Using Encryption for Authentication in Computer Networks

Robert Grimm
New York University
Altogether Now: The Three Questions

- What is the problem?
- What is new or different?
- What are the contributions and limitations?
Early exploration (’78) of how to use encryption to provide authentication

- Diffie/Hellman published their paper on public key cryptography only two years earlier

Basis for Kerberos network authentication protocol

- Specifically, the symmetric key protocol

“Our protocols should be regarded as examples”

- Rightly so, the protocols have known attacks!
Getting Our Concepts Right

- Assumptions
 - Computers are *secure*
 - I.e., when a user encrypts a message, neither the plaintext nor the key is leaked outside the application
 - But the network is *not*
 - Attackers can arbitrarily read, insert, delete, or modify messages on the network
- End-to-end encryption
 - Encryption must be performed by applications, not at the network level
 - E.g., key may not be known by the network interface
Authentication servers (certificate authorities)

- Trusted by all participating users
 - For symmetric-key crypto, user → key
 - For public-key crypto, user → public key
- Not limited to a single server
 - Group of collaborating servers
 - Forest of servers (certification authority model)
 - No server: web of trust in PGP
Nonces and timestamps

- Ensure that messages are unique
 - Interactive protocols \rightarrow random number
 - Offline protocols \rightarrow timestamp
- Prevent *replay attacks*

Tickets and certificates

- Tickets establish a *session key* (shared secret)
- Certificates attest a public key
Characteristic functions

Now: Collision resistant hash functions

Three properties

- \(h(M) \) is relatively easy to compute (and typically small)
- Given \(h(M) \), it is hard to calculate \(M \)
- It is hard to find two \(M_1 \) and \(M_2 \) so that \(h(M_1) = h(M_2) \)

Which one to use?

- MD-4, MD-5, RIPEMD, RIPEMD-160, SHA-0, SHA-1, SHA-2
Let’s Mount an Attack
[Lowe 95]
The Public Key Protocol

- A → AS: A, B
- AS → A: \{PKB, B\}^{SKAS}
- A → B: \{N_A, A\}^{PKB}
- B → AS: B, A
- AS → B: \{PKA, A\}^{SKAS}
- B → A: \{N_A, N_B\}^{PKA}
- A → B: \{N_B\}^{PKB}
There Really Are Two Protocols

- A \rightarrow AS: A, B
- AS \rightarrow A: \{PKB, B\}^{SKAS}
- A \rightarrow B: \{N_A, A\}^{PKB}
- B \rightarrow AS: B, A
- AS \rightarrow B: \{PKA, A\}^{SKAS}
- B \rightarrow A: \{N_A, N_B\}^{PKA}
- A \rightarrow B: \{N_B\}^{PKB}

Obtain public keys

Authenticate A and B

What is the short-coming of the key access protocol?

Let’s mount an attack on the authentication protocol!
The Man-in-the-Middle Attack

- $A \rightarrow I$: $\{N_A, A\}^{PKI}$
- $I(A) \rightarrow B$: $\{N_A, A\}^{PKB}$
- $B \rightarrow I(A)$: $\{N_A, N_B\}^{PKA}$
- $I \rightarrow A$: $\{N_A, N_B\}^{PKA}$
- $A \rightarrow I$: $\{N_B\}^{PKI}$
- $I(A) \rightarrow B$: $\{N_B\}^{PKB}$

- How can we prevent this attack?
Let’s Improve Our Notation
The Four Primitives

- Encrypt(PK, M) \(\rightarrow\) CT
- Decrypt(SK, CT) \(\rightarrow\) M
- Sign(SK, M) \(\rightarrow\) \(\sigma\)
- Verify(PK, M, \(\sigma\)) \(\rightarrow\) \{true, false\}
What Did We Learn Today?