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Abstract. This paper studies the conditioning of semidefinite programs by analyzing the effect of small
perturbations in problem data on the solution. Under the assumptions of strict complementarity and non-
degeneracy, an explicit bound on the change in the solution is derived in a primal-dual framework, using
tools from the Kantorov theory. This approach also quantifies the size of permissible perturbations. We
include a discussion of these results for block diagonal semidefinite programs, of which linear programming
is a special case.
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1. Introduction and notation

Our aim is to study the conditioning of semidefinite programs (SDP) with respect to
small perturbations,e. to quantify the change in the solution of a semidefinite program
induced by a sufficiently small perturbation in the problem data.

Let S" denote the space of real, symmetrig n matrices. The usual inner product
on this space, denoted By is defined byA e B = tracg AB) = }; ; ajjbij. We
consider semidefinite programs in the following standard form:

mn CeX st AkeX =Dh,, k=12....,m; X>0, (1)

whereC, A¢ (k=1,2,...,m) andX all belong toS", by’s are scalars, and by > 0,
we mean thaK lies in the closed, convex cone of positive semidefinite matrices. SDP
enjoys a duality theory akin to that for linear programming. The dual of (1) is:

m
max b'y st ZykAk +2Z=C; Z>0, (2)
k=1

whereZ € 8" is a positive semidefinite dual slack variable. The following Assumptions
apply throughout the paper.

Assumption 1. The matricesAx (k = 1, ..., m) are linearly independent, i.e. they
span anrm—dimensional subspace &F.
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Assumption 2. The Slater condition holds for both the primal and the dual programs,
i.e. there exists a primal feasiblé and a dual feasiblé€y, Z) with X and Z strictly
positive definite.

Under these assumptions, it is well known that (optimal) soluti@xist to both
the primal and the dual problems, and that the (optimal) objective values of both the
programs are equal. Thus, a trigl&o, Yo, Zo) solves (1) and (2) if and only iKg is
primal feasible(yp, Zo) is dual feasible and the complementarity conditiqye Zg = 0
is satisfied. Since for positive semidefinite matricgsand Zg, Xg e Zg = 0 if and
only if XgZg = 0, the complementarity condition implies thdp and Zgp commute,
and hence share an orthonormal system of eigenvectorgaylearly, this results in
rank(Xop) + rank(Zp) < n.

Definition 1. A primal solutionXg and a dual solutioriyp, Zo) are said to satisfy strict
complementarity if rangX) + rank(Z) = n.

Let us denote the eigenvaluesXg and ofZg by
A= .... 21" >0 and wo=[wg,... ,wfl" =0 (3)

respectively. Writing the primal solution a§ = QoDiag(ko)Q(T) and the dual slack
solution asZgy = QoDiag(wo)Qg, we can restate the complementarity condition
XoZo =0 asxgwo = 0, and strict complementarity 8% + wo > 0. We assume
without loss of generality that the components.g{of wg) are arranged in nonincreas-
ing (nondecreasing) ordére. A3 > ... > AJ andw} < ... < o}

For the sake of completeness, we introduce the nondegeneracy definitions from [1].
Although the nondegeneracy conditions in [1] are developed in terms of the tangent
space to the positive semidefinite cone, an equivalent linear algebra characterization
(proved in [1]) is more amenable to our treatment here, and we use this as the definition
of nondegeneracy. Since we assume that strict complementarity holds, we give the
nondegeneracy definitions under this assumption, simplifying the definitions slightly.

Definition 2. Let Xg and(yo, Zo) be primal and dual solutions respectively, satisfying
strict complementarity. Further, let= rank(Xg) and letQg be a matrix whose columns
form a common set of orthonormal eigenvectorsXgrand Zg. Partition Qg into Q(l)
and Qg, then x r and then x (n —r) matrices corresponding to the nonzero and the
zero eigenvalues ofp (i.e. the zero and the nonzero eigenvalueZgf respectively.
Then,

(i) Xo is said to be primal nondegenerate if the matrices

1T 1 LT 2
(= | (@ AQo QT AQ | g,
(Q%TAQS 0

are linearly independent is", and
(i) (yo, Zo) is said to be dual nondegenerate if the matrices

Dk=(Q)TAQ} k=1,2....m

spanS', the space of symmetricx r matrices.

