected indegree of vk when n vertices have
been added is exactly m

Pn
i=k+1

1
i . For � = k=n bounded away from 0 and 1,

it is easy to see the degree of vk has asymptotically a Poisson distribution with
mean � � �m log(�). Thus, arguing as before, for any �xed d the proportion
of vertices with indegree d is asymptoticallyZ 1

0

�d

d!
e��d� =

md

d!

Z 1

0

(� log�)d�md� =
md

(m+ 1)d+1
;

giving the expected geometric distribution.

5 Concluding remarks

It is presumably possible to prove a weaker version of Theorem 1 using the
following continuous model, which is much more precise than the `mean-�eld
theory' of [3].

Consider a vertex v born at time t0 uniformly distributed in [0; 1]. When
born it has weight (degree) m. If at time t the vertex has weight i then it gets
a `hit' in the in�nitesimal time interval [t; t+ dt] with probability m i

2mtnndt =
i
2tdt. If it does get a hit its weight is incremented by one. The connection is
that if vertices are born at time intervals of 1=n then at time t the sum of all
degrees is 2mnt, and in an interval of length dt there are ndt vertices born, each
having m chances to send an edge to v. The di�erential equations that arise
can easily be solved explicitly; one �nds that, conditional on t0, the probability
that v has (total) degree i � m at time t > t0 is given by�

i� 1

m� 1

�
�m=2(1�p

�)i�m;

where � = t0=t. At time 1, writing � for t0 and d for i�m as before, this reduces
to the expression �

d+m� 1

m� 1

�
�m=2(1�p

�)d

seen in section 3. For constant d, integrating over � as before suggests the
bounds on #n

m(d) given in Theorem 1.
Recall that when de�ning the process Gn

1 above, it was convenient to start
from the `graph' with no vertices, or from the graph with one vertex and no
loops. As far as our results are concerned, however, it makes no di�erence where
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where we have again substituted � = (1� u)2. We �nd that for 0 � d � n1=15,

E (#n
m(d)) �

2m(m+ 1)n

(d+m)(d +m+ 1)(d+m+ 2)
; (6)

uniformly in d. We are now ready to prove Theorem 1.

Proof of Theorem 1. We return to considering the graph Gn
m as one graph from

the process (Gt
m)t�0. Fix m � 1, n � 1 and 0 � d � n1=15, and consider the

martingale Xt = E (#n
m(d) j Gt

m) for 0 � t � n. We have Xn = #n
m(d), while

X0 = E (#n
m(d)). We claim that the di�erences jXt+1�Xtj are bounded by two.

To see this note that whether at stage t we join vt to vi or vj does not a�ect
the degrees at later times of vertices vk, k =2 fi; jg. More precisely, the joint
distribution of all other degrees is the same in either case. Since we are just
counting vertices with a particular degree, no matter how much the degrees of
vi and vj are changed in Gn

m, this changes #
n
m(d) by at most two.

An alternative way of seeing this is to say that at stage t we add a half edge
h2t�1 directed from vdt=me paired with a half edge h2t directed to some other
vertex, and to consider h2t not as attached to a random vertex, but rather as
associated with equal probability to any of h1; : : : ; h2t�1. In the �nal graph a
half edge h2t is attached to vdt=me, while a half edge h2t�1 is attached to the
vertex the half edge it is associated to is attached to. If we change the choice
made at stage t, the e�ect on the �nal graph is to move the half edge h2t�1

and all later half edges associated directly or indirectly to h2t�1 together. This
operation only a�ects two degrees.

Applying Lemma 2, the Azuma-Hoe�ding inequality, we �nd that for each
d with 0 � d � n1=15 we have

P

�
j#n

m(d)� E (#n
m(d))j �

p
n logn

�
� e� log n=8 = o(n�1=15):

Noting from (6) that in this range E (#n
m(d)) � 2m(m+1)n

(d+m)(d+m+1)(d+m+2) and that

this is much larger than
p
n logn, the result follows.

