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Abstract

Subdivision is a method to construct smooth surfaces from polygonal

meshes used in computer graphics and geometric modeling applications. In

order to obtain subdivision surfaces that are C2 smooth we have to use a

rather cumbersome scheme. The main difficulty is caused by the so-called

extraordinary vertices, which are vertices that do not have 6 neighbors in the

triangular case (4 neighbors in the quadrilateral case). The extraordinary

vertex with half the number of vertices as the regular vertex turns out to

be a special case. We use this fact to create a subdivision scheme that is

C2 flexible for this vertex. The scheme’s characteristic map is equal to Bers’

chart.

For both types of meshes, in the final step of creating the subdivision

scheme, we solve an eigenvalue optimization problem. In the triangular case

we find the exact global optimum. In the quadrilateral case we solve the

optimization problem numerically. In both cases the function that is mini-

mized is the reduced spectral radius of the subdivision matrix depending on

parameters, that is the largest modulus of the eigenvalues excluding certain

known, fixed, eigenvalues.

We are able to approximate a round sphere very well with a very coarse

mesh and explore several other applications of the scheme in the triangular

setting.
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We furthermore develop theory to handle boundary subdivision. The

starting point for our theory is a precise description of the class of surfaces

that we would like to be able to model using subdivision. We demonstrate

how the standard constructions of subdivision theory generalize to the case

of surfaces with piecewise-smooth boundary and extend the techniques for

analysis of C1-continuity. Since the extraordinary vertex is a boundary point

we have to change some aspects of the theory. We analyze several specific

boundary subdivision rules for Loop and Catmull-Clark subdivision schemes.

Finally, we give an analysis of the subdifferential of the spectral abscissa

(maximum of the real part of the eigenvalue), a nonsmooth, nonconvex func-

tion, for a matrix with a specific Jordan structure.
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Chapter 1

Introduction

This thesis is concerned with subdivision schemes and eigenvalue optimiza-

tion. Chapter 2 develops a refinement scheme to represent C2 smooth sub-

division surfaces. The refinement scheme only works on meshes with valence

3 and 6 vertices. This is however good enough since genus 0 surfaces can be

approximated by such meshes. There are several interesting phenomena that

can be modeled on the round sphere alone and several more on arbitrary

genus 0 surfaces. The advantage of a subdivision surface as modeling tool is

the fact that it is multi-scale in nature. It is for example well-known that,

because of its dimples, a golf ball flies further than a ball which is perfectly

round. This seems counter-intuitive and complex fluid dynamics play a role

in this type of phenomena. Given a C2 subdivision scheme we are able to

simulate such phenomena on as subdivision surface. Thomas Yu proposed

the idea of finding such a C2 subdivision scheme to me since it involved
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an eigenvalue optimization problem. He had previously invented a similar

scheme which is however very complicated to analyze and implement [42].

By exploiting eigenvalue optimization we found a simpler scheme. We em-

phasize the importance of the valence 3 vertex and explain how subdivision

rules for such a vertex can be developed. We can apply the same idea to

the valence 2 vertex for a refinement scheme on quadrilateral meshes, which

we discuss in Chapter 4. In both cases, we have several degrees of freedom

left after we enforce the conditions for C2 smoothness. In order to find the

optimal scheme we solve an eigenvalue optimization problem. We found that

we can reduce all the non-fixed eigenvalues to zero (exactly in the triangular

case and approximately in the quadrilateral case). In the former case the

zero eigenvalue has one Jordan block of order 2 and two of order 1. In the

latter case it apparently has one Jordan block of order 5, one of order 3 and

two of order 2.

We implemented a simulation of the curvature flow on genus zero surfaces

modeled over triangular meshes with only valence 3 and 6 vertices, as pre-

sented in Chapter 3. The algorithm is local and therefore easy parallelizable.

We also use a simple Finite Element Method to approximate functions on

a surface by using our subdivision scheme to generate basis functions. It

compares well with Wahba’s smoothing spline on the round sphere. We can

furthermore approximate the round sphere very well by using a rather coarse

mesh. Having such an approximation of the round sphere can be very useful

in simulation phenomena on the sphere or phenomena involving a sphere.
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Chapter 5 gives a theoretical analysis on how to handle boundary sub-

division in general. Most of the theory for interior extraordinary vertices

can easily be generalized to the boundary. However, we need to find a new

measure to check global injectivity of the characteristic map. We also found

a way to easily check that the boundary of a specific scheme has the correct

behavior. We then used this theory to check the boundary rules for Loop

and Catmull-Clark proposed in [2]. My work builds on work by Henning

Biermann, Adi Levin and Denis Zorin, which has not yet been published

and appears as the first part of Chapter 5. My main contributions were in

Theorems 5.4 and 5.5 and Propositions 5.2, 5.3 and 5.4. Important features

of subdivision schemes include creases which can be handled with boundary

rules.

Finally. in Chapter 6 we derive the subgradient of the spectral abscissa

(maximum of the real parts of the eigenvalues) for the simplest derogatory

and defective matrix. This analysis is motivated by the fact that subgradi-

ents provide necessary conditions for eigenvalue optimization. We originally

started with the goal of finding a description for arbitrary matrices but the

result we obtained for a special case suggests that this is a hard problem.

Most of Chapters 2,3 and 4 was done in collaboration with Thomas Yu,

with the eigenvalue optimization part done with Michael Overton. Chapter

5 was done in collaboration with Denis Zorin and Chapter 6 with Michael

Overton.
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Chapter 2

A C2 smooth MRA on the

topological sphere

2.1 Introduction

In this chapter we develop a subdivision scheme for triangular meshes that

is C2 over the valence 3 vertex. We will furthermore explain why the valence

3 vertex is special and how we use that to construct our subdivision scheme.

The characteristic map is given by Bers’ chart and the curvature is flexible

which means that depending on the input mesh we can generate all different

type of curvatures. We also find that the scheme we pick has very desirable

curvature properties and discuss that in detail. The applications of this work

will be explained in Chapter 3. In Chapter 4 we will discuss the valence 2

case for quadrilateral meshes and the resulting eigenvalue optimization. This
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chapter will focus on the theory of subdivision smoothness and how we used

it to create our scheme.

It is known that generating a subdivision scheme that is C2 smooth for

valences that are not equal to 3 requires a polynomial degree of at least 8.

And the construction using this minimal polynomial degree leads to a very

cumbersome subdivision scheme. The theory doesn’t talk about the case of

the valence 3 vertex.

Recall that a standard subdivision surface scheme is constructed based

on a subdivision scheme in the regular grid setting followed by construction

of special extraordinary vertex rules. The standard Loop scheme is based

on the three directional box spline with directions [1, 0], [0, 1], [1, 1] each

repeated twice. Recall the following definition of box-spline [32, 10]: Let

Ξ = {v1, v2, . . . , vk} be a set of k vectors in R2 with the first 2 vectors being

linearly independent. The box-spline function BΞ is defined as follows. Let

B2 be the indicator function on the parallelogram [v1, v2][0, 1)2, scaled by the

constant 1/ det[v1, v2], i.e. B2 := 1[v1,v2][0,1)2/ det[v1, v2]. Then define B3, . . . ,

Bk =: BΞ recursively by

Bκ(x) =

∫ 1

0

Bκ−1(x− tvκ) dt, κ > 2. (2.1)

When the direction vectors have integral entries, the box spline BΞ(x) can be

generated by a dyadic subdivision scheme, which also means that it satisfies

a refinement equation of the form BΞ(x) =
∑

α∈Z2 aαBΞ(2x− α).

5



We consider the three directional box spline with directions [1, 0], [0, 1],

[1, 1] each repeated thrice. This box spline can be generated by a subdivision

scheme whose mask (aα)α has the following symbol (z-transform):

∑
α∈Z2

aαz
α1
1 zα2

2 =: â(z1, z2) =
z−3
1 z−3

2

128
(1 + z1)

3(1 + z2)
3(1 + z1z2)

3. (2.2)

3/32

7/16

3/32

3/32

3/32 3/32

3/32 39/128

3/128

1/128

9/64

39/128

3/128

3/128 3/128

1/128

9/64

(a) vertex rule (b) edge rule, with a marquise-shaped stencil

Figure 2.1: Subdivision rules for the box spline with directions
[1, 0],[0, 1],[1, 1] each repeated thrice.

Since this scheme has the usual hexagonal symmetry of the regular trian-

gular grid, it can be used to construct subdivision surfaces in the arbitrary

topology setting; the vertex and edge rules associated with the mask (2.2) are

shown in Figure 2.1. Notice that the vertex rule has the same stencil as that

of the Loop scheme; the edge rule, however, has a bigger stencil compared to

Loop’s, but is still dependent only on the data in the 1-rings of the two end

vertices of the edge.

Using standard sum rule conditions from subdivision theory, one can show

that this subdivision scheme is the one and only one, among all the schemes

with the same support, that reproduces all polynomials of total degree 4. In

6



fact, this scheme also reproduces all polynomials of total degree 5. On the

other hand, the box-spline function associated with (2.2) consists of degree

7 polynomial pieces (easy to see from (2.1), as each integration increases

the degree by 1), and it is C4 smooth. We will furthermore see why this

subdivision scheme is the optimal one in the regular setting to achieve the

C2 smoothness over the valence 3 vertex.

2.2 Valence 3 Extraordinary Vertex Rules

In this section, we develop a valence 3 extraordinary vertex rule based on

the regular rules in Figure 2.1. For this purpose, it suffices to work on the

3-regular complex, see Figure 2.3. Recall that the 3-regular complex has a

central valence 3 extraordinary vertex with all other vertices being ordinary

(valence 6). Away from the extraordinary vertex, our subdivision scheme uses

the rules in Figure 2.1. In the vicinity of the valence 3 vertex, our proposed

subdivision rules have the stencils, together with the weights labeled and to

be determined, specified in Figure 2.2, where

z = 1− 3(s+ t+ u) a = 1− b− 2(c+ d)− e (2.3)

The goal of this section is to determine a set of weights that give rise to a

flexible C2 scheme. Note that, according to Prautzsch-Reif’s degree estimate

[33], such a C2 scheme is impossible for any valence greater than 3 other than

7



z 

u 

u 

u 

s 

s 

s 

t 

t 

t a b 

d 

d 

e 

c 

c 

(a) extraordinary vertex rule (b) extraordinary edge rule

Figure 2.2: Valence 3 extraordinary vertex rules.

6.

2.2.1 Linear algebra

Like any other standard subdivision scheme, our scheme is stationary,

meaning that the same set of rules is used at all levels. Together with the

fact that these subdivision rules are linear, it is hardly surprising that eigen-

decomposition plays a key role in the analysis of subdivision schemes. The

study of subdivision matrix and the relevance of their Jordan decomposition

is well-studied [34, 30, 31, 43, 45, 46].

Given the support size of our proposed scheme, we need to use 3 rings of

data around the extraordinary vertex in order to determine the subdivision

limit function on the 1-disc (colored region in Figure 2.3(a)) around the

extraordinary vertex. On the other hand, it is enough to use just 2 rings of
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data around the extraordinary vertex in order to determine the value of the

limit function at the extraordinary vertex. Thus, the subdivision matrix

of our scheme has the following block form

S =

M 0

A B

 (2.4)

if we order the vertices in the 3-regular complex as shown in Figure 2.3(a).

Here,

M =



z s s s t u t u t u

a b c c e d 0 0 0 d

a c b c 0 d e d 0 0

a c c b 0 0 0 d e d

3
32

7
16

3
32

3
32

3
32

3
32 0 0 0 3

32

9
64

39
128

39
128

3
64

3
128

9
64

3
128

1
128 0 1

128

3
32

3
32

7
16

3
32 0 3

32
3
32

3
32 0 0

9
64

3
64

39
128

39
128 0 1

128
3

128
9
64

3
128

1
128

3
32

3
32

3
32

7
16 0 0 0 3

32
3
32

3
32

9
64

39
128

3
64

39
128

3
128

1
128 0 1

128
3

128
9
64



(2.5)

using Equation 2.3 is the 10× 10 matrix that maps the 2-ring data from one

scale to the 2-ring data in the next finer scale, whereas the whole 19 × 19

matrix S maps the 3-ring data from one scale to the 3-ring data in the next

scale. The entries in the blocks A and B come solely from the regular rules
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1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

(a) Ordering of vertices (b) Level 0 complex (c) Level 1 complex
In red: the 1-disc around (once subdivided)
the e.v. (denoted by D)

Figure 2.3: Ordering and subdivision of the 3-regular complex

in Figure 2.1:

A =
1

128



1 39 3 3 39 18 0 0 0 18

3 39 18 1 18 39 3 0 0 3

3 18 39 1 3 39 18 3 0 0

1 3 39 3 0 18 39 18 0 0

3 1 39 18 0 3 18 39 3 0

3 1 18 39 0 0 3 39 18 3

1 3 3 39 0 0 0 18 39 18

3 18 1 39 3 0 0 3 18 39

3 39 1 18 18 3 0 0 3 39


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B =
1

128



1 3 0 0 0 0 0 0 3

0 3 1 0 0 0 0 0 0

0 1 3 0 0 0 0 0 0

0 0 3 1 3 0 0 0 0

0 0 0 0 3 1 0 0 0

0 0 0 0 1 3 0 0 0

0 0 0 0 0 3 1 3 0

0 0 0 0 0 0 0 3 1

0 0 0 0 0 0 0 1 3



.

The spectrum of S is the union of the spectra of M and B. The eigenvalues

of the 9× 9 matrix B are 1/32, 1/64, 1/128 each repeated thrice. As we will

see, the six dominant eigenvalues of S should be 1, 1/4, 1/4, 1/16, 1/16, 1/16,

so these eigenvalues must come from the spectrum of M .

2.2.2 Characteristic map and C2 condition

Note that if v ∈ R19 is a set of scalar values assigned to the first 3 rings of the

level 0 3-regular complex (as shown in Figure 2.3(a)), then according to our

subdivision rules, the subdivision data on the first 2j + 2 rings of the level

j 3-regular complex can be determined. Therefore, we obtain in the limit a

subdivision function

fv : D → R. (2.6)

11



Here D is the 1-disc around the extraordinary vertex.

It is easy to see that every subdivision function satisfies the scaling rela-

tion

fv(u) = fSv(2u), ∀ u ∈ 1

2
D. (2.7)

In particular, if v is an eigenvector of S associated with an eigenvalue µ, then

fv(u) = fµv(2u) = µfv(2u).

Despite the (rather artificial) way we embed D and the 3-regular complex

into the plane as shown in Figure 2.3(a), one should not think of D as a

subset of R2. That said, it is senseless to talk about the smoothness of fv

before we put a suitable differentiable structure onD (in differential geometry

terms) or, equivalently, before we suitably parametrize fv. On the other

hand, since our subdivision scheme is based on a C4 smooth box-spline, any

subdivision function fv is C4 in the interior of each sector of D (assuming fv

is parametrized by the affine coordinates within each of the triangular sectors

of D.)

The standard way to parametrize subdivision functions is based on char-

acteristic maps, due to Reif [34]. Assume that we have a subdivision scheme.

Let u1 and u2 be two linearly independent eigenvectors associated with the

12



sub-dominant eigenvalue λ. The characteristic map is given by

χ = (fu1 , fu2) : D → R2. (2.8)

If χ is injective, we can think of χ−1 : χ(D) → D as a parametrization of

D. If χ is also regular, i.e. χ has a non-singular Jacobian in the interior

of each sector of D, then fv◦χ−1 : χ(D) → R is C1 smooth for any v. This

follows for example from [43] where the following is proved.

Theorem 2.1. Given a subdivision matrix with largest eigenvalue 1 with

multiplicity 1 and second largest eigenvalue λ ∈ R with geometric and alge-

braic multiplicity 2 we have two independent eigenvectors for λ. They define

the characteristic map. If the characteristic map is injective and the Jacobian

has the same sign everywhere on the domain D\{0} then the scheme is C1.

Furthermore the scheme is Ck if any nonzero complex eigenbasis function

fw corresponding to an eigenvalue µ = λ2 is a homogeneous polynomial of

degree 2 in characteristic coordinates and all other eigenvalues of the matrix

are smaller than λ2 in modulus.

If we have a subdivision schemes that satisfies all the conditions above

that gives us C1 and all the eigenvalues smaller than λ are strictly smaller

than λ2 in modulus, then Theorem 2.1 tells us that the subdivision scheme

is C2 smooth. Such schemes are also easy to construct; the only problem is

that they are not so useful since they produce limit functions with vanishing

second derivatives regardless of the initial data, and hence are not so interest-

13



ing from an approximation or modeling point of view. A flexible C2 scheme

is one that is both C2 and capable of producing all quadratic polynomials.

If we assume that the sub-subdominant eigenvalue is exactly λ2 with

geometric multiplicity 3, let wi, i = 1, 2, 3, be three linearly independent

eigenvectors associated with λ2. Then we have the following well-known

result:

Theorem 2.2. Such a subdivision scheme is a flexible C2 one if

span{fwi
◦χ−1(x1, x2) : i = 1, 2, 3} = span{x2

1, x1x2, x
2
2}. (2.9)

This result is not specific to the valence 3 case. In fact, everything we have

said so far is either directly applicable to or has a generalization to any

valence k > 3.

The condition in Theorem 2.2 seems hard to satisfy and, as illustrated

by Reif-Prautzsch’s degree estimates [33, 36], is indeed hard to satisfy when

k > 3. In the rest of this section, we show:

Proposition 2.1. The weights in Figure 2.2 can be chosen such that:

(I) The resulted characteristic map χ is the valence 3 Bers’ chart [1, 15]

(called “fractional power embedding” in the quadrilateral case [31, Page

50], in which z 7→ z6/k (see below) is replaced by z 7→ z4/k.)

(II) The eigenfunctions corresponding to sub-sub-dominant eigenvalues sat-

isfy the flexible C2 condition (2.9).
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2.2.3 Valence 3 Bers’ chart

The valence k Bers’ chart is a piecewise fractional power function: on the

first sector of a k-gon it is given by the analytic map z 7→ z6/k, assuming that

the first sector is affine transformed into the equilateral triangle bounded by

[0, 0], [1, 0] and [cos(2π/3), sin(2π/3)], followed by identifying this equilateral

triangle with part of the complex plane. In the other k− 1 sectors, the chart

is defined by rotational symmetry. It is not hard to check that these charts

endow a triangle mesh with a conformal structure.

There is something special about the k = 3 case. First of all, the only

k 6= 6 (and > 3) that makes 6/k an integer is k = 3. Moreover, we can identify

the 3-gon D with the ‘projective regular hexagon’, i.e. the regular hexagon

with antipodal points identified, as shown in Figure 2.4(a)-(b). Then under

this identification, the valence 3 Bers’ chart is the single map z 7→ z2. This

representation of the valence 3 Bers’ chart will be very useful in Section 2.2.6.

2.2.4 Connection to Prautzsch-Reif’s degree estimate

The valence 3 Bers’ chart also gives a concrete illustration of how a key

argument in Prautzsch-Reif’s degree estimate breaks down in the valence 3

case. It is observed in [33] that if a valence k characteristic map consists

of polynomial patches stitched together in a Cr fashion, and the polynomial

pieces are only of degree r, then the characteristic map must be 6-periodic

15



piecewise affine 0 0

0

0
1

1

1

1
2

2

2 2

z2
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(a) (b) (c)

Figure 2.4: A general valence k Bers’ chart is defined piecewisely. The valence
3 Bers’ chart, however, can be expressed by the single polynomial z 7→ z2 if
we identify the 3-gon D with the ‘projective regular hexagon’.

(see Lemma 5.1 and Theorem 5.1 of [33]), which is, in general, impossible as

the characteristic map must also be k-periodic. (As a result, the polynomial

degree must, in general, be > r + 1; this lower bound is further improved

to > 3r/2 + 1 by a finer argument.) The only exception is when k = 3, as

illustrated by the valence 3 Bers’ chart: it is both 3- and 6-periodic, and

consists only of polynomial patches of degree 2 stitched together in a C∞

fashion away from the extraordinary point.

2.2.5 Relating valence 3 to regular scheme

Let Nr be the number of vertices in the first r rings of the 3-regular complex,

so 2Nr − 1 is the corresponding number for the 6-regular complex. Corre-

sponding to (2.4), we have a size 2N3 − 1 = 37 subdivision matrix S6 that

16



acts on the 3 ring in the case of valence k = 6 in the following block form:

S6 =

M6 0

A6 B6

 , (2.10)

where all three blocks are determined by the regular rules in (2.1); M6 is

of size 2N2 − 1 = 19. (We order the vertices on the 6-regular complex in a

way similar to Figure 2.3(a).) Corresponding to (2.6), we have Fev : H → R

where ṽ ∈ R2N3−1 is any set of data on the first three rings of the 6-regular

complex, H is the 1-disc (a regular hexagon) around the central vertex, and

Fev is the corresponding subdivision function.

Figure 2.4(a)-(b) suggests a ‘doubling-up’ operator from the 3-regular

complex to the 6-regular complex; restricting this operator to the first r

rings, we denote it by

Dr : RNr → R2Nr−1.

The observation we need for proving Proposition 2.1 is the following:

Lemma 2.1. If ũ ∈ R2N3−1 is such that Feu is a homogeneous polynomial p

of degree 2` and the subdivision scheme is such that Fv = 0 ⇔ v = 0, then

1. ũ is an eigenvector of S6 associated with eigenvalue 2−2`,

2. ũ ∈ range(D3), so u := D−1
3 ũ is well-defined, and

3. Feu, being an even function, can be viewed as a function on the projec-

tive regular hexagon H/∼. (Here, x ∼ y⇔ x = ±y.)
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Furthermore, if (the parameters in M are chosen such that) Su = 2−2`u,

then

R← D : fu = Feu : H/∼→ R (2.11)

if we identify D with H/∼ (as in Figure 2.4.)

Proof. If Feu = p a homogeneous polynomial of degree 2` then we get that

FS6eu(x) = Feu(1/2x) = 2−2`Feu(x) = F2−2`eu(x).

This means that FS6eu−2−2`eu = 0 and therefore it follows that ũ is an eigenvec-

tor of S6 to the eigenvalue 2−2`. Since the limit function is an even polynomial

is follows that it has the symmetry Feu(x) = Feu(−x). This lets us conclude

that ũ ∈ range(D3) since otherwise there would be a vector with that symme-

try giving rise to the same limit function contradicting the assumption that

only the zero vector produces a zero function. Since we have the symmetry

we can now interpret Feu as a function on the projective regular hexagon

H/∼. Let u := D−1
3 ũ and find parameters in the subdivision matrix S for

the 3-regular complex such that Su = 2−2`u then

fu(2
−1x) = fSu(x) = f2−2`u(x) = 2−2`fu(x).

This means that fu = Feu since away from the extraordinary vertex the

subdivision rules are the same and the behavior of fu is the same as the
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behavior of Feu in the neighborhood of the center vertex.

Due to the block forms (2.4) and (2.10), to specify the vector ũ (resp.

u) in the lemma above, it is enough to specify its first 2N2 − 1 (resp. N2)

entries. Call this shorter vector ũs, if ũs 6= 0, then ũ is uniquely determined

by

ũ =

 ũs

(2−2`I −B6)
−1A6ũ

s

 .
Notice that ũs ∈ range(D2). In the second half of the lemma above, we can

actually weaken the assumption Su = 2−2`u to MD−1
2 ũs = 2−2`D−1

2 ũs.