1 Henceforth, we will ussolutionto meanoptimal solution
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We add the following third assumption.

Assumption 3. The primal (1) and the dual(2) programs have solution¥Xo and

(Yo, Zo) satisfying strict complementarity, primal nondegeneracy and dual nondegen-
2

eracy:

These assumptions guarantee that the primal and the dual solutions are unique [1].
It is notationally convenient to handle symmetnic n matrices by mapping them

onto vectors of length(n+1)/2, so letvec: S" — R"("+D/2pe anisometry,i.e.for

all A, B € 8", we haveA ¢ B = (vecA)T (vecB). Then, the primal and dual equality

constraints can be written as

AvecX =b; ATy+vecZ = vecC,

whereA € Hi™*N+D/2js 3 matrix whos& rowis(vecA) T, andb = [b1, ..., bm]T €
R™M. Now, the optimality conditions reduce to:

AvecX =b; X >0 (primalfeasibility) (4)
ATy +vecZ =vecC; Z >0 (dualfeasibility) (5)
XZ =0 (complementarity). (6)

It is easy to show that for two symmetric, positive semidefinite matrikgand Zo,
the conditionXpZo = 0 is equivalent taXpZg + ZoXo = 0. Hence, solving (4) — (6)
reduces to finding a root of the function

AvecX —b
F(X,y,2)= | ATy+vec(Z—-C) (7)
fvec(XZ+ ZX)

such thatX = 0 andZ > 0.

Let I denote the identity matrix (the order being evident from context), and let
mat : W"H+D/2 . SN pe the inverse ofec We use® to denote the symmetrized
Kronecker product introduced in [2]e. givenM, N € 8", M ® N denotes the linear
operator whose action on a vectoe R""D/2s given by

1
(M@N)h:zvec(M(mat h) N+ N (mat h) M) .

RegardingF as a map froni"(™tD+M tg jtself, the Jacobian df is easily seen to be

A 0 0
JX,y,2Z) = 0 AT 1®l |. (8)
Z®l 0 Xl

We conclude this section with some more notation. For any two veatoss
XL, ..., x"T andy = [y}, ..., y™", the pair(x, y) is used to denote the vector

2 Future references toondegeneracwill mean both primal and dual nondegeneracy.
3 For instance, we could takecto be the operator that stacks the columns in the lower triangular part of
a matrix into a vector, multiplying the offdiagonal elements\$g.
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X%, ..., x" yY ..., y"T. Unless explicitly indicated otherwise, we use the Euclidean

norm ||-|| for vectors, and the induced 2-norm for matrices. The Frobenius norm of
a matrixis denoted by || . For areal, symmetric matri&, we haveg|Al|g = |[vecA| =

v Ae A We letu = (X, y, Z) stand for an element in the solution sp&fex %™ x S"
equipped with the norm

1

1/2
lull = llveeX, v, vecz)ll = (IXIE + IyI2 + 12113 )

We denote byN(u, p), an open ball of radius centered a1, and byN(u, p), its closure.

By Lipy(N(u, p)), we mean the class of all functions that are Lipschitz continuous in
N(u, p), y being the Lipschitz constant using the 2-norm. We say that a function is
uniformlyLipschitz continuous if it is Lipschitz continuous at every point in its domain
with the same Lipschitz constant. Finally, we use the compact notgéiob, C] to
denote the SDP’s in (1) and (2).

