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Abstract. The following problem is addressed: given square matrices A and B, compute
the smallest ε such that A + E and B + F have a common eigenvalue for some E, F with
max(‖E‖2, ‖F‖2) ≤ ε. An algorithm to compute this quantity to any prescribed accuracy is pre-
sented, assuming that eigenvalues can be computed exactly.
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1. Introduction. The quantity sepλ(A,B) was introduced by Varah in [Var79]
and further investigated by Demmel in [Dem83, Dem86, Dem87]; it measures how
much perturbation is required to modify two square matrices A and B so that they
have a common eigenvalue. Let A ∈ Cm×m and B ∈ Cn×n. The functions studied
by Varah and Demmel are defined slightly differently, namely

sepV
λ (A,B) = min{ε ∈ R : ∃ E ∈ Cm×m, F ∈ Cn×n with ‖E‖ + ‖F‖ ≤ ε(1)

such that A + E and B + F have a common eigenvalue}

and

(2)

sepD
λ (A,B) = min{ε ∈ R : ∃ E ∈ Cm×m, F ∈ Cn×n with max (‖E‖, ‖F‖) ≤ ε

such that A + E and B + F have a common eigenvalue},

respectively, where ‖ · ‖ denotes the 2-norm. Clearly,

1

2
sepV

λ (A,B) ≤ sepD
λ (A,B) ≤ sepV

λ (A,B).

The lower bound is tight, with equality holding for normal matrices. A standard
argument based on the singular value decomposition shows that

sepV
λ (A,B) = min

z∈C
(σmin(A− zI) + σmin(B − zI))(3)

and

sepD
λ (A,B) = min

z∈C
max (σmin(A− zI), σmin(B − zI)) ,(4)
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where σmin denotes least singular value. This also shows that the quantities sepV
λ and

sepD
λ remain unchanged if the Frobenius norm is substituted for the 2-norm.
Sepλ may also be defined in terms of pseudospectra. The ε-pseudospectrum of A

is [ET]

Λε(A) =
{
z ∈ C : ∃ E ∈ Cm×m with ‖E‖ ≤ ε and det(A + E − zI) = 0

}
= {z ∈ C : σmin(A− zI) ≤ ε} ,

so sepV
λ (A,B) is the minimal value of ε1 + ε2 such that Λε1(A)∩Λε2(B) is nonempty,

while sepD
λ (A,B) is the minimal value of ε such that Λε(A) ∩ Λε(B) is nonempty.

Indeed, Trefethen and Embree [TE05, section 1.6] attribute the earliest known defini-
tion of pseudospectra to Varah in his Ph.D. thesis [Var67] and the earliest published
computer-generated pseudospectral plot to Demmel in [Dem87]. It is well known that
the pseudospectrum Λε(A) consists of at most n components,1 and that each com-
ponent is compact, contains at least one eigenvalue of A and has a piecewise smooth
boundary; however, it may not be convex or even simply connected.

Obviously, sepV
λ (A,B) = sepD

λ (A,B) = 0 if and only if A and B have a common
eigenvalue, and it is well known that this holds if and only if the Sylvester equation
AX−XB = 0 has a nontrivial solution X ∈ Cm×n, or equivalently, that the Kronecker
difference I ⊗ A − BT ⊗ I is singular [HJ91, section 4.4].2 Varah’s notational choice
sepλ was inspired by its relationship to the quantity sep introduced by Stewart [Ste73]
to study angles between subspaces,

sep(A,B) = min
X∈Cm×n

‖AX −XB‖F
‖X‖F

= σmin(I ⊗A−BT ⊗ I).

Varah observed that sep(A,B) ≤ sepV
λ (A,B)/2 (so sep(A,B) ≤ sepD

λ (A,B)) but that
very often, sep and sepλ differ by several orders of magnitude. This fact is related
to the now well known one that pseudospectra and spectra provide very different
information for nonnormal matrices, which is the theme of the comprehensive book
[TE05]. Thus, even if one is prepared to compute sep(A,B) via the singular value
decomposition of I⊗A−BT ⊗I, a computation whose complexity is roughly O(m3n3)
flops, this does not provide a very useful lower bound for sepλ(A,B).