2.2.6 Proof of Proposition 2.1 and choice of parame-

ters

The 6-regular grid, with coordinates denoted here by (x, y), can be identified

with Z2, with coordinates denoted by (x1, x2), via a linear isomorphism:

x
y

 =

1 −1/2

0
√

3/2


x1

x2

 ,
so we are now back to the shift-invariant setting, and checking the polynomial

reproduction condition above becomes a classical Strang-Fix-type calculation

(a well-studied subject by itself.)

Using standard results in subdivision theory, any monomial of total degree

6 5 can be written as a linear combination of the integer shifts of the three-
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directional box spline BΞ with subdivision mask (2.2). More precisely, if

µ = (µ1, µ2), |µ| = µ1 + µ2 6 5, then

xµ =
∑
α∈Z2

cµα BΞ(x− α), (2.12)

where

cµα =
∑
ν6µ

(
µ

ν

)
ανbµ−ν , (2.13)

and the bµ, |µ| 6 5, are given by the following table1: The real and imaginary

Table 2.1: values of bmu

µ1\µ2 0 1 2 3 4 5

0 1 0 −1/2 0 4/5 0
1 0 −1/4 0 2/5 0
2 −1/2 0 2/5 0
3 0 2/5 0
4 4/5 0
5 0

parts of z 7→ z2 are

x2 − y2 = x2
1 − x1x2 − x2

2/2, 2xy =
√

3(x1x2 − x2
2/2). (2.14)

Computing cµα for a given µ computes the control mesh to reproduce xµ

1These bµ are computed recursively by the formula: b(0,0) = 1, bµ =∑
0 6=ν6µ

(
µ
ν

)
2|µ−ν|bµ−ν [(−iD)ν â](0)(1− 2|µ|â(0))−1, where â(ω) =

∑
α a(α)e−iα·ω/4. One

can verify the values of bµ in the table using this formula and (2.2).

20



Using (2.12)-(2.14),2 we compute the control data u1, u2 on the first two

rings needed to reproduce the function z2. This means that that M in (2.5)

needs to have eigenvectors u1 and u2 associated to the eigenvalue 1/4

u1 =
1
2

[
0, 2, −1, −1, 8, 3, −4, −6, −4, 3

]T
,

u2 =
√

3
2

[
0, 0, 1, −1, 0, 3, 4, 0, −4, −3

]T
.

(2.15)

For (II) (the C2 conditions), we need to force the sub-sub-dominant eigen-

vectors of M , wi, i = 1, 2, 3, after ‘doubling-up’, to be the unique initial data

that generate, under the regular subdivision rule, the following homogeneous

degree 4 polynomials:

(x2 − y2)2 = x4
1 − 2x3

1x2 + x1x
3
2 + x4

2/4,

(x2 − y2)(2xy) =
√

3(x3
1x2 − 3x2

1x
2
2/2 + x4

2/4),

(2xy)2 = 3x2
1x

2
2 − 3x1x

3
2 + 3x4

2/4.

(2.16)

By calculations based on (2.12)-(2.14), we demand M in (2.5) to have the

2For a more elementary, but more tedious, approach, one can work out the piecewise
(degree 7) polynomial representation of the box-spline BΞ based on (2.1) and use it to
work out how to reproduce any polynomial of total degree 6 5.
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following three eigenvectors associated with eigenvalue 1/16:

w1 =
1
20

[
12, 2, −13, −13, 212, −33, −28, 102, −28, −33

]T
,

w2 =
√

3
4

[
0, 0, −1, 1, 0, 9, −16, 0, 16, −9

]T
,

w3 =
1
20

[
12, −18, −3, −3, −108, 57, 132, −78, 132, 57

]T
.

(2.17)

The overall conditions imposed on M are, after all, linear:

M [u1, u2, w1, w2, w3] = [u1, u2, w1, w2, w3] diag([1/4, 1/4, 1/16, 1/16, 1/16]).

In terms of the parameters this can be written as the following conditions:

b = 11/32− 4e,

c = 9/64 + 3e,

d = 1/64 + e,

s = 3/16 + 2t

(2.18)

We must still verify that the remaining three parameters (e, t, u) can be

chosen such that all the remaining eigenvalues are strictly less than 1/16 in

modulus. This was done by eigenvalue optimization.

2.3 Eigenvalue Optimization

We have a 10 × 10 matrix M given by (2.5) that depends on the three pa-

rameters (e, t, u) using (2.3) and (2.18) and we know that 6 eigenvalues are
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given by (1, 1/4, 1/4, 1/16, 1/16, 1/16). We now want the remaining eigen-

values to be less than 1/16 in modulus. As was done in [18], this problem

can be solved by a numerical search based on minimizing the largest of the

remaining eigenvalues in modulus: the so-called reduced spectral radius. The

reduced spectral radius is nonconvex, nonsmooth and in fact not even Lips-

chitz continuous at matrices with multiple eigenvalues, although it is Hölder

continuous. We used the HANSO (Hybrid Algorithm for Non-Smooth Opti-

mization) software package [4] (see Chapter 4 for more details). After some

experimentation we found a solution to our problem given by the following

parameters: (e, t, u) = (1/64, 1/128, 1/24) with

(z, s, t, u) = (31/128, 26/128, 1/128, 1/24)

(a, b, c, d, e) = (17/64, 9/32, 3/16, 1/32, 1/64).

(2.19)

However, after more extensive numerical work we realized that it seems that

all the remaining eigenvalues can be reduced to 0. Then, we realized that we

can write the remaining 4 eigenvalues as 15/128− 7e (repeated twice) and

1
8 + e− 9t

2 −
3u
2

± 1
32

√
13 + 16(8e− 30t− 33u) + 256(4e2 + 81t2 + 9u2 − 84et + 12eu + 54ut).

To obtain these formulas, we first block-diagonalized the matrix into two

3 × 3 blocks and one 4 × 4 block. The eigenvalue computation was then

done by Maple. It can then be shown analytically that these eigenvalues are
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Figure 2.5: Restrictions on (e, t, u) such that all eigenvalues are smaller than
1
16

, shown as subsets of the u− t plane for 4 values of e

smaller than 1/16 in modulus if and only if (e, t, u) lies in a small bounded

open subset of the first octant of the e-t-u space. The u − t solution sets

are given for several values of e in Figure 2.5. Furthermore, we can set all

the eigenvalues to 0 by solving a system of equations composed of 2 linear

equations and 1 quadratic equation in (e, t, u). The solution is given by:

(e, t, u) = (15/896, 295/19264, 1403/28896).
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The set of all parameters reads:

(z, s, t, u) = (69/448, 2101/9632, 295/19264, 1403/28896)

(a, b, c, d, e) = (233/986, 248/896, 171/896, 29/896, 15/896).

(2.20)

The following result summarizes this discussion and also shows the Jordan

structure of M :

Theorem 2.3. Using the parameter choices (2.20), the Jordan normal form

of M in (2.5) is given by



D 0 0 0

0 J2(0) 0 0

0 0 J1(0) 0

0 0 0 J1(0)


,

where D = diag(1, 1/4, 1/4, 1/16, 1/16, 1/16) and Ji(0) is a Jordan Block of

size i with 0’s on the diagonal.

2.4 Summary

We have obtained a subdivision scheme that is flexible C2 smooth on meshes

with only valence 3 and 6 vertices. It has better polynomial degree than

the best scheme known and it is based on box splines in the regular setting.

Furthermore the stencil of the scheme is small and also optimal as there is no
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smaller stencil which can achieve a scheme which has the same properties ours

has. We furthermore were able to reduce the resulting eigenvalues (excluding

1,1/4,1/16) to 0 which gives us favorable curvature behavior. In Figure 2.6(a)

we see the curvature close to a valence 3 vertex for the set of parameters

given by (2.19). Parameters of the global minimum given by (2.20) define a

subdivision scheme with curvature behavior (see Figure 2.6(b)) that is much

less extreme and therefore more desirable.
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(a) parameters given by (2.19)

(b) parameters given by (2.20)

Figure 2.6: Plots of the Curvature in the neighborhood of a valence 3 vertex
on a mesh where the original points lay on a round sphere. We would like to
see curvature behavior that is close to the round sphere, which would mean
constant curvature. Example (b) is much less extreme than example (a).
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Chapter 3

Application of the MRA

3.1 Introduction

We will explain two algorithms we implemented using the subdivision scheme

developed in Chapter 2. We implemented a finite element method to approx-

imate the smoothing spline on an arbitrary genus 0 surface and compared

it to the exact smoothing spline on the round sphere given by Wahba [41].

We furthermore implemented an algorithm that simulates the curvature flow

on a subdivision surface. Since the scheme is C2 we can compute second

derivatives exactly at every point in a subdivision surface, which we will use

in both these algorithms. We know that a surface converges to the round

sphere under the curvature flow preserving the volume. We use this to cre-

ate a mesh that approximates the sphere very well. We furthermore use our

subdivision algorithm in a rational setting and explore the possibility of an
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exact representation of the sphere by a relative coarse mesh.

3.2 Approximation on a genus 0 surface

Given a manifold S and observations (si, yi) with si ∈ S and yi ∈ R, possibly

noisy, where ideally yi = ftrue(si) for some unknown function ftrue. Our goal

is to estimate ftrue. On the line this problem has a variety of algorithms. We

will estimate the function by a generalization of spline smoothing [21]. The

smoothing spline on the line (for a smoothing parameter λ) is the function

fλ with

fλ = argmin
f∈W2(R

E[f ] (3.1)

E[f ] :=
1

n

∑
(yi − f(si))

2 + λ

∫
f ′′(s)2ds. (3.2)

This is a solvable problem and results in a cubic spline which can be com-

puted.

As presented in [16] we can extend the idea of the smoothing spline to

subdivision surfaces and approximate it by a finite element method. We will

now assume that S is a subdivision surface corresponding to the subdivision

scheme presented in Chapter 2, which means that there exists a base mesh

K (a triangular mesh with only valence 3 and 6 vertices) which can be in-

terpreted as a simplicial complex and an embedding F : K → R3 such that

F (K) = S. We furthermore have a sequence of subdivided meshes KJ with
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K0 = K converging to S and functions FJ : KJ → S. The smoothing spline

is given by the function fλ : S → R, for the smoothing parameter λ, that

minimizes the functional

E[f ] =
1

n

∑
(yi − f(si))

2 + λ

∫
S

(∆Sf)2dA.

One can show that the solution is unique.

We use the finite element method presented in [16] to approximate the

smoothing spline. We have a nested sequence of spaces of subdivision func-

tions

V 0 ⊂ V 1 ⊂ · · · ⊂ V J ⊂ · · · ⊂ W2(S)

where V J is given by the collection of subdivision limit functions with starting

values on the J times subdivided mesh KJ interpreted on S. The union⋃∞
J=0 V

J is dense in W2(S). The mesh KJ has NJ mesh points in R3. V J

is a finite dimensional vector space and a basis is given by the subdivision

limit functions φJ
α = φ̃J

α ◦F−1
J : S → R, α = 1, . . . , NJ where φ̃J

α : KJ → R is

the function achieved by subdividing KJ to the limit with starting values 0

everywhere except 1 on the meshpoint α. We are going to find the minimizer

of the functional E in the space V J which is given by

E[f ] =
1

n

∑
i

(yi −
∑

α

fαφJ
α(si))

2 + λ
∑
α,β

fαfβBαβ (3.3)

BJ
αβ =

∫
S

∆Sφ
J
α∆Sφ

J
βdA (3.4)
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for a function f ∈ V J given by f =
∑
fαφJ

α with fα ∈ R. ∆S is the

Laplace-Beltrami operator of the surface S.

Once we compute φJ
α(si) and BJ

αβ finding fα reduces to a Linear Algebra

problem. For λ = 0 we find the solution such that
∑

αβ f
αfβBαβ is minimal

and
∑

α f
αφJ

α(si) = yi.

Computing φJ
α(si) and BJ

αβ

The subdivision scheme from Chapter 2 is based on a box spline in the

regular setting and the functions FJ , φ̃
J
α are therefore given by piecewise

polynomials away from valence 3 vertices. Given a triangle as in Figure 3.2

the limit polynomial in Bezier coordinates on the colored triangle is given by

p(u, v, w) = bQP

where

b = [w7, vw6, v2w5, v3w4, v4w3, v5w2, v6w, v7, uw6, uvw5, uv2w4,

uv3w3, uv4w2, uv5w, uv6, u2w5, u2vw4, u2v2w3, u2v3w2,

u2v4w, u2v5, u3w4, u3vw3, u3v2w2, u3v3w, u3v4, u4w3,

u4vw2, u4v2w1, u4v3, u5w2, u5vw, u5v2, u6w, u6v, u7]
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and Q = [Q1Q2] with

Q1 =
1

5040

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 6 30 6 0 30 516 516 30 0 6

0 0 0 0 9 30 3 0 51 609 423 9 0 12

0 0 0 0 13 28 1 0 85 689 317 1 0 24

0 0 0 0 18 24 0 0 138 738 216 0 0 48

0 0 0 0 24 18 0 0 216 738 138 0 0 96

0 0 0 1 28 13 0 1 317 689 85 0 0 186

0 0 0 3 30 9 0 9 423 609 51 0 0 330

0 0 0 6 30 6 0 30 516 516 30 0 6 516

0 0 0 0 12 51 9 0 51 702 609 30 0 9

0 0 0 0 18 50 4 0 86 816 482 8 0 18

0 0 0 0 26 45 1 0 142 903 346 1 0 36

0 0 0 0 36 36 0 0 228 936 228 0 0 72

0 0 0 1 45 26 0 1 346 903 142 0 0 141

0 0 0 4 50 18 0 8 482 816 86 0 0 258

0 0 0 9 51 12 0 30 609 702 51 0 3 423

0 0 0 0 24 85 13 0 85 930 689 28 0 13

0 0 0 0 36 81 5 0 142 1059 524 7 0 26

0 0 0 0 52 69 1 0 232 1137 362 1 0 52

0 0 0 1 69 52 0 1 362 1137 232 0 0 101

0 0 0 5 81 36 0 7 524 1059 142 0 0 187

0 0 0 13 85 24 0 28 689 930 85 0 1 317

0 0 0 0 48 138 18 0 138 1188 738 24 0 18

0 0 0 0 72 126 6 0 228 1314 540 6 0 36

0 0 0 1 101 101 1 1 362 1362 362 1 0 69

0 0 0 6 126 72 0 6 540 1314 228 0 0 126

0 0 0 18 138 48 0 24 738 1188 138 0 0 216

0 0 0 0 96 216 24 0 216 1440 738 18 0 24

0 0 0 1 141 187 7 1 346 1536 524 5 0 45

0 0 0 7 187 141 1 5 524 1536 346 1 0 81

0 0 0 24 216 96 0 18 738 1440 216 0 0 138

0 1 1 1 186 317 28 1 317 1632 689 13 0 28

0 2 0 8 258 258 8 4 482 1680 482 4 0 50

1 1 0 28 317 186 1 13 689 1632 317 1 0 85

0 9 3 9 330 423 30 3 423 1728 609 9 0 30

3 9 0 30 423 330 9 9 609 1728 423 3 0 51

6 30 6 30 516 516 30 6 516 1728 516 6 0 30

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
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and

Q2 =
1

5040

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

516 1728 516 6 0 30 516 516 30 0 6 30 6

702 1728 330 0 0 51 609 423 9 0 9 30 3

930 1632 186 0 0 85 689 317 1 0 13 28 1

1188 1440 96 0 0 138 738 216 0 0 18 24 0

1440 1188 48 0 0 216 738 138 0 0 24 18 0

1632 930 24 0 1 317 689 85 0 1 28 13 0

1728 702 12 0 9 423 609 51 0 3 30 9 0

1728 516 6 0 30 516 516 30 0 6 30 6 0

609 1728 423 3 0 30 423 330 9 0 3 9 0

816 1680 258 0 0 50 482 258 2 0 4 8 0

1059 1536 141 0 0 81 524 187 0 0 5 7 0

1314 1314 72 0 0 126 540 126 0 0 6 6 0

1536 1059 36 0 0 187 524 81 0 0 7 5 0

1680 816 18 0 2 258 482 50 0 0 8 4 0

1728 609 9 0 9 330 423 30 0 0 9 3 0

689 1632 317 1 0 28 317 186 1 0 1 1 0

903 1536 187 0 0 45 346 141 0 0 1 1 0

1137 1362 101 0 0 69 362 101 0 0 1 1 0

1362 1137 52 0 0 101 362 69 0 0 1 1 0

1536 903 26 0 0 141 346 45 0 0 1 1 0

1632 689 13 0 1 186 317 28 0 0 1 1 0

738 1440 216 0 0 24 216 96 0 0 0 0 0

936 1314 126 0 0 36 228 72 0 0 0 0 0

1137 1137 69 0 0 52 232 52 0 0 0 0 0

1314 936 36 0 0 72 228 36 0 0 0 0 0

1440 738 18 0 0 96 216 24 0 0 0 0 0

738 1188 138 0 0 18 138 48 0 0 0 0 0

903 1059 81 0 0 26 142 36 0 0 0 0 0

1059 903 45 0 0 36 142 26 0 0 0 0 0

1188 738 24 0 0 48 138 18 0 0 0 0 0

689 930 85 0 0 13 85 24 0 0 0 0 0

816 816 50 0 0 18 86 18 0 0 0 0 0

930 689 28 0 0 24 85 13 0 0 0 0 0

609 702 51 0 0 9 51 12 0 0 0 0 0

702 609 30 0 0 12 51 9 0 0 0 0 0

516 516 30 0 0 6 30 6 0 0 0 0 0

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

and P is the vector containing the control data on the 27 sourrounding points

seen in Figure 3.2. A point x in the triangle (P10, P15, P16) can be expressed as

a (u, v, w) tuple with u+v+w = 1 where x = uP10 +vP15 +wP16. Therefore

we can evaluate the functions FJ and φ̃J
α and their first 2 derivatives (as the

scheme is C2) at any point in KJ . If a point is close to a valence 3 vertex
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Figure 3.1: Control Data for a Triangle

we have to subdivide enough times such that the point is surrounded by a

regular mesh and then evaluating the polynomial given by the box spline and

by an eigenvalue analysis of the subdivision matrix for the valence 3 vertex

we can compute the exact values and derivatives at the valence 3 vertex as
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well. Let’s look at BJ
αβ:

BJ
αβ =

∫
S

∆Sφ
J
α∆Sφ

J
βdA (3.5)

=

∫
KJ

(
(∆Sφ

J
α) ◦ FJ

) (
(∆Sφ

J
β) ◦ FJ

)
|dFJ |dA (3.6)

=
∑

i

∫
T J

i

(
(∆Sφ

J
α) ◦ FJ

) (
(∆Sφ

J
β) ◦ FJ

)
|dFJ |dA (3.7)

=
∑

i

∫
N

(
(∆Sφ

J
α) ◦ FJ ◦ tJi

) (
(∆Sφ

J
β) ◦ FJ ◦ tJi

)
|dtJi ||dFJ ◦ tJi |dA (3.8)

where tJj : N→ T J
i (ithe triangle in KJ) (3.9)

and N is the triangle with corners (0, 0) (1, 0) (0, 1) (3.10)

Let’s try to understand how to compute the Laplace-Beltrami operator

∆S: Given a chart ρ : Ω ∈ R2 → U ∈ S and a function f : S → R then

∆Sf(s) =
∑
ab

gab

(
(f ◦ ρ)xaxb

−
∑

c

Γc
ab(f ◦ ρ)xc

)

where the right hand side is evaluated at the point x such that ρ(x) = s. The

metric g is given by the entries gab (3.11), gab are the entries of its inverse

matrix and Γc
ab are the so called Christoffel symbols (3.12). The quantities

gab and Γc
ab are evaluated at x. We have

gab = 〈 ∂ρ
∂xa

,
∂ρ

∂xb

〉 (3.11)

Γc
ab =

1

2

∑
d

gcd

(
∂gda

∂xb

+
∂gdb

∂xa

− ∂gab

∂xd

)
. (3.12)
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We can pick the chart ρ to be FJ ◦ tJi for each of the triangles. We are

then able to compute the metric and the Christoffel symbols at given points

in the triangle. Let’s look at the first part of the integrand again:

(
(∆Sφ

J
α) ◦ FJ ◦ tJi

)
|x∈N (3.13)

=
∑
ab

gab

(
(φJ

α ◦ ρ)xaxb
−
∑

c

Γc
ab(φ

J
α ◦ ρ)xc

)
|x∈N (3.14)

since ρ = FJ ◦ tJi (3.15)

This means we need to compute the first and second derivative of φJ
α ◦ ρ and

ρ at x ∈ N. Furthermore we need to evaluate

|dFJ ◦ tJi ||dtJi | = d|(FJ ◦ tJi )| = |dρ| = ‖ρx1 × ρx2‖,

where ρx1 and ρx2 are the first derivatives of ρ. We have that

ρ(x) = FJ ◦ tJj (x) = FJ(u, v, w) (3.16)

φJ
α ◦ ρ(x) = φ̃J

α(u, v, w) (3.17)

where x = u(0, 0)+v(1, 0)+w(0, 1). We can then compute the first derivatives
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∂ρ

∂x1

=
∂FJ

∂v
− ∂FJ

∂u

∂(φJ
α ◦ ρ)
∂x1

=
∂φ̃J

α

∂v
− ∂φ̃J

α

∂u
(3.18)

∂ρ

∂x2

=
∂FJ

∂w
− ∂FJ

∂u

∂φJ
(α ◦ ρ)
∂x2

=
∂φ̃J

α

∂w
− ∂φ̃J

α

∂u
(3.19)

(3.20)

and similarly the second derivatives. We evaluate the integral over N with

the simple quadrature rule

∫
N
fdA =

f(0, 0) + f(1, 0) + f(0, 1)

6

Experimental Results

We start with a mesh that has 130 meshpoints and 200 observations

(si, yi) and compute the minimizer in the space of basis functions coming

from this mesh. We then subdivide the mesh and compute a more accurate

smoothing spline and repeat. The solution will not converge to the true so-

lution but to the smoothing spline. We cannot compute the true smoothing

spline except on the round sphere. This fact is due to Wahba [41]. We imple-

mented Wahba’s algorithm and found an experimental rate of convergence of

h4 where h is the reciprocal of the number of meshpoints. Using the function

f = xTAx we plotted the true function, the true smoothing spline due to

Wahba and the finite element solution for a mesh of size 514: see Figure 3.2
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(a) (b)

(c)

Figure 3.2: Comparison of true solution (a) with Wahbas smoothing spline
(b) and the finite element solution (c).

3.3 Willmore Energy, Curvature Flow and the

rational sphere

We approximated the sphere above by a subdivision surface. Since the sub-

division surface for our scheme is a piecewise polynomial we know that we

are not able to find a mesh such that the limit surface is exactly the round

sphere. We will explain how we found the best approximation to the sphere

using subdivision surfaces of our scheme and extend our subdivision scheme
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to a rational one. The R in NURBS stands for rational and it is a well known

fact in mathematics that rational functions have better approximation prop-

erties than polynomials. We can for example represent an arch or a circle by

a rational but not by a polynomial. The idea of using rational subdivision

is not new but it is not used or explored widely. Since our scheme has high

approximation order in the regular setting we are hoping that we can exactly

parametrize the round sphere by a rational subdivision using our scheme.