2. Perturbation analysis for SDP

The two classical, qualitative notions of stability for a general mathematical program-
ming problem are stability with respect to the optimal value, and stability with respect
to the solution set [6]. Our analysis quantifies the latter for an SDP satisfying the as-
sumptions, by explicitly bounding the change in the solution for a sufficiently small
perturbation in the problem data. Consider a perturbation of the problem parakgters

b, andC in (1). In what follows,

A=A+AA, b=b+Ab, and C=C+AC 9)
all denote perturbations in the original problem (1). H&€, is symmetric, and\A is

a matrix whose!" row is (vecA Ay)T, with A A symmetric. Correspondingly, (7) for
the perturbed system becomes

AvecX —b
Fw=FX,y,2)=|ATy+vec(z-C) | =0. (10)
Ivec(XZ+ ZX)

and the Jacobian &% (see (8)) becomes

A 0 0
J(u) = o A" 1el |. (11)
Z® | 0 X® |

We denote the solution to the original problemuay= (Xo, Yo, Zo) and the solution
to the perturbed problem hijp = (Xo, Yo, Zo).

We now state (without proof) a finite dimensional version of the Kantdrthaorem,
which is central to our perturbation analysis.
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Theorem 1 ([5], Ch. XVIII, Theorem 6). Letpg > 0, up € RP, G : NP — %P, and
assume thaG is continuously differentiable ilN(ug, po). Assume for a vector norm
and the induced operator norm that the Jacobfahe Lip, (N(Uo, po)) with G’(uo)
nonsingular, and let

1-V1-2«

B= H G'(up)~t 5

. n=|cwcw

, a=pBym, p=

If (@)« < 3,and (b)o < po, then
(i) G has a unique zero, say, in N(up, p), and

(i) Newton’s method with unit steps, starteduat converges to this unique zetig.
The following corollary is immediate.

Corollary 1. Let the conditions of Theorem 1 be satisfiedr i 1/2, thenG’(lip) is
nonsingular.

Proof. Since the conditions of Theorem 1 are satisfiédmnust have a zero, sayp,
such that

- 1-JV1-2x
0o —uoll < p= —F—— (12)
By
2
<=2 whenO<e < 1/2 (13)
By
1
< — whena < 1/2
By
so that
1 1
G'(lp) — G'(up)| = ¥ llGo—uoll < = = ————.
H ” 13 ” G/(UO)—lH

The Banach Lemma (Lemma 5 in Appendix A) now implies ti&tlo) is non-
singular.
O

Next, we state two preliminary lemmas needed for the perturbation analysis.

Lemma 1 ([2], Theorem 1).Let[A, b, C] define an SDP satisfying the Assumptions.
Then, the Jacobian at the solutiad(uo), is nonsingular.

See [2] for a proof. Conversely, it is also true that if an SDP has a solugisnch that
J(up) is nonsingular, then strict complementarity and nondegeneracy hod 4k

Lemma 2. Let [A, b, C] define any SDP, not necessarily satisfying the Assumptions.
Then, the Jacobiad(u) associated with it is uniformly Lipschitz continuous, with 1
being a global Lipschitz constant.
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Proof. Let u1 = (Xg, y1, Z1) be any fixed point inS™ x x SN and letv =
(1, v2 v3) € MNM+DHM with vl 13 € RNMHD/2 Then, for anyuz = (X2, Y2, 2Z2) €
S" x KM x S", we have

[[J(u2) — I(u)l

max l[((Zz = Zo @ 11 + (X2 = X0) @ 1} va]

max {(Z2 — Z1) ® T} vall + [{(X2 — X1) @ 1} vs|

IA

IA

max [{(Zz — Zy) & l}vi] + ”mﬁlx {(X2 = X1) ® 1} sl

flvt]=1
=[[(Z2—Z) ® || + (X2 = X1) & ||
= ||Z2 — Z1]| + || X2 — X1]| (from Lemma 3, Appendix A)

thus concluding the proof.
i

Foran SDRA, b, C]satisfying the Assumptions and whose solutiais= (Xo, Yo, Zo),
and for its perturbation given in (9), we define the following quantities which will be
used in the next theorem.

