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Abstract

We study the reduced density matrix method, a variational approach for elec-
tronic structure calculations based on the two-body reduced density matrix. This
method minimizes the ground state energy with respect to the two-body reduced
density matrix subject to some conditions which it must satisfy, known as N-
representability conditions. The resulting optimization problem is a semidefinite
program, a convex optimization problem for which computational methods have
greatly advanced during the past decade. Two significant advances are reported
in this thesis. First, we formulate the reduced density matrix method using the
dual formulation of semidefinite programming instead of the previously-used pri-
mal one; this results in substantial computational savings and makes it possible
to study larger systems than was done previously. Second, in addition to the
previously-used P,  and G conditions we investigate a pair of positive semidefi-
nite conditions that has a three-index form; we call them the T'1 and T2 conditions.
We find that the inclusion of the T'1 and 7’2 conditions gives a significant improve-
ment over results previously obtained using only the P, ) and G conditions, and

provides in all cases we have studied (47 molecules) more accurate results than



other more familiar methods: Hartree-Fock, 2nd order Mgller-Plesset, singly and
doubly substituted configuration interaction, quadratic configuration interaction
including single and double substitutions, Brueckner doubles (with triples) and

coupled cluster singles and doubles with perturbational treatment of triples.
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1 Introduction

The ground state properties of a fermion system in a given external potential serve
as input for the analysis of a boundless variety of physical situations, and reliable
solution of the associated N-body Schrodinger equation has remained a focus of
activity for many decades. It was noticed by J. E. Mayer back in 1955 [1] that for
non-relativistic electrons, which interact via pair forces alone, the system energy
depends only upon the two-body reduced density matrix (2-RDM), possessing
merely four-particle degrees of freedom. In fact, only two combinations — the
pair density and one-body reduced density matrix (1-RDM) — each possessing
just two-particle degrees of freedom, are required. This suggested to Mayer that
the ground state energy — and density matrix information — could be economically
computed by simply carrying out a Rayleigh-Ritz minimization with respect to the
pair density and 1-RDM; subject, of course, to a few obvious conditions they must
satisfy. But carrying out the process correctly gave horrible results, and a number
of researchers found that the reason was that an enormous number of necessary
restrictions — mainly inequalities — were being ignored. Progress with this very

promising approach — referred to as the RDM method — could therefore only be



made by systematizing the listing of these restrictions, determining large classes in
explicit form, and then including them in the minimization process. We would like
here to report significant success in this endeavor, the result of drawing together
advances that have been made in computational as well as analytic techniques over
the half-century time span.

Although the 1-RDM and pair density are sufficient to carry out the program
outlined above, the advantage that they have of requiring only a small amount of
information carries with it the disadvantage that numerous structural relationships
which serve as signatures of fermion systems are not available for control purposes.
Therefore, almost all of this work has been carried out in the context of the 2-RDM
(from which the 1-RDM can be derived). The problem then is to assure in so far
as possible that these objects come from some N-fermion system. This concept,
referred to as N-representability, was first stated clearly by A. J. Coleman [2]
and the most important representability conditions (the P, ) and G conditions)
were formulated by Coleman [2] and by C. Garrod and J. K. Percus [3]. Refer-
ences to earlier work involving reduced density matrices (RDM’s) may be found in
those papers and also in a survey article by Coleman [4]. Subsequent important
analytical work on the representability problem was done by W. B. McRae and

E. R. Davidson [5], who studied the diagonal problem, and by R. M. Erdahl [6, 7],



J. K. Percus [8] and Garrod [9]. Because the known explicit conditions are nec-
essary but not sufficient for representability the RDM method involves variation
over an enlarged domain, and yields a lower bound for the energy of the system in
the model space.

The first computational studies of the RDM method were done in the 1970’s
by Kijewsky and Percus [14, 15] on the molecule C**, and by C. Garrod and
M. A. Fusco [10, 11] on atomic Beryllium (N = 4) imposing the P, @) and G con-
ditions. Mihailovit et al. [13] also applied the RDM method to the nuclear ground
state of 0, 1°0, 70, B0, ?Ne, Mg, and ?8Si. The numerical methods that
were employed include a penalty function approach and also a cutting plane algo-
rithm [12]. This work pointed to the possible high accuracy of the RDM method,
but also showed practical computational difficulties in solving the variational prob-
lem.

The RDM method using the P, ) and G conditions has the mathematical form
of a semidefinite program (SDP): maximize a linear function on the intersection
of a linear affine space and the convex cone of block-diagonal positive semidefi-
nite matrices. The field of semidefinite programming has seen tremendous interest
in recent years with the advent of interior-point methods [16, 17, 18|, and this

has rekindled interest in the RDM method for electronic structure as well. Some



preliminary investigations along this line were made by M. Nayakkankuppam [19].
Recently M. Nakata et al. reinvigorated the RDM method in a study in which they
used the P, ) and G conditions for a number of small atoms and molecules [20] and
showed that the results were significantly more accurate than those obtained by the
Hartree-Fock approximation. In follow-on work Nakata et al. also considered the
three-index diagonal conditions [5] (also known as the Weinhold-Wilson inequal-
ities [21]), testing to see if they were violated in the solutions found using only
the P, @@ and G conditions [24]. Mazziotti suggested using higher order RDM’s
to be positive semidefinite to improve the N-representability of the 2-RDM [22]
and indicated a possible way to extend the RDM method to be applicable to the
excited state[23] after obtaining the ground state 2-RDM from the RDM method.

The present work continues this line of research that is based on the 1960’s
ideas of Coleman and of Garrod and Percus. We use semidefinite programming
to solve the variational problem for the 2-RDM subject to certain representability
conditions to obtain a lower bound (in the model space) for the ground state energy
of the system. The accuracy of the RDM method depends on how well we can
restrict the trial 2-RDM to be N-representable.

As seen from the previous work, the P, () and G conditions are known to be

adequate characterizing the N-representability of the ground state 2-RDM, but



the accuracy of the RDM method with P, () and G conditions is not satisfactory,
and as will see in our work in Chapter 5, it is less accurate than several well known
wave function methods.

The advanced analytical work on N-representability conditions showed a huge
potential for the RDM method. One important problem is to computationally
investigate which /N-representability conditions are essential for the RDM method
to have high accuracy.

In this thesis work, we demonstrate a substantial advance in the accuracy of
the RDM method. In addition to the P, () and G conditions we impose a pair of
positive semidefinite conditions that has a three-index form; we call them the 71
and T2 conditions. These conditions extend the three-index diagonal conditions
to non-diagonal form. The T'1 and T2 conditions are implicit in the work of Er-
dahl [6], but they are not spelled out in that paper and have received little notice.
We find that including the 71 and 72 conditions results in a spectacular increase
in the accuracy of the results, and gives in the cases studied an accuracy better
than that of other more familiar approximate methods: Hartree-Fock [25, 26, 27],
2nd order Moller-Plesset (MP2) [28, 29, 30, 31, 32], singly and doubly substituted
configuration interaction (SDCI) [33, 34, 35|, quadratic configuration interaction

including single and double substitutions (QCISD) [38], Brueckner doubles (with



triples) (BD(T)) [36, 37] and coupled cluster singles and doubles with perturba-
tional treatment of triples (CCSD(T)) [38, 40, 41, 42, 43, 44], reproduces well full
configuration interaction (full CI) [45] results for those cases for which the full CI
calculations are feasible.

A second advance in this thesis is the introduction of a new implementation
of the RDM method using the dual formulation of SDP. This results in substan-
tial computational savings and makes it possible to study larger systems than was
done previously. We use a general purpose semidefinite programming code, SD-
PARA (SemiDefinite Programming Algorithm PARAllel version) by M. Yamashita
et al. [46], which is a parallel code based on the SDPA (SemiDefinite Programming
Algorithm ) code of K. Fujisawa et al. [47]. In order to use a code such as SDPARA
we must formulate our optimization problem using either the standard primal or
the standard dual formulation of SDP (see Section 3 for definitions of these). The
computational cost of solving the SDP scales at least as m* (more detailed eval-
uation shows a higher power dependence on m, see Chapter 4), where m is the
number of linear equality constraints in the primal form or, equivalently, the num-
ber of dual variables in the dual form. One of the obstacles to the use of the RDM
method is that m increases rapidly with the basis size r. However, we find that

formulating the RDM optimization problem using the dual form of SDP results



in a much smaller m than formulating the same problem in the primal form used
in previous work by Nakata et al. [20, 24], and by Mazziotti [22]. If we use only
the P, () and G conditions then m scales as r* in both cases, but with a smaller
constant in the dual formulation; when we add the 7’1 and 72 conditions, then

6 using the primal formulation but continues to scale as r* using the

m scales as r
dual formulation.

Without attempting any quantitative comparison we wish to note here some
approaches that involve RDM’s in different ways than the variational approach
following Coleman and Garrod and Percus. One line of work extends density func-
tion theory by taking as unknown the 1-RDM. For the 1-RDM the representability
conditions are completely known [2], but of course the energy function must be ap-
proximated; see for example [48, 49, 50, 51]. Another line of work, going back to H.
Nakatsuji and K. Yasuda [52, 53] and to C. Valdemoro and F. Colmenero [54, 55],
is based on the contracted Schrédinger equation (density equation) and employs
approximate closure relations for the p-RDM (p = 3,4) in terms of the 1-RDM and
2-RDM. For this approach see also recent work by D. Mazziotti, e.g., [56, 57, 58].

The remaining chapters of this thesis are organized as follows. In Chapter 2

we review the RDM method and the P, @) and G conditions, and we derive the

T'1 and T2 conditions. In Chapter 3 we review semidefinite programming with



attention to the primal and dual formulations. In Chapter 4 we describe our
SDP implementation of the RDM method and we review the computational cost,
comparing the primal and dual formulations. In Chapter 5 we present the results
of the calculations and demonstrate the efficiency of the 71 and 72 conditions.

We conclude with some remarks on future work in Chapter 6.



2 The RDM method

2.1 Reduced Density Matrices

As is customary we consider the N-fermion problem on a discrete orthonormal
basis of single particle wavefunctions. Let ¥ be the ground state wavefunction for
an N-fermion system (normalized as (V|¥)=1). Then the 1-RDM and 2-RDM

(denoted as v and T, respectively) may be defined as

Vid) = (Wlafailv) (2.1)

L, ;i 5") = (¥|aja)aja;|¥) (2.2)

where a; and a; are the annihilation and creation operators on the single particle
state i for the chosen basis set. I'(,7;¢, j') is antisymmetric under interchange of
i and j and also under interchange of i and j', and v and ' are hermitian. These
are immediate consequences of the definitions of v and I'.