We are able to get a very good approximation of the sphere and hope that in

the future we can prove that our subdivision scheme interpreted as a rational

one can exactly represent the round sphere.

Problem 1

Given a twice subdivided tetrahedron we would like to find the mesh such

that the limit surface is closest to the sphere. We assume that the mesh has

the symmetry of the tetrahedral group. This leaves us 5 degrees of freedom.

We know that the Willmore Energy of a genus 0 surface is 0 if and only

if the surface is a sphere. Therefore we find a solution to this problem by

minimizing the Willmore Energy. The Willmore Energy W is given by

W (S) =

∫
S

κ2
mdA−

∫
S

κGdA =

∫
S

κ2
mdA− 2πχ(S)

where κm is the mean curvature and κG is the Gauss curvature. The optimal

value we found is W = 0.038. The mesh and limit surface are given by Figure
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3.3

(a) Base Mesh (B) Subdivision Limit Surface

Figure 3.3: Mesh and Subdivision Limit of the optimal approximation of the
sphere

For optimizing we used a starting mesh which we created by evolving

a twice subdivided tetrahedron by the curvature flow explained below to a

surface close to a sphere. The flow doesn’t keep the symmetry so the mesh we

got from the curvature flow needed to be symmetrized before using it in our

optimization. We then used a fminsearch, a function built into Matlab to find

the presented solution. It is possible to optimize this result further. Since

we know however that we cannot exactly describe the sphere we stopped our

experiments here for now.

Problem 2

We know that a sphere can be exactly parametrized by rational patches

[12]. It is however not known if there is a way to do that such that the

parametrization is globally smooth. If we could find a mesh whose rational
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Figure 3.4: Limit surface of the rational sphere

limit is equal to the round sphere it would be a globally C2 parametrization.

We therefore consider a mesh in R4 and its subdivision limit. The subdivision

limit in R3 is given by the image of the projection

P : R4 → R3 P (x0, x1, x2, x3) = (
x1

x0

,
x3

x0

,
x3

x0

).

We do the same optimization as in Problem 1 using the tetrahedral symmetry

again gives us 8 degress of freedom. So far we are able to get the optimal

value for the Willmore Energy down to 0.0001 and the limit surface is shown

in Figure 3.3. Our numerical method to evaluate the Willmore Energy on

such a mesh is not more accurate than 4 digits and we are therefore not able

to say how close we can get to 0. We however know how to implement a

better method by using exact evaluation due to J. Stam [39]. We hope that

after the numerics give us hopeful results we are able to solve the following
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questions:

Question 3.1. Does a mesh with values in R4 exist such that its subdivision

limit surface under the subdivision of Chapter 2 projected into R3 is the round

sphere?

Curvature Flow Simulation

The curvature flow is given by

v = (κm −
∫

S
κmds∫
S
ds

)n

where v is the velocity vector on the surface. We will assume that the

subdivision limit S of the meshK is the approximation of the starting surface.

We want to compute the evolution of this surface under the curvature flow

over time. The subdivision surface is a smooth surface that is uniquely

described by the mesh and the subdivision rules. Since our scheme is perfectly

C2 we can compute the exact curvature at every point in the mesh.

We will now compute

• κi
m the curvature at every mesh point

• ni the normal at every mesh point

•
∫

S
κmds and

∫
S
ds by a quadrature rule
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We will evolve the surface by evolving the mesh points xi only:

xnew
i = xold

i + δt(κi
m −

∫
S
κmds∫
S
ds

)ni

We know that in theory any given surface flows to the round sphere under

the curvature flow. Our algorithm produces limit meshes which are close to

the sphere. An example is given in Figure 3.5.

(a) Starting Mesh (B) Starting Surface

(a) Limit Mesh (B) Limit Surface

Figure 3.5: Example of a Curvature Flow: Start and Limit Surface.
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3.4 Conclusions

The numerical method used to compute the curvature flow simulation is

basically forward Euler. It is well-known that forward Euler requires very

small time steps in order to produce accurate solutions. We do see that

phenomenon here. The main point we are trying to make here is however

that even such a crude numerical method works on as a simulation tool based

on our subdivision scheme. That means that better methods will work even

better. Since we approximate a surface by a C2 smooth surface we hope to

be able to model complex phenomena with this method. We furthermore

see that we can approximate the sphere very well with a very simple mesh

which will also be a useful tool in modeling and simulation of phenomena on

spheres. We can use the refinement for finite element type analysis as seen

in the approximation of functions and we are able to only locally refine as

well.
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Chapter 4

Quadrilateral Meshes and an

Eigenvalue Optimization

Problem

4.1 Quad Subdivision

In Chapter 2 we develop a Subdivision Scheme on a triangular mesh. A

similar idea works on the quadrilateral mesh and one solution was proposed

in [20].

We use the subdivision scheme that comes from the bi-quartic tensor

product B-spline in the regular setting. This is a dual scheme and the rules

are given by Figure 4.1. It does reproduce all degree 4 polynomials and

therefore has the necessary approximation order. The subdivision matrix
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Figure 4.1: Subdivision rules for the regular setting

for the extraordinary vertex of valence 2 can be constructed depending on a

number of parameters given by Figure 4.2. The matrix is then given by S:

α1 α4

α3

α3

α2α6

α5

α5

α12

α10

α10

α11

α11

α9

α7

α7

α8

α8

β1 β4

β5

β3

β2β7

β6

β8

β16

β14

β18

β15

β17

β11

β13

β9

β12

β10

γ1 γ4

γ3

γ3

γ2γ6

γ5

γ5

γ12

γ10

γ10

γ11

γ11

γ9

γ7

γ7

γ8

γ8

Σαi = 1 Σβi = 1 Σγi = 1

Figure 4.2: Valence 2 extraordinary vertex rules

S =

M1 M2

A B

 (4.1)
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where

M1 =



α1 α2 α3 α4 α3 α5 α6 α5

α2 α1 α5 α6 α5 α3 α4 α3

β1 β2 β3 β4 β5 β6 β7 β8

γ1 γ2 γ3 γ4 γ3 γ5 γ6 γ5

β1 β2 β5 β4 β3 β8 β7 β6

β2 β1 β6 β7 β8 β3 β4 β5

γ2 γ1 γ5 γ6 γ5 γ3 γ4 γ3

β2 β1 β8 β7 β6 β5 β4 β3



, (4.2)

M2 =



α7 α8 α9 α8 α7 α10 α11 α12 α11 α10

α10 α11 α12 α11 α10 α7 α8 α9 α8 α7

β9 β10 β11 β12 β13 β14 β15 β16 β17 β18

γ7 γ8 γ9 γ8 γ7 γ10 γ11 γ12 γ11 γ10

β13 β12 β11 β10 β9 β18 β17 β16 β15 β14

β14 β15 β16 β17 β18 β9 β10 β11 β12 β13

γ10 γ11 γ12 γ11 γ10 γ7 γ8 γ9 γ8 γ7

β18 β17 β16 β15 β14 β13 β12 β11 β10 β9



, (4.3)
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A =
1

256



50 25 100 10 5 0 0 50

50 5 100 50 25 0 0 10

25 0 50 100 50 0 0 0

50 5 25 50 100 10 0 0

50 25 5 10 100 50 0 0

25 50 0 0 50 100 10 5

5 50 0 0 10 100 50 25

0 25 0 0 0 50 100 50

5 50 10 0 0 25 50 100

25 50 50 0 0 5 10 100



,

B =
1

256



10 1 0 0 0 0 0 0 0 5

10 5 0 0 0 0 0 0 0 1

5 10 1 10 5 0 0 0 0 0

0 0 0 5 10 1 0 0 0 0

0 0 0 1 10 5 0 0 0 0

0 0 0 0 5 10 1 0 0 0

0 0 0 0 1 10 5 0 0 0

0 0 0 0 0 5 10 1 10 5

1 0 0 0 0 0 0 0 5 10

5 0 0 0 0 0 0 0 1 10



.

Exactly as in the triangular case we find the eigenvectors u1, u2, w1, w2, w3
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such that

Sui =
1

4
ui and Swi =

1

16
wi. (4.4)

Those vectors are given by

u1 =
h
0, 0, 2, 0, −2, −2, 0, 2, 6, 4, 0, −4, −6, −6, −4, 0, 4, 6

iT
,

u2 =
1

2

h
1, −1, 3, 9, 3, −3, −9, −3, 5, 15, 25, 15, 5, −5, −15, −25, −15, −5

iT
,

w1 =
1

18

h
− 1, −1, 11, −121, 11, 11, −121, 11, 467, 47, −361, 47, 467, 467, 47, −361, 47, 467

iT
,

w2 =
h
0, 0, 3, 0, −3, 3, 0, −3, 15, 30, 0, −30, −15, 15, 30, 0, −30, −15

iT
,

w3 =
1

9

h
1, 1, −11, 121, −11, −11, 121, −11, −35, 385, 1225, 385, −35, −35, 385, 1225, 385, −35

iT
.

(4.5)

The linear systems 4.4 give us 11 independent linear conditions. This means

we can reduce the original 42 − 3 = 39 parameters to 42 − 3 − 11 = 28

parameters. So now we have an 18x18 matrix with 28 parameters which we

know has the following 6 eigenvalues:

1, 1/4, 1/4, 1/16, 1/16, 1/16.

As in the triangular case the corresponding scheme is C2 if we can find

parameters such that all the other eigenvalues are smaller than 1/16. This

leads to an optimization problem.

4.2 Eigenvalue Optimization

We look for the best choice of parameters x ∈ R28 by formulating an opti-

mization problem:
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min f(x) ≡ ρR(S(x))

where ρR is the reduced spectral radius, by which we mean the spectral radius

after removing the eigenvalues

1, 1/4, 1/4, 1/16, 1/16, 1/16.

The objective function f is non-smooth, nonconvex and not even Lipschitz

continuous. However we are able to compute its gradient almost everywhere.

The partial derivative is given by

∂ρR(S(x))

∂xi

= Re(
µ

|µ|
u
∂S(x)

∂xi

v)

where v is the right eigenvector and u is the left eigenvector for the eigenvalue

µ for which ρR(S(x)) = |µ|. Although at an optimal solution, µ may well be

a multiple eigenvalue (as discussed below), for almost any other choice of x,

including nearly optimal x, µ is a simple eigenvalue, and hence the gradient

is well defined.

This is enough to use the optimization code HANSO [4]. It is based on

BFGS [23] and gradient sampling [6], but in most of our computations we

used only BFGS, which, as explained in [23], is surprisingly effective even

on nonsmooth objective functions. We started the algorithm with multiple

randomly selected points in R28 with small norm. After a few attempts BFGS
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gave us a point x with f(x) ≈ 0.02. This result was satisfying in the sense

that 0.02 < 1
16

. Furthermore, the largest eigenvalue in the scheme presented

in [20] is also around 0.02. Subsequently we ran BFGS repeatedly, each time

starting at a point which was a slight perturbation of the previous best point,

eventually reducing f to about 2× 10−4.

Let us discuss the distribution of eigenvalues (excluding 1, 1/4, 1/16) of

the various matrices S(x) corresponding to the parameter choices found by

BFGS. In Figure 4.3 we plot the relevant eigenvalues of S(x) in the complex

plane and draw a circle with radius equal to the reduced spectral radius.

Note the different scales in the four panels of the figure.

Figure 4.3: Plots of eigenvalues for various choices of x
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We can see that the eigenvalue distribution in the top left panel is very

arbitrary as x is not yet close to an optimizer. The second and third picture

show a spectral radius of about 10−3. There, all eigenvalues are very close

in modulus giving us the impression that x is close to a minimizer. In other

words, one can think of the sequence of approximate optimizers as steadily

shrinking a circle which contains the relevant eigenvalues; from this view-

point, it is natural that the eigenvalues lie nearly on the relevant circle. In

the final panel, however, we no longer have the nice distribution. This is

probably caused by the fact that x is so close to the optimum that rounding

errors are scattering the eigenvalues. Indeed, we conjecture that it is possible

to reduce all the eigenvalues to zero:

Conjecture 4.1. There exists an x̂ ∈ R28 such that f(x̂) = 0 meaning the

18 eigenvalues of S(x̂) are given by 1, 1/4, 1/4, 1/16, 1/16, 1/16, 0, . . . , 0.

We are interested in the Jordan structure of the minimizer. We therefore

computed the eigenvectors corresponding to the relevant eigenvalues (the

ones that are nearly zero), normalizing them to have unit length. It turns

out that if we take the Singular Value Decomposition of the matrix composed

of those 12 eigenvectors we get 12 numbers that are close to

√
5,
√

3,
√

2,
√

2, 0, . . . , 0

This leads to our next Conjecture:
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Conjecture 4.2. The Jordan Normal Form of S(x̂) is given by



D 0 0 0 0

0 J5(0) 0 0 0

0 0 J3(0) 0 0

0 0 0 J2(0) 0

0 0 0 0 J2(0)


,

where D = diag(1, 1/4, 1/4, 1/16, 1/16, 1/16) and Ji(0) is a Jordan Block of

size i with 0’s on the diagonal.

As explained in Chapter 2 we can analytically determine the global mini-

mum of a similar problem that comes from the triangular case: see Theorem

2.3. In that case, the singular values of the corresponding matrix of eigen-

vectors of the relevant eigenvalues (excluding D) is given by

√
2, 1, 1, 0,

the zero indicating that there is only one eigenvector for J2(0) and hence it is

repeated. In our view, this makes Conjectures 4.1 and 4.2 quite convincing.

Furthermore, it is well known from eigenvalue perturbation theory that

a random perturbation of norm ε to a Jordan block Jk(0) induces perturbed

eigenvalues with approximate magnitude ε1/k [24]. Hence, assuming that

Conjectures 4.1 and 4.2 are true, it is quite remarkable that BFGS was able

to reduce f to about 2×10−4, since a random perturbation of order machine
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precision (about 10−16) to S(x̂) should result in eigenvalues with magnitude

about (10−16)1/5 ≈ 10−3.
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Chapter 5

Boundary Analysis of

subdivision schemes

5.1 Introduction

Two features of subdivision algorithms are particularly important for appli-

cations. The first is the ability to handle a large variety of input meshes,

including meshes with boundary. The second is the ease of modification of

subdivision rules, which makes it possible to generate different surfaces (e.g.

surfaces with sharp or soft creases) out of the same input mesh.

Importance of special boundary and crease rules was recognized for some

time [26, 27, 19, 38]. However, most of the theoretical analysis of subdi-

vision [35, 29, 46, 45] focused on the case of surfaces without boundaries

and schemes invariant with respect to rotations. The goal is to develop the
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necessary theoretical foundations for analysis of subdivision rules for meshes

with boundary, and present analysis for boundary rules extending several

well-known subdivision schemes, described in [3].

The starting point for our theory is a precise description of the class

of surfaces that we would like to be able to model using subdivision. We

introduce the definition of surfaces with piecewise-smooth boundary. This

class readily extends to a broader class of piecewise-smooth surfaces, which

is sufficiently broad for many practical applications. We demonstrate how

the standard constructions of subdivision theory (subdivision matrices, char-

acteristic maps etc.) generalize to the case of surfaces with piecewise-smooth

boundary. Remarkably, even at this abstract stage we make a simple, yet

important observation, with substantial practical implications: convex and

concave corner singularities of the boundary require separate subdivision

rules.

We proceed to extend the techniques for analysis of C1-continuity devel-

oped in [45] to the case of piecewise-smooth surfaces with boundary.

The result allowing one to analyze C1-continuity of most subdivision

schemes for surfaces without boundaries is the sufficient condition of Reif [35].

This condition reduces the analysis of stationary subdivision to the analysis

of a single map, called the characteristic map, uniquely defined for each va-

lence of vertices in the mesh. The analysis of C1-continuity is performed in

three steps for each valence:

1. compute the control net of the characteristic map;
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2. prove that the characteristic map is regular;

3. prove that the characteristic map is injective.

We show that similar conditions hold for surfaces with boundary, and under

commonly satisfied assumptions injectivity of the characteristic map for sur-

faces with boundary can be inferred from regularity. To avoid the need to

evaluate the characteristic map in closed form, we obtain convergence esti-

mates for subdivision schemes acting on regular grids with boundary. These

estimates allow us to use sufficiently close linear approximations to draw

conclusions about regularity of the characteristic map. We describe the ele-

ments of the theory of schemes acting on regular grids with boundary which

we need to perform C1-continuity analysis.

Subdivision schemes acting on grids with boundary were introduced in

[44] where they were referred to as crease subdivision schemes. A generaliza-

tion of this class of schemes was studied in [22] where they are referred to as

quasi-uniform subdivision schemes.

Finally, we use the theory that we have developed to derive and analyze

several specific boundary subdivision rules, initially proposed in [3].

Previous work The theory presented here is based on the theory devel-

oped for closed surfaces in [35, 46, 45]. As far as we know, analysis of

C1-continuity of subdivision rules for surfaces with boundary was performed

only in [38], where a particular choice of rules extending Loop subdivision

was analyzed.
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At the same time, substantial number of papers proposed various bound-

ary rules starting with the first papers on subdivision by Doo and Sabin, and

Catmull and Clark [7, 13, 26, 28, 19]. Most recently, a method for generating

soft creases was proposed in [11].

In our C1-continuity verification method we use estimates of the conver-

gence rate of quasi-uniform subdivision schemes, considered briefly in [44]

and in greater generality and detail in [22].

Our estimates of the errors of linear approximations rely on the work of

Cavaretta, Dahmen and Micchelli [8], and on the work of Cohen, Dyn and

Levin [9] on matrix subdivision.

5.2 Surfaces with Piecewise-smooth Bound-

ary

5.2.1 Definitions

In this section we define surfaces with piecewise-smooth boundaries. Unlike

the case of open surfaces, there is no single commonly accepted definition that

would be suitable for our purposes. We consider several definitions of surfaces

with boundaries and motivate the choice that we make (Definition 5.4).

The least restrictive definition of a closed surface with boundary is a

closed part of an open surface. This definition is too general for our purposes

but provides a useful starting point. More formally, we define a closed surface
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with boundary as follows. Recall that an open Ck-continuous surface in Rp

can be defined as a topological space M with a map f : M → Rp such that

for any point x ∈ M there is a neighborhood Ux such that f(Ux) can be

reparametrized over the open unit disk D using a Ck nondegenerate map

g : D → f(Ux).

Definition 5.1. Let M be a closed topological space with boundary, and f

a map from M to Rp. We say that (M, f) is a closed Ck surface with

boundary, if there is an open Ck-continuous surface (M ′, f ′) and an injec-

tive inclusion map ι : M →M ′, such that f ′ ◦ ι = f .

Note that this definition places very few restrictions on the boundary: for

example, any subset of the plane from this point of view is a Ck-continuous

surface for any k. Typically, additional restrictions are added. Most com-

monly the boundary is required to be a union of nonintersecting Ck-continuous

curves (see [25],[14]). Assuming that the domains of these curves are sep-

arated in M ′, this type of surfaces can be defined using two local charts,

the open unit disk D and the half-disk Q2 = H ∩D, where H is the closed

halfplane defined by H = {(x, y)|y > 0}.

Definition 5.2. Consider a surface (M, f) where M is a topological space,

and f is a map f : M → Rp. The surface (M, f) is called a closed Ck-

continuous surface with Ck boundary if for any x ∈ M there exists

a neighborhood Ux and a regular Ck-continuous parametrization h of f(Ux)

over an open disk D (internal point) or a half-disk Q2 (boundary point).
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This definition is too narrow for geometric modeling, as surfaces with

corners (e.g. surfaces obtained by smooth deformations of a rectangle) are

quite common. To include corners, we have to allow isolated singularities for

the boundary curves. We consider a broader class of surfaces, which we call

Ck-continuous surfaces with piecewise Ck-continuous boundary.

Definition 5.3. Let (M, f), f : M → Rp be a closed Ck-continuous sur-

face with boundary as defined above, Let γi : [0, 1] → M , i ∈ I, where

I is finite, be a set of curve segments, such that each endpoint is shared

by exactly 2 segments, and the curve segments intersect only at endpoints.

Suppose the boundary of M coincides with ∩iImγi, the curves f ◦ γi are Ck-

continuous. Then we call (M, f) a Ck-continuous surface with piecewise

Ck-continuous boundary.

The definition implies existence of the tangents to the boundary curves

at the endpoints. However, these tangents may not coincide for two adjacent

curves, and result in either a cusp of degree m or a Cm-continuous joint for

m 6 k. In either case, k different charts are required to parametrize the

surface, as two curves with a contact point of order m are clearly not Ck-

diffeomorphic to two curves with a contact point of order n 6= m, for n,m 6 k.

Moreover, the boundary of the surface is not Lipschitz if it contains cusps,

which means that surfaces of this type require special treatment when we

consider functions defined on such surfaces (cf. [40]).
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Transversality assumption. We assume that the adjacent boundary curve

segments intersect transversely, that is, their tangents are different at the

shared endpoint. We call such endpoints of boundary curve segments non-

degenerate corners. Thus, the surfaces that we consider do not contain

cusps or Cm-continuous joints for 0 < m < k, We leave analysis of surfaces

with higher degree contact points as future work. There are two reasons for

this.

First, mathematical description of such surfaces is more complex and

best done separately, once the framework for surfaces with boundaries with

non-degenerate corners is established.

Second, it appears that this type of features in most cases is best mod-

eled using degenerate configurations of control points rather than special

subdivision rules. Here, we consider only behavior of surfaces for generic

configurations of control points.

It is clear however that higher-order boundary singularities are useful in

applications, a simple example being a surface filling a gap between a cylinder

and a tangent plane.

Once we exclude the higher-order contact cases, we can use a more

constructive equivalent definition of surfaces with piecewise Ck-continuous

boundary with nondegenerate corners. We use four charts, for all possible

types of points of the surface (Figure 5.1). In addition to the disk D and

the halfdisk Q2, we use a quarter of the disk Q1 and three quarters of the

disk Q3. The domains Qi i = 1, 3 are defined as follows: Q1 = {(x, y)|y >
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(A) (B) (C) (D)

Figure 5.1: Types of local chart (A) is the disk D, (B) is he quarter disk Q1,
(C) is the half disk Q2 and (D) is the three-quarter disk Q3

0 and x > 0} ∩D, Q3 = {(x, y)|y > 0 or x > 0} ∩D.

Now we can give an alternative definition of a Ck-continuous surface with

piecewise smooth boundary with nondegenerate corners:

Definition 5.4. Consider a surface (M, f) where M is a topological space,

and f is a map f : M → Rp. The surface (M, f) is called Ck-continuous

with piecewise Ck-continuous boundary with non-degenerate cor-

ners if for any x there is a neighborhood Ux and a regular Ck-continuous

parametrization of f(Ux) over one of the domains Qi, i = 1, . . . 3, or over

the disk D. In the first case, we call the point x a boundary point, in the

second case an interior point. We distinguish two main types of boundary

points: if Ux is diffeomorphic to Q2, the boundary point is called smooth;

otherwise it is called a corner. There are 2 types of corners:

• convex corners (Ux is diffeomorphic to Q1);

• concave corners (Ux is diffeomorphic to Q3);
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For brevity we will also use the term Ck-continuous surface with piecewise-

smooth boundary.