Bo = H J(uo)*lu (see (8))

B1:= ||[K|| whereK consists of the firstn + ”(”T“) columns ofJ(ug) 1,
and
8o := mm( T.Tn {)\o A > O} , r<n||nn {a)o wh > 0]) (see (3))

Theorem 2. Let ug bg t[leNprimaI—duaI solution to the SDR, b, C] satisfying the
Assumptions, and 1A, b, C] = [A + AA, b+ Ab, C + AC]. Let

€0 := [[AA]l [I(vecXo, yo)Il + [[(Ab, vecAC)] .

If
IAA| < ! and (14)
T 281
. o—1 80
o <mMin( 55—, 5 for somel < o < 2, (15)
204BoB1 201
then

(i) the SDP defined bjA, b, C] has a solution, sayip, which satisfies

opieo

—_— 16
T 1-BilAAIC (16)

lGo — uoll =
(ii) the solution to[A, b, C] is unique. ~
(iif) Newton’s method with unit steps applied 6 started atup, converges tdig
quadratically.
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Proof. To prove (i), we proceed in two steps. First, we use Kantdrtheorem to show
that F has a rooflg that satisfies the bound in (16). Second, we show that this root
satisfies the positive semidefiniteness constraint, and hence is a solution to the SDP.

To use the Kantorotitheorem in the first step, we note the nonsingularity of the
JacobianJ(up) and the Lipschitz continuity ofl(-) with Lipschitz constanyy = 1
(Lemma 1 and Lemma 2). Since

~ AA 0 O
AJ:=J(ug) —Jug=| 0 AAT O], (17)
0 0 O
we have
[awo) a9 < priaal < 3 (rom 14y (18)

so that by the Banach Lemma (Lemma 5, AppendixN.P()Jo) is nonsingular with
B= Hj(uO)*H < 2fo. (19)
Let

1= 3w Fwo| and o=pn. (20)

We need only verify assumption (a) of Theoreni.&,thata < %; assumption (b) then
follows trivially from the fact that the Lipschitz constant is global. We have

(A + AA)vecXp — (b+ Ab)
F(ug) = | (A + AA)Typ + vecZo — vec(C + AC)
%VeC(ono + ZoXo)

(AA)Tyo — vecAC
0

(AA)vecXg — Ab
- , (21)

so that
|30 Fwo)| = LA Il (vecXo, yo) | + (A, vecAO)|) = frco.  (22)

Therefore, we obtain the estimate

1= 3w *Fwo|

-1 ~
H (1 + 0 a3) " Juo o)

_ Bieo
T 1-[JuetAd
2B1€0  (from (18)) (24)

(from (22) and Lemma 5, Appendix A) (23)

IA



532 Madhu V. Nayakkankuppam, Michael L. Overton

and from (19), (24) and (15), we conclude that

2(0 — 1) 1

a=pn = 4fofreo < —5— = 3. (25)
o 2

Sincea < % the hypotheses of the Kantorétheorem hold, whence we can conclude
thatF has a unique zerayp, with

- 1-V1-2«x
luo — Goll £ —————. (26)
B
We have
0?0 —20+2<0 (from(25))
= 020? — 200+ 20 <0 (sincex = By > 0)
=1—ox <+/1-—2a,
or equivalently,
1-JV1-20 o«
< — =on,
B B
so that, using (26),
luo — Toll < on. (27)

Combining this with (23) and (18) yields (16).
_ To show that this root is actually a solution to the SDP, we need to establish that
Xo > 0 andZg > 0. To see this, note that

1
(%0 = Xo|[2 + 150 = yol® +  Zo — Zo| £ )* = 180 — ol
< 20B1¢0 (from (27) and (24))
< 3o (from (15))
so that

H ;(0 — Xo” <89 and ” 20 — Zo” < 8o. (28)