It is natural to ask how far Theorem 1 can be extended to degrees d > n1=15.
The bound d � n1=15 was chosen to make the proof as simple as possible, and can
certainly be weakened considerably, by choosing a suitable cuto� and considering
`early' and `late' vertices separately. For large d, equation (6) suggests that the
expected number of vertices with degree at least d should be roughly m(m +
1)n=d2, and hence that the maximum degree should be �(

p
n). It turns out

that this is indeed the case, as could be proved using, for example, the analysis
of the pairing model given in [6].

4 Uniform attachment

In [2, 3] it is stated that the preferential attachment assumption of the model
is needed to obtain a power-law degree distribution; experimental and heuristic

9



Thus, as all terms in the sum are positive, we have

E (#n
1 (d)) = O(M) + o(1) + (1 + o(1))

n�MX
k=M

p
k=n(1�

p
k=n)d: (5)

Writing f =
p
�(1�p

�)d, we have

1

f

df

d�
=

��1

2
� d

2

��1=2

1� �1=2
:

Provided n� and n(1 � �) tend to in�nity, the proportional change in f as �
changes by 1=n is thus o(1) uniformly in �. It follows that the sum in (5) can
be written as

(1 + o(1))n

Z 1�M=n

(M+1)=n

p
�(1�p

�)dd� � n

Z 1

0

p
�(1�p

�)dd�:

It is easy to evaluate this integral by substituting � = (1� u)2, and we obtain

E (#n
1 (d)) = O(M) + (1 + o(1))

4n

(d + 1)(d+ 2)(d+ 3)
� 4n

(d+ 1)(d+ 2)(d+ 3)
;

which is the required form of the distribution.
At this point, let us return to the general case m � 1. Suppose that m is

a constant �xed once and for all, and let d0k be the degree of vk in the graph
Gn
m. We shall estimate P(d0k+1 = d +m), keeping the notation dK for degrees

in the graph Gmn
1 from which Gn

m is obtained. For the estimate we look at
the distributions of dK+1; : : : ; dK+m in GN

1 , where K = mk and N = mn.
The argument giving the conditional probability estimate (4) actually applies
to the conditional probability given the entire sequence of earlier degrees. For
M � k � n �M and d � n1=15 our earlier estimates show that, provided no
jDK0 � 2

p
K 0N j is too large,

P(dK+j+1 = d+ 1 j d1; d2; : : : ; dK+j) �
p
(K + j)=N

�
1�

p
(K + j)=N

�d
� p

�(1�p
�)d;

with � = k=n = K=N . Thus, using (3),

P(d0k+1 = d+m) = o(n�1) + (1 + o(1))
X

a1+���+am=d

mY
j=1

p
�(1�p

�)aj

= o(n�1) + (1 + o(1))

�
d+m� 1

m� 1

�
�m=2(1�p

�)d:

Proceeding as before we can express the expectation of the number #n
m(d) of

vertices of Gn
m with indegree d in terms ofZ 1

0

�m=2(1�p
�)dd� = 2

Z 1

0

(1� u)m+1uddu = 2
(m+ 1)!d!

(d+m+ 2)!
;
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extensions to an n-pairing. Such an extension corresponds to a graph with
dk+1 = d + 1 if and only if 2k + s + d + 1 is a right endpoint, and each of
2k + s + 1; : : : ; 2k + s + d is a left endpoint. Noting that the element paired
with 2k + s + d+ 1 must be either one of the s unpaired elements in L or one
of 2k+ s+1; : : : ; 2k+ s+ d, and that s� 1+ d pairs start before 2k+ s+ d+1
and end after this point, each L has exactly

(s+ d)(s+ d� 1)!

�
2n� 2k � s� d� 1

s+ d� 1

�
(2n� 2k � 2s� 2d� 1)!!

such extensions, and for 0 � d � n� k� s we have, writing (a)b for a!=(a� b)!,

P(dk+1 = d+ 1 j Dk � 2k = s) = (s+ d)2d
(n� k � s)d

(2n� 2k � s)d+1
: (4)

It is easy to see that (4) also applies when k = s = 0, when we obtain
P(d1 = d+ 1) = d2d(n)d=(2n)d+1. For k � 1 we can of course combine (2) and
(4) to give a rather unilluminating expression for P(dk+1 = d + 1). Instead,
we shall use (3) and (4) to estimate the expectation of #n

1 (d), the number of
vertices of Gn

1 with indegree d. Above and in what follows the functions implied
by o(:) or � notation are to be interpreted as depending on n only, not on d
or k. Also, the constant implied by O(:) notation is absolute.