Upper bounds for sepλ are immediately obtained by evaluating σmin(A− zI) and
σmin(B− zI) for any z ∈ C, or, more effectively, by applying an optimization method
to carry out the minimization in (3) or (4) respectively, perhaps initialized at many
systematically generated starting points. However, even though there are only two
real variables in each of these minimization problems, solving them is not easy. The
main difficulty is that the optimization objectives are nonconvex and may have many
local minimizers. No bound is known on the number of possible local minimizers,
although it seems a good guess that m + n (or at least its square) might be an
upper bound, based on related recent results and conjectures [BLO04]. A second, less
crucial, difficulty is that (for reasons to be seen in the next section) the optimization
objective in (4) is virtually always nondifferentiable at a local optimizer, and while
this may not be the case for the objective in (3), it will be if, as often happens, the
local optimizer is an eigenvalue of A or B (i.e., the minimum in (1) is attained with
either E = 0 or F = 0). This second difficulty may be overcome by using a method for
nonsmooth, nonconvex optimization such as that described in [BLO05] instead of a

1Throughout, we use component to mean connected component.
2The size of the identity matrix I is context-dependent.
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standard method for smooth, nonconvex optimization such as BFGS, but the inability
to verify global optimality remains a stumbling block preventing the computation of
sepλ, or even the assessment of the quality of upper bounds, via optimization.

For these reasons, no algorithm to compute sepV
λ or sepD

λ or to reliably approxi-
mate them has appeared to date. In this paper, we give an algorithm to compute sepD

λ

to any specified accuracy in O((m + n)m3n3) flops. Here we are adopting the usual
convention for approximate floating point complexity estimates, taking the computa-
tion of the eigenvalues of an m×m matrix or pencil to be an atomic operation requiring
O(m3) flops, and assuming that such eigenvalues are delivered exactly. The main idea
is borrowed from an algorithm of Gu [Gu00] for approximating the distance from a
matrix pair to the set of “uncontrollable” pairs. Gu’s algorithm was later refined to
approximate the uncontrollability distance to any prescribed accuracy [BLO04]. As
it happens, our algorithm to compute sepD

λ is substantially less complicated than the
algorithm to compute the uncontrollability distance, so readers interested in the latter
may find our description of the former to be a good introduction.

The new algorithm to compute sepD
λ obviously approximates sepV

λ within a fac-
tor of two; we do not see any way to improve this at present. Optimization experi-
ments indicate that very often, e.g., for many randomly generated triangular matrices,
sepV

λ (A,B) equals the trivial upper bound

u(A,B) = min

(
min

z∈Λ0(B)
σmin(A− zI), min

z∈Λ0(A)
σmin(B − zI)

)
.

It is tempting to conjecture on the basis of such experiments that sepV
λ (A,B) can

never be much less than u(A,B), and if this were true, it would provide an easy way
to approximate sepD

λ (A,B) as well. However, this is not the case, as can be seen by
setting both A and B to Jordan blocks of the same size, with eigenvalues 0 and 1,
respectively. Then the objectives in (3) and (4) are both minimized at z = 0.5 with
sepV

λ (A,B) = 2 sepD
λ (A,B), and sepV

λ (A,B)/u(A,B) → 0 exponentially as m → ∞.
The importance of the quantity sepλ is that it measures the distance from a pair

(A,B) to the set of pairs (A+E,B +F ) for which the corresponding Sylvester equa-
tion is singular (i.e., (A + E)X − X(B + F ) = 0 has a nontrivial solution X). The
generic subject of computing the distance from a given matrix or matrix pair to the
set of matrices or matrix pairs with certain undesirable properties, such as singularity,
instability, or uncontrollability, has been a frequent theme in the literature, one that
has been intensively studied and applied by the robust control community in various
contexts. We note that Alam and Bora [AB05] have recently proved a result that uses
pseudospectra to characterize the so-called Wilkinson distance, i.e., the distance from
a matrix to the set of matrices with a multiple eigenvalue, a problem also studied in
[Dem83, Dem86]. While computing the Wilkinson distance is superficially similar to
the problem of computing sepλ, it seems to be fundamentally harder. It is perhaps
worth mentioning that in applications, lower bounds for such distance functions are
more important than upper bounds, as they provide “safety margins.” Even though
the optimization approach mentioned above often provides good upper bounds on
sepλ, one can never be sure without good lower bounds. Prior to this work, the only
nontrivial known lower bound on sepλ was provided by sep, which, as already noted,
is often a poor lower bound despite requiring O(m3n3) flops for its computation.