If the Hamiltonian of N-fermion system involves one-body and two-body inter-

actions only, i.e.,

1
H=Y (i) ar + 5 > holing;i', j')af afapay, (2.3)

. R
1,1 2,75%5]

then the ground state energy E can be expressed exactly in terms of the 1-RDM



and 2-RDM:

E = Tr(hyy) + % Tr(hol) , (2.4)

where Tr denotes trace,

Tr(hiy) = Y ha(i,i)y(d', ) | (2.5)

i

Tr(hol) = Y hali, ;7' 50, 55, 5) - (2.6)
0,551 ,5"

Here h; and hy are one-body and two-body Hamiltonians.

The RDM method uses as a trial function the pair (7,T") in the space of func-
tions satisfying the stated antisymmetry and hermiticity conditions, and seeks to
minimize the right hand side of (2.4). Additional linear equality and convex in-
equality conditions are imposed on (v,I') that are necessary to ensure that the
trial pair lies in the convex hull of density matrices that are actually derivable

from N-fermion wavefunctions; these are called N-representability conditions.

2.2 N-Representability

2.2.1 Well-known N-representability Conditions

For an N-fermion system it is immediate from the definitions that the 1-RDM and

2-RDM satisfy the linear equalities

> T, ki k) = (N = 1)y(i,¢') for all i, i (2.7)
k

10



and trace conditions
> i) =N, (2.8)

and (not independent of the previous conditions)

Further representability conditions on (v, T") are in the form of convex inequal-
ities that do not explicitly involve the particle number N.

For the 1-RDM ~ alone, a complete set of representability conditions was given
by Coleman [2]:

where I denotes the identity matrix, and v > 0 denotes that the matrix = is
positive semidefinite. That is, all its eigenvalues are nonnegative.

For the pair (v,I") Coleman also gave what became known as the P and the @
conditions; these two and the related G condition, which was given by Garrod and
Percus [3], are the starting point for all implementations of the RDM method.

The P condition states that I' > 0, which is immediate from the definition of I'.
Here I' is interpreted as a hermitian operator on the space of antisymmetric two-
body wavefunctions. That an operator I on the space of antisymmetric two-body

wave functions is positive semidefinite (> 0) means that for any antisymmetric

11



function ¢(i, j),

> g (60T, 51, g, §) 2 0. (2.11)

P il gl
7’7]7Z 7]

The @ condition follows from the positive semidefinite property of the operator

At A where A =3, (i, j)a; a

+
)

;» and g is an arbitrary antisymmetric function of

the two indices. Obviously, (V|ATA|¥) > 0, i.e.,

> g7 (0) (Ylaaafal | W) (i, §) > 0. (2.12)

y Aol AT
2,7505]

This implies that @@ = 0 (see (2.11)), where the hermitian matrix @) is defined by
Qi ;7. 5') = (P]ajaiafaf|¥) . (2.13)

It can be expressed in terms of the 1-RDM and 2-RDM by using the fermion

commutator relation a;a} = 6(i,i') — aj a;,

Qi,j;¢,5") = T(5;i,5) =006, d)y(5,5") — 003, 5) (6, 7)
+0(i, 7))y (5, @) + 00, ) (i, 57)
+0(4,1)d(4,5") — (i, 5")0(4,1") . (2.14)

The G condition follows from the positive semidefinite property of the operator
AT A where A = Z” g(i,j)afaj, and g is any function of the two indices. Again,

(U|ATA|¥) > 0 implies that G = 0, where the hermitian matrix G is defined by

G(i,7;7,5') = (Y]a] aaay |¥) . (2.15)
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It depends linearly on the 1-RDM and 2-RDM as
G(i,j3d',j') =T, 5’5 i) +6(6,)v(", j) - (2.16)

For G there is no antisymmetry under the interchange of (i, j) or (¢, j'). As already
done by Rosina and Garrod [12] and other authors we write the G condition in the
form of a positive semidefinite inequality, with the matrix G depending linearly on
v and I'. In the original work of Garrod and Percus [3] the matrix G depended
quadratically on . However, for a system with fixed particle number the two

formulations are fully equivalent.

2.2.2 Erdahl’s T-conditions

In the present work we include two additional representability conditions, which we
call the T'1 and T2 conditions. The conditions follow from the discussion in Section
8 of R. M. Erdahl’s 1978 survey paper on representability [6], but they appear to
have been little noticed and as far as we know they have not been employed in
other explorations of the RDM method.

To obtain the T'1 condition we observe that for an arbitrary totally antisymmet-
ric function ¢(i, j, k) the operators AT A and AA™ are both positive semidefinite,
where A = Zz’,j,k q(i, j, k)a;aja,. One can express this in terms of the RDM’s just

as in the derivation of the @ or the G conditions. Separately (¥|ATA|¥) and
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(U|AAT|W) each involves the 3-RDM (defined as < W|a; ajia),aga;ja;|¥ >), but
with opposite sign, so that in the sum (¥|ATA+ AAT|U) only the 1-RDM and
2-RDM are present. Of course this sum is nonnegative as well. The result is that

T1 > 0, where the hermitian matrix 7'1 is defined by
T1(i, 5, k; 7', ', k') = (¥lag o) af apajap + agagapayafal |V) . (2.17)
It is related to the 1-RDM and 2-RDM by

T1(i, 5, k05" K) = 0(6,1)6(5,5")0(k, k') — 6(i,5")0(4, 7)o (k, k)
—0(i,i')0(j, k)6 (k, j") + 0(i, j)0(j, K)o (k, ') + 0 (i, k')6 (5, 4)d (K, 5')

—0(i, k)0 (j, 7')0(k, i") + (=0(j, 7)S(k, k') + 6(4, K)o (k, )y (i, 4)
+(0(i, 7)ok, k') — 6 (i, K)o (k, 5)v (i, 5)

+(=0(i, 580, k') + 62, k)34, 5)r (', k)

+(=0(4, K)o (k, i) + 6(5,7)6 (k. ')y (5", 4)

+(=0(i, )0(k, k') + 6 (i, K)o (k, )y (5", 1)

+(0(6,)0(5, k') = 6(i, K)o (5, 7))v (5", k)

+(=0(5,1)0(k, 5') + 64, 5)0 (k, 1))y (K', 1)

+(0(i,7)6(k, 5") — 63, 7)o (k. i'))y(K', 5)

+(=0(2,7)6(5,5") + 63, 5)0 (5, "))y (K, k)
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+0(5, )0(K, i k. 3) — 66, )T (K, i &, )
+0(6, KN (7, "5k, j) — 003, UK, 5’5 &, 1)
+0(3, 4" )C(K,d's ki) = 0(3, KT (5", d's K, )
+0(k, i (K', % 4, 8) — 0k, 3T (K', % 4, )
+6(k, KO0, 5 5,4) - (2.18)
The T2 condition follows in a similar way from the positive semidefinite prop-
erty of the operator ATA + AAT when A = Zm.,kg(i,j, k)aSaja,. In this case,

g(i, 7, k) should be assumed antisymmetric with respect to (j, k) only. The result

is that 72 > 0, where the hermitian matrix 72 is defined by
T2(i, 5, ki, j', k') = (Yot af aa; ayap + afajapayafa;|¥) (2.19)
It is related to the 1-RDM and 2-RDM by

T2, 5 ki 5 K) = (8(k,K)3(,3") — 6, K)3(k, 7)), 7)
+0(i, i \O(5', k"5 4, k) + (=04, J)N)D(K i k, 4"
+(=0(k, E")L(" 05 4,0") + 0(4, KT (5, 4; k, ")

+0(k, j)T(K', 45 4, ) (2.20)
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2.3 Detailed Summary of N-representability Conditions

In this work, we implemented the RDM method for an N-electron system. In this
context, ¥ is the ground state wavefunction of an N-electron system, the index
i denotes the orthonormal spin orbitals (single particle basis). Let r denote the
basis size, then 2 = 1,2,--- ,r. The index ¢ may be refined by a pair of indices n;
(spatial orbitals) and o; (spin states) when the need for explicitly separating the
spatial and spin parts occurs. o; can take the values a (spin up (1)) and S (spin
down (])). The number of spatial orbitals is the half of the basis size r, therefore,
n; may take any of the values 1,2,---,7/2.

With this notation, we now summarize the N-representability conditions in-
cluded in our calculation.

1. Hermiticity of the matrices v, I', @, G, T'1 and T2.

2. Antisymmetric conditions

Also, the auxiliary matrices () and T'1 are antisymmetric with respect to all pair
and triple indices, respectively, and the matrix 7’2 is antisymmetric with respect
to the last 2 indices of each triple (refer to (2.19)).

3. Positive semidefinite (> 0) constraints on matrices v, I — v, ', @, G, T'1

16



and T2. (For the linear relations of matrices @, G, T'1 and T2 to v and T, refer
to (2.14), (2.16), (2.18) and (2.20), respectively.)

4. Linear equality constraints involving the electron number N, (2.7) and (2.8)
or (2.9).

5. Linear equality constraints involving « electron number N,

Z7(nia7nia) = N, (222)
Z [(njo, njosnja,njae) = No(Ny —1) . (2.23)

ng,nj

6. A linear equality constraint involving total spin S

Z (C'(nicr, nja; nye, njer) + U(ng 8, m 858, n55))

4,1
-2 Z ['(nio, njfB;nic,miB) — 4 Z I'(nic, njB;njo, n; )

ng,Nj ni,n;
13N = 4S(S + 1) . (2.24)

7. Spin symmetries of matrices v, I' and @, G, T'1 and T2

v(nioi,npoy) = 0 when o; # oy, (2.25)
I'(nioi,njoj;npop,njoy) = 0 when o; +0; # oy + 05, (2.26)
Q(n;o;,njo5;npos,nyoy) = 0 when o, +0; # oy +0j0 (2.27)
G(n;o;,njo5;npop,nyop) = 0 when o, +0j # 0; + 0y, (2.28)

17



T1(n;oi,nj0j, Kok Ny O, Nj1 O, M o) = 0

When Uz"i‘o—j‘i‘o—k?‘éo—i’""o—j’""o—k’ s (229)
TQ(TLiO'Z', N0, MOk N1 04y T O i nkfak:) =0

when o; + 0 + o # 0j +0op+o0y . (2.30)

Here constraints (2.22) to (2.23) and (2.24) may be derived from the fact that W is
the eigenstate of N, (number operator for a electrons) and S? (spin-squared) [20],
respectively. Constraints (2.25) through (2.30) immediately follows from defini-
tions of matrices (refer to (2.1), (2.2), (2.13), (2.15), (2.17) and (2.19)), combining
with the fact that U is the eigenstate of N,.