Recalling that.o andwo were defined in (3), leto (&) be the vector of eigenvalues of
Xo (of Zp), arranged in nonincreasing (nondecreasing) order. The following argument
shows thatXg > 0. Forany 1< j <n,
/\é >0=> ):(j) >0 (from (28) and Lemma 4, Appendix A)
and
Aé =0=> wé >0 (strict complementarity oKg and Zg)
= &)6 >0 (from (28) and Lemma 4, Appendix A)

— i) =0  (complementarity oKo andZo).
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A similar argument shows thaly > 0. Thus,lo = (Xo, Yo. Zo) is indeed a solution to
the perturbed SDP. This concludes the proof of (i) in the theorem.
_The proof of (ii) in the theorem is an immediate consequence of Corollary 1: since
J(llp) is nonsingular, the perturbed problém, b, C] also satisfies strict complemen-
tarity and nondegeneracy [4], which in turn guarantees that the soligisunique [1].

The proof of (iii) is a consequence of the second conclusion of Theorem 1, combined
with the nonsingularity ofl (fig).

O

See [2] for more on Newton’s method in this context.

The following corollary establishes a bound on telative error in the solution of
a perturbed SDP, and thus introduces the notionaradition numbefor semidefinite
programs.

Corollary 2. Let the conditions of Theorem 2 hold, andAaig = Ty — ug. Then,

[Auoll _ o IIKILIIL (IIAAII ll(vecXo, Yo)ll , lI(Ab,vecAC)]|

, 29
[uoll = 1—IIKI TAA] ll(b, vecC) || ll(b, vecC)|| ) (29)

whereK (respectivelyl) consists of the firsin 4+ n(n 4+ 1)/2 columns (respectively
rows) of J(up) 1 (respectivelyd(ug)).

Proof. Observe thatlg satisfiesLug = (b, vecC), so that
LI uoll = li(b, vecC)]| .

The result follows by combining this inequality with (16).
O

Thus,o ||K] ||L]| may be viewed as a condition number. In the special ¢ase= 0,
we have8 = o, the inequality in (15) can be relaxed to

20-1) S
o2Bop1 o1

) (L<o<2)

€ < min(

and (29) reduces to

| Auol| <||(Ab, vecAQ) || )
—— <o [KI LIl | ———x7 ) -
lluoll (b, vecO)||

3. Block diagonal SDP and linear programs

Several practical problems (for instance, linear matrix inequalities in control theory and
problems from optimal structural design) have an inherent block diagonal structure,
when formulated as semidefinite programs. In this section, we consider semidefinite
programming over the space of real, symmetric, block diagonal matrices. Then, we
discuss linear programming as a special case.
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3.1. Block diagonal semidefinite programs

Given a positive integer vector= [gt, ... , qP] withn = ip:]_ q', let B9 denote the
space of all real, symmetrio, x n block diagonal matrices whos& diagonal block

is of sizeq'. The dimension of this space = ", d'(q' + 1)/2, and we define
vecto be an isometry fron89 to :t9. We refer to theé™ diagonal block of a matrix

X e B4 asX(i), and we use the notatid?[ip:l X(i) to denote the matriX. The primal

and the dual semidefinite programs can be formulated over this space of block diagonal
matrices, just as in (1) and (2), but wifif replaced by39.

The nondegeneracy conditions of [1] can be extended in a straightforward Way to
via tangent and normal spaces to the cone of positive semidefinite matriB8gsee
Appendix B). As in Section 1, we provide an equivalent linear algebra characterization
of nondegeneracy here, assuming that strict complementarity holds.

Definition 3. Let Xg and(yo, Zo) be primal and dual solutions respectively, satisfying
strict complementarity. Further, |o(i) = [Q3() Q3(i)] be a matrix whose columns
form a set of orthonormal eigenvectors ¥(i) and Zo(i), with Q3(i) and Q3(i)
corresponding to the nonzero and the zero eigenvalue&@h (i.e. the zero and the
nonzero eigenvalues @&(i)) respectively. Then,

(i) X is said to be primal nondegenerate if the matrices

=TI Q" A Q) Q5T Al Q5(0)
Q3™ Akl Qp(0) 0

], k=12...,m
i=1
are linearly independent i9, and

(i) (yo, Zo) is said to be dual nondegenerate if

p
D =[] Q¥ AdhQY). k=12...m

i—1
spanB', wherer' = rank(Xo(i)).