2. The algorithm. For the remainder of the paper we drop the superscript in
sepD

λ and take (2) (equivalently (4)) as the definition of sepλ. Assume that A and B
have no common eigenvalue, so that sepλ(A,B) > 0. The first key observation, based
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on the maximum modulus principle, is that the only local minimizers of σmin (A− zI)
as a function of z are the eigenvalues of A [BLO03, Theorem 4.2]. Consequently, local
minimizers of (4) can be achieved only at a point z where, for some ε > 0,

ε = σmin (A− zI) = σmin(B − zI).(5)

Such points are exactly those where the boundaries of Λε(A) and Λε(B) intersect, and
sepλ(A,B) is precisely the smallest such value of ε, i.e.,

sepλ(A,B) = min{ε : ε = σmin (A− zI) = σmin (B − zI) for some z ∈ C}.(6)

The next key observation is that given any component of Λε(A) and any compo-
nent of Λε(B), one of three conditions must hold: they are disjoint, their boundaries
intersect, or one is strictly inside the other. Thus, for any given ε > 0, at least one of
the following three conditions holds:

• Λε(A) and Λε(B) are disjoint, in which case there does not exist any z satis-
fying (5).

• The boundaries of Λε(A) and Λε(B) intersect, in which case there exists z
satisfying (5).

• There is a component of Λε(A) that lies strictly inside a component of Λε(B)
or vice versa, in which case there may or may not exist z satisfying (5).

The basic idea of the algorithm is to first determine an upper bound U on sepλ(A,B)
such that, for all ε ≤ U , the third possibility is excluded (we explain how later), and
then use a bisection method based on deciding which of the first and second cases
hold. Once the third case is excluded, the nonexistence of z satisfying (5) implies that
Λε(A) and Λε(B) are disjoint, so that sepλ(A,B) > ε, while the existence of such a z
obviously implies that sepλ(A,B) ≤ ε.

Figure 1 illustrates the situation for a specific pair A and B. Both are randomly
generated complex triangular 10 × 10 matrices. The real and imaginary parts of the
entries of A are generated from the uniform distribution on [−1, 1], while those of B
come from the uniform distribution on [−0.5, 0.5]. The eigenvalues of A are plotted
as crosses and those of B as dots. The four subfigures show the boundaries of the
pseudospectra Λε(A) (solid curve) and Λε(B) (dotted curve) for four different values
of ε. At the top left, ε = 0.5 sepλ(A,B), so Λε(A) and Λε(B) are disjoint. At the
top right, ε = sepλ(A,B), so the boundaries of Λε(A) and Λε(B) are tangent to each
other at one point, but do not cross. At the bottom left, ε = 5 sepλ(A,B), for
which the boundaries of Λε(A) and Λε(B) cross each other. At the bottom right,
ε = 15 sepλ(A,B), for which Λε(B) lies inside Λε(A).

Given a value ε, how do we determine the points z = x + iy, if any, where the
boundaries of Λε(A) and Λε(B) intersect, i.e., (5) holds? Following Byers [Bye88], we
observe that A − (x + iy)I has a singular value (not necessarily the least one) equal
to ε if and only if

[
εI A− (x + iy)I

A∗ − (x− iy)I εI

]

is singular, or equivalently, postmultiplying by the canonical skew symmetric matrix,
that the Hamiltonian matrix

G(x) =

[
A− xI −εI

εI −A∗ + xI

]
(7)
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Fig. 1. The boundaries of the pseudospectra Λε(A) (solid curve) and Λε(B) (dotted curve) for
ε equal to half, one, five, and fifteen times sepλ(A,B), respectively.

has an imaginary eigenvalue iy. Likewise, B − (x + iy)I has a singular value ε if and
only if the Hamiltonian matrix

H(x) =

[
B − xI −εI

εI −B∗ + xI

]
(8)

has an imaginary eigenvalue iy. Furthermore, G(x) and H(x) have a common eigen-
value (not necessarily imaginary) if and only if

det
(
I ⊗G(x) −H(x)T ⊗ I

)
= 0.(9)
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This equation is a generalized eigenvalue problem in x; to see this, write