We make a few more remarks. First, although in general the Hamiltonian and
the RDM’s are complex hermitian, for the N-electron system (no magnetic field
and no relativistic terms), the Hamiltonian and the RDM’s are real under the
chosen basis, as are @, G, T'1 and T'2.

Second, the objects I', 2, G, T'1 and T2 are presented initially as four-index and
six-index objects; however, after mapping two indices 7, j and three indices i, 7, k to
a composite index, they are 72 xr2 and r3 x r® matrices correspondingly. Due to the
antisymmetric properties, all except G can be represented by “compacted” matrices
with reduced dimensions by dropping those dependent entries in the matrices (the

matrix G is still 72 x r2). The “compacted” matrices (denoted by adding a ~ to the
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corresponding symbol) can be formed by those entries with indices i < j, i’ < j’
inl, Q;i<j<k i <j <k inTl;j<k,j <k in T2, respectively (refer to
(2.2), (2.13), (2.17), (2.19)). So, T, Q € 82, T1 € 8 and T2 € S"*"? | where S"
denotes the space of n x n real symmetric matrices, 2 = C?, and r3 = C? (C"
is the binomial coefficient). Thus, the formulas appearing in this section must be
changed if they are expressed in terms of “compacted” matrices. For example, the

ground state energy E (see (2.4)) can be expressed as

E = Tr(hyy) + Tr(hol) , (2.31)

where hy(i, j:4',5') = ho(i, j; 7', §') — ha(i, 754, 4"), and i < j, i' < §'.

Third, the matrices v, [, Q, G, T1 and T2 are all further partitioned to block
diagonal matrices according to the spin symmetry ((2.25) through (2.30)); here
an appropriate ordering of spin orbitals is involved. Specifically, v has block sizes
r/2,7/2; T, Q have block sizes 03/2,03/2,7“2/4; G has block sizes r2/2,r%/4,12 /4;
T1 has block sizes CE/Q,C’T,C’T,CE/Q; and T2 has block sizes Cp + 13/8,Cp +

T3/8, CT, CT, where CT = 03/2 X T/2
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3 Semidefinite Programming

Semidefinite programs (SDP’s) are a class of convex optimization problems that has
been intensively studied during the past decade. For good surveys on semidefinite
programming and for background on results reviewed here we refer to [16, 17, 18].

An SDP can be summarized as maximization of a linear function on the in-
tersection of a linear affine space and the convex cone of block-diagonal positive
semidefinite matrices. Let R™ denote m-dimensional real linear space and let B
denote the space of block-diagonal real symmetric matrices with prescribed block
sizes ny, for k = 1,2,...,nBlock, ZZE;‘M ny = n. Here n denotes the total di-
mension of the matrix € B, and nBlock denotes the number of the blocks in the

matrix € B. A data vector b € R™, and the data matrices C' € B and A, € B (for

p=1,2,...,m) together define an SDP, which is expressed in primal formulation
as
.
max Tr(CX)
XeB
 subject to Tr(A4,X) =b,, (forp=1,2,...,m) (3.1)
X =0,
\

where X > 0 means that the block-diagonal matrix X € B is positive semidefinite

(equivalently, each of its blocks is positive semidefinite). Analogously, we write
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X > 0 to mean that X is positive definite. The dual formulation of the same SDP
(3.1) is
min bty

yeR™, ZeB

m (3.2)
subject to Z > 0, where Z = ZApyp —-C.

p=1
Here the variables are the vector y € R™ and the block-diagonal matrix Z € B,
and ' denotes transpose. We say that X is a primal feasible point (strictly feasible
point) if it satisfies the constraints in (3.1) (and X > 0). Likewise, we say that
(y, Z) is a dual feasible point (strictly feasible point) if it satisfies the constraints

in (3.2) (and Z > 0).

Then if (X,y, 7) is a primal-dual feasible point, we have

by — Tr(CX) = bly — Tr ((Em: Ay, — Z)X) =Tr(XZ) >0, (3.3)

which means that the optimal value of the primal linear function is no larger than
the dual one. Furthermore, it is known from duality theory that if both the primal
formulation (3.1) and the dual formulation (3.2) have strictly feasible points, then
both have optimal solutions and their optimal values coincide with each other, so
that the duality gap (the left hand side of (3.3)) is zero. In the special case that all
block sizes of matrices in B are one, all block-diagonal matrices reduce to diagonal
ones and consequently the SDP reduces to a standard linear program.

Several methods to solve SDP’s have been developed in the last decade, but
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among them, the most established and efficient methods are the iterative methods
called primal-dual interior-point methods. Briefly, these methods are based on
the key notion of primal-dual central path, which is defined as the set of triples
(X, Yu, Z,,) satistying X, Z, = pl for some p > 0 in addition to the constraints
of (3.1) and (3.2). It is known that, under the strictly feasible point assumption
already mentioned, the triple (X, y,, Z,) always exists and is unique for all real
p > 0, that X, = 0 and Z, > 0, that the path is a smooth function of y, and
that as p \, 0, the triple converges to an optimal primal-dual solution of the
SDP. (Note that the equation X,Z,, = pul converges to the condition XZ = 0
as 1 N\ 0, which is equivalent to the zero duality gap condition Tr(XZ) = 0).
In a primal-dual interior-point method, a technique based on Newton’s method is
used to numerically trace the central path. At each iteration, it is necessary to
solve a linear system of equations with an m x m dense symmetric positive definite
coefficient to obtain a search direction that indicates the direction of the next point
in the iteration. The step taken along the search direction is chosen to ensure that
the next primal and dual iterates X and Z are strictly positive definite. Obtaining
a primal-dual feasible starting point for the process is nontrivial, so feasibility of
the primal and dual equality constraints is generally obtained only in the limit, but

the X and Z iterates are strictly positive definite throughout the iteration (hence
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the name “interior-point”), converging to the boundary of the semidefinite cone
as the optimal primal-dual solution is approached. The iteration is terminated
when the duality gap Tr(XZ) and primal and dual infeasibility are all reduced
to sufficiently small quantities, certifying the approximate optimality of the final

iterates.
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4 SDP Implementation of the RDM Method

In order to use existing semidefinite programming software to solve our problem,
we must convert it into one of the standard SDP formulations. However, it is
not immediately obvious how best to convert an RDM variational problem to the
primal formulation (3.1) or the dual formulation (3.2). The primal formulation
appears more direct, but as will be discussed here, use of the dual formulation

brings important computational advantages.

4.1 The Primal Formulation of the RDM method

In order to convert an RDM variational problem into the primal formulation, we

begin by writing the primal linear function as the negative energy of (2.31):

_E = max (— Te(hyy) — Tr(th)) . (4.1)

v, I

Let Diag(Uy, Us, . .., Ug) denote the block diagonal matrix with blocks Uy, Uy, . . ., Uy.
Then one casts the positive semidefinite N-representability conditions in the form

X > 0 by defining the primal block-diagonal matrix X € B as

X =Diag(y, I—v, I, Q, G, T1, T2). (4.2)
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The data matrix C' € B is defined from (4.1) accordingly,
C =Diag(—hy, O, —hy, O, O, O, O),

where the O’s, the zero blocks, have the same corresponding block sizes as X (refer
to (4.2)). The linear relations of I —~, @, G, T1 and T2 to vy and T (see (2.14),
(2.16), (2.18), (2.20)), and the equality conditions (2.7) to (2.9) and (2.22) to (2.24)
are all incorporated into the linear constraints of (3.1) by suitable definitions of

the matrices A, € Bforp=1,2,...,m and b € R™. We have

Ap = Diag(Ap{1}, Ap{2}, Ap{3}, Ap{4}, Ap{5}, Ap{6}, A {7}),  (4.3)

where A,{i} for i =1,2,...,7 have the same sizes as the corresponding blocks in
X (see (4.2)), respectively, namely, r, r, C?, C?, r?, C? and r x C? (Note each
Ay{i} itself is a block-diagonal matrix). For instance, the A,’s which define the
linear relation of the matrix Q to v and T’ (see (2.14)) are obtained as follows:

first, write Q(4,j;',5) (i < j, 4 < j') as

Q,j;i',7') = T(ij;7,5") + 60, )i, ") = 603, 5)(2,7)
+0(6, @) (0(4,4") = 7(7,5)) = 6(, ) (65, ') =74, 7)) ,

Q(Zaja Zl:],) - F(Zaja Zlajl) - 5(]7 Zl)’Y(%],) + 6(]7],)7(27 Z,)

=006, )T =)0, 5') + 606, 5) I =) (4, @) = 0. (4.4)
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Each independent entry of the symmetric matrix @ gives one linear constraint
matrix A,, thus, the number of A,’s defining the linear relation of the matrix Q

to v and T is Cy(Cr

Yo+ 1) +73(r?/4 4 1)/8 (recall the matrix Q has block sizes

03/2 703/2 and 72/4). Assume the matrix element Q(i,j;4',j') defines the p-th
linear constraint matrix A,, where p = p(i, j,',j’), then, comparing (4.4) with

Tr(A,X) = b, (refer to (2.5) and (2.6) for Tr), we have

by = 0,

Ap = Diag(Ap{l}, Ap{2}a Ap{?’}a Ap{4}a 0, 0, O)a
with non-zero entries

A7) = 5001 — 500,15,
AN = 4167

A = 306, + 566,7966,7)
AN = {1161,

A 210G.7) = —5807) — 366,116,
AL = 4260,

421G ) = 5805+ 550, )5 )

Ap{2}(7;,aj) = AP{2}(j7i,)7
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o 1 1., ., ...
A3}, 5;7,5") = —5—55(1,2)5(J,J),