All the results in Section 2 hold verbatim in the block diagonal case, but with the
understanding that the operata@rg its associated symmetrized Kronecker prodgict
and the nondegeneracy conditions are interpreted as just described. The f&mobian
mapsi29t™M to itself, the Jacobiad has dimension@+ m, while K (respectivelyl)
consists of the firsg + m columns (respectively rows) d{ug) 1 (respectivelyd(up)).

3.2. Linear programming

Inthe casey = [1, ..., 1] with g = n, the A¢’s, C and X aren x n diagonal matrices,
and SDP over the spad® reduces to linear programming (LP). It is interesting to see
what our perturbation analysis for block diagonal SDP’s yields for LP. Pherpi™*"

is the matrix whos&" row is (vecAx) T, and lettinge, x, z € )" stand forvecC, vecX
andvecZ respectively, we get the primal linear program

min c'x st Ax=b; x>0, (30)



Conditioning of semidefinite programs 535

and its dual
max b'y st ATy4+z=c z>0. (31)

Our assumptions here are the same as those in Section 1. Assumption 1 imphdsthat

full row rank. It can be verified (see Appendix C) that the nondegeneracy assumption
(Assumption 3) implies that the primal solution, rearrangek@s= (xé, x%), has
exactlym strictly positive components (denoted b&), and, that if we rearrange the
columns ofA as[A;1 Ajz] with A; andA; corresponding to<(1) and xg respectively,
thenA1 is nonsingular. Writingo = (z3, z3) accordingly, we have} = 0, and by strict
complementarityzs > 0. Therefore,

A1 A2 0 0 0
0 0o Al | 0
Jup)=1| 0 0o Al 0 |
0 0 0 Diagxp) O
0 Diagz) O 0 0

Thus, Theorem 2 holds with; = ||K]||, with

Al 0 0
0 0 0
K=| 0 A" 0
0 0 0
0 —AALT |

However, under the same assumptions, it is possible to use a simple linear algebra
argumertt to obtain a perturbation bound. Rearrangiras(ct, ¢?) and defining

A1 0 0
R=| 0 Al o0 [, (32)
o Al |

the solution to the LP is given bR (x3, Yo, z3) = (b, ¢*, ¢?), andx2 = 0, z5 = 0. Since
this holds for any sufficiently small perturbation (so that the basis does not change), the
standard perturbation result for square, nonsingular linear systems [13, p. 26] gives

lavoll = | (ax3, Ayo, AZ3)|
—1
_ IR
1-|RYIAR]

Here, AR is the matrix obtained by replacigi, A2 and | in (32) by AA1, AA;
and 0 respectively. SindeAR|| = [[AA| and||R~1| = [K], the bound obtained in
Theorem 2 via the Kantoro&itheory specializes, except for the factowoto the one
in (33) obtained by the linear algebra approach.

(IIARI[ [[(x0, Yo Il + [I(Ab, AQ)]). (33)

4 The authors thank an anonymous referee for this observation.
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4. Concluding remarks

An alternative way to formulate the problem is to introduce a perturbation parameter
(assumed to be a scalar, for simplicity), and study the solutipn= (X(t), y(t), Z(t))

of the parametrized SDA(t), b(t), C(t)], whereA(-), b(-) andC(-) are assumed to be at
leastC®, andt = tg corresponds to the original problem. We may now regadefined

in (7)tobeF(t, X, y, Z),andreplacé, b, C in the right hand side of (7) by the functions
A(), b(t), C(t) respectively. In view of Lemma 1, the implicit function theorem states
thatu’(t) is well defined and continuous in some neighborh@eé- o, to + €g) around

tp, and allows us to compute the derivative of the solutioiy at

u'(to) = —J(Uo) "*F’(to, Xo, Yo, Zo), (34)

where the prime notatior)(stands for the derivative with respectttdndeed, we can
conclude tha¥ § > 0, 3¢(8) > 0 such that

lu® —uto)ll < (|u'(to)|| +8) It —to| Vte (to—e(d),to+ €(d))

