Extensibility: SPIN and exokernels

Robert Grimm
New York University
The Three Questions

- What is the problem?
- What is new or different?
- What are the contributions and limitations?
OS Abstraction Barrier

- Fixed high-level abstractions
 - Hurt application performance
 - Hide information
 - Limit functionality
- Examples
 - Buffer cache management
 - Persistent storage
Goals

- Extensibility
 - Applications introduce specialized services
- Safety
 - Kernel, applications, services are protected
- Performance
 - Extensibility and safety have low cost
Why Is This Hard?

Can we get all three in a single system?
Two Approaches
SPIN Approach

- Put extension code in the kernel
 - Cheap communication
- Use language protection features
 - Static safety
- Dynamically impose on any service
 - Fine-grained extensibility
The Big Picture
Modula-3

- Type-safe programming language
- Interfaces
- Garbage collection
- Other features
 - Objects, generic interfaces, threads, exceptions

- Most of kernel written in Modula-3
- Extensions must be written in Modula-3
- User-space applications written in any language
Safety

- Capabilities
 - Simply a pointer
 - Can we pass capabilities to user-land?

- Protection domains
 - Language-level
 - Limit visibility of names
 - Enforced at dynamic link time
Extensibility

- Extension model
 - Events
 - Event handlers
 - Guards

- Mechanism
 - Event dispatcher
 - Common case: procedure call
Core Services

- Memory management
 - Physical addresses
 - Virtual addresses
 - Translations

- Thread management
 - Signals to scheduler
 - Block, unblock
 - Signals to thread manager
 - Checkpoint, resume
Performance

- It works
Exokernels Approach

- Make the application do it!
Exokernels Approach (again)

- Separate protection and management
- Expose allocation
- Expose names
- Expose revocation
- Expose information
At The Core

- Processor time slices
- Processor environments
 - Hardware exceptions (Aegis, Xok)
 - Timer interrupts (Aegis, Xok)
 - Protected entries (Aegis, Xok)
- Addressing
 - Aegis: Guaranteed mappings, applications notified of TLB misses
 - Xok: Hardware page tables, applications specify mappings
- Hierarchical capabilities (Xok only)
- Book keeping

Aegis: MIPS-based DECstations
Xok: x86-based PCs
Case Study: The Disk

- Problem
 - How to store meta-data?
 - Ownership of disk blocks
- Failed approaches
 - Simple capabilities
 - Self-descriptive meta-data
 - Template-based descriptions
The Disk (cont.)

- Untrusted deterministic functions
 - Programmatic templates
- Shared data
 - Buffer cache registry
- Ordered disk writes
 - Ensure consistency after crash
Performance

- It works
- It scales
Issues

- SPIN
 - Trusted compiler
 - Resource control
Issues (cont.)

- Exokernels
 - Extension model
 - Downloaded code
 - Wakeup predicates
 - Dynamic packet filters
 - Application-specific handlers
 - Untrusted deterministic functions
 - Complexity of disk management
What Do You Think?