A 330, 55 0,5) = Ap{3}(i,5:7,5)
1

o Lo e
A4}, 57,5 = 5—1-55(2,@)5(],]),

{430 50, 0) = A {AbG,5id g
As seen above, the constraint matrices A,’s from (2.14) are very sparse, as are
those A,’s which relate the matrices I —, G, T1 and T2 to ~v and T, and those
defining the equality conditions (2.7) to (2.9) and (2.22) to (2.24).
The difficulty with this approach is that m, the number of primal constraints,
is equal to the sum of the number of independent entries in the symmetric matrices
I—7,Q, G, T1 and T2 plus the number of equality conditions (2.7) to (2.9) and

(2.22) to (2.24). Thus

m = r(r/2+1)/2+5 (from equality conditions) (4.5)
+r(r/2+1)/2 (from I—7) (4.6)
+ Cy(Cly+ 1) +r2(r* 4+ 1)/8  (from Q) (4.7)
+r2(r22+ 1) /4 + 2 (r?/4+ 1) /4 (from G) (4.8)

+ Clo(Clra+ 1)+ Cly x 1/2(CEjy x 1/2+1)  (from T1) (4.9)

+ (Crpa x /2472 [8)(Cryy x /2 + 1% [8) + 1)

+ Cly X 1/2(C21y xr/24 1) (from T2). (4.10)
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This total scales as 7® due to the 7' conditions. Actually m in the primal for-
mulation depends on how many semidefinite conditions are imposed in the RDM
method. If only the P, @ and G conditions (in addition to the equality conditions)
are imposed, then m scales as r* (sum up the terms from (4.5) up to (4.8)), but
if the T'1 and T2 conditions are also imposed, m, as seen above, scales as 7% (sum
up all terms from (4.5) to (4.10)).

Compared with the primal formulation used by Nakata et al. in the previous
work [20, 24], the primal formulation presented here is different because we keep
the 1-RDM in the formulation. In the work of Nakata et al. the 1-RDM was
removed from the formulation using (2.7), but the derivation of X, C', A, for
p=1,2,...,m, and b was similar. Thus, the two primal formulations give slightly
different m, but both m scale as 7® when T conditions are imposed. We find that
keeping 1-RDM in the formulation not only makes the primal formulation concise
(the formulation of Nakata et al. was much more complicated, see Ref. [20]) but
also is essential to produce numerically more stable SDP problems in the dual

formulation (refer to the discussion about numerics in Chapter 5).
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4.2 The Dual Formulation of the RDM method

A much more efficient approach is obtained by converting an RDM variational
problem into the dual formulation (3.2). Given U € 8", let us define svec : 8" —
Rn(n+1)/2 as

t

SUGC(U) = UH, \/§U12, \/§U13, Ceey \/iUln, U22, \/§U23, Ceey \/§U2n7 U33, Ceey Unn
Define y € R™ and b € R™ in (3.2) as
y = [svec(v)! svec(I)', (4.11)

and

b = [svec(hy)! svec(hy)'] .

Then, the ground state energy (2.31) can be rewritten as the dual linear function

E = minb'y .
y

It now becomes relatively straightforward to express the positive semidefinite N-
representability conditions in the form Z = 0 of (3.2) by defining the dual variable
7 € B to have the following diagonal blocks: v, I — 7, I,Q,G,T1and T2, making
suitable definitions of the matrices C € B and A, € Bforp=1,2,...,m.

One difficulty arises: how may we define the equality conditions ((2.7) to (2.9)

and (2.22) to (2.24)) if the dual formulation (3.2) does not permit equality con-
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straints? One way to resolve this is to replace each equality by a pair of inequal-
ities!, which must be slightly relaxed to obtain a strictly feasible region for the
dual formulation (3.2). Thus, if € is a suitably small number (in our computations
€ = 1077 or 107%), then an equation such as Try — N = 0 can be replaced by
€ > Try— N and Try — N > —¢, which can be regarded as two one-dimensional
positive semidefinite conditions and can be cast into Z > 0. This procedure in-
troduces an extra diagonal block with size equal to twice the number of equality
conditions into the block-diagonal variable matrix Z, and the data matrices C' € B
and A, € Bforp=1,2,...,m. The equality conditions (2.7) to (2.9) and (2.22) to
(2.24) (the total number of the independent equality conditions is r(r/2+1)/2+5)

are now replaced by following 2 x (r(r/2+ 1)/2 + 5) number of inequalities:

= D(i,k;d' k) + (N = 1)y(i,#") + € >0 forall i, i, (4.12)
k
> T(i ks k) = (N = 1)y(i,i') + € >0 foralli, i, (4.13)
k
—TrT'+ N(N-1)+€e>0, (4.14)
TrT —N(N—=1)4€¢>0, (4.15)

L An alternative way to impose the equality conditions ((2.7) to (2.9) and (2.22) to (2.24)) in
the dual formulation is simply to eliminate those dependent variables using the equality condi-
tions. We find that the dual formulation we present here produces numerically more stable SDP

problems than this alternative way (see the discussion about the numerics in Chapter 5).
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—Try+ N+e>0, (4.16)

Try—N+e>0, (4.17)
ZV(TH% na) — Ny +€>0, (4.18)
— ny(nz-a, nia) + Ny +€>0, (4.19)
Z I'(njo, njo; nya, njar) + No(No — 1) +€ >0, (4.20)
N n;
— Z ['(nijc, njo; nja, nja) — No(Noy — 1) +€ >0, (4.21)
N n;
Z (C(nicv, njo; niev, njer) + T(ni 5,85 05, n5))
N nj
-2 Z [(njo, njfB;nic, niB) — 4 Z ['(nic, njB;njo, nif3)
43N —4S(S+1)+€>0, (4.22)

— Z (C'(nicr, nja; nyee, njer) + U(ng 8, m 858, n55))

n;,n;j
+2 Z ['(nio, njfB;nic,miff) + 4 Z I'(nic, nj B njo, n;f3)
ng,n; ni,n;
—3N +4S(S+1)+€>0. (4.23)

Now we can define Z € B as

Z =Diag(y, I—~, T, Q, G, T1, T2, D). (4.24)

Here, the size of the diagonal matrix D is 2 x (r(r/2+ 1)/2 + 5). The relation of
the matrix D (actually diagonal entries of D) to matrices v and T is defined by

the left hand sides of the inequalities from (4.12) to (4.23). The presence of the
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additional diagonal block D does not significantly add to the computational cost.

We define A, € Bforp=1,2,...,m as

Ay = Diag(A {1}, Ap{2}, A,{3}, A,{4}, A,{5}, Ap{6}, A {7}, A,{8}), (4.25)

and C € B as

O = Diag(C{1}, C{2}, C{3}, C{4}, C{5}, C{6}, CLT}, C{8}),  (4.26)

where A,{i} and C{i} for i =1,2,...,8 have the same sizes as the corresponding
blocks in Z (see 5.2), respectively, namely, r, r, C? C? r? C3 r x C? and
r(r/2 + 1) + 10 (note each A,{i} itself is a block-diagonal matrix, so is C'{i}),
especially A,{8} for p=1,2,...,m and C{8} are diagonal matrices. Substituting

(5.2), (4.25) and (4.26) into the definition of Z in (3.2)

Z = Xm: Ay, — C (4.27)

we have
. iAp{l}yp Ny (1.28)
Iy = f;Ap{z}yp—C{z}, (4.29)
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L= 3 A3, - O3 (4.30)

0 = Y, -cla) (431)
G = iAp{5}yp—C{5}, (4.32)
T1 = f:Ap{6}yp—C’{6}, (4.33)
72 = iApW}yp—C{?}, (4.34)
D = zm:Ap{s}yp—C{s}. (4.35)

Using the relations? of the matrices v, I —, [,Q,G, T1,T2and D (the left hand
side of the inequalities from (4.12) to (4.23)) to v and T, express the left hand
sides of (4.28) to (4.35) in terms of y, for p = 1,2,...,m (recall that y is defined
from y and T, see (4.11)), then compare with the right hand sides of (4.28) to
(4.35), respectively, we can obtain each block of data matrices C' € B and A, € B

for p = 1,2,...,m. For instance, the C{1}, A,{1} for p = 1,2,...,m can be

2 Actually these linear relations are not written explicitly in terms of the “compacted matrices”
for the sake of the simplicity, one has to rewrite those formula in terms of the “compacted”

matrices first.
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determined from (4.28). We write

10 01 0 0
v =100 YD+ [1 0 v1L2)+ 10 1 7(2,2)
0 01
0 00
+ 7(173)_'_ """ + 0 0 ")/(7",7“)
1 00
01
10 01 0 0
= o0 -«-|lnrn+tl10 ---lvy2tl0 1 ---|¥s
0 01
000 ---
N TR I Y P (4.36)
1 00
0 1
where, the ellipses (---, : and "-.) represent zero entries, m, = r(r/2+1)/2 (recall

that ~ has block sizes r/2, r/2). Comparing (4.36) with the right hand side of
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(4.28), we have

c{1} = O,
10
0 1
A1} = 10 ---|»
(4.37)
Ap, = e 00
0 1
A{l} = O (forp=m,+1,m,+2,...,m).

Other blocks of ' and A, for p = 1,2,...,m can be determined similarly from
(4.29) to (4.35). All these data matrices are sparse (including C'), although not
as sparse as those A, in the primal formulation (However the C in the primal
formulation has two dense blocks).

With this approach, we have that m, the dimension of ¥, scales as r*. This, as
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shown in the next section, results in substantial computational savings. We have

m = r(r/2+1)/2 (the size of svec(v))

+Cf/2(03/2 +1)+7%/4 (the size of svec(I)) . (4.38)

In contrast to the primal formulation, m in the dual formulation is the same no
matter how many semidefinite N-representability conditions are applied.

A key point here is that the dual formulation that we are proposing is not the
dual of the natural primal formulation presented in the previous section (or the
slightly different one used in [20, 24]), which has far larger m (order 7% compared
to r*). There is, of course, a primal interpretation for our dual formulation, but it

is the dual interpretation that arises naturally.