Equivalence of definitions 5.4 and 5.3 with degenerate corners excluded

is straightforward to show using the well known facts about existence of the

extensions of functions defined on Lipschitz domains to the plane.

Surfaces satisfying Definition 5.4 can be used to model a large variety

of features; for example, by joining the surfaces along boundary lines we

can obtain surfaces with creases. However, in addition to boundary cusps, a

number of useful features such as cones cannot be modeled, unless degenerate

configurations of control points are used.

5.2.2 Tangent Plane Continuity and C1-continuity

As we will see in Section 5.3, analysis of subdivision focuses on the behavior

of surfaces which are known to be at least C1-continuous in a neighborhood

of a point, but nothing is known about the behavior at the point. In this

case, it is convenient to split the analysis into several steps, the first being

tangent plane continuity. In the definition below, we use ∧ to denote the

exterior product (vector product for p = 3) and [·]+ to denote normalization

of a vector.

Definition 5.5. Let D be the unit disk in the plane. Suppose a surface (M, f)

in a neighborhood of a point x ∈ M is parametrized by h : U → Rp, where

U is a subset of the unit disk D containing 0, which is regular everywhere
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except 0, and h(0) = f(x). Let π(y) = [∂1h ∧ ∂2h]+. where ∂1h and ∂2h are

derivatives with respect to the coordinates in the plane of the disk D. The

surface is tangent plane continuous at x if the limit limy→0 π(y) exists.

For an interior point x for which the surface is known to be C1-continuous

in a neighborhood of the point x excluding x, the surface is C1-continuous at

x if and only if it is tangent plane continuous and the projection of the surface

into the tangent plane is injective ([46], Proposition 1.2). The proof of this

proposition does not assume that the surface is defined on an open neigh-

borhood of x. C1 continuity for an interior point x is inferred from existence

and C1 continuity of two independent derivatives of reparametrization of the

surface over the tangent plane. This fact alone is not sufficient to guaran-

tee that the surface has piecewise continuous boundary with nondegenerate

corners: we need to impose an additional condition on the boundary curve.

We can see that the boundary of (M, f) has a nondegenerate corner at x if

there is a neighborhood Ux such that f(Ux) ∩ f(∂M) admits a parametriza-

tion by two C1-continuous curves γi : (0, 1] → Rp, i = 1, 2, such that

γ1(1) = γ2(1) = f(x), and the tangents to the curves are different at the

common endpoint x.

Proposition 5.1. Suppose a surface (M, f) is C1-continuous with C1-continuous

boundary in a neighborhood Ux of a boundary point x excluding x. The sur-

face is C1-continuous at x with piecewise C1-continuous boundary if and only

if it is
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1. tangent plane continuous,

2. the projection of the surface into the tangent plane is injective,

3. the boundary either has a nondegenerate corner at x or is C1-continuous

at x.

Proof. Necessity of these conditions is straightforward. Most of the proof

of sufficiency coincides with the proof of Proposition 1.2 from [46]: if we

assume only that the surface is tangent plane continuous and the projection

into the tangent plane is injective, we can show that the derivatives in two

independent directions of π, the inverse of a projection of the surface into

the tangent plane, exist and are continuous at point x.

It remains to be shown that the surface is C1-diffeomorphic to one of the

domains Qi, i = 1, 2, 3.

As the boundary curves γi are C1-continuous, and their tangents are in

the tangent plane to the surface at all points, their projections Pγi into the

tangent plane at x are also C1-continuous. At the point x the tangents to

the curves are in the tangent plane at x, and coincide with the tangents to

the projections. By construction, the domain of π, the image of the projec-

tion of the surface into the tangent plane, is homeomorphic to a halfdisk.

We have shown that the image of the boundary diameter of the halfdisk

is C1-continuous or C1-continuous with a nondegenerate corner at x. The

neighborhood Ux can be chosen in such a way that Pf(∂Ux \ ∂M), the im-

age of the part of the boundary of Ux which is not the boundary of M , is a
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semicircle centered at x and intersects the curves Pγi only at a single point

each. (We omit somewhat tedious but straightforward proof of this fact.)

Thus, our surface can be parametrized in a neighborhood of x over a

planar domain Pf(Ux) which is a subset of an open disk DPf(x) bounded by

two C1 curve segments connecting the center Pf(x) to the boundary. Let

l1 and l2 be the rays along tangent directions to γ1 and γ2 at x (possibly

collinear). Then for sufficiently small radius of the neighborhood, we can

assume that orthogonal projections of γi to li is injective. Note that l1 ∩ l2

split the disk DPf(x) into two parts D1 and D2; either both parts are half-

disks, or one part is convex and the other concave. Now we can directly

construct a C1-diffeomorphism of the domain Pf(Ux) to one of the domains

D1 and D2. For example, in the simplest case of l1 and l2 being collinear, we

can use a coordinate system (s, t) in which l1 and l2 form the s axis, and γ1

and γ2 form a graph of a function γ(s). Assuming that the disk DPf(x) has

radius 1 the formula

(s, t)→

(
s,
√

1− s2
t− γ(s)√

(1− s2)− γ(s)

)

defines the desired diffeomorphism.

We have shown that the surface has a parametrization g over one of the

domains Qi i = 1, 2, 3 in the neighborhood of x, which has C1-continuous

derivatives everywhere on Qi with nowhere degenerate Jacobian.

This proposition provides a general strategy for establishing C1-continuity
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of surfaces, which is particularly convenient for subdivision surfaces. More-

over, as we shall see, in most cases of practical importance we can infer the

injectivity of the projection from the other two conditions, so only local tests

need to be performed.

5.3 Subdivision Schemes on Complexes with

Boundary

In this section we summarize the main definitions and facts about subdivision

on complexes that we use; more details for the case of surfaces without

boundaries can be found in [46, 44]. The changes that have to be made to

make the constructions work for the boundary case are relatively small. We

restrict the presentation to the case of schemes for triangle meshes to avoid

making the notation excessively complex. However, the results equally apply

to quadrilateral schemes; only minor changes in notation are necessary.

5.3.1 Definitions and eigendecomposition theory

Simplicial complexes. Subdivision surfaces are naturally defined as func-

tions on two-dimensional polygonal complexes. A simplicial complex K is a

set of vertices, edges and planar simple polygons (faces) in RN , such that

for any face its edges are in K, and for any edge its vertices are in K. We

assume that there are no isolated vertices or edges. |K| denotes the union of
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faces of the complex regarded as a subset of RN with induced metric. We say

that two complexes K1 and K2 are isomorphic if there is a homeomorphism

between |K1| and |K2| that maps vertices to vertices, edges to edges and

faces to faces.

A subcomplex of a complex K is a subset of K that is a complex. A

1-neighborhood N1(v,K) of a vertex v in a complex K is the subcomplex

formed by all faces that have v as a vertex. The m-neighborhood of a vertex

v is defined recursively as a union of all 1-neighborhoods of vertices in the

(m − 1)-neighborhood of v. We omit K in the notation for neighborhoods

when it is clear what complex we refer to.

Recall that a link of a vertex is the set of edges of N1(v,K) that do not

contain v. We consider only complexes with all vertices having links that are

connected simple polygonal lines, open or closed. If the link of a vertex is

an open polygonal line, this vertex is a boundary vertex, otherwise it is an

internal vertex.

In the analysis of schemes for surfaces without boundary the regular com-

plex R and k-regular complexes Rk are are commonly used [46]. We are pri-

marily interested in schemes that work on quadrilateral and triangle meshes,

and we consider k-regular complexes with all faces being identical triangles or

quads; however, similar complexes can be defined for the remaining regular

tiling, with all faces being hexagons, and more generally for any Laves tiling.

For schemes acting on meshes with boundary we use regular and k-regular

complexes with boundary. A regular complex with boundary is isomorphic
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to a regular tiling of the upper half-plane. A k-regular complex Rα
k with

apex angle α is isomorphic to the regular tiling of a sector with apex angle

α, consisting of identical polygons, with all internal vertices of equal valence

and all vertices on the boundary of equal valence, excluding the vertex C at

the apex which has valence k+ 1. For triangle meshes the valence of regular

interior vertices is six, and for boundary vertices it is three.

Note that the complex is called k-regular, because the number of faces

sharing the vertex C is k, not the number of edges. In the case of closed

surfaces these numbers are equal.

Tagged complexes. The vertices, edges or faces of a complex can be as-

signed tags, or more formally, a map can be defined from the sets of vertices,

edges or faces to a finite set of tags. These tags can be used to choose a type

of subdivision rules applied at a vertex. We use tags in a very limited way:

specifically, a boundary vertex can be tagged as a convex or concave corner,

or a smooth boundary vertex. However, as it is discussed below, the tags can

be used to create creases in the interior of meshes and for other purposes.

Subdivision on tagged complexes merits a separate detailed consideration.

Isomorphisms of tagged complexes with identical tag sets can be defined

as isomorphisms of complexes which preserve tags, i.e. if a vertex has a tag

τ its image also has a tag τ .

Subdivision of simplicial complexes. We can construct a new complex

D(K) from a complex K by subdivision. For a triangle scheme, D(K) is
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constructed by adding a new vertex for each edge of the complex and re-

placing each old triangular face with four new triangles. If some faces of

the initial complex are not triangular, they have to be split into triangles

first. For a quadrilateral scheme, D(K) is constructed by adding a vertex

for each edge and face, and replacing each n-gonal face with n quadrilateral

faces. Note that k-regular complexes and k-regular complexes with bound-

ary are self-similar, that is, D(Rk) and Rk, as well as D(Rα
k ) and Rα

k , are

isomorphic.

We use notation Kj for j times subdivided complex Dj(K) and V j for the

set of vertices ofKj. Note that the sets of vertices are nested: V 0 ⊂ V 1 ⊂ . . ..

If a complex is tagged, it is also necessary to define rules for assigning

tags to the new edges, vertices and faces. For our vertex tags, we use a trivial

rule: all newly inserted boundary vertices are tagged as smooth boundary.

Subdivision schemes. Next, we attach values to the vertices of the com-

plex; in other words, we consider the space of functions V → B, where B is

a vector space over R. The range B is typically Rl or Cl for some l. We

denote this space P(V,B), or P(V ), if the choice of B is not important.

A subdivision scheme for any function pj(v) on vertices V j of the complex

Kj computes a function pj+1(v) on the vertices of the subdivided complex

D(K) = K1. More formally, a subdivision scheme is a collection of operators

S[K] defined for every complex K, mapping P(K) to P(K1). We consider

only subdivision schemes that are linear, that is, the operators S[K] are
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linear functions on P(K). In this case the subdivision operators are defined

by equations

p1(v) =
∑
w∈V

avwp
0(w)

for all v ∈ V 1. The coefficients avw may depend on K.

We restrict our attention to subdivision schemes which are finitely sup-

ported, locally invariant with respect to a set of isomorphisms of tagged

complexes and affinely invariant.

A subdivision scheme is finitely supported if there is an integer M such

that avw 6= 0 only if w ∈ NM(v,K) for any complex K (note that the

neighborhood is taken in the complex Kj+1). We call the minimal possible

M the support size of the scheme.

We assume our schemes to be locally defined and invariant with respect

to isomorphisms of tagged complexes.

Together these two requirements can be defined as follows: there is a

constant L such that if for two complexes K1 and K2 and two vertices v1 ∈

V1 and v2 ∈ V2 there is a tag-preserving isomorphism ρ : NL(v1, K1) →

NL(v2, K2), such that ρ(v1) = v2, then av1w = av2ρ(w). In most cases, the

localization size L = M .

The final requirement that we impose on subdivision schemes is affine

invariance: if T is a linear transformation B → B, then for any v Tpj+1(v) =∑
avwTp

j(v). This is equivalent to requiring that all coefficients avw for a
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fixed v sum up to 1.

For each vertex v ∈ ∪∞j=0V
j there is a sequence of values pi(v), pi+1(v),. . . where

i is the minimal number such that V i contains v.

Definition 5.6. A subdivision scheme is called convergent on a complex K,

if for any function p ∈ P(K,B) there is a continuous function f defined on

|K| with values in B, such that

lim
j→∞

sup
v∈V j

∥∥pj(v)− f(v)
∥∥

2
→ 0

The function f is called the limit function of subdivision.

Notation: f [p] is the limit function generated by subdivision from the

initial values p ∈ P(K).

It is easy to show that if a limit function exists, it is unique. A subdivision

surface is the limit function of subdivision on a complex K with values in R3.

In this case we call the initial values p0(v) the control points of the surface.

Assuming the trivial rule for assigning tags to the newly inserted bound-

ary vertices, we observe that locally any surface generated by a subdivision

scheme on an arbitrary complex can be thought of as a part of a subdivision

surface defined on a k-regular complex or a k-regular complex with boundary.

Note that this fact alone does not guarantee that it is sufficient to study

subdivision schemes only on k-regular complexes and k-regular complexes

with boundary [46]. If the number of control points of the initial complex

for a k-gonal patch is less than the number of control points of the central
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k-gonal patch in the k-regular complex, then only a proper subspace of all

possible configurations of control points on the subdivided complexes can be

realized. Although it is unlikely, it is possible that for such complexes almost

all configurations of control points will lead to non-smooth surfaces, while

the scheme is smooth on the k-regular complexes.

Subdivision matrices. Consider the part of a subdivision surface f [y]

with y ∈ U j
1 = |N1(0,Rj

k)|, defined on the domain formed by faces of the

subdivided complex Rj
k adjacent to the central vertex. It is straightforward

to show that the values at all dyadic points in |N1(0,Rj
k)| can be computed

given the initial values pj(v) for v ∈ NL(0,Rj
k). In particular, the control

points pj+1(v) for v ∈ NL(0, Rj+1
k ) can be computed using only control points

pj(w) for w ∈ NL(0,Rj
k). Let p̄j be the vector of control points pj(v) for

v ∈ NL(0,Rj
k). Let p + 1 be the number of vertices in NL(0,Rk). As

the subdivision operators are linear, p̄j+1 can be computed from p̄j using a

(p+ 1)× (p+ 1) matrix Sj: p̄j+1 = Sj p̄j

If for some m and for all j > m, Sj = Sm = S, we say that the subdivision

scheme is stationary on the k-regular complex, or simply stationary, and call

S the subdivision matrix of the scheme.

Eigenbasis functions. let λ0 = 1, λi, . . . λJ be different eigenvalues of the

subdivision matrix in nonincreasing order, the condition λ0 > λ1 is necessary

for convergence.

For any λi let J i
j , j = 1 . . . be the complex cyclic subspaces corresponding

73



to this eigenvalue.

Let ni
j be the orders of these cyclic subspaces; the order of a cyclic sub-

space is equal to its dimension minus one.

Let bijr, r = 0 . . . ni
j be the complex generalized eigenvectors corresponding

to the cyclic subspace J i
j . The vectors bijr satisfy

Sbijr = λib
i
jr + bij r−1 if r > 0, Sbij0 = λib

i
j0 (5.1)

The complex eigenbasis functions are the limit functions defined by f i
jr =

f [bijr] : U1 → C

Any subdivision surface f [p] : U1 → R3 can be represented as

f [p](y) =
∑
i,j,r

βi
jrf

i
jr(y) (5.2)

where βi
jr ∈ C3, and if bijr = bklt, β

i
jr = βk

lt, where the bar denotes complex

conjugation.

One can show using the definition of limit functions of subdivision and

(5.3) that the eigenbasis functions satisfy the following set of scaling relations:

f i
jr(y/2) = λif

i
jr(y) + f i

j r−1(y) if r > 0, f i
j0(y/2) = λif

i
j0(y) (5.3)

Real eigenbasis functions. As we consider real surfaces, it is often con-

venient to use real Jordan normal form of the matrix rather than the com-
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plex Jordan normal form. For any pair of the complex-conjugate eigen-

values λi, λk, we can choose the complex cyclic subspaces in such a way

that they can be arranged into pairs J i
j , J

k
j , and bijr = bkjr for all j and r.

Then we can introduce a single real subspace for each pair, with the basis

cijr, c
k
jr, r = 0 . . . ni

j, where cijr = <bijr, and ckjr = =bijr. We call such sub-

spaces Jordan subspaces. Then we can introduce real eigenbasis functions

gi
jr(y) = f i

jr(y) for real λi, and gi
jr(y) = <f i

jr(y), g
k
jr(y) = =f i

jr(y) for a pair

of complex-conjugate eigenvalues (λi, λk). For a Jordan subspace correspond-

ing to pairs of complex eigenvalues the order is the same as the order of one

of the pair of cyclic subspaces corresponding to it.

Similar to (5.2) we can write for any surface generated by subdivision on

U1:

f [p](y) =
∑
i,j,r

αi
jrg

i
jr(y) (5.4)

Now all coefficients αi
jr are real. Eigenbasis functions corresponding to

the eigenvalue 0 have no effect on tangent plane continuity or Ck-continuity

of the surface at zero. From now on we assume that λi 6= 0 for all i.

We can assume that the coordinate system in R3 is always chosen in such

a way that the single component of f [p] corresponding to eigenvalue 1 is zero.

This allows us to reduce the number of terms in (5.4) to p.
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5.3.2 Reduction to universal surfaces

In [46] we have shown that for surfaces without boundary the analysis of

smoothness of subdivision can be reduced to the analysis of universal sur-

faces. Moreover, if a subdivision scheme is C1, almost any surface produced

by subdivision is diffeomorphic to the universal surface. In this section, we

introduce the universal surfaces for neighborhoods of boundary vertices, and

show that a similar reduction can be performed in this case.

This fact is of considerable practical importance for design of subdivision

schemes for surfaces with piecewise-smooth boundary: as we have observed

in Section 5.2, convex and concave corners are not diffeomorphic; therefore, a

convex and and a concave corner in R3 cannot be diffeomorphic to the same

universal surface, and cannot be generated by the same subdivision rule.

Universal map. The decomposition (5.4) can be written in vector form.

Let hi
jr be an orthonormal basis of Rp. Let ψ be

∑
i,j,r g

i
jrh

i
jr; this is a map

U1 → Rp. Let α1, α2, α3 ∈ Rp be the vectors composed of components of

coefficients αi
jr from (5.4) (each of these coefficients is a vector in R3). Then

(5.4) can be rewritten as

f [p](y) =
(
(ψ, α1), (ψ, α2), (ψ, α3)

)
(5.5)

This equation indicates that all surfaces generated by a subdivision scheme

on U1 can be viewed as projections of a single surface in Rp. We call ψ the
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universal map, and the surface specified by ψ the universal surface. In [46],

it was demonstrated that the analysis of tangent plane continuity and Ck

continuity of subdivision can be reduced to analysis of the universal surface.

Not surprisingly, we will see that this also holds for subdivision schemes with

boundary.

In the chosen basis the matrix S is in the real Jordan normal form. Note

that by definition of S for any a ∈ Rp

(a, ψ(y/2)) = (Sa, ψ(y))

Using the well-known formula for inner products (Su, v) = (u, STv), we

get

(x, ψ(y/2)) = (x, STψ(y)), for any x

This means that the scaling relations can be jointly written as

ψ(y/2) = STψ(y) (5.6)

The universal map ψ is only piecewise Ck, even if we assume that subdivi-

sion produces Ck limit function on regular complexes and regular complexes

with boundary: derivatives have discontinuity at the boundaries of poly-

gons of U1. However, one can easily construct a map κ (see [46]) such that

φ = ψ ◦ κ−1 is C1-continuous away from the center.

We will impose the following condition on the subdivision schemes which
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we call: Condition A. For any y ∈ U1

∂1ψ(y) ∧ ∂2ψ(y) 6= 0 for all y ∈ U1, y 6= 0

This condition holds for all known practical schemes.

Reduction theorem. Our goal is to relate tangent plane continuity and

Ck-continuity of the universal surface in Rp and tangent plane continuity of

the subdivision scheme. The following theorem holds under our assumptions:

Theorem 5.1. For a subdivision scheme satisfying Condition A to be tan-

gent plane continuous on a k-regular complex with boundary, it is necessary

and sufficient that the universal surface be tangent plane continuous; for the

subdivision scheme to be Ck-continuous with p.w. Ck-continuous boundary,

it is necessary and sufficient that the universal surface is Ck-continuous with

p.w. Ck-continuous boundary. Almost all surfaces generated by a subdivision

scheme on a k-regular complex with boundary are locally diffeomorphic to the

universal surface.

Proof. Sufficiency is clear as any surface is a linear projection of the universal

surface. To prove necessity, we use Proposition 5.1, and show that

• if the universal surface is not tangent plane continuous then a set of

subdivision surfaces of non-zero measure is not tangent plane continu-

ous;
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• if the universal surface has non-injective projection into the tangent

plane same is true for a set of subdivision surfaces of non-zero measure;

• if the projection of the universal surface into the tangent plane is not

Ck, same is true for a set of subdivision surfaces of non-zero measure;

• if the boundary of the universal surface is not Ck-continuous, or is

not Ck-continuous with nondegenerate corner, same is true for a set of

subdivision surfaces of non-zero measure.

The proof of the first three statements coincides with the proof for the

surface without boundary presented in [46].

We only need to consider the fourth statement. By assumption, the

boundary of the surface is C1-continuous away from zero. Let the two pieces

of the boundary be γi : (0, 1] → Rp, i = 1, 2, with γ1(1) = γ2(1). We can

assume both pieces to be C1-continuous away from one. Suppose γ1 does not

have a tangent at one; then there are at least two directions τ1 and τ2 which

are limits of sequences of tangent directions to γ1(t) as t approaches one.

There is a set of three-dimensional subspaces π of measure non-zero in the

space of all three-dimensional subspaces, for which the projections of both

vectors τ1 and τ2 to the subspace are not zero. If we project the universal

surface to any of these subspaces, the boundary curve of the resulting surface

will not be tangent continuous. For curves tangent continuity is equivalent

to C1-continuity. For Ck-continuity the proof for curves is identical to the

proof for surfaces. We conclude that the curves γ1 and γ2 should be Ck-
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continuous. Similarly, if the curves are joined with continuity less than k,

then almost all curves obtained by projection into R3 will have the same

property. Finally, if the tangents to the curves coincide, same is true for

almost all projections of the curves, which means that almost all projections

do not have a non-degenerate corner.

The following important corollary immediately follows from Theorem 5.1:

Corollary 5.2. Almost all surfaces generated by a given Ck-continuous sub-

division scheme on a k-regular complex are diffeomorphic.

Indeed, as any subdivision surface f : Uk → R3 is obtained as a projec-

tion of the universal surface, for almost any choice of projection it defines a

diffeomorphism of the universal surface and f .

This corollary implies in particular that the same subdivision rule can-

not generate convex and concave corners simultaneously in a stable way, and

separate rules are required for these cases. It should be noted that sur-

faces with convex and concave corners can be alternatively produced using

standard rules and degenerate configurations of control points. We believe

however, that the best approach is to use special rules and not require spe-

cial constraints on control points. However, it appears to be more natural

to use degenerate configurations for producing surfaces with 0 and 2π cor-

ners. Analysis of the behavior of subdivision on degenerate and constrained

configurations of control points is not considered here and remains an open

problem.
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5.4 Criteria for tangent plane and C1 conti-

nuity.