G(x) = G1 − xG2, H(x) = H1 − xH2,

and let

K = I ⊗G1 −HT
1 ⊗ I, L = I ⊗G2 −HT

2 ⊗ I,(10)

with K,L ∈ C4mn×4mn. Then the solutions x of (9) are the roots of det(K − xL).
Since L is singular, the generalized eigenvalue problem is not trivially convertible to
an ordinary one. However, using the assumption that A and B have no common
eigenvalue, it can be shown (see section 3) that the pencil K − xL is regular, i.e.,
its determinant is not identically zero for all x, and of its 4mn eigenvalues, half are
finite and half are infinite. Under our assumptions, the eigenvalues can be computed
in O(m3n3) flops. Thus we have the following algorithm to find all solutions of (5),
assuming that eigenvalues and singular values can be computed exactly.

Algorithm 1.

Input: A ∈ Cm×m, B ∈ Cn×n, ε ∈ R with ε > 0
Output: all z ∈ C satisfying (5)

1. Compute all finite real eigenvalues of the pencil K − xL, i.e., all finite real
roots x of det(K − xL) (see (10)).

2. For each such x, compute the eigenvalues of G(x) and H(x) and determine
all real y such that G(x) and H(x) have a common imaginary eigenvalue iy
(see (7), (8)).

3. For each such pair (x, y), let z = x+ iy and compute the least singular value
of A − zI and B − zI. If these are both equal to ε, then z is a solution of
(5). Conversely, if there is no pair (x, y) for which this is the case, (5) has
no solution.

An easy mistake to make in implementing this algorithm is to use the conjugate
transpose H∗

1 and H∗
2 in place of the ordinary transpose HT

1 , HT
2 in (10).

Algorithm 1 provides the basis of a bisection method to compute sepλ(A,B).
This requires initialization with lower and upper bounds; either 0 or sep(A,B) (see
section 1) can be used for the initial lower bound. We choose an initial upper bound
U for which we can guarantee that, for all ε ≤ U , no component of Λε(A) lies strictly
inside a component of Λε(B) or vice versa. With this initialization a bisection method
based on Algorithm 1 must converge to sepλ(A,B). The question remaining then is
how to determine a value U that has the desired property.

Let L denote a line in the complex plane and consider the problem (6) restricted
to the line L, i.e., the problem of computing

γL = min {γ : γ = σmin (A− zI) = σmin (B − zI) for some z ∈ L}.(11)

Now let θ ∈ [0, π) be fixed and consider the m + n lines parameterized by

Lj = {z : z = μj + teiθ for some t ∈ R},(12)

where μj , j = 1, . . . ,m + n, are the eigenvalues of A and B. Define

U = min
1≤j≤m+n

γLj .(13)

We claim that this value of U has the desired property. If not, then for some ε ≤ U ,
a pseudospectral component of one of the matrices, say a component CA of Λε(A),
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lies strictly inside a pseudospectral component of the other, say a component CB of
Λε(B). There must be an eigenvalue of A, say μj , lying inside the inner component
CA. The line Lj passing through μj must intersect the boundary of CA at two or
more points. At z = μj , 0 = σmin(A− zI) < σmin(B − zI), but at the points z where
the line crosses the boundary of CA, we have ε = σmin(A−zI) > σmin(B−zI). Thus,
by continuity of σmin, 0 < σmin(A− zI) = σmin(B− zI) < ε for some z on the line Lj

and strictly contained in CA. This contradicts the definition of U .
In order to solve (11) on the line Lj we need to determine all real quantities t

and γ for which, setting z = μj + teiθ, we have σmin(A − zI) = σmin(B − zI) = γ.
We want the least such γ. A necessary condition for the two least singular values to
equal each other is that

M(t) =

[
0 A− (μj + teiθ)I

A∗ − (μ̄j + te−iθ)I 0

]
(14)

and

N(t) =

[
0 B − (μj + teiθ)I

B∗ − (μ̄j + te−iθ)I 0

]
(15)

have a common eigenvalue, i.e., that

det
(
I ⊗M(t) −N(t)T ⊗ I

)
= 0.(16)

As earlier, this is a generalized eigenvalue problem; to see this, write

M(t) = M1 − tM2, N(x) = N1 − tN2

and let

P = I ⊗M1 −NT
1 ⊗ I, Q = I ⊗M2 −NT

2 ⊗ I.(17)