4.3 Computational Savings of the Dual Formulation

For an idea of the difference that the dual formulation makes, the largest SDP
problem we solved (see Table 5.19) has basis size = 20 and m = 7230, and
the largest blocks in the data matrices (with P, @, G, T'1 and T2 conditions are
imposed) have size 1450 x 1450. The additional diagonal block D has order only
230. If we were to attempt the primal formulation we would have m = 2561915,

while the largest blocks in the data matrices remain the same.
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The computational cost of solving the SDP problem by standard primal-dual
interior-point methods scales at least as m?. To solve the SDP’s arising from the
RDM method we used the SDPARA code [46], which is a parallel implementation of
the primal-dual interior-point method, derived from the SDPA code [47]. Detailed
analysis of SDPARA[65] shows that the computational cost per processor for one
iteration is approximately

O(m Y2 n /N + N + S32% )

Here N is the number of processors, ny is the k-th block size and nBlock is the
number of the blocks of the block-diagonal matrix variable. For an idea of the
computational savings of the dual formulation, as opposed to the primal one, let
us consider again the largest SDP problem we solved (basis size r = 20, m = 7230).
It has block sizes 10, 10, 10, 10, 45, 45, 100, 45, 45, 100, 200, 100, 100, 120, 450,
450, 120, 1450, 1450, 450, 450, 230 (nBlock = 23). The computational cost per
processor for one iteration then is approximately by 3.0 x 10? flops (IV is assumed
to be 16 as in our computations). If we were attempt to the primal formulation
(m = 2561915 and nBlock = 22), we would have that the computational cost
per processor for one iteration was approximately by 1.1 x 10'® flops. SDPARA
solves the SDP problems arising in the RDM method within 50 iterations (with

the desired accuracy). If we assume the primal and dual formulations need ap-
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proximately the same number of iterations, then we find that the computational
cost (of either one processor or all processors) of the dual formulation is reduced
by ~ 5 orders of magnitude, compared to the primal formulation.

The reduction of m in the dual formulation also substantially lowers the mem-
ory requirement for solving the SDP problems. Detailed analysis of SDPARA [65]
shows that the memory requirement (of all processors) is approximately

N(©2m?/N +m + 21 751% n2 4 nZ) x 8 bytes,
where nZ is the total number of non-zero entries of the linear constraint matrices
A, forp=1,2,...,m and C. We still take the example above (r = 20, m = 7230)
to evaluate the savings of the memory requirements of the dual formulation. We
assume nZ = 5 x m for the primal formulation (i.e., about 5 non-zeros in each A,
and C) and much higher sparsity 3 72°” ny, x m (about 1 non-zeros in each line of
A, and C) for the dual formulation (this is a much higher sparsity compared to the
actual one), and N is still 16. The memory requirement of the dual formulation is
approximately by 4.1 x 10'° bytes. If we attempted to the primal formulation, we
would have that the memory requirement was approximately by 1.1 x 10 bytes.

It is safe to say that the dual formulation lowers the memory requirement by ~ 4

orders of magnitude.
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5 Results and Discussions

The RDM method with the dual formulation are used to calculate the ground
state properties of 47 small molecules, imposing (P,Q), (P,Q,G), (P,Q,G,T1),
(P,Q,G,T2), (P,Q,G,T1,T2) conditions, respectively. The results are compared
with those obtained from other more familiar methods: Hartree-Fock, MP2, SDCI,
QCISD, BD(T) and CCSD(T) by using the GAUSSIAN 98 code. For the molecules
for which the full CI calculations are feasible (31 molecules), the results are also
compared with the full CI results. The geometries used are the experimental ones
from [63] and the basis set is STO-6G' (the basis in which each Slater-type orbital
is expanded with 6 Gaussian-type orbitals) [60, 61, 62] for all systems. The ma-
trices of one-body and two-body Hamiltonians needed for the RDM method are
obtained from GAUSSIAN 98. The SDP data files from the RDM method with
the dual formulation were produced by our Matlab code on Neumann (IRIX64 6.5
[P27, 4CPU’s, Memory: 2304M max), provided by the ITS (Academic Computing

Services) of New York University. The resulting SDP’s from the RDM method

!STO-6G is not an orthonormal basis, we orthonormalize it by using the transformation

(3.167) in [45] first.
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are solved by using the SDPARA? code. The calculations of solving SDP’s were
performed on Seaborg (IBM SP RS/6000, Power3 375MHz processor x 16 CPUs,
and 32 GB of main memory), a resource of the National Energy Research Scientific
Computing Center (NERSC) at Lawrence Berkeley National Laboratory; we used
16 processors to solve our problems. After obtaining 1-RDM’s and 2-RDM’s from
solving SDP’s, we calculated the ground state properties on Neumann again, and
all those quantities and matrices needed for calculating the ground state proper-
ties (such as the nuclear repulsion energy, the position matrices, the kinetic and
potential matrices, etc.) were obtained from GAUSSIAN 98. The full CI calcu-
lations are performed on Neumann using our Matlab code, the needed one-body
and two-body Hamiltonians obtained from GAUSSIAN 98. The calculations of the
other methods (Hartree-Fock, MP2, SDCI, QCISD, BD(T) and CCSD(T)) were

performed on Seaborg by using GAUSSIAN 98.

2To choose an appropriate SDP solver for our large scale problems, we did a detailed bench-
mark work on the available SDP solvers, such as SeDuMil05 [66], SDPT3 [67], DSDP4 [68],
PDSDP (parallel version of DSDP) [68], Bundle code[69], SDPA [47]. It turned out that SD-
PARA was the best fit for our problems because it can manage the large memory requirements of
our SDP problems by using multiple processors while providing the desired accuracy, robustness

and speed.
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5.1 Roles of the 71 and 72 Conditions

One of the advances in this thesis is that we successfully implemented a pair
of the three-index N-representability conditions, 7'1 and 72 conditions, which
is not possible in the primal formulation because of the computational cost as
shown in Chapter 4. As described in Chapter 1 , the advance in the analytical
research on the RDM method has demonstrated its huge potential. One important
part of research on the RDM method is to investigate computationally which N-
representability conditions are essential for the RDM method in the sense that the
lower bound given by the RDM method can approximate the ground state energy
with high accuracy. In addition to the well-known P, ) and G conditions which are
essential for the RDM method as shown in previous investigations [10, 11, 20, 24],
we incorporated T'1 and T2 conditions into the RDM method. In this section, we
discuss the roles of the T'1 and T2 conditions, investigating how they improve the
accuracy of the RDM method when it is applied to the calculations of the ground

state properties of small molecules.

5.1.1 The Ground State Energy

Table 5.1 and Table 5.2 show the ground state energies calculated by the RDM

method for 47 small molecules, imposing the (P,Q), (P,Q,G), (P,Q,G,T1), (P,Q,G,T2)
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and (P,Q,G,T1,T72) conditions, respectively. Table 5.1 lists only those molecules
for which the full CI result is available (last column), and the energies are given as
a difference from that of the full CI (absolute error). The energy and the energy
difference are in hartree (627.51 kcal/mole, or 27.211 eV).

The RDM method provides a lower bound for the full CI result in the same
model space, and it gives exact solutions for the cases N =2 and N = r — 2 using
only the P and @ conditions [3]. These predictions are confirmed in our calculations
(see the “~” signs of columns 5-9 and see the results for molecules OH™ and HF
in Table 5.1 when only the P and @ conditions are imposed). Previous numerical
results of Nakata et al. [20, 24] suggest that adding the G condition to the P
and () conditions is essential to obtain a solution that is competitive at least with
the Hartree-Fock approximation, and our present results confirm that conclusion
for a larger set of molecules. In certain cases (LiH, BeH, BH", CH™, NH, NH™,
OH™T, OH, OH~, HF ', HF, SiH~, HS™) the difference between the result of the
RDM method using P, () and G conditions (simply the RDM (P,Q,G) hereafter)
and the full CI result is around 0.1 mhartree or less as seen in Table 5.1. In the
other cases in Table 5.1 the RDM (P,Q,G) errors are several mhartree: up to 16.7
mhartree for OF .

The results of the RDM method are improved by inclusion of the 11 condition,
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and improved spectacularly by adding both the T'1 and 72 conditions (or even
T2 alone). As mentioned in previous chapters, these are the three-index positive
semidefinite conditions that extend the Weinhold-Wilson diagonal conditions. We
see that the RDM method with P, @), G, T'1 and T2 conditions gives almost the
exact full CI values for the ground state energies, with error around 0.3 mhartree
(or 0.19 kcal/mole) or less for almost all of the cases in Table 5.1. The only two
exceptions are molecule CF (error 0.9 mhartree, or 0.56 kcal/mole) and OF (error
2.8 mhartree, or 1.8 kcal/mole). The improvement of inclusion of 71 and 72
conditions is up to 14 mhartree, about 8.8 kcal/mole (this maximum improvement
occurs for the worst case O;’) The molecule CH, 'A; also shows a dramatic
improvement; after adding 7'1 and T2, its error of 11.8 mhartree of the RDM
(P,Q,G) reduces to 0.1 mhartree for the RDM (P,Q,G,T1,72). The improvement
is around 12 mhartree, about 7.3 kcal/mole.

For those molecules without the full CI reference (Table 5.2), we cannot eval-
uate their errors (difference from that of full CI) exactly, but the improvement
of the results by inclusion of 7’1 and 72 conditions can be evaluated. Because
the RDM method gives the lower bound for the ground state energy, any increas-
ing of the energy by inclusion of more N-representability conditions indicates the

improvement. We see that after adding 7'1 and 72 conditions all the calculated
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energies are increased. Compared with the relatively smaller systems in Table 5.1
(for which full CI calculations are feasible), the improvement of the energy calcu-
lations for these systems is much larger. The improvement is up to 0.042 hartree

(for Cy '3¢™), about 26 keal/mole.

5.1.2 The Correlation Energy

Table 5.3 shows the correlation energies (in percentage) calculated by the RDM
method adding (P,Q), (P,Q,G), (P,Q,G,T1), (P,Q,G,12), (P,Q,G,T1,T2) condi-
tions (columns 5-9) respectively, for those molecules in Table 5.1. The correlation
energy is defined as 100 x (E— Eyy)/(Erci— Enr), where E is the calculated energy
by any method, Eyr and Epc; are Hartree-Fock and full CI energies, respectively.
The last two columns show the Hartree-Fock (from GAUSSIAN 98) and full CI
results, which are 0 and 100 respectively for all systems.