Tangent plane continuity criteria of [46] do not use the fact that only interior

points of a surface are considered. Similarly, C1-continuity criteria use only

the fact that C1-continuity is equivalent to tangent plane continuity and in-

jectivity of the projection into the tangent plane. Therefore, C1-continuity

criteria also hold for boundary points. We only need to establish the condi-

tions that guarantee that the boundary curves are C1-continuous, possibly

with corners.

We focus on a sufficient condition for C1-continuity ([46] Theorem 3.6

and Theorem 4.1), which is most relevant for applications. More general

necessary and sufficient conditions (e.g. [46] Theorem 3.5) can be extended

in a similar way.

To state the sufficient condition, we need to define characteristic maps,

which are commonly used to analyze C1-continuity of subdivision surfaces.

We use a definition somewhat different from the original definition of Reif

[35].

5.4.1 Conditions on Characteristic maps

Definition 5.7. The characteristic map Φ : U1 → R2 is defined for a

pair of cyclic subspaces Ja
b , J c

d of the subdivision matrix as
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1. (fa0, fa1) if Ja
b = J c

d, λa is real,

2. (fa0, fc0) if Ja
b 6= J c

d, λa, λc are real,

3. (<fa0,=fa0) if λa = λ̄c, b = d.

Three types of characteristic maps are shown in Figure 5.2.

a b c

Figure 5.2: Three types of characteristic maps: control points after 4 sub-
division steps are shown. a. Two real eigenvalues. b. A pair of complex-
conjugate eigenvalues. c. single eigenvalue with Jordan block of size 2.

The domain of a characteristic map is the neighborhood U1, consisting of

k faces of the regular complex; we call these faces segments. We assume that

the subdivision scheme generates C1-continuous limit functions on regular

complexes, and the characteristic map is C1-continuous inside each segment

and has continuous one-sided derivatives on the boundary.

Characteristic map satisfies the scaling relation Φ(t/2) = TΦ(t), where

T is one of the matrices

Tscale =

 λa 0

0 λc

 , Tskew =

 λa 1

0 λa

 , Trot = |λa|

 cosφ − sinφ

sinφ cos φ

 ,

where φ is the argument of a complex λa.
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Sufficient condition for C1-continuity. The following sufficient condi-

tion is a special case of the condition that was proved in [46]. Although all

our constructions apply in the more general case, we state only a simpli-

fied version of the criterion to simplify the presentation. This form captures

the main idea of the sufficient condition. This condition generalizes Reif’s

condition [35].

Define for any two cyclic subspaces ord
(
J i

j , J
k
l

)
to be ni

j +nk
l , if J i

j 6= Jk
l ;

let ord
(
J i

j , J
i
j

)
= 2ni

j−2; note that for ni
j = 0, this is a negative number, and

it is less than ord for any other pair. This number allows us to determine

which components of the limit surface contribute to the limit normal (see

[46, 44] for details). We say that a pair of cyclic subspaces Ja
b , J

c
d is dominant

if for any other pair J i
j , J

k
l we have either |λaλc| > |λiλk|, or |λaλc| = |λiλk|

and ord (Ja
b , J

c
d) > ord

(
J i

j , J
k
l

)
. Note that the blocks of the dominant pair

may coincide.

Theorem 5.3. Let bijr be a basis in which a subdivision matrix S has Jordan

normal form. Suppose that there is a dominant pair Ja
b , J c

d. If λaλc positive

real, and the Jacobian of the characteristic map of Ja
b , J c

d has constant sign

everywhere on U1 except zero, then the subdivision scheme is tangent plane

continuous on the k-regular complex. If the characteristic map is injective,

the subdivision scheme is C1-continuous.

In the special case when all Jordan blocks have size 1, this condition

reduces to an analog of Reif’s condition. Theorem 5.3 doesn’t make any
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claim about the type of boundary however. It is therefore not enough for the

analysis of the desired surfaces.

Criterion for piecewise C1-continuity of the boundary. Assuming

that the scheme at a boundary vertex satisfies the conditions of Theorem 5.3,

we establish additional conditions which guarantee that the scheme for al-

most all control meshes generates C1-continuous surfaces with piecewise C1-

continuous boundary with nondegenerate corners. The domain of the charac-

teristic function is called U1. We assume that the part of U1 that corresponds

with the boundary of the surface is a straight line. We call I1 and I2 the

two parts of this boundary line which we get by excluding the center ver-

tex. When we talk about ∂1 we mean the derivative in the direction of this

boundary line. ∂2 will be the orthogonal direction. We will call the two

components of the characteristic map by f1 and f2 in the following theorem.

Theorem 5.4. Suppose a subdivision scheme satisfies conditions of Theo-

rem 5.3 for boundary vertices of valence k. Then the scheme is p.w. C1-

continuous with nondegenerate corners for boundary vertices of valence k if

and only if the following conditions are satisfied.

1. λa and λc are positive real.

2. Suppose λa > λc, (diagonal scaling matrix, asymmetric scaling). Then

the scheme is boundary C1-continuous if and only if ∂1f1 6= 0 and has

the same sign on I1 and I2 or ∂1f1 ≡ 0 on I1 and I2.
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The scheme is a nondegenerate corner scheme, if and only if ∂1f1 6= 0

on I1 and ∂1f1 ≡ 0 on I2. Same is true if I1 and I2 are exchanged.

3. Suppose Ja
c = J b

d (scaling matrix is a Jordan block of size 2), and ∂f1

does not vanish on I1 and I2. The scheme is boundary C1-continuous

if ∂1f2 has the same sign everywhere on I1 and I2 and if ∂1f2(t1) = 0

then ∂1f1(t1) needs to have this sign as well. Nondegenerate corners

cannot be generated by a scheme of this type.

4. Suppose a = c (diagonal scaling matrix, symmetric scaling). The

boundary is C1-continuous if and only if there is a nontrivial linear

combination α1∂1f1 + α2∂1f2 identically vanishing on I1 and I2, and

any other independent linear combination has the same sign on I1 and

I2. The scheme is a corner scheme if and only if there is a linear

combination α1∂1f1 + α2∂1f2 identically vanishing on I1 and a differ-

ent linear combination β1∂1f1 +β2∂1f2 identically vanishing on I2 with

[α1, α2] and [β1, β2] linearly independent.

Proof. For each of the boundary segments defined on I1 and I2 we need

to show that the limit of the tangent exists at the common endpoint. If

these limits coincide then the boundary curve of the universal surface is C1-

continuous; if the limits have different directions, then the universal surface

has a nondegenerate corner.

First, we observe that by assumption the characteristic map has non-

zero Jacobian on the boundary. This means that one of the components has
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nonzero derivative along the boundary ∂1f1(t) 6= 0 or ∂1f2(t) 6= 0 at any point

t ∈ I1∪I2. Consider the tangent to the boundary of the surface defined by the

characteristic map. It is a two-dimensional vector v(t) = (∂1f1(t), ∂1f2(t)),

where t is a point of I1 or I2. The tangent satisfies the scaling relation of the

form v(t/2) = 2Tv(t), where T is the scaling matrix for the characteristic

map. The direction of the tangent has a limit if and only if T is either

Tscale or Tskew and its eigenvalues are positive (Lemma 3.1, [46]). As the

projection of the universal surface is arbitrarily well approximated by the

characteristic map, or coincides with it for simple Jordan structures of the

subdivision matrix, we conclude that for the universal surface boundary to

have well-defined tangents at zero, the eigenvalues of the characteristic map

have to be positive and real. However, this condition is not sufficient for

existence of tangents.

Diagonal scaling matrix, asymmetric case. First we consider the case

of dominant cyclic subspace pair Ja
b , J

c
d with a 6= c (different eigenvalues). In

this case the sequences ∂1f1(t/2
m) and ∂1f2(t/2

m), for ∂1f1(t), ∂1f2(t) 6= 0,

change at a different rate. This can be easily seen from the scaling relation.

Moreover, the ratio ‖∂1f2(t/2
m)‖/‖∂1f1(t/2

m)‖ approaches zero as m→∞.

Suppose at some points t1, t2 of I ∂1f1(t1) 6= 0 and ∂1f1(t2) = 0. Then

∂1f2(t2) 6= 0 and the tangents at points t2/2
m all point in the direction

±e2, where e2 is the unit vector along the coordinate axis corresponding to

f2. ‖∂1f2(t1/2
m)‖/‖∂1f1(t1/2

m)‖ → 0 as m → ∞, thus, at points t1/2
m
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the direction of the tangent approaches ±e1. We conclude that there is no

limit, unless ∂1f1 is either nowhere or everywhere zero I1. Same applies to

I2. Conversely, if ∂1f1 is nowhere zero, then the limit tangent direction at

the center is ±e1. If it is zero everywhere, then by assumption about the

characteristic map, ∂1f2 is nowhere zero, and the limit tangent direction is

±e2. The choice of sign in each case depends on the sign of ∂1f1 or ∂1f2.

If ∂1f1 is not zero and has the same sign on both I1 and I2 then the

tangent is continuous, and the boundary curve is C1-continuous. If ∂1f1 ≡ 0

on I1 and I2 the images of I1 and I2 under the characteristic map are straight

lines on the e2 axis and therefore the boundary curve is C1 continuous. If it

is zero on I1 and nonzero on I2, then the tangents are not parallel, and the

surface defined by the characteristic map has a corner; and the same for I1

and I1 interchanged which proves the second part.

Scaling matrix is a Jordan block of size 2. The second condition of the

theorem applies if the characteristic map components correspond to a cyclic

subspace of size 2, i.e. satisfy f1(t/2) = λaf1(t) + f2(t). Thus, ∂1f1 ≡ 0

implies ∂1f2 ≡ 0 on I1 or I2. v(t/2
m) converges to ±e1 for any t on I1 as well

as I2. If ∂1f2(t) 6= 0 its sign determines the sign of the limit tangent.

Diagonal scaling matrix, symmetric case. In the symmetric case where

a = b the sequences defined above change at the same rate, and any linear

combination α1f1 + α2f2 is also an eigenbasis function. Suppose f1 and f2

come from different cyclic subspaces of the same eigenvalue which have the
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same size. Suppose α1∂1f1 +α2∂1f2 does not vanish identically on I1 for any

nontrivial choice of α1 and α2. Pick two linearly independent combinations

g1 = α1∂1f1 +∂1α2f2 and g2 = β1∂1f1 +β2∂1f2 which do not vanish at points

t1 and t2 of I1 respectively. Then the vectors v(ti) = [∂1f1(ti), ∂1f2(ti)] are

linearly independent and the sequences v(t1/2
m) and v(t2/2

m) converge to

different limit directions. Therefore, for the limit tangents at zero to exist,

there should be a nontrivial linear combination of ∂1f1 and ∂1f2 which van-

ishes on I1. If α1∂1f1 +α2∂1f2 is such combination, it is easy to see that the

limit tangent direction is, up to the sign,the direction of the vector [−α2, α1].

For the boundary to be C1-continuous, the direction should be the same on

two sides. Finally, the tangents on two sides exist and do not coincide if the

vectors (α1, α2) for I1 and I2 are linearly independent.

An interesting corollary of this theorem is that in the symmetric case it

is necessary for p.w. C1-continuity of the boundary that the images of I1

and I2 under the characteristic map are straight line segments. In this case

we have that α1∂1f1 + α2∂1f2 ≡ 0 which means that α1f1 + α2f2 is constant

and the image of (f1, f2) is a straight line segment. Note that this is not

necessary if the eigenvalues λa and λb are different.

5.4.2 Analysis of Characteristic Maps

To verify conditions of Theorem 5.3 we need to establish that the characteris-

tic map is regular and injective, and verify that it has the expected behavior
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on the boundary. Typically, analysis of the boundary behavior is relatively

easy, as in most cases the boundary curve is independent from the interior.

In this section we focus on regularity and injectivity of the characteristic

map.

Regularity of the characteristic map. Just as in the case of interior

points we use self-similarity of the characteristic map to verify the reg-

ularity condition of Theorem 5.3: for any t ∈ U1, the Jacobian satisfies

J [Φ](t/2) = 4λaλbJ [Φ](t). It is immediately clear that to prove regularity

of the characteristic map it is sufficient to consider the Jacobian on a single

annular portion of U1 as shown in Figure 5.3. As all vertices of such a ring

are either regular or boundary regular, we can estimate the Jacobian of the

characteristic map using tools developed for analysis of subdivision on regu-

lar grids. However, there is a significant difference from the case of interior

vertices: to establish regularity on a single ring, in general, we have to con-

sider subdivision schemes not just on regular meshes but on regular meshes

with boundary, which makes the estimates for the Jacobians somewhat more

complex.

Injectivity of the characteristic map. Even if the Jacobian of a map is

nonzero everywhere, only local injectivity is guaranteed. However, for interior

vertices, self-similarity of the characteristic maps allows one to reduce the

injectivity test to computing the index of a closed curve around zero [45].

This is a relatively simple and fast operation: for example, the index can be
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Figure 5.3: The k-gon without origin U1\{0} can be decomposed into similar
rings, each two times smaller than the previous ring. The size of the ring
is chosen in such a way that the control set of any ring does not contain
the extraordinary vertex. In this figure the control set is assumed to consist
out of the vertices of the triangles of the ring itself, and of a single layer of
vertices outside the ring.

computed counting the number of intersections of the curve with a line. This

test cannot be applied for boundary points, as there are no closed curves

around zero.

For boundary points, a different simple test (Theorem 5.5) suffices, which

in all cases that we have considered is even easier to apply. However, unlike

the curve index test, it does not immediately yield a general computational

algorithm.

The characteristic map can be extended using scaling relations to a com-

plete k-regular complex with boundary. In the following theorem we assume

that the characteristic map is defined on the whole complex |Rα
k |.

Theorem 5.5. Suppose a characteristic map Φ = (fa, fc) satisfies the fol-

lowing conditions:
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1. the preimage Φ−1(0) contains only one element, 0;

2. the characteristic map has a Jacobian of constant sign at all points of

the domain besides 0.

3. The image of the boundary of the characteristic map has no self-intersections;

4. the image of the characteristic map is not the whole plane.

Then this characteristic map is injective.

Proof. As in [45] we can show that the characteristic map is continuous at

infinity, and if P is the stereographic projection of the sphere to the plane

such that the south pole gets mapped to 0, Φ̃ = P−1ΦP is a continuous

mapping of a subset D = P−1(|Rα
k |) of the sphere into the sphere, with the

south pole mapped to the south pole; Φ̃ is a local homeomorphism away from

the south pole.

We observe that the points of the boundary of the image Φ̃(D) can be

images only of the boundary of D due to the properties of local homeomor-

phisms meaning ∂
(
Φ̃(D)

)
⊂ Φ̃(∂D). Suppose the boundary of the image is

not empty; we show that the image of the boundary curve Φ̃(∂D) coincides

with the boundary of the image ∂
(
Φ̃(D)

)
.

The image of the boundary has no self intersections. It is easy to see that

the boundary of the domain is a simple closed Jordan curve, and so is its

image Φ̃(∂D). Suppose ∂
(
Φ̃(D)

)
6= Φ̃(∂D). Then there is a point y on the

image of the boundary Φ̃(∂D) which is an interior point of Φ̃(D). As Φ̃(∂D)
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separates the sphere into two linearly connected domains, we can connect

each point in either domain to point y with a continuous curve which does

not intersect ∂
(
Φ̃(D)

)
. Thus, any two points on the sphere can be connected

by a continuous curve which does not intersect ∂Φ̃(D). We conclude that

the image Φ̃(D) is the whole sphere. Therefore, either ∂
(
Φ̃(D)

)
= Φ̃(∂D),

or the image is the whole sphere. The latter option contradicts the last

condition of the theorem.

Now we need to use this to prove that the map is injective. If we exclude

the south pole of the sphere, the mapping is a local homeomorphism of one

simply connected domain to another. We can easily prove it is a covering:

consider an interior point y of the image, and the set Φ̃−1(y). Suppose it

is infinite. Then it has a limit point, which cannot be an interior point of

D (otherwise, Φ̃ is not a local homeomorphism at that point). Similarly, it

cannot be a boundary point, unless it is the south pole. It cannot be the south

pole xs for which P (xs) = 0, because then Φ̃(xs) has to be y which means that

y = xs which contradicts the assumption Φ−1(0) = {0}. We conclude that

Φ̃−1(y) is finite for each point y of the interior of the image. Similar is true

for boundary points away from the poles. Φ̃ is a local homeomorphism and

maps the boundary exactly to the boundary. Let y be a point of the image

away from poles, and let x1, x2, . . . xn be points of Φ̃−1(y). Then for each xi

there is a sufficiently small neighborhood Ui which maps homeomorphically

to a neighborhood of xi ∈ Φ̃(D). Then the inverse image of ∩iΦ̃(Ui) is a

finite union of disjoint diffeomorphic subsets of D. We conclude that Φ̃ is a
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covering on D with south pole excluded. However, we have observed that the

image of D is simply connected. Therefore, the covering has to be injective.

We conclude that the characteristic map is injective.

5.5 Verification of C1-continuity

5.5.1 Loop scheme

In this section we describe the structure of the boundary subdivision matrices

for the Loop scheme. Some parts of our analysis are similar to the analysis

performed by Jean Schweitzer [38].

The control mesh for a boundary patch surrounding an extraordinary

vertex is shown in Figure 5.4. There are 3 different types of vertices in the

control mesh, shown in the same figure. A different subdivision mask is used

for each type. There are two masks for the vertices of types 1 and 3, one for

boundary vertices and one for interior vertices. We consider these vertices to

have the same type for notational convenience.

The figure also shows the masks of the rules that we consider. Our family

of schemes includes all schemes satisfying the following conditions:

1. The support for each mask is the same as for the Loop scheme or for

the cubic B-spline on the boundary;

2. The only masks that are modified are the masks for odd vertices ad-

jacent to the central vertex, and for the central vertex itself (types
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0,1).

3. The masks for interior edge vertices of type 1 are all identical and

symmetric with respect to the edge connecting the vertex with the

central vertex. The masks for two boundary vertices of type 1 are also

identical.

We assume that all coefficients in the masks are positive. This choice is

sufficiently general to construct a variety of schemes; on the other hand,

complete eigenanalysis can be performed for all schemes from this family.

We show that no scheme from this family can produce a rule for a concave

corner. There are reasons to believe that this is true for any scheme with

positive coefficients or small support.

For the specific schemes that we consider the boundaries do not depend

on the control points in the interior. Potentially, the boundary can depend on

the valence of a boundary vertex, this is the case with the scheme presented

in [19]. However, we believe that this is best avoided, and present a set of

schemes for which the boundary rules are simply cubic spline rules, except

at vertices marked as corners, where interpolation is forced.

Subdivision matrix. We assume that k > 1; we will consider the case
k = 1 separately. The subdivision matrix for a boundary vertex with k
adjacent triangles has the following form:
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0 1
1

3

3
2

(A) (B) (C)

Figure 5.4: Control mesh for a boundary patch of a Loop subdivision surface
and masks of the subdivision rules. (A) The rule for the odd vertices on
the boundary adjacent to the central vertex (type 1). (B) The rule for the
interior odd vertices adjacent to the central vertex (type 1). (C) The rule for
the central vertex (type 0). The rules for vertices of type 2 and 3 (interior)
are the standard Loop rules; the rule for the vertex of type 3 (boundary) is
the standard one-dimensional cubic spline rule.

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1−2α α α

1−β β

1−β β

ε δ γ δ

ε δ γ δ

· · · ·

ε δ γ δ

ε δ δ γ

1/8 3/8 3/8 1/8

1/8 3/8 3/8 1/8

· · · ·

· · · ·

1/8 3/8 3/8 1/8

1/8 3/8 3/8 1/8

1/8 3/4 1/8

1/8 3/4 1/8

1/16 1/16 5/8 1/16 1/16 1/16 1/16

1/16 1/16 5/8 1/16 1/16 1/16 1/16

· · · · ·

1/16 1/16 5/8 1/16 1/16 1/16 1/16

1/16 1/16 1/16 5/8 1/16 1/16 1/16

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
(5.7)
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where ε = 1− 2δ − γ. In block form this matrix can be written as



1−2α α α

1−β β

1−β β

a1 A10 A11

a2 A20 A21
1

8
Ik

1/8 3/4 1/8

1/8 3/4 1/8

a3 A31 A32
1

16
Ik−1



(5.8)

The vectors a1 and a3 have length k − 1, the vector a2 has length k, Ik

and Ik−1 are unit matrices of sizes k and k − 1. Note that the eigenvalues

of the matrix are 1/8 1/16, the eigenvalues of the upper-left 3× 3 block A00

and the eigenvalues of the matrix A11. The matrix A11 is tridiagonal, of size

k − 1× k − 1. The eigenvalues of A00 are 1, β, β − 2α where the eigenvector

to 1 is the vector e = [1, . . . , 1]. Following [38], we observe that k− 1× k− 1

tridiagonal symmetric matrices have the following eigenvectors, independent

of the matrix, j = 1 . . . k − 1:

vj = [sin jθk, sin 2jθk, . . . sin (k − 1)jθk] (5.9)
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where θk = π/k. Multiplying the matrix A11 by the vectors, we see that the

eigenvalues are λj = 2δ cos jθk + γ.

If α 6= 0, Out of two remaining eigenvectors, only the eigenvector vβ

corresponding to β is typically of interest to us. It has the form

[0, 8C,−8C,
(
βI − A−1

11

)
[C, 0 . . .− C],

where C is a constant, if βI − A11 is non-degenerate.

A more revealing expression for the components can be found if we regard

the eigenvector as a solution to the recurrence

δ
(
vβ

i−1 + vβ
i+1

)
+ (γ − β)vβ

i = 0, i = 1 . . . k − 1

(the numbering of entries in vβ is such that vβ = [0, vβ
0 , v

β
k , v

β
1 , ..., v

β
k−1] to

make the equations uniform equations). In addition, we have an additional

condition vβ
0 = −vβ

k , to ensure that
[
0, v0

β, v
1
β

]
is the eigenvector of A00.

The behavior of the solution of the recurrence depends on the ratio r =

(γ − β)/δ, assuming δ 6= 0 ( otherwise, A11 is diagonal with all eigenvalues

equal to γ and the eigenvector with respect to β is found easily.). The

additional condition vβ
0 = −vβ

k determines a unique solution up to a constant

multiplier, even if the matrix βI − A11 is degenerate. Solutions are listed in

Table 5.1.

If α = 0, the eigenvalue β has a two-dimensional eigenspace. Two eigen-

vectors vβ and v′β satisfying conditions vβ
0 = 0 and v′βk = 0 are shown in
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r > 2, k odd (−1)icosh

(
i− k

2

)
θ, r =2 cosh θ

r > 2, k even (−1)isinh

(
i− k

2

)
θ, r =2 cosh θ

r = 2, k odd (−1)i

r = 2, k even (−1)i

(
n− k

2

)
,

− 2 < r < 2 sin

(
i− k

2

)
θ, r =−2 cos θ

r = −2 i− k

2

r < −2 sinh

(
i− k

2

)
θ, r =−2 cosh θ

Table 5.1: Solutions for vβ
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r > 2, (−1)i sinh iθ, (−1)i sinh (i− k) θ, r =2 cosh θ

r = 2, (−1)ii, (−1)i(i− k)

− 2 < r < 2 sin iθ, sin (i− k) θ, r =−2 cos θ

r = −2 i, i− k

r < −2 sinh iθ, sinh (i− k) θ, r =−2 cosh θ

Table 5.2: Solutions for vβ and v′β

Table 5.2, for the cases when the matrix βI − A11 is not degenerate, i.e.

when for all 1 6 j 6 k − 1, r 6= −2 cos jθk.

