1. Let G be a finite group and let $a, b \in G$ with $a \sim b$. Show $o(a) = o(b)$.

2. Let G denote the set of linear functions $f(x) = mx + b$ on the real line with $m \neq 0$. Denote such a function by (m, b). Define a product f^*g as the function $h(x) = g(f(x))$. (Check assignment 1 and the solutions for earlier work on this group.) Recall $C(f), N(f)$ denote the conjugate class and the normalizer (see §2.11) of f.

 (a) Describe $C(f)$ and $N(f)$ when $m \neq 1$ and $b \neq 0$.
 (b) Describe $C(f)$ and $N(f)$ when $m \neq 1$ and $b = 0$.
 (c) Describe $C(f)$ and $N(f)$ when $m = 1$ and $b \neq 0$.
 (d) Describe $C(f)$ and $N(f)$ when $m = 1$ and $b = 0$.
 (e) Describe $Z[G]$, the center of the group.

3. Let $\sigma \in S_n$ be (in cycle notation)

 $\sigma = (1\,2\cdots n)$

 (a) Describe in words the $\gamma \in C(\sigma)$.
 (b) Find $o(C(\sigma))$.
 (c) Deduce $o(N(\sigma))$.
 (d) (*) Describe $N(\sigma)$ explicitly. (Idea: Since you already know that $N(\sigma)$ has precisely woggle elements, you should look for woggle distinct elements that are in $N(\sigma)$ and then you have them all.)

4. Let $o(G) = p^n$, p prime. Prove that $o(Z[G]) \neq p^{n-1}$. (Idea: Examine the proof that groups of order p^2 are Abelian.)

5. Let C^* denote the nonzero complex numbers under multiplication.

 (a) Show that every $x + iy \in C^*$ can be uniquely expressed as

 $x + iy = r(\cos(\theta) + i\sin(\theta))$

 where r is a positive real number and $0 \leq \theta < 2\pi$.
(b) Suppose
\[x_1 + iy_1 = r_1(\cos(\theta_1) + i \sin(\theta_1)) \]
and
\[x_2 + iy_2 = r_2(\cos(\theta_2) + i \sin(\theta_2)) \]
Set \(x + iy = (x_1 + iy_1)(x_2 + iy_2) \) and write
\[x + iy = r(\cos(\theta) + i \sin(\theta)) \]
Express \(r \) in terms of \(r_1, r_2 \) and \(\theta \) in terms of \(\theta_1, \theta_2 \).

(c) Use the above to argue that \(C^\ast \) is isomorphic to \((R^+, \cdot) \times [(R, +)/(2\pi Z, +)] \)

Remark: The notation \(x + iy = re^{i\theta} \) is often used for this correspondence.

6. Show that \(Z_8^\ast \) is isomorphic to \(Z_2 \times Z_2 \) by exhibiting an explicit isomorphism. (Notation: \(Z_n^\ast \) always means under multiplication while \(Z_n \) means under addition.)

7. (*) Find an explicit isomorphism between \(Z_{15}^\ast \) and some product \(Z_a \times Z_b \).

The universe is not only queerer than we suppose but queerer than we can suppose.

– J.B.S. Haldane