Let M = bn4=5= lognc, let k = k(n) be any function satisfying M � k �
n �M , and let d = d(n) be any function satisfying 0 � d � n1=15. For any D
with jD� 2

p
knj � 4

p
n logn we can use (4) to write P(dk+1 = d+1 j Dk = D)

as

(2
p
kn� 2k +O(

p
n logn))2d

(n+ k � 2
p
kn+O(

p
n logn))d

(2n� 2
p
kn+O(

p
n logn))d+1

:

Using the bounds on d and k we �nd that the ratio of n+k�2pkn = (
p
n�pk)2

to d
p
n logn tends to in�nity as n!1, as does (2n�2

p
kn)=(d

p
n logn). Also,p

n logn = o(2
p
kn� 2k), so the probability above is equal to

(1 + o(1))
2
p
kn� 2k

2n� 2
p
kn

 
2(
p
n�p

k)2

2(n�p
kn)

!d

� p
�(1�p

�)d;

where � = k=n. As this estimate applies uniformly to P(dk+1 = d+1 j Dk = D)
for all D with jD � 2

p
knj � 4

p
n logn, we see from (3) that

P(dk+1 = d+ 1) = o(n�1) + (1 + o(1))
p
�(1�p

�)d:

In particular, although it is not relevant for the proof, we note that for almost
every vertex the most likely indegree is zero.

Keeping n and d �xed and varying k in the range M � k � n�M , as the
estimate above is uniform in k we �nd that the expected number of vertices
vk+1, M � k � n�M , with degree equal to d+ 1 can be written as

o(1) +

n�MX
k=M

(1 + o(1))
p
k=n(1�

p
k=n)d:
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partial pairings obtained in this way may arise as L. Similarly, for R there are�
2n� 2k � s

s

�
(2n� 2k � 2s)!

2n�k�s(n� k � s)!

possibilities. Any possible L may be combined with any possible R to form P
by pairing o� the unpaired elements of L with those ofR in any of s! ways. Mul-
tiplying together, and dividing by the total number (2n)!=(2nn!) of n-pairings
we see that for 1 � k � n and 0 � s � n� k,

P(Dk � 2k = s) =
(2k + s� 1)!(2n� 2k � s)!n!2s+1

s!(k � 1)!(n� k � s)!(2n)!
: (2)

From the expression above it is easy to deduce a concentration result for
Dk. For k with 1 � k � n let us write ps = ps;k for the probability above, and
let

rs =
ps+1

ps
= 2

(2k + s)(n� k � s)

(s+ 1)(2n� 2k � s)
:

Note that rs is a decreasing function of s. Allowing s to be a real number for
the moment, the unique positive solution to rs = 1 is given by

s = �2k +
p
4kn� 2n+ 1=4 + 1=2:

Thus s0 = d�2k+p4kn� 2n+ 1=4+1=2e is one of the at most two most likely
values of Dk � 2k. Also, for n larger than some constant we have

rs+1

rs
=

�
1� 2k � 1

(s+ 2)(2k + s)

��
1� n� k

(2n� 2k � s� 1)(n� k � s)

�

�
�
1� 2k � 1

2n2

��
1� n� k

2n2

�

� exp

�
�2k � 1

2n2

�
exp

�
�n� k

2n2

�
� exp

�
� 1

2n

�
:

As rs0 � 1 it follows that rs0+x � exp(�x=(2n)) for x > 0, and hence that
ps0+x � exp(�x(x� 1)=(4n)). A similar bound on ps0�x shows that

P

�
jDk � (2k + s0)j � 3

p
n logn

�
= o(n�1):

In fact, as js0 � (2
p
kn� 2k)j � 2

p
n for each k, we obtain

P

�
jDk � 2

p
knj � 4

p
n logn

�
= o(n�1): (3)

We now turn to the probability that dk+1 = d + 1, i.e., that the indegree
of vk+1 is d, given Dk. Suppose that 1 � k � n � 1 and 0 � s � n � k, and
consider a left partial pairing L as above. We have already seen that each such
L has

s!