Finally, suppose α = 0 and r = −2 cos(jθk) for some j. In this case

β = γ − δr is also an eigenvalue of A11, and, therefore, has multiplicity 3. In

this case it has a Jordan block of size 2, and only 2 eigenvectors which can

be taken to be vβ
i = sin iθk and v′βi = cos iθk, i = 0 . . . k.

Summary of the eigenstructure. We have determined that the eigenval-

ues of the subdivision matrix are 1,β,β−2α, 1/8, 1/16, and λj = 2δ cos jθk+γ,

j = 1 . . . k − 1. The eigenvectors corresponding to the eigenvalues λj do not

depend on the matrix and are given by (5.9). The eigenvectors correspond-

ing to the eigenvalue β depends on the ratio r = (γ − β)/δ; its entries are

given by the formulas in Table 5.1 for α 6= 0, in which case there is a single
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eigenvector. For α = 0, there is a pair of eigenvectors ( Table 5.2) for the

case when β is not an eigenvalue of A11. If β is an eigenvalue of A11, it has

a nontrivial Jordan block of size 2.

The case k = 1. The matrix in this case has eigenvalues β, β − 2α, and

a triple eigenvalue 1/8. The eigenvectors can be trivially computed.

Coefficients for smooth boundary vertices. One possible choice was

given by Hoppe et al. [19] and examined in detail in [38]. In our notation, this

choice corresponds to β = 5/8, α = 1/8, γ = 3/8, δ = 1/8. For extraordinary

vertices, and β = 1/2 for other vertices. Remarkably, the ratio r is −2. The

disadvantage of this choice is that the shape of the boundary curve depends

on the valence of the vertices on the boundary, hence it becomes impossible

to join two meshes continuously along a boundary if extraordinary vertices

on two sides do not match.

If we require the boundary curve to be a cubic spline, β has to be 1/2

and α has to be 1/8. We have two degrees of freedom left: γ and δ. It turns

out to be sufficient to use only one, and we fix δ at the value corresponding

to the regular valence, i.e. 1/8.

We consider the cases k > 2, k = 2 and k = 1 separately.

Case k > 2. Once α, β and δ are fixed, the eigenvalues of the subdivision

matrix become 1, β = 1/2, β−2α = 1/4, 1/8, 1/16, and λj = (1/4) cos jθk+γ.

The tangent vector on the boundary of the surface corresponds to the

eigenvector of the subdivision matrix with eigenvalue β = 1/2. This vector
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should be one of the subdominant eigenvectors. The second subdominant

eigenvector is likely to correspond to the largest of the eigenvalues λj, i.e.

to the eigenvalue λ1 = γ + (1/4) cos θk. In order for the eigenvalue 1/2 to

be subdominant, we choose γ in such a way that |λj| < 1/2 for j > 1, i.e.

λ2 < 1/2 and λk−1 > −1/2. For positive γ, the second condition is satisfied

automatically. We also would like λ1 > β − 2α = 1/4. This leads to the

following range for γ:

1

4
(1− cos θk) < γ <

1

2
− 1

4
cos 2θk (5.10)

In this range we also have |λ1| > |λj| for j > 1. There are two choices of γ

that we find particularly interesting: γ = 1/4 and γ = 1/2− 1/4 cos θk.

The first choice, γ = 1/4, is the maximal value of γ independent of k

for which it is in the correct range for all k > 2. Note that in this case

r = −2 again. The second choice, leads to equal subdominant eigenvalues

β = λ1 = 1/2. In this case, r = −2 cos θk, that is, we can choose θ to be

θk. The expressions for the subdominant eigenvectors are v1
j = sin jθk and

vβ
j = cos jθk, i.e. form a half of a regular 2k-gon.

The choice of γ = 1/2−1/4 cos θk, although being slightly more complex,

appears to be more natural. It has the additional advantage of coinciding

with the regular value γ = 3/8 for k = 3.

Case k = 2. In this case, the eigenvalues are 1, 1/2, 1/4, 1/8, 1/16, and

λ1 = γ. Thus, we need to pick 1 > γ > 1/4, to get the same eigenvectors
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Figure 5.5: The control mesh for the characteristic map in the case k = 1.

as in the case k > 2. It is interesting to note however, that the choice of

γ = 1/4 also results in a C1 surface, although the behavior of the scheme

becomes less desirable.

Case k = 1. The subdominant eigenvalues are 1/2 and 1/4. They define a

configuration of eigenvectors shown in Figure 5.5.

Proposition 5.2. Let β = 1/2, α = 1/8, δ = 1/8 and γ = 1/2 − 1/4 cos θk

and Φ be the characteristic map which is defined by the eigenvectors to β =

1/2 and λ1 = 1/4 cos(θk) + γ = 1/2 . Then

1. the preimage Φ−1(0) contains only one element, 0;

2. the characteristic map has a Jacobian of constant sign at all points of

the domain besides 0;

3. the image of the boundary of the characteristic map has no self-intersections;

4. the image of the characteristic map is not the whole plane.
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Proof. We consider the boundary k-regular 2 ring mesh with data given by

the 2 eigenvectors (shown for k = 7 in Figure 5.6(a)). We subdivide this twice

by our given rules. We then have 5 accurate rings of a k-regular mesh. In the

standard Loop scheme if a triangle is sourrounded by one ring of triangles

and all subdivision at all those 12 points and points inserted on these edges

and faces going forward are done by regular Loop subdivision the polynomial

on the triangles in (u, v, w) Bezier coordinates u+ v+w = 1 is given by (see

[38]):

p(u, v, w) = B ·Q · P

where

B = (u4, 4u3v, 4u3w, 6u2v2, 12u2vw, 6u2w2, 4uv3,

12uv2w, 12uvw2, 4uw3, v4, 4v3w, 6v2w2, 4vw3, w4)
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(a) (b)

5 6
74

9

108

1211

1 2 3

(c) (d)

Figure 5.6: Fig (a) show the 2 ring control data for a mesh with 5 sectors
which we subdivide twice. We get 5 rings show in Fig (b) for a mesh with
5 sectors. In Fig (c) we see one sector in which the relevant triangles are
marked and Fig (d) shows a control net for a given triangle.

104



and

Q =
1

24



2 2 0 2 12 2 0 2 2 0 0 0

0 1 0 1 12 3 0 3 4 0 0 0

1 3 0 0 12 4 0 1 3 0 0 0

0 0 0 0 8 4 0 4 8 0 0 0

0 1 0 0 10 6 0 1 6 0 0 0

0 4 0 0 8 8 0 0 4 0 0 0

0 0 0 0 4 3 0 3 12 1 1 0

0 1 0 1 6 6 0 1 10 1 0 0

0 1 0 0 6 10 0 0 6 1 0 0

0 3 1 0 4 12 0 0 3 1 0 0

0 0 0 0 2 2 0 2 12 2 2 2

0 0 0 0 3 4 0 1 12 3 0 1

0 0 0 0 4 8 0 0 8 4 0 0

0 1 0 0 3 12 1 0 4 3 0 0

0 2 2 0 2 12 2 0 2 2 0 0



(5.11)

and P ∈ R12×n such that Pi ∈ Rn is the data on the point i numbered as

shown in Figure 5.6(d). The 12 triangles in the 3rd and 4th ring of our 5

ring mesh see for Example Figure 5.6(b) for k = 5 which are away from the

boundary satisfy this condition. We can therefore compute the 12 different

polynomials which for each sector are numbered as in Figure 5.6(c). We are

able to compute the polynomials depending on the number of sectors k > 3

and which sector i = 3, . . . k − 2. We have to treat the case k 6 3 and the
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case where i = 1, 2, k − 1, k separately. The triangles on the boundary and

close to the boundary are surrounded by a control net of regular vertices but

since the boundary rules are regular cubic B-spline rules subdividing with

boundary rules is equivalent to subdividing with regular rules a mesh that is

extended by a mirror image over the boundary. The sectors 2 and k−1 have

to be considered separately only in creating the 5 rings as they are more

influenced by the extraordinary boundary rules then the other sectors. If

k 6 3 we check all the triangles directly. For any k however the eigenvector

data has a symmetry across the y-axes and therefore the characteristic map

has the same symmetry. In total we construct the following polynomials

12 for the interior sector with i = 3, . . . , k − 2 and arbitrary k

12 for i = 2 or i = k − 1 and arbitrary k

12 for i = 1 or i = k and arbitrary k

12 for k=1;

12 for k=2 and i = 1 or i = 2

12 for k=3 and i = 1 or i = 3

12 for k=3 and i = 2

This means that we have 12× 7 = 84 polynomials p = (f1, f2).

We will prove the claim holds for each of those polynomials and by the

scaling property

Φ(t/2) = TΦ(t) where T =

 β 0

0 λ1

 =
1

2
I (5.12)
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we can then extend it to the whole sector

1. In order to prove that there is no other element than 0 in the preimage

Φ−1(0) we check that f 2
1 + f 2

2 > 0 in each triangle of each sector. We

do this by first constructing the polynomial f 2
1 + f 2

2 in each triangles,

then extracting the coefficients and then checking its positivity. Since

the polynomials are given in Bezier coordinates this means that the

polynomial is positive everywhere on the domain. Then by the scaling

property we know that

f1(t/2)2 + f2(t/2)2 = λ2
af1(t)2 + λ2

bf2(t)2

= (λ2
a − λ2

b)f1(t)2 + λb(f1(t)2 + f2(t)2) > 0

and therefore only 0 at 0.

2. We compute the Jacobian

J [Φ] = ∂xf1∂yf2 + ∂xf2∂yf1

= (∂uf1 − ∂wf1)(∂vf2 − ∂wf2) + (∂uf2 − ∂wf2)(∂vf1 − ∂wf1)

in each triangle and see that the coefficients of J (a polynomial in Bezier

coordinates) are all of the same sign independent of k and i. Therefore

the polynomial has the same sign everywhere. By the scaling property

we can extend it from the ring to the sector. The scaling property for
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the Jacobian is

J [Φ](t/2) = 4βλ1J [Φ](t) = J [Φ](t)

3. We take the the 2 triangles in the third ring that form the boundary to

the second ring and find the expression of the polynomial that describes

the boundary curve in Bezier coordinates. We do this by setting the

relevant coordinate to 0. We will have to function depending on to

coordinates (u, v) such that u+v = 1 given by f1(u, v) and f2(u, v). We

want to show that the angle grows monotonically in either u and since

the angle is given by arctan(f1/f2) it is enough to show that f1/f2

grows monotonically. We compute (∂uf1 − ∂vf1)f2 − (∂uf2 − ∂vf2)f1,

the derivative of f1/f2 and see that all coefficients have the same sign.

This means that f1/f2 is monoton, and therefore the angle is monoton.

Therefore in each sector the curves can not intersect. There can not

be intersection between sectors as the curves limit lies strictly within

their sectors.

4. Box Spline surfaces lie strictly within the convex hull of their control

net and therefore the image of the characteristic map has to lie in the

upper half plane.

All the explicit checks were done in Maple.

We can now conclude by Theorem 5.5 that the characteristic map is
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injective. It is also regular as the Jacobian of the characteristic map has

constant sign everywhere. This means that in order for the scheme to be

C1 smooth with smooth boundary we have to check the 4th condition of

Theorem 5.4. Because the limit boundary is given by the one dimensional

B-spline and the eigenvector data starts with points on the x-axes the limit

satisfies both those condition for the case of the smooth boundary. Therefore

we checked that this scheme is as wanted in the case of a smooth boundary.

Lets now consider the corner case.

Coefficients for corner vertices. Separate rules have to be defined for

corners. The interpolation conditions for corners require α = 0. Therefore,

the block A00 has a double eigenvalue β. For a corner, the tangent plane is

defined by the two tangents at the non-C1-continuous point of the boundary.

Unlike the case of the smooth boundary points, there is no need to fix all

rules on the boundary – parameter β still can be used to ensure smoothness

of the limit surface. Hence the rules of Hoppe et al. [19] can be used. One

can see [38] that the characteristic map has a convex corner. Therefore, this

scheme cannot produce concave corners. It turns out that in fact no scheme

from the class that we have defined can produce smooth concave corners.

The explicit knowledge of eigenvectors and the convex hull property allows

us to determine quickly if a scheme can possibly produce convex or concave

corner. If β has multiplicity 3 with Jordan blocks of size 2 and 1 which

happens when it is an eigenvalue of A11, the scheme is likely to be non tangent
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plane continuous; we assume that this is not the case. Then the eigenvectors

of interest can be found in Table 5.2 for various values of r = (γ − β)/δ.

It is easy to see that positive values of r are of little interest to us, because

the components of the vectors alternate signs in these cases, and are likely

to produce non-regular characteristic maps. Also, for r 6 −2 we are guar-

anteed to get a convex configuration of control points for the characteristic

map. As the characteristic map interpolates the boundary curve, it cannot

have a concave corner. We conclude that we have to use r from the range

(−2, 0). We have seen that in this case the eigenvectors corresponding to

the eigenvalue β can be taken to be sin iθ, sin (i− k) θ, where θ is such that

r = −2 cos θ. This means that the corner is convex if θ < θk, and concave

otherwise. In other words, r = −2 cos θ < −2 cos θk, or

γ < β − 2δ cos θk (5.13)

In addition, we need to ensure that the double eigenvalue β is actually

subdominant. To achieve this, we choose δ and γ large enough so that

2δ cos jθk + γ < β, j = 1 . . . k− 1. As 2δ cos jθk + γ decreases as a function if

j, and we assume that γ > 0, it is sufficient to require that 2δ cos θk + γ < β,

which coincides with the convexity condition. We conclude that for r < 0

the subdivision scheme can generate only convex smooth corners).

One can show that this is true even if we do not assume that α = 0.

In the case k = 1, one can also immediately see that the corner produced
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by subdivision is convex.

Concave corner vertices. We assume that k > 1. It is impossible to have

stationary subdivision rules for a triangular mesh producing a concave corner

for k = 1. As we have observed, concave corners cannot be produced simply

by changing some of the coefficients using the same stencil. One can also show

that no scheme with positive coefficients can produce interpolating smooth

concave corners. It is possible to construct rules to produce C1-continuous

surfaces with concave corners, but negative coefficients and larger support

have to be used.

Our approach to deriving the rules is based on the idea of reduction of

the magnitudes of all eigenvalues, excluding 1 and β = 1/2. It turns out that

this approach leads to a particularly simple rules for subdivision.

For the scheme to produce smooth surfaces at a corner vertex the eigen-

vectors xβ, x′β of the eigenvalue β = 1/2 should be subdominant. If we

choose these eigenvectors to be

xβ = [0, 0, 1, vβ
1 / sin kθ, . . .], x′

β
= [0, 1, 0, v′

β
1/ sin kθ . . .]

(cf. Table 5.2), corresponding left eigenvectors are very simple:

l = [−1, 0, 1, 0, . . .], l′ = [−1, 1, 0, 0, . . . 0].

The left eigenvector l0 for the the eigenvalue 1 is [1, 0, . . . 0]. Consider the
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following modification of the vector of control points

p̃ = (1− s)p+ s
(
(l0, p)x0 + (l, p)xβ + (l′, p)x′

β
)

where x0 is the eigenvector [1, . . . 1] of the eigenvalue 1. Substituting expres-

sions for the left eigenvectors we get

p̃ = (1− s)p+ s
(
p0x0 +

(
p1

0 − p0
)
xβ +

(
p1

k − p0
)
x′

β
)

(5.14)

The effect of this transformation is to scale all components of p in the eigen-

basis of the subdivision matrix by (1− s) except those corresponding to the

eigenvalues 1 and β. If repeated at each subdivision step, it is equivalent to

scaling all eigenvalues except 1 and β by (1− s).

To simplify the rules, we observe that it is unnecessary to scale multiple

eigenvalues 1/16 and 1/8 of the lower-right blocks of the subdivision matrix.

If we apply the rules (5.14), not to the whole vectors of control points p, but

to a truncated part, modifying only control points of type 1, as a result, the

eigenvalues 1/8 and 1/16 will not change. This observation leads us to the

following choice of rules:

p̃1
i = (1− s)pb

i + s

(
p0 +

(
p1

0 − p0
)sin (k − i)θ

sin kθ
+
(
p1

k − p0
) sin iθ

sin kθ

)
(5.15)

In the matrix form, this transformation can be written as
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T =

 M 0

0 I


Multiplying this matrix by the subdivision matrix on the left, we see that the

eigenvalues of the product ST are eigenvalues of the blocks B00M and B11.

By construction. eigenvalues of B00M are 1, 1/2, (1 − s) (2δ cos jθk + γ),

j = 1 . . . k − 1. As we have seen before, the eigenvalues of B11 are 1/8 and

1/16.

By choosing the value of s so that (1 − s) (2δ cos θk + γ) < 1/2, we can

ensure that the β = 1/2 is the subdominant eigenvalue. The parameter s

can be viewed as a tension parameter for the corner, which determines how

flat the surface is near the corner.

We can therefore consider the case of convex and concave corners together

Proposition 5.3. Let β = 1/2, α = 0, δ = 1/8 and γ = 1/2 − 1/4 cos(θ)

where 0 < θ < π for convex corners and π < θ < 2π for concave corners.

Then Φ, the characteristic map is defined by the eigenvectors corresponding

to β = 1/2. Then

1. the preimage Φ−1(0) contains only one element, 0;

2. the characteristic map has a Jacobian of constant sign at all points of

the domain besides 0;

3. the image of the boundary of the characteristic map has no self-intersections;
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Figure 5.7: Control mesh for a boundary patch of a Loop subdivision surface
with concave corner

4. the image of the characteristic map is not the whole plane.

Proof. The proof is done exactly the same way as in the non-corner case.

The characteristic map we need to check has a parameter θ. Also in the case

of the concave corner the convex hull of the control points (see Figure 5.7)

no longer lies in the upper half plane. However we can look at the sectors

individually and see that the limit function does not span the whole complex

plane.

With this we have established that the characteristic map is injective

and regular. Now we need to check condition 4 in Theorem 5.4. Since the

boundary of the control mesh away form 0 is a straight line for k > 1 the

limit curve which is a B-spline is also a straight line. This means it satisfies

the condition.
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Figure 5.8: Control mesh for a boundary patch of a Catmull-Clark sub-
division surface and masks of the subdivision rules. (A) The rule for the
boundary vertices adjacent to the central vertex (type 1). (B) The rule for
the interior edge vertices adjacent to the central vertex (type 1). (C) The
rule for the face vertices adjacent to the central vertex (type 2). (D) The
rule for the central vertex (type 0). The rules for vertices of type 4, 5 and 6
are the standard Catmull-Clark rules; the rule for the vertex of type 3 is the
standard one-dimensional cubic spline rule.

5.5.2 Catmull-Clark scheme

The analysis of the eigenstructure of the boundary subdivision matrices be-

comes more complex in the case of the Catmull-Clark scheme. Using the

Catmull-Clark scheme as an example, we describe a technique that can be

used to analyze schemes with larger support.

The control mesh for a boundary patch surrounding an extraordinary

vertex is shown in Figure 5.8.

There are 6 different types of vertices in the control mesh, shown in the

same figure. For two types (1 and 3) there are two different masks that are

used for boundary and interior vertices respectively. As we did in the case

of the Loop scheme, we introduce a number of undefined coefficients into

the masks and find eigenvalues and eigenvectors of the subdivision matrix as
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functions of coefficients. The choice of the parameters is guided by the same

considerations as for the Loop scheme.

Various types of boundary behavior (smooth convex corner, smooth bound-

ary) can be obtained by choosing appropriate values of the parameters.

Again, we can show that no scheme from this class can generate surfaces

with smooth concave corners.

Subdivision matrix. The subdivision matrix has somewhat more com-

plex structure for the Catmull-Clark scheme. The general form is shown in

Figure 5.9. Note that a few of the blocks of the matrix are not symmetric, or

even square, and it is not immediately clear how to diagonalize the matrix.

In the block form, the matrix can be written as



A00

A10
1
8
I2

A20 A21 A22

A30 A31 A32
1
64
Ik


where the diagonal blocks are
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0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 − 2α α α

1 − β β

1 − β β

ε1 δ1 γ δ1 δ2 δ2

ε1 δ1 γ δ1 δ2 δ2

· · · · ·

ε1 δ1 δ1 γ δ2 δ2

ε2 η2 η2 η1

ε2 η2 η2 η1

· · · ·

· · · ·

ε2 η2 η2 η1

1
8

3
4

1
8

1
8

3
4

1
8

3
32
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64

9
16
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64

3
32

3
32

3
32 0 1
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32
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9
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32
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· · · · · · · · ·
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Figure 5.9: The subdivision matrix for the Catmull-Clark scheme.
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A00 =



1− 2α α α

1− β β

1− β β

ε1 δ1 γ δ1 δ2 δ2

ε1 δ1 γ δ1 δ2 δ2

· · · · ·

ε1 δ1 δ1 γ δ2 δ2

ε2 η2 η2 η1

ε2 η2 η2 η1

· · · ·

· · · ·

ε2 η2 η2 η1



(5.16)
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A22 =



3
32

0 1
64

1
64

3
32

1
64

1
64

· · ·

3
32

1
64

1
64

0

0 1
16

1
16

1
16

1
16

·

· ·

1
16

1
16

1
16

1
16

1
16

1
16

· ·

1
16

·

0 1
16



(5.17)

Note that all eigenvalues of A22 are guaranteed to be less than 1/8 (the

sum of the magnitudes of the entries on any row does not exceed 1/8). Thus,

only the eigenvalues of A00 are of interest to us. Next, we observe that the

matrix A00 itself has two blocks on the diagonal; the first 3 × 3 block is

identical to the block that we have considered for the Loop scheme; it has

eigenvalues 1, β and β − 2α. The only remaining block that we have to

consider is
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Ā00 =



γ δ1 δ2 δ2

δ1 γ δ1 δ2 δ2

· · · · ·

δ1 γ δ2 δ2

η2 η1

η2 η2 η1

· · ·

· · ·

η2 η1



This matrix acts on control points of types 1 and 2, excluding boundary

control points of type 1.

Transformation of the subdivision matrix. Assume k > 1 (we will

consider the case k = 1 separately). The eigenvalues and eigenvectors of

Ā00 can be found directly from the recurrences derived from the subdivision

rules. We take a somewhat different approach, similar to the DFT analysis

used for interior extraordinary vertices. This approach has somewhat greater

generality and can potentially be applied to analyze subdivision schemes with

larger supports. To find the eigenvalues of Ā00, we introduce a new set of

control points. We replace control points of type 2 p2
i , i = 0 . . . k − 1, with

k + 1 control points p̃2
i satisfying
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p2
i =

1

2

(
p̃2

i + p̃2
i+1

)
(5.18)

for i = 0 . . . k−1. Also, let p̃1
i = p1

i for control points of type 1. Note that we

increase the number of control points. These equations clearly do not define

the new control points uniquely. However, it is not relevant for our purposes.