Then the solutions t of (16) are the roots of det(P − tQ). Whether or not the pencil
P − tQ is regular depends on the choice of the angle θ defining the line through
the eigenvalue μj ; see section 3 for details. Provided that θ is chosen correctly, the
pencil P − tQ is regular with 2mn finite and 2mn infinite eigenvalues, and under our
assumptions the eigenvalues can be computed in O(m3n3) flops. For every finite real
eigenvalue t, we set z = μj + teiθ and check whether σmin(A − zI) = σmin(B − zI);
we then set γLj to be the smallest such common value. This process is summarized
in Algorithm 2.

Algorithm 2.

Input: A ∈ Cm×m, B ∈ Cn×n, θ ∈ R, j ∈ {1, 2, . . . ,m + n}
Output: γLj (see (11), (12))

1. Compute all finite real eigenvalues of the pencil P − tQ, i.e., all finite real
roots t of det(P − tQ) (see (17)).

2. For each such t, set z = μj +teiθ and check whether σmin(A−zI) = σmin(B−
zI); set γLj to be the smallest such common value (or to ∞ if there are none).

We are now ready to state the complete algorithm. Unfortunately, to exclude the
possibility of any pseudospectral component of A lying strictly inside one of B or vice
versa, we must carry out the steps in Algorithm 2 a total of m + n times,3 making
the total cost O((m + n)m3n3) flops.

3Of course, this can be somewhat reduced if the lines Lj are not all distinct.
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Algorithm 3.

Input: A ∈ Cm×m, B ∈ Cn×n, τ ∈ R with τ > 0
Output: L, U satisfying L ≤ sepλ(A,B) ≤ U and U − L ≤ τ

1. For each j = 1, . . . ,m+n, choose θ ∈ [0, 2π) and use Algorithm 2 to compute
γLj .

2. Set L = 0 or L = σmin(I ⊗A−BT ⊗ I) and set U = min1≤j≤m+n γLj
(or, if

this is ∞, to max(σmin(A), σmin(B)).
3. While U − L > τ :

(a) Set ε = (L + U)/2 and use Algorithm 1 to determine whether there is
any solution to (5).

(b) If a solution was found, set U = ε; if not, set L = ε.
Under the assumptions that A and B have no common eigenvalue, that the pencils

encountered by Algorithm 2 are all regular, and that all eigenvalue and singular value
computations are exact, Algorithm 3 is guaranteed to approximate sepλ(A,B) to any
prescribed accuracy.

3. Further details. A Matlab implementation of Algorithm 3 is freely avail-
able.4 The eigenvalues of the pencils K−xL (see (10)) and P −tQ (see (17)) are com-
puted by calls to the standard Matlab eigensolver, i.e., by eig(K,L) and eig(P,Q),
respectively. However, it is of interest for several reasons to consider these generalized
eigenvalue problems in more detail.

Let us start with taking a more careful look at the pencil K − xL. By definition,
x satisfies det(K − xL) = 0 if and only if the matrix equation

G(x)T − TH(x) = 0(18)

has a nontrivial solution T , where G(x) and H(x) were defined in (7), (8). Let

T =

[
V W
Y Z

]
.(19)

The eigenvalue parameter x vanishes from the (1,1) and (2,2) blocks of (18) because
of cancellation; these blocks reduce to

AV − V B = ε(W + Y ) and A∗Z − ZB∗ = ε(W + Y ).

These are Sylvester equations defining V and Z in terms of W and Y ; furthermore,
they are nonsingular (i.e., V and Z are uniquely defined by any W and Y ) because of
the assumption that A and B do not have a common eigenvalue. Thus we need only
find x such that the (1,2) and (2,1) block equations in (18) hold. These equations are

AW + WB∗ + ε(V − Z) = 2xW

and

A∗Y + Y B − ε(V − Z) = 2xY.

Because V and Z depend linearly on W and Y , these equations together reduce to an
ordinary eigenvalue problem of size 2mn with eigenvalue parameter x and eigenvector
[vec(W ); vec(Y )]. There are therefore 2mn (not necessarily distinct) eigenvalues. This
proves that the pencil K−xL is regular with 2mn finite and 2mn infinite eigenvalues.