�
2n� 2k � s

s

�
(2n� 2k � 2s� 1)!!
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in this case, and also the distribution of the next degree, dGn
1
(vk+1), given Dk.

One could combine these formulae to give a rather unilluminating expression for
the distribution of dGn

1
(vk+1); instead we show that Dk is concentrated about a

certain value, and hence �nd approximately the probability that dGn
1
(vk+1) = d.

Summing over k gives us the expectation of #n
1 (d), and concentration follows

from Lemma 2.
Before turning to the distributions of the (total) degrees for m = 1, we note

that their expectations are easy to calculate exactly:

E (dGt
1
(vt)) = 1 +

1

2t� 1
:

Also, for s < t,

E (dGt
1
(vs) j dGt�1

1

(vs)) = dGt�1

1

(vs) +
dGt�1

1

(vs)

2t� 1
;

which implies that

E (dGt
1
(vs)) =

2t

2t� 1
E (dGt�1

1

(vs)):

Thus, for 1 � s � n,

E (dGn
1
(vs)) =

nY
i=s

2i

2i� 1
=

4n�s+1n!2(2s� 2)!

(2n)!(s� 1)!2
=
p
n=s (1 +O(1=s)) ;

using Stirling's formula.
If every degree of Gn

1 were equal to its expectation this would give the pro-
posed distribution, but in fact the degrees can be far from their expectations.
Indeed we shall see that for almost all vertices the most likely degree is 1!

Let us write di for dGn
1
(vi), i.e., for the (total) degree of the vertex vi in the

graph Gn
1 . Our aim is to describe the distributions of the individual di. To do

this it turns out to be useful to consider their sums Dk =
Pk

i=1 di.
Consider �rst the event fDk � 2k = sg, where 0 � s � n � k. This is

the event that the last n � k vertices of Gn
1 send exactly s edges to the �rst k

vertices. This event corresponds to pairings P in which the kth right endpoint
is 2k+ s. Consider any pairing P with this property. We shall split P into two
partial pairings, the left partial pairing L, and the right partial pairing R, each
consisting of some number of pairs together with some unpaired elements. For
L we take the partial pairing on f1; : : : ; 2k + sg induced by P , for R that on
f2k + s+ 1; : : : ; 2ng. From the restriction on P , in L the element 2k + s must
be paired with one of f1; : : : ; 2k+ s� 1g, precisely s of the remaining 2k+ s� 2
elements must be unpaired, and the other 2(k � 1) elements must be paired o�
somehow. Any of the

(2k + s� 1)

�
2k + s� 2

s

�
(2k � 2)!

2k�1(k � 1)!
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corresponding to its left endpoint. As noted in [6], if P is chosen uniformly at
random from all (2n� 1)!! n-pairings, then �(P) has the same distribution as a
random Gn

1 2 Gn1 . This statement is easy to prove by induction on n: thinking
in terms of pairings of distinct points on the x axis, one can obtain a random
(n � 1)-pairing from a random n-pairing by deleting the pair containing the
rightmost point. The reverse process, starting from an (n � 1)-pairing P , is to
add a new pair with its right endpoint to the right of everything in P , and its
left endpoint in one of the 2n� 1 possible places. Now a vertex of degree d in
�(P) corresponds to d intervals between endpoints in P . The e�ect of adding a
new pair to P as described is thus to add a new vertex to �(P) together with a
new edge to a vertex chosen according to (1), with t = n.

The advantage of this description from pairings is that it gives us a sim-
ple non-recursive de�nition of the distribution of Gn

m, enabling us to calculate
properties of Gn

m directly. We now use this to study the degrees of Gn
m.

3 The degrees of Gn
m

In [2] it was suggested that the fraction of vertices of Gn
m having degree d should

fall o� as d�3 as d ! 1. We shall prove the following precise version of this
statement, writing #n

m(d) for the number of vertices of G
n
m with indegree equal

to d, i.e., with (total) degree m+ d.