In the matrix form, the relation between the original vector of control points

of types 1 and 2 and the transformed vector p̃ can be written as p = T p̃,

where T is a 2k + 1× 2k + 2 matrix.

In addition, we define the subdivision rules for the new control points.

We choose the rules for p̃ in such a way that the relations 5.18 also hold after

the subdivision rules are applied to p and p̃. Let S̃ be the subdivision matrix

for p̃. Then our choice of rules means that

ST p̃ = T S̃p̃

If λ is an eigenvalue of S̃, then S̃p̃λ = λp̃λ where p̃λ is the corresponding

eigenvector, and

ST p̃λ = T S̃p̃λ = λT p̃λ

Therefore, λ is also an eigenvalue of S, unless T p̃λ = 0. Note that the

nullspace of T has dimension 1 and contains the vector p1
i = 0, p̃2

i = (−1)i.

Hence a complete set of eigenvalues and eigenvectors of S can be obtained

from eigenvalues and eigenvectors of S̃ once we exclude the eigenvalue corre-
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sponding to this vector, if it happens to be an eigenvector.

We choose the subdivision rule for p̃2
i as follows:

[S̃p̃]2i = ε2p
0 + 2η2p

1
i + η1p̃

2
i (5.19)

In terms of new control points, the rule for control points of type 1 becomes

[Sp]1i = ε1p
0 + δ1

(
p1

i−1 + p1
i+1

)
+ γp1

i +
δ2
2

(
p̃2

i−1 + 2p̃2
i + p̃2

i+1

)
The matrix Ā00 is transformed into

Ã00 =



γ δ1
δ2
2

δ2
δ2
2

δ1 γ δ1
δ2
2

δ2
δ2
2

· · · · · ·

δ1 γ δ2
2

δ2
δ2
2

η1

2η2 η1

2η2 η1

· η1

2η2 η1

η1



(5.20)

Note that p̃2
0 and p̃1

k depend on p1
0 and p1

k which are outside this matrix.

Rearranging the entries, we get the matrix
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(̃A)′00



η1

η1

δ2
2

γ δ1 δ2
δ2
2

δ1 γ δ1
δ2
2

δ2
δ2
2

· · · · · ·

δ2 δ1 γ δ2
2

δ2

2η2 η1

2η2 η1

· η1

2η2 η1


which has 4 diagonal or tridiagonal subblocks of size k − 1 × k − 1. This

matrix has a double eigenvalue η1. The rest of the eigenvalues are eigenvalues

of the matrix Ã′00 consisting only of the 4 tridiagonal subblocks. We have

already observed that tridiagonal matrices have eigenvectors independent

from the entries of the matrix. Denote H the matrix with entries sin ijθk,

with θk = π/k as before, i, j = 1 . . . k−1. This matrix to some extent has the

same role in the analysis of subdivision matrices of boundary vertices as the

DFT matrix has in the analysis of subdivision matrices of interior vertices.

The transform H is defined as diag (H,H). The inverse of this matrix is

H−1 = diag ((2/k)H, (2/k)H).
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We have

HAH−1 =
2

k

 H 0

0 H


 B00 B01

B10 B11


 H 0

0 H

 (5.21)

=
2

k

 HB00H HB01H

HB10H HB11H

 (5.22)

where each blockHBijH is a diagonal matrix. Finally, we apply the following

permutation to the components of the vector:
[
p1

1, p
1
2, . . . p

1
k−1, p̃

2
1, p̃

2
2, . . . p̃

2
k−1

]
→[

p1
1, p̃

2
1, p

1
2, p̃

2
2 . . . p

1
k−1, p̃

2
k−1

]
. Let P be the corresponding permutation matrix.

The matrix A is reduced to the block diagonal form

PHAH−1P−1 =



B(1)

B(2)

. . .

B(k − 1)


(5.23)

where the blocks B(i), i = 1 . . . k − 1, are 2× 2 matrices

B(i) =

 γ + 2δ1 cos
iπ

k
δ2

(
1 + cos

iπ

k

)
2η2 η1

 . (5.24)

The explicit expressions for the eigenvalues are not particularly enlight-

ening in the general case and we omit them here.

Case k = 1. In this case, the eigenvalues and eigenvectors can be computed
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directly. The eigenvalues are β, β − 2α, η2, 1/8, 1/16 and 1/64.

Eigenvectors. We start with eigenvectors of the matrix A00. We assume

that η1 6= 0 and δ1 6= 0 and none of the eigenvalues of the blocks B(i) coincide

with η1. In this case, the eigenvectors corresponding to each block B(i) can

be taken to be [0, . . . 0, 1, r, 0, . . . 0]T , where the only two nonzero entries are

in positions 2i − 1 and 2i, r = −2η2/(η1 − λ), and λ is the eigenvalue.

Applying the inverse permutation and transform H, we get eigenvectors of

the form [vi, rvi], with vi being a vector of length k− 1 with entries sin(jθk),

j = 1 . . . k− 1. The entries of the eigenvector of A00 corresponding to p̃2
0 and

p̃2
k are zero. The remaining possible eigenvalues of A00 are 1, β, β − 2α and

η1. Once the eigenvalue is known, the expressions for the eigenvectors can

be found directly from the subdivision rules. Keeping in mind that for all

eigenvectors except the eigenvectors of the eigenvalue 1 and β−2α for α 6= 0

p0 = 0, an interior control point of type 1, p1
i , and a control point of type 2,

p2
i , from an eigenvector p with eigenvalue λ should satisfy

λp1
i = δ1

(
p1

i−1 + p1
i+1

)
+ δ2

(
p2

i + p2
i−1

)
+ γp1

i i = 1 . . . k − 1

λp2
i = η2

(
p1

i + p1
i+1

)
+ η1p

2
i i = 0 . . . k − 1

λp1
0 = βp1

0

λp1
k = βp1

k

(5.25)

For λ 6= η1, this leads to the following system of equations for p1
i , i =
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1 . . . k − 1,

(
δ1 + δ2

η2

λ− η1

)(
p1

i−1 + p1
i+1

)
+

(
γ − λ+

2δ2η2

λ− η1

)
p1

i (5.26)

Denote η̃1 = δ2η2/δ1. Then, if λ = η1 − η̃1, the equation is reduced to

p1
i (γ−η1+η̃1−2δ2) = 0, which has nontrivial solutions only if γ−η1+η̃1−2δ2 =

0.

Now we can find expressions for the eigenvectors. We start with the

eigenvector of the eigenvalue η1. Two cases are possible:

1. β = η1. Then there are two eigenvectors which both have p1
i = (−1)i,

and for the first one p2
i = (λ − γ + 2δ2)(−1)ii/δ1, and for the second

one p2
i = (λ− γ + 2δ2)(−1)i(i+ 1)/δ1.

2. β 6= η1. In this case, p1
i = 0, and p2

i = (−1)i.

If one of the eigenvalues β or β − 2α coincides with η1, its eigenvectors

are described by the same formulas. Suppose β 6= η1. Then three cases are

possible for the eigenvector of β.

1. β = η1 − η̃1, γ + β − 2δ2 = 0. In this case, the eigenvalue β has

multiplicity k + 1, and the components p1
i , i = 0 . . . k can be chosen

arbitrarily.

2. β = η1 − η̃1, γ + β − 2δ2 6= 0. In this case, the eigenvalue β has

multiplicity 2, the components p1
i , i = 1 . . . k − 1 are zero, and p1

0, p
1
k

can be chosen arbitrarily.
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3. β 6= η1 − η̃1, γ + β − 2δ2 6= 0. This is the most useful case. Let

r(λ) =
γ − λ+ 2δ2η2

λ−η1

δ1 + δ2
η2

λ−η1

(5.27)

so (5.26) reduces to p1
i−1 +p1

i+1 +r(β)p1
i = 0. We have already explored

the possible solutions of these equations in Section 5.5.1. The most

useful range of r(β) is (−2, 0), in which case the eigenvector can be

chosen to be sin ((i− k/2)θ), with r(β) = −2 cos θ.

Finally, for β − 2α there are two possibilities.

1. β − 2α = η1 − η̃1, γ + β − 2α− 2δ2 6= 0. In this case, the eigenvalue β

has multiplicity k− 1, the components p1
i , i = 1 . . . k− 1 can be chosen

arbitrarily, p1
0 = p1

k = 0.

2. β−2α 6= η1− η̃1, γ+β−2α−2δ2 6= 0. This case is similar to the third

case for the eigenvalue β, with r(β) replaced with r(β − 2α).

If α = 0, then in the case β 6= η1 − η̃1, γ + β − 2δ2 6= 0, the eigenvalue

β has two eigenvectors that can be chosen to be sin iθ and sin(i − k)θ (see

Table 5.1).

Coefficients for smooth boundary vertices. As was discussed in Sec-

tion 5.5.1, it is desirable to use β = 1/2 and α = 1/8 for smooth boundary

vertices. This choice of coefficients leads to a cubic spline boundary curve.

It is easy to see that we need only a single parameter in this case to ensure
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C1-continuity. We choose the parameter γ, using the standard values for all

other parameters: η1 = η2 = 1/4, δ1 = δ2 = 1/16. In this case, the expression

for the eigenvalues λj, λ
′
j simplifies to

λj, λ
′
j =

1

2
η̃ +

1

8
± 1

8

√
16η̃2 − 8η̃ + 1 + 2 (1 + cos jθk) j = 1 . . . k − 1

Note that for any k, j and any 0 < γ < 1, |λj| < λ1 and |λ′j| < λ1.

From the formulas for the eigenvectors we can tell that it is desirable to have

subdominant eigenvalues β = 1/2 and λ1. For λ1 to be equal to 1/2, we can

take γ = 3/8− (1/4) cos θk. Note that for the regular case k = 2 we get the

standard value γ = 3/8. In general, for 1/2 to be one of the subdominant

eigenvalues, it is necessary that γ < 3/8− (1/4) cos 2θk. If one wishes to use

a single value of γ for all valences, then the maximal possible choice of γ is

1/8.

Case k = 1. For the regular choices of parameters, the subdominant eigen-

values are 1/2 and 1/4, where 1/4 has a Jordan block of size 2. The result-

ing scheme is C1, although the normals converge to the limit slower than

in other cases due to the presence of the Jordan block. In this case the

parametric map does not coincide with the characteristic map. The para-

metric map can be informally characterized as the map approximating, up

to affine invariance, any subdivision surface generated near the central con-

trol point. Typically, it coincides with the characteristic map, but in the
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Figure 5.10: The control mesh for the parametric and characteristic maps in
the case k = 1 for smooth boundary.

case when one of the subdominant eigenvalues has a nontrivial Jordan block,

these maps can be different. The tangent vectors are actually determined

by the control vectors of the parametric map. The control net of the char-

acteristic and parametric maps for k = 1 and the standard choice of co-

efficients is shown in Figure 5.10. Assuming the ordering of components

x1 = [p0, p1
0, p

1
1, p

2, p3
0, p

3
1, p

4
0, p

5
0, p

6
0], the eigenvectors defining the maps are

x1 = [0, 1,−1, 0, 2,−2, 1,−1, 0] (eigenvalue 1/2),x2 = [0, 0, 0, 1, 0, 0, 2, 2, 4]

(eigenvalue 1/4 regular eigenvector) and x′2 = [−1, 2, 2, 5, 11, 11, 10, 10, 51/5]

(eigenvalue 1/4, generalized eigenvector). The characteristic map is defined

by the pair (x1, x2) and the parametric map is defined by the pair (x1, x′2).

Coefficients for convex corner vertices. For the corner vertices we

choose α = 0, β = 1/2. In this case, we have to ensure that the two eigen-

vectors of the double eigenvalue β are the subdominant eigenvectors. The

necessary condition for this is λ1 < β. In addition, we have to verify that the

resulting corner is indeed convex. As was the case for the Loop scheme, if
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the characteristic map is regular, for convexity it is sufficient that the control

mesh of the characteristic map has a convex corner at the central vertex. As

the subdominant eigenvectors for the eigenvalue β can be chosen to have

components p1
i equal to sin iθ and cos iθ, with θ such that −2 cos θ = r(β)

and r(β) defined by (5.27), the condition for convexity is r < −2 cos θk. As

it was the case for the Loop scheme, this condition turns out to be exactly

equivalent to the condition for the eigenvalue β to be subdominant. We ar-

rive at the same conclusion: no scheme from the class that we have defined

can produce smooth concave corners.

Coefficients for concave corner vertices. To obtain coefficients that

would allow us to generate surfaces with smooth concave corners, we use the

same approach that we used for the Loop scheme: we modify the coefficients

in such a way that all eigenvalues of the matrix A00 except 1 and β = 1/2 are

scaled by the constant s < 1. Recall that the idea is to use subdivision rules

with γ chosen in such a way that the eigenvectors of the eigenvalue β = 1/2

produce a concave configuration, and use additional modification of control

points to ensure that β are subdominant. The additional rules were derived

from the expression

p̃ = (1− s)p+ s
(
(l0, p)x0 + (l, p)xβ + (l′, p)x′

β
)

where x0 is the eigenvector [1, . . . 1] of the eigenvalue 1, xβ and x′β are eigen-

vectors of the eigenvalue β, and l0, l and l′ are corresponding left eigenvec-
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tors. The left eigenvectors l0, l and l′ are exactly the same as for the Loop

scheme: l = [−1, 0, 1, 0, . . .], l′ = [−1, 1, 0, 0, . . . 0] and l0 = [1, 0, . . . 0]. The

eigenvectors xβ and x′β coincide with the eigenvectors for the Loop scheme

when restricted to the vertices of type 1. To obtain the desired scaling of

eigenvalues we also need to modify vertices of type 2. The components of

the eigenvectors corresponding to the vertices of type 2 are easily computed

using subdivision rules (cf. (5.25)):

p2
i =

η2

λ− η1

(
p1

i + p1
i+1

)
=
(
p1

i + p1
i+1

)
Therefore, the analog of rules (5.15) for the Catmull-Clark subdivision is

[Sp]1i = (1− s)p1
i + s

(
p0 +

(
p1
0 − p0

)sin (k − i)θ
sin kθ

+
(
p1

k − p0
) sin iθ

sin kθ

)
[Sp]2i = (1− s)p2

i

+s

(
p0 +

(
p1
0 − p0

)sin (k − i)θ + sin (k − i + 1)θ
sin kθ

+
(
p1

k − p0
)sin iθ + sin (i + 1)θ

sin kθ

)
(5.28)

Proposition 5.4. Let Φ be the characteristic map defined by the eigenvectors

described as above for each of the different cases. Then

1. the preimage Φ−1(0) contains only one element, 0;

2. the characteristic map has a Jacobian of constant sign at all points of

the domain besides 0.

3. The image of the boundary of the characteristic map has no self- inter-
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sections;

4. the image of the characteristic map is not the whole plane.

Proof. We will consider the smooth boundary case and the corner case sep-

arately. For the smooth boundary case we use the coefficients β = 1/2, α =

1/8, η1 = η2 = 1/4, δ1 = δ2 = 1/16 and γ = 3/8− 1/4 cos θk. The character-

istic map is the formed by the eigenvectors to the eigenvalue β = 1/2 and

λ1 = 1/2. In the corner case we use the same coefficients besides α = 0 and

γ = 3/8 − 1/4 cos θ where θ is such that r(β) = −2 cos θ. We construct the

2 ring control mesh (see Figure 5.11(a) for k=4) given by these eigenvalues

and subdivide them twice. The quadrilaterals in the 3rd and 4th ring are

then surrounded by one ring of regular quads. In each sector we have 12

quads. We compute the surrounding 16 control values (Figure 5.11 (c)) for

the following different cases for the smooth boundary as well as for the corner

case:

12 for the interior sector with i = 3, . . . , k − 2 and arbitrary k

12 for i = 2 or i = k − 1 and arbitrary k

12 for i = 1 or i = k and arbitrary k

12 for k=1;

12 for k=2 and i = 1 or i = 2

12 for k=3 and i = 1 or i = 3

12 for k=3 and i = 2

For each of those 12× 7× 2 = 168 different cases we get the polynomial

by tensor product B-spline which is given by

132



p(u, v) = χ ·B · P

where

χ = (1, u, u2, u3, v, vu, vu2, cu3, v2, v2u, v2u2, v2u3, v3, v3u, v3u2, v3u3)

and

B =
1

6



B1 4B1 B1 0

−3B1 0 3B1 0

3B1 −6B1 3B1 0

−B1 3B1 −3B1 B1


(5.29)

with

B1 =
1

6



1 4 1 0

−3 0 3 0

3 −6 3 0

−1 3 −3 1


(5.30)

and P ∈ R16 given by the control data. In order to do our analysis we have

to transform the polynomial into Bernstein-Bezier coordinates first. We do

that by replacing the vector χ with its Bernstein-Bezier equivalent. Therefore

we now have 168 polynomials p(u, 1− u, v, 1− v) = (f1, f2) representing the

characteristic map in Berstein-Bezier coordinates.

1. For each of those cases we need to check that the radius f 2
1 +f 2

2 is strictly

bigger than 0. We do that by checking the coefficients in Berstein-
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(a) (b) (c)

Figure 5.11: (a) the 2 ring control data for a mesh with 4 sectors which
we subdivide twice. (b) 5 rings of 3 sectors (c) a control net for a given
quadrilateral.

Bezier coordinates.

2. We compute the Jacobian on each quadrilateral and check the sign by

checking the sign of the coefficients and find that they are all the same.

3. We consider the relevant boundary of the quads that from the boundary

curve. The functions are given by setting u = 0. We then have a

function depending on v and 1− v only. We check the monotonicity of

the quotient as in the Loop scheme.

4. This follows from the convex hull property of the regular scheme as the

convex hull of the control mesh is not the whole plane. Again we have

to take it sector by sector for the concave corner case.

We can then conclude similarly than for Loop that the scheme is C1

by finding the cubic B-spline boundary curve and checking the condition of
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Theorem 5.4

Furthermore it is not necessary to use those exact values for the param-

eters. We need only to ensure that β and λ1 are subdominant as well as

r(β) ∈ [−2, 0] to get the similar eigenvectors and by a similar calculation the

same results.
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Chapter 6

Eigenvalue Variational Analysis

6.1 Introduction

In this chapter we will give a short review of the set of subgradients and

regular subgradients of the spectral abscissa due to Burke and Overton [5].

In that work they found necessary and sufficient conditions for regular sub-

gradients and necessary conditions for subgradients of the spectral abscissa.

It seems hard to find a general sufficient condition. In our attempt to do so

we carefully considered the simplest defective, derogatory case. It turns out

that by a hands-on calculation we can fully describe the subgradients in this

case.
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6.2 Results on Subgradients of spectral func-

tions

Subgradients: For functions that are not differentiable, subgradients are

used instead of the derivative to analyze variational properties. The following

definition may be found in [37]. Let φ : E → [−∞,∞], where E is a finite-

dimensional Euclidean space, real or complex, with the real inner product

〈·, ·〉, and let x ∈ E be such that φ(x) < ∞. A vector y ∈ E is a regular

subgradient of φ at x (written y ∈ ∂̂φ(x)) if

lim inf
z→0

φ(x+ z)− φ(x)− 〈y, z〉
‖z‖

> 0. (6.1)

A vector y ∈ E is a subgradient of φ at x (written y ∈ ∂φ(x)) if there exists

sequences xi and yi in E satisfying

xi → x (6.2)

φ(xi)→ φ(x) (6.3)

yi ∈ ∂̂φ(xi) (6.4)

yi → y. (6.5)

The spectral abscissa: Burke and Overton [5] describe functions of the

type f ◦ λ, where λ : Cn×n → Cn maps a matrix to its eigenvalues and the

function f : Cn → R is invariant under permutation of its arguments. They
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focus on functions f = g ◦ hκ with (hκ(x))i = κ(xi) and g being the max

function, especially the case where κ(x) = Re(x). Then, f ◦ λ is called the

spectral abscissa and is denoted α. The regular subgradients of the spectral

abscissa are given by [5, Thm 7.2]:

Proposition 6.1. Let X have Jordan form

P−1XP = J =


J (1)

. . .

J (p)

 , where J (j) =


J

(j)
1

. . .

J
(j)

q(j)

 ,

with J
(j)
k =



µj 1

· ·

· ·

· 1

µj


∈ Cm

(j)
k ×m

(j)
k , k = 1, . . . , q(j), j = 1, . . . , p.

Then ∂̂α(X), the set of regular subgradients of the spectral abscissa α at X,
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is the set of matrices Y satisfying

P ∗Y P−∗ = W =


W (1)

. . .

W (p)

 , (6.6)

W (j) =


W

(j)
11

. . .

W
(j)

q(j)q(j)

 , (6.7)

where W
(j)
kk =



θ
(j)
1

θ
(j)
2 ·

· · ·

· · · ·

θ
(j)

m
(j)
k

· · θ
(j)
2 θ

(j)
1


, (6.8)

k = 1, . . . , q(j), j = 1, . . . , p, (6.9)

W (j) = 0 if j /∈ A := {` : α(X) = Reµ`} (6.10)

θ
(j)
1 ∈ R, θ

(j)
1 > 0,

∑
j∈A

m(j)θ1(j) = 1, (6.11)

with m(j) =

q(j)∑
k=1

m
(j)
k (6.12)

Reθ
(j)
2 > 0. (6.13)

Necessary conditions for subgradients (not necessarily regular) are also
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given in [5]. We shall not describe these in all generality here, but we will

discuss a special case. Necessary and sufficient conditions were given in [5] for

the case that all active eigenvalues of a matrix are nondefective (equivalently

semisimple), that is the Jordan blocks are of size 1, or nonderogatory (there is

only one Jordan block for each eigenvalue). Active eigenvalues µ of a matrix

X are such that α(X) = Reµ.

6.3 Subgradients of the spectral abscissa in

the simplest defective, derogatory case

The subgradients of α at X depend on the Jordan normal form of X. When

n = 2 the eigenvalues are either nondefective or nonderogatory, so the sim-

plest interesting case is n = 3, with

J =


0 1 0

0 0 0

0 0 0

 . (6.14)

W.l.o.g, we take P = I, and set the eigenvalue to 0 since subgradients do not

depend on the value of the eigenvalue. Then, it follows from Proposition 6.1
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that for Y to be a regular subgradient, it must have the form


1
3

0 0

w 1
3

0

0 0 1
3

 with Re(w) > 0. (6.15)

We know from [5, Cor 8.1] that in order for a matrix to be a subgradient

(not necessarily regular) of α at J it must be of the form


a 0 0

b a c

d 0 1− 2a

 with a ∈
[
0,

1

2

]
. (6.16)

The main result of this chapter characterizes all subgradients of α at J :

Theorem 6.1. The set of subgradients of the spectral abscissa α at the matrix

J is given by

∂α(J) =




a 0 0

b a c

d 0 1− 2a

with a ∈ [0,
1
2
]. If a 6= 1

3
: Re

(
b− cd

1− 3a

)
> 0

 (6.17)

Proof of Theorem 6.1

The method we use to prove this result is a very direct one. We know that

a subgradient Y must have the form (6.16). We also know the exact de-

scription of the regular subgradients. Since subgradients are limits of regular

subgradients we study sequences Xi → J and Yi → Y with Yi ∈ ∂̂α(Xi).
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The set of all such Y is the set of subgradients. There are only finitely many

possible Jordan structures, so we assume w.l.o.g. that in each sequence all Xi

have the same Jordan structure. Otherwise we can consider a subsequence.