Compared to the absolute error of the energy calculation shown in Table 5.1, the
correlation energy shown in Table 5.3 is the better criteria for the error evaluation
of the energy calculations. As shown in Table 5.3, the RDM (P,Q,G) gives the
largest error 19 for molecule CH, Ay, it is reduced to 0 when the T'1 and T2
conditions are included in the calculation. We see that the 7'1 and 72 conditions

significantly improve the accuracy of the correlation energy calculations; most of
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the molecules in Table 5.3 except CF and Oj now have correlation energy 100
which is the full CI value, and even the two exceptions CF and OF also have very
accurate correlation energies: 101 and 102, respectively. Table 5.3 shows that the
RDM (P,Q,G,T1,T2) reproduces well the full CI energies for our collection of 31
small molecules.

One interesting observation from Table 5.3 is that all those molecules with
big response to the 7’1 and 7’2 conditions are those molecules with more than 3
composite atoms; they are in turn CHy 'A; (119 — 100), NH3 'A; (117 — 100),

BH, %A, (115 — 100), H;O* (112 — 100) etc.

5.1.3 The Dipole Moment

Table 5.4 and Table 5.5 show the dipole moments in atomic unit (a.u., or 2.5418
Debyes) calculated by the RDM method for the same molecules using the various
representability conditions, respectively. The molecules in Table 5.4 and Table 5.5
are those of Table 5.1 and Table 5.2 that have a non-zero dipole moment, respec-
tively. The last column in Table 5.4 shows the values obtained by the full CI
where we could do the calculations. Like the results for the ground state energy
the results for the dipole moment are very encouraging. For the RDM (P,Q,G)

(see Table 5.4) we obtain an error of around 0.0001 a.u. or less (with respect to
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the full CI result) for LiH, BeH, BH", CH~, NH, NH~, OH*, OH, OH~, HF ™,
HF, SiH™ and HS™; this is the same list of molecules for which the RDM (P,Q,G)
gave a highly accurate ground state energy. The maximum error, around 0.0295
a.u., occurs for molecule CF for which the energy calculation also has a big error.
When the T1 and T2 conditions are added the dipole moment error falls to
around 0.0005 a.u. or less for all of the remaining molecules in the list in Table 5.4
except molecule CF (error 0.0045 a.u.). Still the top two improvements occur
for molecule CF (improvement 0.0250 a.u.) and CH, 'A; (improvement 0.0234
a.u.). Table 5.4 together with Table 5.1 shows that when the energy calculation is
improved , the dipole moment calculation is also improved without exception.
One encouraging observation of the RDM method is that once the energy is
obtained with high accuracy, the dipole moment calculation also reaches high ac-
curacy. This is another advantage of the RDM method over the other traditional
variational methods in which a first order error in the trial wave function results
in a second order error in the energy, so a poor trial function may produce amaz-
ingly good result on the ground state energy, but not on the other ground state
properties [3]. We attribute it as the consequence of the fact that all constraints
we added into the RDM method are the ones from the general characteristics of an

N-electron (or N-fermion) system, not the constraints from the properties specific
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to some quantities of the system.

For the dipole moment calculation, the RDM method does not provide a bound
(lower or upper) for the full CI result (see Table 5.4). For those molecules without
full CI references (Table 5.5), we do not have exact error evaluations. We see that
after inclusion of T'1 and T2 conditions, the dipole moment calculations changes
up to 0.2 a.u. (for molecule BeO). Strictly speaking, we do not know if this is an
improvement or not, but it is reasonable to regard it as an improvement, because
the RDM method gives improved dipole moment when the accuracy of the energy
calculation is improved as seen in Table 5.4 and Table 5.1 without exception. And
later in the discussions of the deviations of v and I" we see that when the energy is
improved, the deviations of v and I" are smaller, so it is reasonable to expect more
accurate expectation values for all one-body or two-body operators, including the

dipole moment.

5.1.4 The Virial Coefficient

Table 5.6 shows the Virial coefficients calculated by the RDM method adding
(P,Q), (P,Q,G), (P,Q,GT1), (P,Q,GT2), (P,Q,G,T1,T2) conditions (columns
5-9). The last two columns (columns 10-11) show the results of the full CI and

Hartree-Fock methods. The symbol “—” in last column means that the full CI
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result is not available.

The Virial coefficient is the ratio of the potential over kinetic energy of the
system; its theoretical value is 2 for all systems for which only the Coulomb in-
teraction is involved as the two-body interaction. If the full CI calculations were
performed in the whole space (infinite), it should give 2 as expected. In practice,
because our calculations are performed in a model space, even the full CI is not
giving 2. As shown from the Table 5.6, the error of the RDM (P,Q,G) falls be-
tween 0.0001 ~ 0.0003 for all molecules with the full CI reference, and the RDM

(P,Q,G,T1,T2) gives exactly the same Virial coefficient as full CI.

5.1.5 The Deviations of v and I

Table 5.7 and Table 5.8 show the deviations of 1-RDM ~ and 2-RDM I' cal-
culated by the RDM method with (P,Q), (P,Q,G), (P,Q,G,T1), (P,Q,G,T2),
(P,Q,G,T1,T2) conditions from that of full CI. The deviations Ay and AT are

defined as Frobenius norms of ¥ — vpcr and I' — T'p¢y, respectively, i.e.,

Ay = Z(v(z‘,j)—m(z‘,j))Z,

AT = > (TG, 431, 4') = Tra(i, j; &, §7)2

P gl gl
7’7]7Z 7]

From Table 5.7 and Table 5.8%, we see that the deviations of v and T' are

3For the molecules in 2II state, the ground state is two-fold degenerated. When the two-fold
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significantly reduced when the 71 and 72 conditions are added in addition to
the P, @ and G conditions.The RDM (P,Q,G,T1,T2) at most gives both the
deviations of the order of 1072 (except the molecules CF 2IT and O 2II). The
most dramatic decrease of Ay occurs for the molecule CH, 'A;, from 0.039872
for the RDM (P,Q,G) to 0.000545 for the RDM (P,Q,G,T1,T2). The biggest
decrease of AL occurs also for the molecule CH, 'A;, from 0.15267 for the RDM
(P,Q,G) to 0.001883 for the RDM (P,Q,G,T1,T2). The next three molecules
with the biggest improvement are in turn NHjz (0.146889 — 0.002210), H30™"
(0.093964 — 0.001804), and BH, (0.091155 — 0.001314). (Again, those molecules

with 3 or more composite atoms have a bigger response to 7'l and 72 conditions.)

5.2 Comparisons of the RDM method to other methods

Now, we compare the RDM (P,Q,G,T1,T72) results of the ground state proper-
ties for the same 47 small molecules with the results obtained by other more
familiar methods with use of the GAUSSIAN 98 code [59]: Hartree-Fock, 2nd

order Mgller-Plesset (MP2), singly and doubly substituted configuration interac-

degeneracy occurs, the interior-point SDP solver (SDPARA) theoretically gives the same weight
mixture of the two degenerated solutions [72]; so the deviations Ay and AT are calculated with
respect to (Yror + yrci2)/2 and (Tpor + Trere)/2, respectively, where the indices 1 and 2

represent the two degenerated full CI solutions.
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tion (SDCI), quadratic configuration interaction including single and double sub-
stitutions (QCISD), Brueckner doubles (with triples) (BD(T)) and coupled cluster
singles and doubles with perturbational treatment of triples (CCSD(T)), where
CCSD(T) is arguably the most accurate single method available in GAUSSTAN

98 [64].

5.2.1 The Ground State Energy

Table 5.9 and Table 5.10 show the ground state energies calculated by the RDM
method adding (P,Q,G,T'1,T2) conditions and those obtained by methods CCSD(T),
BD(T), QCISD, SDCI, MP2 and Hartree-Fock (columns 6-11) from GAUSSIAN
98. Table 5.9 includes only those molecules for which the full CI calculations are
available (the same molecule list as in Table 5.1), and the energies are given in the
difference from the full CI energies (the last column). Table 5.10 includes those
molecules without full CI references (the same molecule list as in Table 5.2). The
energy and the energy difference are in hartree.

As seen in Table 5.9, for all 31 molecules with full CI references, the error
(absolute error) of the RDM (P,Q,G,T1,T2) is less than that of other methods
including the most accurate (arguably) CCSD(T) without exception. The error of

the RDM (P,Q,G,71,T2) is 0.1 mhartree or less (0.06 kcal/mole) for most of the
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molecules in the list. Even in the worst case OF (2.8 mhartree, or 1.8 kcal/mole),
the accuracy of the RDM (P,Q,G,T1,T2) compares favorably with the CCSD(T)
(3.3 mhartree, or 2.1 kcal/mole), BD(T)(3.4 mhartree, or 2.1 kcal/mole) and SDCI
(12.4 mhartree, 7.8 kcal/mole), MP2 (4.2 mhartree, 2.6 kcal/mole) and Hartree-
Fock (170.1 mhartree, or 107 kcal/mole) approximations.

Recall the RDM (P,Q,G) results (see Table 5.1), for which the errors are well
below the Hartree-Fock and MP2 errors in magnitude, but the other approxima-
tions are in turn typically much better than the RDM (P,Q,G) result. Only after
inclusion of T'1 and T2 conditions, the RDM method becomes the most accurate
method.

For those molecules without full CI references (Table 5.10), we list the results

for benchmark purposes.

5.2.2 The Correlation Energy

Table 5.11 shows the correlation energies (in percentage) calculated by the RDM
method adding (P,Q,G,T'1,T2) conditions and those obtained by methods CCSD(T),
BD(T), QCISD, SDCI, MP2 (columns 6-10) from GAUSSIAN 98. Again, the
RDM (P,Q,G,T1,T2) gives the most accurate results compared with other meth-

ods without exception.
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5.2.3 The Dipole Moment

Table 5.12 and Table 5.13 show dipole moments calculated by the RDM method
adding (P,Q,G,T1,T2) conditions and those obtained by methods QCISD (QCI/CC),
SDCI, MP2 and Hartree-Fock (columns 6-9) from GAUSSIAN 98. (Dipole mo-
ments are not available from CCSD(T) and BD(T) in GAUSSIAN 98.) Table 5.12
shows only those molecules for which the full CI calculations are available (the
same molecule list as in Table 5.4), and the dipole moments are given in their dif-
ferences from the full CI values (the last column). The dipole moment and dipole
moment difference are in a.u. Table 5.13 includes those molecules without full CI
references.