4http://www.cs.nyu.edu/overton/faculty/software/seplambda
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The pencil P − tQ is more complicated. By definition, t satisfies det(P − tQ) = 0
if and only if the matrix equation

M(t)T − TN(t) = 0(20)

has a nontrivial solution T , where M(t) and N(t) were defined in (14), (15), and we
again partition T by (19). For brevity, let Â = A− μjI and B̂ = B − μjI. The (1,1)
and (2,2) block equations of (20) are

(Â− teiθI)Y = W (B̂ − teiθI)∗(21)

and

(Â− teiθI)∗W = Y (B̂ − teiθI).(22)

Adding these equations, the terms involving t cancel and we obtain

ÂY − Y B̂ = −Â∗W + WB̂∗.(23)

Because A and B (and therefore Â and B̂) have no common eigenvalue, it follows that
Y is uniquely defined in terms of W (or vice versa) by solving a Sylvester equation.
Now it also follows from (21) and (22) that

(Â− teiθI)(Â− teiθI)∗W = W (B̂ − teiθI)∗(B̂ − teiθI),

which simplifies to

ÂÂ∗W −WB̂∗B̂ = t(eiθ(Â∗W −WB̂∗) + e−iθ(ÂW −WB̂)).(24)

This is a generalized eigenvalue problem in the eigenvalue parameter t and eigenvector
vec(W ). It can be reduced to an ordinary eigenvalue problem provided that the
linear operator defining the right-hand side in terms of W is invertible. This linear
operator is a weighted sum of two nonsingular linear operators, since the equation
ÂW −WB̂ = 0 has only the trivial solution W = 0 (since Â and B̂ have no common
eigenvalue) and the same is true for the equation Â∗W − WB̂∗ = 0. Clearly it
is possible to choose θ so that the weighted sum of these two linear operators is
also nonsingular; we call this condition the first condition on θ. Thus as long as
the first condition on θ holds, there are mn (not necessarily distinct) eigenvalues t
corresponding to the eigenvector vec(W ), and W then uniquely determines Y from
(23).

We now turn to the (1,2) and (2,1) block equations of (20). These are

(Â− teiθI)Z = V (B̂ − teiθI)(25)

and

(Â− teiθI)∗V = Z(B̂ − teiθI)∗.(26)

Adding e−iθ times (25) to eiθ times (26) yields

(e−iθÂ)Z − Z(eiθB̂∗) = −(eiθÂ∗)V + V (e−iθB̂),(27)

with all terms involving the eigenvalue parameter t cancelling as earlier. To be able
to always solve this equation uniquely for Z in terms of V , or vice versa, we need the
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following condition to hold: e−iθÂ and eiθB̂∗ have no common eigenvalue. We call
this the second condition on θ. Clearly it is possible to choose θ so that the second
condition, as well as the first condition, holds. Finally, it also follows from (25) and
(26) that

(Â− teiθI)(Â− teiθI)∗V = V (B̂ − teiθI)(B̂ − teiθI)∗,

which simplifies to

ÂÂ∗V − V B̂B̂∗ = t(eiθ(Â∗V − V B̂∗) + e−iθ(ÂV − V B̂)).

This is a generalized eigenvalue problem in the eigenvalue parameter t and eigenvector
vec(V ) with exactly the same structure as (24). Provided the first condition on θ
holds, this reduces to an ordinary eigenvalue problem, with the same mn eigenvalues
t corresponding to the eigenvector vec(V ) that we obtained corresponding to the
eigenvector vec(W ) previously. Furthermore, provided the second condition on θ
holds, V uniquely defines Z from (27).

It turns out that when A and B are diagonal, the first condition states that θ
should not be the angle of the perpendicular bisector of any of the line segments
joining an eigenvalue of Â to an eigenvalue of B̂, and the second condition states that
θ should not be the angle of any such perpendicular bisector that contains the origin
(in fact, this characterization of the second condition does not require A and B to be
diagonal). It is the second condition that is relevant to the problem of solving (11).
For example, suppose