We will go through each of the possible Jordan structures and discuss what

matrix limits are possible, thereby finding stronger necessary conditions. We

will then prove that these conditions are sufficient.

In dimension 3 there are 9 possible Jordan structures, assuming that
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Re(αi) > Re(βi) > Re(γi), for Ji = P−1
i XiPi, namely

J1
i =


αi 0 0

0 αi 0

0 0 αi

 J2
i =


αi 1 0

0 αi 0

0 0 αi



J3
i =


αi 0 0

0 αi 1

0 0 αi

 J4
i =


αi 1 0

0 αi 1

0 0 αi



J5
i =


αi 1 0

0 αi 0

0 0 βi

 J6
i =


αi 0 0

0 αi 0

0 0 βi



J7
i =


αi 0 0

0 βi 1

0 0 βi

 J8
i =


αi 0 0

0 βi 0

0 0 βi



J9
i =


αi 0 0

0 βi 0

0 0 γi


Let us denote by Sj(J) the set of all possible subgradients if Xi has Jordan

form J j
i . In the following we will go through each of the 9 cases and find nec-

essary conditions for each of the Sj(J). We require Xi = PiJ
i
jP

−1
i → J . Note

that, in general, P−1
i and Pi are not both bounded, but the eigenvalues of Xi,

namely αi, βi and γi, must converge to 0. We know that the corresponding
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regular subgradient satisfies Yi = P−∗i W i
jP

∗
i where W i

j satisfies (6.6)-(6.13).

Case 1

When the Jordan type of the sequence is J1
i we have Xi = Pi(αiI)P

−1
i = αiI,

so it cannot converge to J and hence

S1(J) = ∅.

Case 2

In this case we only get regular subgradients. Let

Xi → J and Yi → Y

where

Xi = Pi


αi 1 0

0 αi 0

0 0 αi

P−1
i and Yi = P−∗i


1
3

0 0

wi
1
3

0

0 0 1
3

P ∗i
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with Re(wi) > 0. Note that the given structure for Yi comes from Proposition

6.1 since Yi ∈ ∂̂α(Xi). Now we do the following analysis:

Y ∗i = Pi


1
3

w∗i 0

0 1
3

0

0 0 1
3

P−1
i

= Pi

1

3
I +


0 w∗i 0

0 0 0

0 0 0


P−1

i

=
1

3
I + w∗iPi




0 1 0

0 0 0

0 0 0

+ αiI − αiI

P−1
i

=
1

3
I + w∗i (Xi − αiI).

Because αi → 0 and Xi → J and Y ∗i = 1
3
I +w∗i (Xi − αiI)→ Y ∗ we see that

wi must converge, say to w. We conclude that

Y =
1

3
I + wJ =


1
3

0 0

w 1
3

0

0 0 1
3

 ∈ ∂̂α(J).

This means Y must be a regular subgradient:

S2(J) ⊂ ∂̂α(J).
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Case 3

In Case 3 the Xi would be given as

Xi = Pi


αi 0 0

0 αi 1

0 0 αi

P−1
i

however this can be rewritten as

Xi = Pi


0 0 1

1 0 0

0 1 0




αi 1 0

0 αi 0

0 0 αi




0 1 0

0 0 1

1 0 0

P−1
i

and therefore reduces to Case 2.

S3(J) ⊂ ∂̂α(J).

Case 4

In this case we require

Xi → J and Yi → Y
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where

Xi = Pi


αi 1 0

0 αi 1

0 0 αi

P−1
i and Yi = P−∗i


1
3

0 0

wi
1
3

0

yi wi
1
3

P ∗i .

Again Re(wi) > 0 but yi ∈ C is unrestricted. We know that Y satisfies

(6.16). Since det(Yi) = 1/27 is constant it has to be stable under the limit

and that means that

det(Y ) = a2(1− 2a) =
1

27
.

The only solution for a ∈ [0, 1
2
] is then a = 1/3, so

S4(J) ⊂

Y =


1/3 0 0

b 1/3 c

d 0 1/3


 .

Case 5

Re(αi) > Re(βi)

Given the sequences

Xi → J and Yi → Y
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where

Xi = Pi


αi 1 0

0 αi 0

0 0 βi

P−1
i and Yi = P−∗i


1
2

0 0

wi
1
2

0

0 0 0

P ∗i ,

with Re(wi) > 0, we look at XiY
∗
i :

XiY
∗
i = Pi


αi 1 0

0 αi 0

0 0 βi




1
2

ω∗i 0

0 1
2

0

0 0 0

P−1
i (6.18)

= Pi


αi

2
αiω

∗
i + 1

2
0

0 αi

2
0

0 0 0

P−1
i = αiY

∗
i +Hi (6.19)

where Hi = Pi


0 1

2
0

0 0 0

0 0 0

P−1
i . (6.20)

We know that αi → 0 and XiY
∗
i → JY ∗ = aJ since Y satisfies (6.16).

Therefore

Hi → aJ.
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We will show that this means that a = 1
2
. Consider

Y ∗i =
1

2
I +Ki where Ki = Pi


0 w∗i 0

0 0 0

0 0 −1
2

P−1
i .

Yi converges and therefore Ki = Y ∗i − 1
2
I converges and so does

K2
i = Pi


0 0 0

0 0 0

0 0 1
4

P−1
i .

Xi = αiI + 2Hi + 4(βi − αi)K
2
i → 0 + 2aJ + 0

and we can conclude, since Xi → J that J = 2aJ , and therefore a = 1
2
.

Using Ki = 2w∗iHi − 2K2
i we see that wi has to converge and we call its

limit w. Since Re(wi) > 0 it follows that Re(w) > 0.

We get then that
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Ki = Y ∗i −
1

2
I → Y ∗ − 1

2
I =


0 b∗ c∗

0 0 0

0 d∗ −1
2

 =: K

therefore K2
i → K2 =


0 c∗d∗ − c∗

2

0 0 0

0 −d∗

2
1
4


therefore Ki = 2w∗iHi − 2K2

i → 2w∗aJ − 2K2

= w∗J − 2K2 =


0 w∗ − 2c∗d∗ c∗

0 0 0

0 d∗ −1
2


⇒ b∗ = w∗ − 2c∗d∗.

Thus,

S1
5(J) ⊂

Y =


1/2 0 0

b 1/2 c

d 0 0

where Re(b+ 2cd) > 0

 .

We are using the superscript to denote the sub-case of Case 5. Note that the

right hand side is contained in the right hand side of (6.17).
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Re(αi) = Re(βi)

The sequences

Xi → J and Yi → Y

in this case are given by

Xi = Pi


αi 1 0

0 αi 0

0 0 βi

P−1
i and Yi = P−∗i


pi 0 0

wi pi 0

0 0 1− 2pi

P ∗i

where pi ∈ [0, 1
2
] and therefore w.l.o.g. we can assume that pi converges.

1. The first case we consider is when pi → 1
3
. Then

Y ∗i − piI = Pi


0 w∗i 0

0 0 0

0 0 1− 3pi

P−1
i

→


a− 1

3
b∗ c∗

0 a− 1
3

0

0 d∗ 2
3
− 2a

 .

Since the determinant is a continuous function we conclude that a = 1
3
,

so
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S2
5(J) ⊂

Y =


1/3 0 0

b 1/3 c

d 0 1/3


 .

2. Now assume pi → p where p 6= 1
3
. Here we will consider

Li = Y ∗i − piI =

Pi


0 w∗i 0

0 0 0

0 0 1− 3pi

P−1
i →


a− p b∗ c∗

0 a− p 0

0 d∗ 1− 2a− p


and therefore

L2
i = Pi


0 0 0

0 0 0

0 0 (1− 3pi)
2

P−1
i converges.

We deduce that Mi = 1/(1− 3pi)
2L2

i converges. Let’s call the limit M :

M =
1

1− 3p
(Y ∗ − pI)2.
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Then

Ni = Pi


0 1 0

0 0 0

0 0 0

P−1
i = Xi − αiI − (βi − αi)Mi → J.

Now consider

XiY
∗
i = Pi


αipi αiw

∗
i + pi 0

0 αipi 0

0 0 βi(1− 2pi)

P−1
i (6.21)

= (αiw
∗
i + pi)Ni + αipiI + (βi(1− 2pi)− αipi)Mi (6.22)

→ (0 + p)J + 0 + 0 = pJ (6.23)

observing that wi converges since

Y ∗i = piI + (1− 3pi)Mi + w∗iNi.

Since XiY
∗
i → JY ∗ = aJ we find that p = a. So,

Y ∗i → aI + (1− 3a)M + w∗J =


a w∗ + c∗d∗

1−3a
c∗

0 a 0

0 d∗ 1− 2a

 .
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This means b∗ = w + c∗d∗

1−3a
. The condition is:

Re(b− cd

1− 3a
) > 0.

So

S3
5(J) ⊂

Y =


a 0 0

b a c

d 0 1− 2a

where a 6= 1

3
and Re(b− cd

1− 3a
) > 0

 .

Case 6

Re(αi) > Re(βi)

If we assume that

Xi → J and Yi → Y

where

Xi = Pi


αi 0 0

0 αi 0

0 0 βi

P−1
i and Yi = P−∗i


1/2 0 0

0 1/2 0

0 0 0

P ∗i
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we easily get a contradiction which rules out this case. Assume that

Pi =


pi

11 pi
12 pi

13

pi
21 pi

22 pi
23

pi
31 pi

32 pi
33


Then

X i
12 =

pi
13(αi − βi)(p

i
11p

i
32 − pi

12p
i
31)

det(Pi)
→ 1

and

(Y i
12)

∗ =
1

2

pi
13(p

i
11p

i
32 − pi

12p
i
31)

det(Pi)
=

1

2

X i
12

αi − βi

which doesn’t converge. So,

S1
6(J) = ∅.

Re(αi) = Re(βi)

If we assume that there is a

Xi → J and Yi → Y

where

Xi = Pi


αi 0 0

0 αi 0

0 0 βi

P−1
i and Yi = P−∗i


qi 0 0

0 qi 0

0 0 1− 2qi

P ∗i .
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Assume that

Pi =


pi

11 pi
12 pi

13

pi
21 pi

22 pi
23

pi
31 pi

32 pi
33

 ,

then

X i
12 =

pi
13(αi − βi)(p

i
11p

i
32 − pi

12p
i
31)

det(Pi)
→ 1

and

(Y i
12)

∗ =
1

2

pi
13(3qi − 1)(pi

11p
i
32 − pi

12p
i
31)

det(P )
=

1

2

3qi − 1

αi − βi

X i
21

which can only converge if qi → 1
3
. But this means that a = 1

3
by a determi-

nant argument which gives:

S2
6 ⊂

Y =


1/3 0 0

b 1/3 c

d 0 1/3


 .

Case 7

Re(αi) > Re(βi)

Let

Xi → J and Yi → Y
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where

Xi = Pi


αi 0 0

0 βi 1

0 0 βi

P−1
i and Yi = P−∗i


1 0 0

0 0 0

0 0 0

P ∗i

Now we do the following analysis

XiY
∗
i = Pi


αi 0 0

0 0 0

0 0 0

P−1
i = αiY

∗
i → 0.

Since XiY
∗
i → JY ∗ = aJ we deduce that a = 0. Considering then that, since

all the Yi are rank one, the limit also has rank one, we have

Y =


0 0 0

b 0 c

d 0 1

 with b = cd.

So,

S1
7 ⊂

Y =


0 0 0

b 0 c

d 0 1

 with b = cd

 .
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Re(αi) = Re(βi)

This case is analogous to the second situation in case 5 since once the real

parts are the same the ordering becomes arbitrary. So,

S2
7(J) ⊂

Y =


a 0 0

b a c

d 0 1− 2a

where a 6= 1

3
and Re(b− cd

1− 3a
) > 0

 .

Case 8

Re(αi) > Re(βi)

The discussion of this case is analogous to the first part of Case 7:

S1
8 ⊂

Y =


0 0 0

b 0 c

d 0 1

 with b = cd

 .

Re(αi) = Re(βi)

Let

Xi → J and Yi → Y
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where

Xi = Pi


αi 0 0

0 βi 0

0 0 βi

P−1
i and Yi = P−∗i


ri 0 0

0 1
2
− ri

2
0

0 0 1
2
− ri

2

P ∗i

and ri ∈ [0, 1
2
]. We have that XiY

∗
i → aJ and

XiY
∗
i = βiY

∗
i + riPi


αi − βi 0 0

0 0 0

0 0 0

P−1
i (6.24)

and (6.25)

XiY
∗
i = αiY

∗
i + (

1

2
− ri

2
)Pi


0 0 0

0 βi − αi 0

0 0 βi − αi

P−1
i (6.26)

and since

Pi


αi − βi 0 0

0 0 0

0 0 0

P−1
i = Xi − βiI → J and (6.27)

Pi


0 0 0

0 βi − αi 0

0 0 βi − αi

P−1
i = Xi − αiI → J (6.28)
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we get that ri → a and 1
2
− ri

2
→ a. This means that a = 1

2
− a

2
giving a = 1

3
.

So,

S2
7 ⊂

Y =


1/3 0 0

b 1/3 c

d 0 1/3


 .

Case 9

Re(αi) > Re(βi) > Re(γi)

We follow the same argument as in the first part of Case 7. Thus

S1
9 ⊂

Y =


0 0 0

b 0 c

d 0 1

 with b = cd

 .

Re(αi) = Re(βi) > Re(γi)

We have Xi → J with

Xi = Pi


αi 0 0

0 βi 0

0 0 γi

P−1
i and Yi = P−∗i


ri 0 0

0 1− ri 0

0 0 0

P ∗i

Since det(Yi)=0 we conclude that det(Y ) = 0 and therefore a = 1
2

or a = 0.

W.l.og. we assume that ri → r, since we can always consider a subsequence.
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1. We will first consider the case where a = 1
2
. We know that det(Yi −

riI) = 0 and det(Yi − (1 − ri)I) = 0. By taking the limit we get that

det(Y −rI) = det(Y −(1−r)I) = 0 from which we deduce that r = 1/2.

Consider (Y ∗i − riI)Y
∗
i and (Xi − αiI)Y

∗
i :

(Y ∗i − riI)Y
∗
i = Pi


0 0 0

0 (1− 2ri)(1− ri) 0

0 0 0

P−1
i

→ (Y ∗ − 1

2
I)Y ∗ =


0 b∗

2
+ c∗d∗ 0

0 0 0

0 0 0



(Xi − αiI)Y
∗
i = Pi


0 0 0

0 (βi − αi)(1− ri) 0

0 0 0

P−1
i

→ (J)Y ∗ =


0 1

2
0

0 0 0

0 0 0



Comparing these two we get that

1− 2ri

βi − αi

→ b∗/2 + c∗d∗

1/2
= b∗ + 2c∗d∗
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and since Re( 1−2ri

βi−αi
) = 0 we conclude that Re(b+ 2cd) = 0. So,

S2
9 ⊂

Y =


1/2 0 0

b 1/2 c

d 0 0

 where Re(b+ 2cd) = 0

 .

2. Now we consider the case where a = 0. Since det(Yi − riI) = 0 and

ri ∈ [0, 1/2] we get that r = 0. Consider (Y ∗i − (1 − ri)I)Y
∗
i and

(Y ∗i − (1− ri)I)(Xi − γiI):

(Y ∗i − (1− ri)I)Y
∗
i = Pi


(2ri − 1)ri 0 0

0 0 0

0 0 0

P−1
i

→ (Y ∗ − I)Y ∗ =


0 c∗d∗ − b∗ 0

0 0 0

0 0 0



(Y ∗i − (1− ri)I)(Xi − γiI) = Pi


(2ri − 1)(αi − γi) 0 0

0 0 0

0 0 0

P−1
i

→ (Y ∗ − I)J =


0 −1 0

0 0 0

0 0 0


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We get that ri

αi−γi
→ b∗ − c∗d∗ and therefore Re(b− cd) > 0. So,

S3
9 ⊂

Y =


0 0 0

b 0 c

d 0 1

where Re(b− cd) > 0


Re(αi) = Re(βi) = Re(γi)

Let

Xi → J and Yi → Y

where

Xi = Pi


αi 0 0

0 βi 0

0 0 γi

P−1
i and Yi = P−∗i


ri 0 0

0 qi 0

0 0 1− ri − qi

P ∗i .

We can assume that w.l.o.g ri → r and qi → q. Looking at

0 = (Yi − riI)(Yi − qiI)(Yi − (1− qi − ri)I)

we conclude

0 = (Y − rI)(Y − qI)(Y − (1− q − r)I)

and that we have to distinguish 4 cases

1. a 6= 1/3 and q = a and r = a

163



2. a 6= 1/3 and q = a and r = 1− 2a

3. a 6= 1/3 and q = 1− 2a and r = a

4. a = q = r = 1/3

1. Consider (Y ∗i − riI)(Y
∗
i − (1− qi − ri)I). This gives

Pi


0 0 0

0 (qi − ri)(2qi + ri − 1) 0

0 0 0

P−1
i →


0 b∗(3a− 1) + c∗d∗ 0

0 0 0

0 0 0


Looking at (Xi − αiI)(Y

∗
i − (1− ri − qi)I) we get that

Pi


0 0 0

0 (βi − αi)(2qi + ri − 1) 0

0 0 0

P−1
i →


0 3a− 1 0

0 0 0

0 0 0

 .

Comparing the two we can deduce that

qi − ri

βi − αi

→ b∗ +
c∗d∗

3a− 1
.

Since qi and ri are real and βi − αi is purely imaginary we get that

Re(b+
cd

3a− 1
) = 0,
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so

S3
9 ⊂

Y =


a 0 0

b a c

d 0 1− 2a

 where Re(b− cd

1− 3a
) = 0

 .

2. Consider (Y ∗i − riI)(Y
∗
i − (1− qi − ri)I). This gives

Pi


0 0 0

0 (qi − ri)(2qi + ri − 1) 0

0 0 0

P−1
i →


0 b∗(3a− 1) + c∗d∗ 0

0 0 0

0 0 0

 .

Looking at (Xi − γiI)(Y
∗
i − riI) we get that

Pi


0 0 0

0 (βi − γi)(qi − ri) 0

0 0 0

P−1
i →


0 3a− 1 0

0 0 0

0 0 0

 .

Comparing the two we can deduce that

2qi + ri − 1

βi − γi

→ b∗ +
c∗d∗

3a− 1
.

Since qi and ri are real and βi − γi is purely imaginary we get

Re(b− cd

1− 3a
) = 0,
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so

S4
9 ⊂

Y =


a 0 0

b a c

d 0 1− 2a

 where Re(b− cd

1− 3a
) = 0

 .

3. Consider (Y ∗i − qiI)(Y ∗i − (1− qi − ri)I). This gives

Pi


(ri − qi)(2ri − qi − 1) 0 0

0 0 0

0 0 0

P−1
i →


0 b∗(3a− 1) + c∗d∗ 0

0 0 0

0 0 0

 .

Looking at (Xi − γiI)(Y
∗
i − qiI) we get

Pi


(αi − γi)(ri − qi) 0 0

0 0 0

0 0 0

P−1
i →


0 3a− 1 0

0 0 0

0 0 0

 .

Comparing the two we can deduce that

2ri − qi − 1

αi − γi

→ b∗ +
c∗d∗

3a− 1
.

Since qi and ri are real and αi − γi is purely imaginary we get

Re(b− cd

1− 3a
) = 0,
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so

S5
9 ⊂

Y =


a 0 0

b a c

d 0 1− 2a

 where Re(b− cd

1− 3a
) = 0

 .

4. Because a = 1/3 we get

S6
9 ⊂

Y =


1/3 0 0

b 1/3 c

d 0 1/3


 .

Thus we have proved that the left hand side of Theorem 6.1 is contained

in the right hand side.

Sufficient Conditions

Now, we prove that the right hand side is contained in the left hand side.

We will distinguish the cases a = 1
3

and a 6= 1
3
.
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a = 1
3

In this case for any b, c, d the following sequences

Pt =


−c∗d∗2 − 1

b∗d∗t
c∗d∗2

t3

0 −c∗d∗2 0

0 − c∗d∗

t
1
t3

 (6.29)

P−1
t =


− 1

c∗d∗2
b∗−c∗2d∗2

c∗2d∗3t
1

0 − 1
c∗d∗2 0

0 − t2

d∗
t3

 (6.30)

Jt =


t 1 0

0 t 1

0 0 t

 (6.31)

W ∗
t =


1
3

1
t
− 1

c∗d∗t3

0 1
3

1
t

0 0 1
3

 . (6.32)

are such that Xt = PtJtP
−1
t , Yt = P−∗t WtP

∗
t ∈ ∂̂α(Xt),

Xt → J and Yt → Y =


a 0 0

b a c

d 0 a

 with a =
1

3
.
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Here t is real and positive and decreases to zero. Since c, d, b can be arbitrary

we conclude that if a = 1
3

then the conditions on the right hand side of (6.17)

completely characterize the subgradients, except that we have to consider the

case where c = 0 and/or d = 0. This can be done by taking the sequences

above and replacing c and/or d with t. Then we get a limit with c and/or d

equal to 0.

a 6= 1
3

In all the cases we studied we have found the necessary condition Re(b −
cd

1−3a
) > 0. We will show that this is sufficient by the following sequence in

which a ∈ [0, 1
2
) (we will discuss the case a = 1/2 later) and c, d arbitrary

and Re(w) > 0:

P−1
t =


1
t

1
t

c∗

(3a−1)t

t 1
t

t

t d∗

(1−3a)t
1
t

 , (6.33)

Jt =


t 1 0

0 t 0

0 0 t+ it

 , (6.34)

W ∗
t =


a+ t w∗ + t 0

0 a+ t 0

0 0 1− 2a− 2t

 (6.35)
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are such that Xt = P−1
t JtPt, Yt = P ∗t WtP

−∗
t ∈ ∂̂α(Xt),

Xt → J and Yt → Y =


a 0 0

b a c

d 0 a


where b = w + cd

1−3a
, with t positive real, converging to 0. In the case where

a = 1/2 we can take a similar sequence with

W ∗
t =


1
2
− t w∗ + t 0

0 1
2
− t 0

0 0 2t

 .

We then get that Xt → J and Yt → Y as above but with a = 1/2. This

proves Theorem 6.1.

6.4 Discussion

The subdifferential analysis just performed for the spectral abscissa at the

3×3 derogatory, defective matrix J was quite complicated, suggesting that a

general analysis may be difficult. In the nonderogatory case, all subgradients

are regular [5, Theorem 8.2]; it is because this is not the case for active

derogatory eigenvalues that the general subdifferential analysis problem is so

challenging.

The purpose of deriving subgradients is so that they can be used for
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analyzing necessary optimality conditions. In the case of the eigenvalue

optimization problems studied in Chapter 4, the minimal value found for the

reduced spectral radius was zero, establishing global optimality, so the Jordan

structure of the zero eigenvalue was not relevant to the question of optimality.

However, if the minimal value found for the eigenvalue being minimized had

been a positive number, the Jordan structure would be needed for analysis

of optimality conditions, and in principle it would be possible to use results

along the lines of the one established in this chapter to investigate whether the

minimal eigenvalue found satisfies necessary optimality conditions, making

use of nonsmooth chain rules as was done in [17].
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