Thus, |u'(to)| can be considered to be an asymptotic error bGuhiwever, the

implicit function theorem does not provide a way to estimat. On the other hand,

the Kantorout approach usesA = A(t) — A(tp), Ab = b(t) — b(tg) andAC = C(t) —

C(tp) to provide explicit bounds both ofilip — up| (see (16)) and on the permissible

perturbations (see (14) and (15)), without any assumptions on the funétion$(-),

andC(-). In the limiting casé — tp, we havecp — 0, so that we may let —> 1

in (15). Then, from (20) and (21), the quotiept| t — to |[—> ||u’(to)||, whereu'(to)

is given in (34). Hence, the Kantor@bound in (27) divided byt — to | approaches

u’(to) ||

” We”now make a few remarks about the assumptions made. Assumption 1 is a mere

convenience. If thé are linearly dependent, then the equality constraints are either in-

consistent or redundant. Assumption 2 (the Slater condition) guarantees that the problem

remains well-posed under small perturbations. A problem violating the Slater condi-

tion is ill-posed in the sense that it could become infeasible under an arbitrarily small

perturbation. Assumption 3 (the nondegeneracy and strict complementarity condition),

which guarantees a unique solution to the SDP, is crucial for the application of the

Kantorovi theory. In the absence of further qualifications on the data and the nature of

the perturbation, the solution set may not be outer semicontinuous [12, Def. 5.4] if the

Slater condition is violated, and may not be inner semicontinuous [12, Def. 5.4] if the

nondegeneracy condition is violated. Note that Assumption 3 is generically satisfied [1].
For linear programming, in the special case of perturbatiohstone (.e. AA = 0,

Ac = 0) and under the assumption that the perturbed problem has a nonempty solution

set, Mangasarian and Shiau [7] bound the distance between the solution sets of the

original and the perturbed problems in terms of the perturbatidn Robinson [11]

uses Hoffman’s lemma for linear inequalities to bound the distance between the solution

set of a linear program and a fixed point in the solution space. Renegar [9, 10] introduces

the notion of the distance to ill-posedness, and derives error bounds for a general class

5 This notion was suggested by an anonymous referee.
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of mathematical programs in the setting of reflexive Banach spaces. However, a feature
commonto all these results (including ours) is that they require some form of knowledge
of the solution (or the active set at the solution) of the original program. In this sense,
computing the condition number of an LP or SDP involves at least as much work as
solving the program itself.

Appendices

A. Miscellaneous results

Lemma 3 ([2], Lemma 2). For commuting real, symmetric matricdd and N, let
a1,...,an and B1, ..., By denote the eigenvalues & and N respectively, with
v1, ..., un being a common basis of orthonormal eigenvectors.rfithet 1)/2 eigen-
values ofM ® N are given by

1 L
E(aiﬁwrﬁiaj), 1<i<j=n,
with the corresponding set of orthonormal eigenvectors

vec(vjv]) if =] }
1 .
7

The proof is straightforward.

vec(vj v-jr —l—vjviT) if <]

Lemma 4. Let Aand A + E be real, symmetric matrices with eigenvalugs> ... An
andup1 > ... > up respectively. Then

[A—wi [SIElI, i=1,...,n
See, for instance, [8, p. 58] for a proof.

Lemma5 (Banach Lemma)LetAbe a square nonsingular matrix and lat= A+E
be a perturbation ofA. If [ A=1E|| < 1, thenAis nonsingular, and

[54] < A~
S l-faEl
See [14, p. 118] for a proof.

