Grapevine

Robert Grimm
New York University
Altogether Now:
The Three Questions

- What is the problem?
- What is new or different?
- What are the contributions and limitations?

One meta-question
- Do the three questions apply for this paper?
Grapevine Environment

- **Xerox research internet**
 - Local Ethernet networks
 - Gateways
 - Long distance links

- **Dedicated servers**
 - Alto with 128 KB RAM and 5 MB disk
 - Programmed in Mesa
 - Roughly, a cross between Pascal and C
Grapevine Message Service

- Distributes messages
 - Sent to individuals and distribution lists
 - Buffered in inboxes
 - On two different servers per user for fault tolerance
 - Though, messages are *not* replicated, only the delivery path
 - Treated as opaque objects
 - Message content not interpreted by service
 - Retrieved onto client machines
Grapevine Registration Service

- Provides naming, authentication, access control, and location function

- Based on database of \textit{RNames}
 - Group entries contain \textit{RNames} of members
 - User entries specify password, ordered list of inbox sites, connect site (usually for servers), additional information

- Bootstrapped on itself
 - Configuration information stored in Grapevine as well
 - GV registry (*.gv) replicated across all Grapevine servers
 - Each server represented as an individual (connect site is location)
 - Each registry represented as a group (members are servers)
 - gv.gv lists all servers
More Details

- Replication of registries
 - Unit of replication is a registry
 - No server hosts all registries
 - Any server hosting a registry accepts operations
- Applications rely on user-level library
 - Makes multiple servers look like a single service
- Overall system growth
 - 1981: 5 servers, 1500 individuals, 500 groups, 2500 messages/day (1.7 messages/day/user)
 - 1983: 17 servers, 4400 individuals, 1500 groups, 8500 messages/day (1.9 messages/day/user)
Some Historical Context

- Grapevine in everyday use: Fall 1981
- SMTP RFC: August 1982
- POP2 RFCs: October 1984, February 1985
- IMAP
 - Conceived in 1986
 - First RFC in 1988
 - First and second meetings at UW in 1996
 - Sun, Netscape announce support for IMAP4
- DNS RFCs: November 1983
Experiences

- Effects of scale
- Configuration decisions
- Transparency
- Adjusting to load
- Operational concerns
- Reliability
Effects of Scale

- Design target: 30 servers managing 10,000 users
 - But what happens if the system grows larger?
- Global state might become a limiting factor
 - Space: 15 KB for the GV registry, <1% of disk space
 - Time: Locating closest server out of 30 is acceptable
- Manual partitioning has only been partially effective
 - Distribution lists grow with population
 - E.g., Tax^ .pa has 500 members, which need to be resolved by accepting server (including locating inbox for each user)
 - Suggested solution: Distribute load by using layer of indirection
 - Tax^ .All, which breaks down into per-registry lists
Effects of Scale (cont.)

- Overall message volume is a concern
 - Physical world: there’s only so much paper that can be pushed around
 - Electronic world: need a better filtering mechanism
- Large number of unreliable links is a concern
 - Need store and forward architecture instead of direct delivery

- How have these concerns played out for email?
 - Think spam, SMTP’s store-and-forward architecture
Configuration Decisions

- Organizational structure for email
 - Encourages sharing of data
 - Same email stored only once (4.7 inboxes on average, max of 300)
 - Has natural scalability limits
 - There’s only so many people that can effectively collaborate

- Geographical structure for registries
 - Relatively stable within commercial organization
 - Unlike the organizational hierarchy…
 - But can be an arbitrary criterion when compared to real-world usage
 - One group split evenly between El Segundo and Palo Alto
Location of registry replicas
- Close to inboxes for that registry
- Close to servers accepting messages to distribution lists
- On both sides of unreliable links
- On enough machines to avoid catastrophic losses
 - Constraints 2-4 lead to three replicas
- Not on busy servers

There seems to be an awful lot to consider by an administrator
Transparency

- Works well in the common case but also leads to surprising results in some uncommon cases
 - Propagation delay in registry updates
 - Library may pick different server for next operation
 - Expensive consequences of simple operations
 - Changing inbox list originally caused remailing of entire inbox
 - No notion of distance of server
 - Long delays when using nonlocal server
 - Little information on overall state of the system
 - Unused distribution lists, inaccessible servers, duplicate messages
Adjusting to Load

- Naïve algorithms kill your performance
 - Sending complete updates instead of deltas/operations
 - Adding/removing one member to/from list is frequent
 - Not distinguishing between users and groups
 - Need to look up every single name for access control
 - What about flattened groups?
 - Assuming that all mailbox access is sequential
 - Users move about and leave their mail on the server
Operational Concerns

- GV experts are few; operators need not be qualified
- SSH is your friend
 - Well, at the time: remote disk editor, viticulturist’s entrance
 - “a cultivator of grape vine”
- Logs are your friend
 - Provide more than a week of history
 - But need to be combined from different servers
 - Unique identifiers help
 - Can be viewed dynamically
 - Check fixes, notice oddities
- Dead letter facility is ...?
Reliability

- System requires spare capacity to work
 - Detecting resource depletion early is crucial to prevent failures
 - But system still needs to work without resources
- Functional homogeneity can sometimes be a burden
 - Circuit manufacturing facility builds on Grapevine
 - But can become backup when rest of system overloaded
- Message server depends on email archive
 - Obviously, that’s a bad idea
 - Also, archiving depends on static period not actual load
One Final Note

- “This reluctance is partly due to the potential disruption that introduced bugs would have on the large user community that depends on Grapevine services to get its work done.”

- What happened here?
What Do You Think?