For all molecules in Table 5.4, without exception the RDM (P,Q,G,T1,72)
results for the dipole moment compare very favorably to the accuracy obtained
from other available methods: QCISD (QCI/CC), SDCI, MP2 and Hartree-Fock.
Table 5.12 shows that the errors of QCISD (QCI/CC) (the best among QCISD,
SDCI, MP2 and Hartree-Fock) have a big fluctuation; for all the cases for which
QCISD (QCI/CC) gives relatively big errors, the RDM (P,Q,G,T1,72) gives dra-
matically reduced errors. For instances, for molecules CH™, NH™, NO~ and OH™,
QCISD (QCI/CC) gives errors of 0.0471 a.u., 0.0279 a.u., 0.0181 a.u., and 0.0123

a.u., respectively, while the RDM (P,Q,G,T1,T2) gives 0.0000 a.u., -0.0000 a.u.,

52



0.0000 a.u. and 0.0001 a.u., respectively.
For those molecules without full CI references (Table 5.13), we list the results

for benchmark purposes.

5.3 Numerics

In this section, we present some issues related to the numerical calculations. Espe-
cially we address two important issues related to the accuracy of our results: one
is how accurately an SDP solver (SDPARA) solves the SDP problems arising from
the RDM method; the other is how the linear equality relaxation (LER) used in
our dual formulation affects the accuracy of the RDM method. To address the sec-
ond issue, we need to have the solution with the linear equality constraints (LECs)

exactly included in the RDM calculations; the alternative way of including the
LECs in the dual formulation, as we mentioned in the Chapter 4, fits this purpose.
In section 5.3.3 we will present the implementation of this alternative way which
exactly includes LECs, and in section 5.3.4 we will compare its results with that
of the RDM method with the LER to see how big an error the LER can introduce
to the RDM calculations. To distinguish these two different ways of including the
LECs in the dual formulation of the RDM method, we will use the RDM-LER to

denote the RDM method with the LER, and will use the RDM-LEE to denote
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the RDM method with the linear equality constraints exactly included. Theoret-
ically, the RDM-LER is an approximation of the RDM-LEE, and the accuracy of

the RDM-LEE represents the accuracy of the RDM method.

5.3.1 Numerical Accuracy

As we mentioned at the beginning of this chapter, we use the SDPARA code to
solve the SDP’s arising from the RDM method. SDPARA gives very accurate
solutions for our problems. As discussed in Chapter 3, once we have primal and
dual feasible solutions, the quality of the solution can be measured by the dual-
ity gap, or difference between the primal and dual objective functions. SDPARA
outputs the following error values: the duality gap |b'y — Tr(C'X)|, the relative
duality gap [b'y — Tr(CX)|/ max{1.0, (|b'y| + |Tr(CX)|)/2}, the primal feasibil-
ity error max{|Tr(A4,X) — b,| : p = 1,2,...,m}, and the dual feasibility error
max{|[>>", Ay, —C —Z],s : 7,5 =1,2,...,n}. For all numerical calculations we
conducted with the SDPARA, the duality gap, the relative duality gap, the primal
feasibility error and the dual feasibility error* are less than 107>, 10~%, 107, and

107", respectively, which give reliable numerical accuracy for our results (reliable

4SDPARA names the primal and dual opposite to ours, it calls our dual problem (3.2) the
primal, and calls our primal problem (3.1) the dual. So in the outputs of the SDPARA, we have

switched these two.
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at least to the fourth decimal place for the energy calculation), as seen in Table 5.14

to Table 5.18.

5.3.2 SDP sizes and CPU Time

Table 5.19 shows the sizes of the SDP problems for those molecules to which the
RDM method is applied. The SDP sizes are determined by the basis size r only.
The largest SDP problem we have solved has m = 7230 with maximum block size
1450.

Table 5.20 shows the total CPU time for solving the SDP’s arising from the
RDM method. As shown in Table 5.20, solving SDP is very expensive. For our
problems, the most time-consuming part is forming explicitly a dense m by m
positive semidefinite matrix named the Schur complement matrix and performing
its Cholesky factorization at each iteration to obtain a search direction that in-
dicates the direction of the next point in the iteration. It is highly desirable to
develop a faster SDP solver. There are some ideas toward this work, such as using
the Conjugate-Gradient (CG) [70] method to substitute for Cholesky factorization
when solving the dense m by m linear system in each iteration, so that the cost
of solving the linear system can be reduced [70]. But the use of the CG method

is not easy, because when the iterate is close to optimal, the condition number of
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the Schur complement matrix is huge [71], and this dramatically slows down the
convergence rate of the CG method. Another very natural idea is to combine some
physical properties of the v and I' to the process of solving the SDP to develop an
effective solver which addresses well our problem properties instead of the general

purpose SDPARA.

5.3.3 The RDM-LEE — The RDM method with the linear equality

constraints exactly included

Now we briefly discuss the alternative way of including (exactly) the linear equality
constraints (LECs) in the dual formulation of the RDM method — the RDM-LEE.
Recall that we use a small number € to relax each LEC into a pair of inequalities
which can be cast into two 1-dimensional semidefinite conditions in the dual for-
mulation (3.2), so that we are able to include the linear equality N-representability
conditions in the dual formulation of the RDM method. The alternative way to
include LECs in the dual formulation is to eliminate those dependent variables by
using LECs.

In our implementation, there are in total 5 + r(r/2 + 1)/2 number of LECs,
among which LECs (2.8) and (2.9) are not independent, so 4+7(r/2+1)/2 number

of the dependent dual variables are removed from the y,’s (p =1, ..., m). There
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is freedom to choose which elements to eliminate. In our implementation (of the
RDM-LEE), the 1-RDM is completely removed from the formulation by using the
LECs (2.7); they are the first m, number of dual variables from v: y1,y2,... Ym. .
where m,, = 7(r/2+1)/2. In addition, another 4 elements of I': T'(1,2;1,2), I'(r/2+
Lr/2+2r/2+41,r/2+42), T(1,r/2+1;1,7/2+1) and T(1,7/2+2;2,7/2 + 1) are
also removed by using the LECs (2.23), (2.9), (2.22), and (2.24), respectively; these
are the dual variables Y. 11, Ym,+mi+1, Ymy+2my+1, a0d Yop, 1o, in our ordering,
respectively, where m = 03/2(03/2 + 1)/2. The elimination of these dependent
variables is done by recursively calling a subroutine which handles elimination rules
instead of analytically deducing the dual formulation for this exact inclusion of the
LECs.

Suppose after removing those variables, the remaining y,’s form a new vector

r € R™d, where meq = m — (4 4+ r(r/2 + 1)/2); then the original minimization

problem (3.2) is now changed to

min alz + e
TERMed, SEB
Meq (51)
subject to S > 0, where S = Zquq —Fy.
q=1

Here the constant ey appears from the simplification of removing those dependent
variables from the original dual objective function b'y, and the data vector a €

R™ed can be defined by the relation by = a'z + e¢y. Fy € B is the data matrix
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(corresponding to the data matrix C'), and F, € B for ¢ = 1,2,...,m. denote
the linear constraint matrices. The dual variable matrix S € B is now defined as
the same as Z except without the diagonal matrix D. For instance, for the RDM

(P,Q,G,T1,T2) calculations, S is defined as

S =Diag(y, I—-~, T, Q, G, T1, T2). (5.2)

F, (any q from 1,2,...,m¢4) can be obtained from the corresponding remaining
A, (there is one-to-one index mapping between ¢’s and those remaining indices
p’s) incorporating those contribution elements from the removed A,’s (F} is the
linear sum of the related A,’s, discarding the last blocks of these A,’s). Fjy also can
be obtained similarly from C' incorporating those contributions from the removed
Ays.

We omit the further details about the RDM-LEE and discuss our conclusions.
Our experiments show that the SDP’s resulting from the RDM-LEE are much
harder to solve; SDPARA runs into numerical problems (step length too small
or failure of the Cholesky factorization) for the most of the SDP’s produced by
this implementation. Fortunately, if an appropriate parameter set is chosen for
SDPARA, it can solve some of the cases, so that we are able to see how big

an error the LER can introduce to the results of the RDM calculations (see next

section). But the search for the right parameter set for SDPARA was very difficult,
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and the values change from case to case. Even though some cases can be solved,
usually the numerical accuracy is much lower no matter how the parameters are
chosen. This means the SDP’s arising from the RDM-LEE are numerically not as
stable as the ones from the RDM-LER (the RDM method with the linear equality
relaxation), for which the resulting SDP’s usually can be solved under the default
parameter set with much higher than the required accuracy.

As a last remark about the RDM-LEE, we believe it is too early to conclude
that this implementation is always numerically unstable and too difficult to be used
for the RDM calculations. There is still a lot of careful work to be done before
making such a conclusion, especially as the choice of which elements to eliminate

may dramatically affect the stability of the SDP’s arising from the RDM-LEE.

5.3.4 Accuracy of the RDM method and the Linear Equality Relax-

ation

We are now ready to discuss the remaining question, how the LER affects the accu-

racy of the RDM method. We will take molecule BH, 2A; as an example to discuss

this by investigating its RDM (P,Q,G) and RDM (P,Q,G,T1,T2) calculations.
Table 5.21 and Table 5.22 show the primal and dual optimal values and related

errors of the SDP’s arising from the RDM (P,Q,G), and the RDM (P,Q,G,T1,T2)
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calculations when the linear equality relaxation constant € takes a series of small
numbers for the molecule BH, ?A; (r = 14, N = 7, N, = 4). Columns 2 and
3 show the dual and the primal optimal values, respectively, and columns 4-6
show the duality gap, the relative duality gap, the dual and primal feasibility
errors, respectively. They also show the results of the RDM-LEE (row 7); the two
numbers shown in the last row are the dual and primal optimal values after adding
the constant ey (eg = —35.482891992 hartree) appearing in the objective function
of the RDM-LEE (5.1). The two bold numbers in each row (they are the same
including the round-off in the last figures) are the solutions determined with the
best numerical accuracy by the SDPARA.

First we notice that SDPARA gives very accurate numerical solutions for the
cases in Table 5.21 including the SDP problem from the RDM-LEE (with reliable
figures up to the 5-th decimal place). So the numerical solution of the RDM-LEE
can serve as the exact solution of the RDM (P,Q,G) (within an accuracy up to
the 5-th decimal place).