Theorem 1. Let m � 1 be �xed, and let (Gn
m)n�0 be the random graph process

de�ned in section 2. Let

�m;d =
2m(m+ 1)

(d+m)(d+m+ 1)(d+m+ 2)
;

and let � > 0 be �xed. Then with probability tending to 1 as n!1 we have

(1� �)�m;d � #n
m(d)

n
� (1 + �)�m;d

for every d in the range 0 � d � n1=15.

In turns out that we only need to calculate the expectation of #n
m(d); the

concentration result is then given by applying the following standard inequality
due to Azuma [1] and Hoe�ding [11] (see also [5]).

Lemma 2 (Azuma-Hoe�ding inequality). Let (Xt)
n
t=0 be a martingale with

jXt+1 �Xtj � c for t = 0; : : : ; n� 1. Then

P(jXn �X0j � x) � exp

�
� x2

2c2n

�
:

The strategy of the proof is as follows. Firstly, as mentioned earlier, the
results for general m will follow from those for m = 1. We shall use the pairing
model to �nd explicitly the distribution of Dk, the sum of the �rst k degrees,
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S is not speci�ed by giving the marginal probability that each vertex lies in S.
For a trivial example, suppose that m = 2 and that the �rst four vertices form
a four-cycle. Then for any 0 � � � 1=4 we could join the �fth vertex to each
adjacent pair with probability � and to each non-adjacent pair with probability
1=2�2�. This suggests that form > 1 we should choose the neighbours of v one
at a time. Once doing so, it is very natural to allow some of these neighbours
to be the same, creating multiple edges in the graph. Here we shall consider the
precise model introduced in [6], which turns out to be particularly pleasant to
work with. This model �ts the description above except that it allows multiple
edges and also loops|in terms of the interpretation there is no reason to exclude
these. Once the process gets started there will in any case not be many loops or
multiple edges, so they should have little e�ect overall. The following de�nition
is essentially as given in [6]; we write dG(v) for the total (in plus out) degree of
the vertex v in the graph G.

We start with the casem = 1. Consider a �xed sequence of vertices v1; v2; : : :.
We shall inductively de�ne a random graph process (Gt

1)t�0 so that Gt
1 is a

directed graph on fvi : 1 � i � tg, as follows. Start with G0
1 the `graph' with

no vertices, or with G1
1 the graph with one vertex and one loop. Given Gt�1

1 ,
form Gt

1 by adding the vertex vt together with a single edge directed from vt to
vi, where i is chosen randomly with

P(i = s) =

�
dGt�1

1
(vs)

=(2t� 1) 1 � s � t� 1

1=(2t� 1) s = t
(1)

In other words, we send an edge e from vt to a random vertex vi, where the
probability that a vertex is chosen as vi is proportional to its (total) degree at
the time, counting e as already contributing one to the degree of vt. For m > 1
we add m edges from vt one at a time, counting the previous edges as well as the
`outward half' of the edge being added as already contributing to the degrees.
Equivalently, we de�ne the process (Gt

m)t�0 by running the process (Gt
1) on a

sequence v01; v
0
2; : : :; the graph G

t
m is formed from Gmt

1 by identifying the vertices
v01; v

0
2; : : : ; v

0
m to form v1, identifying v

0
m+1; v

0
m+2; : : : v

0
2m to form v2, and so on.

We shall write Gnm for the probability space of directed graphs on n vertices
v1; v2; : : : vn where a random Gn

m 2 Gnm has the distribution derived from the
process above. As Gn

m is de�ned in terms of Gmn
1 , for most of the time we shall

consider the case m = 1. As noted in [6], there is an alternative description of
the distribution of Gn

1 in terms of pairings.
An n-pairing P is a partition of the set f1; 2; : : :2ng into pairs, so there are

(2n � 1)!! = (2n)!=(n!2n) n-pairings. Thinking of the elements f1; 2; : : :2ng of
the ground set as points on the x axis, and the pairs as chords joining them, we
shall speak of the left and right endpoint of each pair.