A =

[
0 0
0 −0.1i

]
, B =

[
1 0
0 0.1i

]
,

with μj = 0, so Â = A, B̂ = B. Geometrically, it is clear that the corresponding
pencil P − tQ must be singular when θ = 0, because there is a continuum of points z
on the real axis where the boundaries of Λε(A) and Λε(B) intersect for some ε. Indeed,
the second condition on θ is precisely θ 
= 0, or geometrically, that θ should not be
the angle of the perpendicular bisector of the line segment [−0.1i, 0.1i]. But what
then is the significance of the first condition on θ? To understand this, recall that
det(P − tQ) = 0 if and only if the matrices (14) and (15) have a common eigenvalue,
or equivalently that Â − teiθ and B̂ − teiθ have a common singular value—but this
is only a necessary condition for these two matrices to have a common least singular
value. Thus, most of the restrictions on θ have nothing to do with pseudospectra,
but comprise a technical condition that ensures that the pencil P − tQ is nonsingular.
Even the second condition may not be relevant to (11), as we see if we change the (2,2)
entries of A and B to −10i and 10i, respectively, or add a nonzero upper triangular
entry to A or B.

Thus, as long as θ is chosen correctly (and choosing it randomly will almost
certainly be adequate), the pencil P − tQ is guaranteed to be regular, with 2mn
finite eigenvalues (mn pairs of double eigenvalues) and 2mn infinite eigenvalues. In
practice, even when the pencil is singular, as in the example given above, rounding
comes to our assistance, so always using θ = 0 seems adequate. Indeed, for randomly
generated A with ‖A‖ ≈ 1, the algorithm typically approximates sepλ(A,AT ) = 0
to about machine precision, although the basic assumption that A and B have no
common eigenvalue is violated.
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4. Concluding remarks. We conclude the paper with brief discussions of two
key issues: efficiency and numerical stability.

When a QR-based method such as the one invoked by the Matlab function eig

is used to compute the eigenvalues of the pencils K − xL and P − tQ, the complex-
ity of the algorithm is, as already noted, O((m + n)m3n3). This can potentially be
reduced by using an iterative method with a shift-and-invert preconditioner based on
a Sylvester solver, allowing exploitation of the structure of the generalized eigenvalue
problems discussed in the previous section. Since all real eigenvalues must be found,
one might well doubt whether such an approach would work in practice. Nonethe-
less, a novel divide-and-conquer approach to searching for real eigenvalues, introduced
recently in [GMO+06], works very well in the context of computing the distance to
uncontrollability, where the issues are similar: the key step is computing all real eigen-
values of a large structured generalized eigenvalue problem. Although there are some
inevitable difficulties with the numerical stability of this approach, the complexity
drops significantly. For computing the distance to uncontrollability of a matrix pair
(A,B), where A is p× p and B is p× q, with q ≤ p, the complexity drops from O(p6)
to O(p5) in the worst case and to O(p4) on average (both in theory and in practice).
For computing sepλ(A,B), where A and B are both m × m, the analogous drop in
complexity would be from O(m7) to O(m6) in the worst case and O(m5) on average,
but this has not been implemented.

On the other hand, even using a QR-based algorithm to compute the eigenvalues
is not enough to ensure numerical stability of the new algorithm. In order to obtain
a numerically stable algorithm, it seems essential to exploit the skew-Hamiltonian
structure of the pencils K − xL and P − tQ. Assuming θ = 0, the finite eigenvalues
of these pencils have skew-Hamiltonian symmetry around the real axis: those that
are not real occur in complex conjugate pairs (regardless of whether A and B are
real). The Matlab function eig does not exploit this symmetry and hence real
eigenvalues often have small imaginary rounding errors, occasionally defeating the test
in the code that checks whether they are real and therefore returning invalid lower
bounds. Ideally one would like to use a skew-Hamiltonian generalized eigensolver that
exploits symmetry and delivers real eigenvalues with no imaginary rounding errors.
Likewise, one should use a Hamiltonian eigensolver to compute the eigenvalues of the
Hamiltonian matrices G(x) and H(x) in Step 2 of Algorithm 1, delivering imaginary
eigenvalues with no real rounding errors. The design of such specialized eigensolvers
has been a very active research area in recent years [MW01, BKM04].

In summary, an algorithm to compute sepλ to arbitrary accuracy has been de-
scribed, assuming that eigenvalues and singular values can be computed exactly. Since
this assumption is very much an idealized one, some interesting questions regarding
implementation of the algorithm remain open for future investigation.
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