An important observation from Table 5.21 is that the solutions corresponding
to the series of €’s (from 107* to 10~®) are the strict lower bounds for the solution
of the RDM-LEE. When ¢ is reduced, the solutions (those bold numbers) of the

RDM-LER monotonically increase to close to the solution of the RDM-LEE. This
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is expected, because the RDM method gives the lower bound for the ground state
energy (full CI energy); € being smaller means that more strict constraints are
applied to the calculation, so a tighter (higher) lower bound (a more accurate
result) is expected as seen from Table 5.21. This leads us to a conclusion that the
accuracy of the RDM-LER is a lower bound for the accuracy of the RDM-LEE.
So if we claim an accuracy for the RDM method by investigating the results from
the RDM-LER (as we did in our calculations), we will under estimate the actual
accuracy of the RDM method (which is the accuracy of the RDM-LEE), and we
will not claim a higher accuracy mistakenly due to the error introduced by the e.

We see that when ¢ = 107* (relatively big), the optimal value -30.4366684
differs even on the third decimal place compared with the result of the RDM-LEE
-30.43579 (we omit the unit hartree hereafter for simplicity). But when e = 107°
and less, all the calculations give the same value -30.4358 as the result of the
RDM-LEE up to the 4-th decimal place. Therefore if we use € = 1075 or less (we
used 107 for the RDM (P,Q,G) calculations), the accuracy of the RDM-LER will
basically represent the actual accuracy of the RDM (P,Q,G).

We have similar observations for the RDM (P,Q,G,T1,72) calculations as
shown in Table 5.22. We see that when € gets smaller, the solutions corresponding

to those €’s (from 10™* to 10™%) are monotonically higher and provide strict lower
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bounds for the result of the RDM-LEE. The only difference is that we were not able
to solve the SDP from the RDM-LEE in this case with a higher numerical accuracy
(accurate up to third decimal place). So the above observations are valid for an
accuracy up to the third decimal place. When ¢ is 10 7% or less all calculations
give the same value -30.430 as the RDM-LEE. For more accurate observation (at
least up to the 4-th decimal place), the numerical solution of the RDM-LEE in this
case cannot serve as the exact solution of the RDM (P,Q,G,T1,T2) as expected
theoretically, because it was not solved with a high numerical accuracy. We can
use the full CI result to evaluate how far away the result of the RDM-LER is from
that of the RDM-LEE as shown in Table 5.23.

Table 5.23 shows the RDM(P,Q,G) and the RDM(P,Q,G,T1,T72) results for the
ground state energy, the correlation energy, the dipole moment and Virial coeffi-
cient for molecule BH, 2A; (r = 14, N = 7, N, = 4) when the relaxation constant
¢ takes a series of small values. It also shows the results of the RDM-LEE (row 7)
and the full CI (last row). (Note: the optimal values in Table 5.21 and Table 5.22
plus the nuclear repulsion energy 4.726961554 give the ground state energy for the
molecule BH,.) Table 5.23 shows that for the RDM (P,Q,G) calculations, when e
is 1077 or less the accuracy of the energy calculation gives the same accuracy as the

RDM-LEE; and when € is or less than 107°, 107% and 107°, respectively, the accu-
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racy of the correlation energy, dipole moment and Virial coefficient calculations,
respectively, is the same as the RDM-LEE. For the RDM (P,Q,G,T'1,72) calcula-
tions, we want more decimal places than the numerical solution of the RDM-LEE
provides, so we compare with full CI result for which the result of the RDM-LEE
is a lower bound. When ¢ is 107% or less, the corresponding energy calculations
show the same accuracy (an error of -0.0001) which means that the energy given
by RDM-LER is lower than that of the RDM-LEE (no more than -0.0001 for these
values of €). And when ¢ is or less than 1075, 1075 and 107, respectively, the
correlation energy, dipole moment and Virial coefficient calculations, respectively,
give the same value as the full CI; this means that the accuracy of the RDM-LER
represents the actual accuracy of the RDM-LEE (P,Q,G,T1,T2) for these values
of e.

If € is too small, the feasible region is so narrow that SDPARA cannot solve
the SDP and runs into numerical trouble. From Table 5.21 and Table 5.22 we
can see that when € gets smaller, the numerical accuracy of solving the related
SDP’s gets lower (see the error information from these tables, especially the gap).
This sets a trade-off for the RDM-LER: if we choose a relatively big €, then the
resulting SDP’s can be solved with high numerical accuracy, but we will lose the

accuracy of the RDM method because the LECs are not satisfied; if we choose
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a relatively small €, then the LECs are satisfied with a desired accuracy, but we
may lose the accuracy of the RDM method because of not being able to solve the
resulting SDP’s with high numerical accuracy. Of course, the ideal case is that the
resulting SDP’s from the RDM-LER for a sufficiently small € can be solved with a
desired high numerical accuracy.

In our calculations, with the use of ¢ = 10~" we were able to solve all of
the SDP’s from the RDM(P,Q), (P,Q,G) and (P,Q,G,T1), and from the RDM
(P,Q,G,T2) and the RDM (P,Q,G,T1,72) for some relatively small molecules in
our collection. For the most of the RDM (P,Q,G,T2) and the RDM (P,Q,G,T1,T2)
calculations, we used ¢ = 107 to provide enough feasible region to release the
numerical difficulty. (This doesn’t mean we absolutely cannot solve them with
a smaller €, but because looking for the best parameter set for SDPARA is very
expensive, we did not try to do it). Basically the SDP’s produced by the RDM-
LER when € is not too small are much easier to solve without the trouble of looking
for the right parameter set. For most of the molecules the SDP’s are solved using
the default parameter set of SDPARA with a very high numerical accuracy (as
shown in Table 5.14 to Table 5.18 ).

We now come to the concluding remarks about the relationship between the

LER and the accuracy of the RDM method. Use of the LER makes the accuracy of
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the RDM method appear lower than its potential. When the relaxation constant e
is taken sufficiently small, the accuracy of the RDM-LER represents the accuracy
of the RDM method (of the RDM-LEE). The investigation on the molecule BH,
2A, suggests 1077 and 10~° as good choices for this sufficiently small value of e
approximately for the RDM (P,Q,G) and the RDM (P,Q,G,T1,72) calculations,
respectively, giving an accuracy of the energy calculation up to the fourth decimal
place. Although this suggestion can be slightly different from molecule to molecule,
the bottom line is that we will not claim a higher accuracy for the RDM method
whatever values € takes. All the claims we have made toward the accuracy of the
RDM method based on the results of the RDM-LER are valid. Actually if we were
able to accurately solve those SDP’s arising from the RDM-LEE, we would have

seen a higher accuracy for the RDM method.
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6 Conclusion

The RDM method has been used to compute the ground state properties of a
collection of small molecules and molecular ions, both open- and closed-shells.
Analysis of the computational cost shows a large advantage for the dual formulation
(as opposed to the primal one) for solving the semidefinite programs that arise.
The addition of the three-index representability conditions 7'1 and 12 provided a
dramatic improvement of accuracy for the ground state energy, the dipole moment
and other ground state properties over that obtained using only the P, ) and
G conditions. In the collection of 31 small molecules with full CI references, the
error in the ground state energy (in the model space) is below 0.9 mhartree or 0.6
kcal/mole (except Oj molecule, 2.8 mhartree or 1.8kcal/mole); and the error in
the dipole moment was below 0.0005 a.u. (except the CF molecule, 0.0045 a.u.).
The RDM method gives more accurate results than other approximation methods
based on the wave function including the most accurate (arguably) single method
CCSD(T). (CCSD(T) gives the error in the ground state energy below 2.4 mhartree
or 1.5 kcal/mole (except OF molecule, 3.3 mhartree or 2.1 kcal/mole) for the same

collection of molecules.)
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As indicated by the two exceptions (the molecules O and CF), the (P, Q, G,
T1, T2) family of conditions still leaves room for improvement. Some version of
the higher-index diagonal conditions [5] (which must hold for any choice of one-
electron basis) and of the Hamiltonian-related N-representability conditions (e.g.,
[8]) may find their roles in the RDM method.

All our calculations were done using a general-purpose semidefinite program-
ming software. Certainly the systems that we were able to handle this way are very
small by the standards of ab initio quantum chemistry, and a challenge for future
work will be to develop optimized computational methods for the present applica-
tion while preserving the high accuracy that is obtained by use of the SDPARA
code.

The familiar determinantal approximations are poor at representing the cusp
in the wavefunction where two electron positions coincide. For high accuracy
calculations the RDM formulations seems a perfect setting for incorporating cusp
conditions. This will require choosing a different basis for the 2-RDM than the
one formed by the antisymmetrized products of the 1-RDM basis functions, and it
will affect the linear relations between the 1-RDM, 2-RDM, and the matrices that
occur in the representability conditions. Ways of incorporating the cusp into the

2-RDM need to be investigated.
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Table 5.19: Sizes of the SDP problems (for the dual formulation). Here r is the
basis size, m is the dimension of the dual variable y (or equivalently, the number
of linear constraints in primal formulation). The number of the blocks nBlock,
the largest block size n,,,, and the size of the additional diagonal matrix D of
the dual matrix variable of Z are shown in columns 4, 5 and 6, respectively.
The second column shows the N-representability conditions (in addition to the
linear equality conditions) applied to the RDM method. Just for reference, the
last column shows the m that we would obtain if we were to attempt to use the

primal formulation.

r conditions m (dual) nBlock N, size of D | m (primal)
12 PQ 948 11 36 94 995
PQG 948 14 72 94 4955
PQGT1 948 18 90 94 13565
PQGT?2 948 18 306 94 107087
PQGT1T?2 948 22 306 94 115697

14 PQ 1743 11 49 122 1804
PQG 1743 14 98 122 9105

Continued...
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Table 5.19: Continued...

.. sizes of SDP ...

rconditions m (dual) nBlock Ny, size of D | m (primal)
PQGT1 1743 18 147 122 32121
PQGT?2 1743 18 490 122 271451
PQGT1T?2 1743 22 490 122 294467

16 PQ 2964 11 64 154 3041
PQG 2964 14 128 154 15457
PQGT1 2964 18 224 154 69049
PQGT?2 2964 18 736 154 608289
PQGT1T2 2964 22 736 154 661881

20 PQ 7230 11 100 230 7345
PQG 7230 14 200 230 37545
PQGT1 7230 18 450 230 255015
PQGT?2 7230 18 1450 230 2344445
PQGT1T2 7230 22 1450 230 2561915
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