We form a directed graph �(P) from an n-pairing P as follows: starting
from the left, merge all endpoints up to and including the �rst right endpoint
reached to form the vertex v1. Then merge all further endpoints up to the next
right endpoint to form v2, and so on to vn. For the edges, replace each pair
by a directed edge from the vertex corresponding to its right endpoint to that

3



distribution: the fraction P (d) of vertices with degree d is proportional over a
large range to d� , where  is a constant independent of the size of the network.
To explain this phenomenon, Barab�asi and Albert [2] suggested the following
random graph process as a model.

... starting with a small number (m0) of vertices, at every time
step we add a new vertex with m(� m0) edges that link the new
vertex to m di�erent vertices already present in the system. To
incorporate preferential attachment, we assume that the probability
� that a new vertex will be connected to a vertex i depends on the
connectivity ki of that vertex, so that �(ki) = ki=

P
j kj . After t

steps the model leads to a random network with t+m0 vertices and
mt edges.

This process is intended as a highly simpli�ed model of the growth of the world-
wide web, for example, the vertices representing sites or web pages, and the
edges links from sites to earlier sites. The preferential attachment assumption
is based on the idea that a new site is more likely to link to existing sites which
are `popular' at the time the site is added. Form = 1 this process is very similar
to the nonuniform random recursive tree process considered in [18, 17, 15]. An
alternative model, replacing the preferential attachment assumption by a notion
of `link copying' is given in [12, 14]. We shall discuss these models briey in the
�nal section.

In [2, 3] it is stated that computer experiments for the process above suggest
that P (d) � d� with  = 2:9� 0:1. In [3], the following heuristic argument is
given to suggest that  = 3: consider the degree di of the i

th new vertex vi at
time t, i.e., when there are t+m0 vertices and mt edges. When a new vertex is
added, the probability that it is joined to vi is mdi over the sum of the degrees,
i.e., over 2mt. This suggests the `mean-�eld theory'

ddi
dt

=
di
2t
:

With the initial condition that di = m when t = i this gives di = m(t=i)1=2,
which yields  = 3.

Here we show how one can calculate the exact distribution of di at time t,
and obtain an asymptotic formula for P (d), d � t1=15, which gives  = 3 as a
simple consequence. The �rst step is to give an exact de�nition of a random
graph process that �ts the rather vague description given above.

2 The model

The description of the random graph process quoted above is rather imprecise.
Firstly, as the degrees are initially zero, it is not clear how the process is supposed
to get started. More seriously, the expected number of edges linking a new vertex
v to earlier vertices is

P
i�(ki) = 1, rather than m. Also, when choosing in

one go a set S of m earlier vertices as the neighbours of v, the distribution of

2
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Abstract

Recently, Barab�asi and Albert [2] suggested modeling complex real-
world networks such as the world-wide web as follows: consider a random
graph process in which vertices are added to the graph one at a time and
joined to a �xed number of earlier vertices, selected with probabilities
proportional to their degrees. In [2] and, with Jeong, in [3], Barab�asi and
Albert suggested that after many steps the proportion P (d) of vertices
with degree d should obey a power law P (d) � d� . They obtained  =
2:9� 0:1 by experiment, and gave a simple heuristic argument suggesting
that  = 3. Here we obtain P (d) asymptotically for all d � n1=15, where
n is the number of vertices, proving as a consequence that  = 3.

1 Introduction

Recently there has been considerable interest in using random graphs to model
complex real-world networks to gain an insight into their properties. One of
the most basic properties of a graph or network is its degree sequence. For the
standard random graph model G(n;m) of all graphs with m edges on a �xed set
of n vertices, introduced by Erd}os and R�enyi in [8] and studied in detail in [9],
there is a `characteristic' degree 2m=n: the vertex degrees have approximately
a Poisson or normal distribution with mean 2m=n. The same applies to the
closely related model G(n; p) introduced by Gilbert [10], where vertices are joined
independently with probability p. In contrast, Barab�asi and Albert [2], as well
as several other groups (see [4, 14] and the references therein), noticed that
in many real-world examples the degree sequence has a `scale-free' power law
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