B. Nondegeneracy for block diagonal SDP

Here, we extend the nondegeneracy definitions of [1] to the block diagonal case, without
assuming strict complementarity.

Consider4, the space of real, symmetric block diagonal matrices with block
structureq = [q, ... , gP]. Recall that we refer to thé" diagonal block of a matrix
X € B9 by X(i), and that we use the notati()ﬁ{gp:1 X(i) to denote the matriX. Given
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a positive integer vectar = [rl, ..., rP], let M, be the smooth manifold of matrices

in B9 whoseit" block is of rankr (i = 1,..., p). Consider SDP over the spatsé,

and letX e M, be primal feasible. LeQ(i) = [QY() Q?i)] (i =1,...,p) be

an orthonormal set of eigenvectors Xfi), such thatQl(i) e R > and Q%) €

RA'*@ =) gre eigenvectors corresponding to the nonzero and the zero eigenvalues of
X(i) respectively. Then, the tangent spacép at X is given by [3]

Tx(My) = {HQ(i)[\L/J.'T\HQ(UT P Uies" v eat"X<Q"'>}.
i=1 :

Definition 4. X € BY is primal nondegenerate if it is primal feasible affig(M,) +
N = B9 where N is the orthogonal complement (with respect & of
Spar(As, ..., An) in B4,

Similarly, lets = [s1, ... , sP] be a positive integer vector, and &5 be the smooth
manifold of matrices ilB9 whosei ! block is of ranks' . Let (y, Z) be dual feasible with

Z € Ms, and letP(i) = [PL(i) P?(i)] be an orthonormal set of eigenvectorszif)
such thatP(i) € |9 <@ =) andP2(i) € %Y %S are eigenvectors corresponding to the
zero and the nonzero eigenvaluesZgf) respectively. Then, the tangent space\ity

at Z is given by

p , S .
Tz(Ms) = {1‘[ P() [VOT \\,H Pi)T @ Vi e A% W e 88 }
i=1 P

Definition 5. (y, Z) € R™ x BY is dual nondegenerate if it is dual feasible and
Tz(Ms) + Spar(Ay, ... , Am) = B

The following two theorems relate the nondegeneracy definitions given above with an
equivalent linear algebra characterization. The proofs are along the same lines as in [1],
and are omitted.

Theorem 3. Let X € M, be primal feasible. IfX is primal nondegenerate, then the
following dimensionality condition necessarily holds:

p p
> - —r'+1/2< (Zq' @ + 1)/2) —m.
i=1 i=1
Further, letQ(i) = [QL(i) Q?(i)] be as defined above, witQl(i) and Q2(i) corres-
ponding to the nonzero and zero eigenvalueX@h respectively. ThenX is primal
nondegenerate if and only if the matrices

P 1T ALY OL(i 1T AL O2(i
_ Q) Ak Q™) Q™)' Ak(i)Q=(i) _
Bk_n[Qz(i)TAk(i)Ql(i) 0 } k=l2z...m

i=1

are linearly independent is9.



Conditioning of semidefinite programs 539

Theorem 4. Let (y, Z) be dual feasible witlz € Ms. If (y, Z) is dual nondegenerate,
then the following dimensionality condition necessarily holds:

p
Y@ -d)g —-s +1n2<m.
i=1

Further, let P() = [P1(i) P2(i)] be as defined above, with(i) and P2(i) corres-
ponding to the zero and the nonzero eigenvalueZ eéspectively. ThenZ is dual
nondegenerate if and only if the matrices

p
D= [[[P 0T APYH]., k=12,...m
i=1

spanB9-s.

For thei " block, if complementarity holds (implying that(i) andZ(i) commute),
we can choose (without loss of generali(j) = Q(i), and if strict complementarity
holds, we can choodel(i) = Q(i) andP2(i) = Q%(i).

C. Reduction of block diagonal nondegeneracy conditions to the LP case

Consider Definition 3inthe case of LP, where- [1, ... , 1],andforeach=1,... , p,

one of Q(l](i) and Q(Z)(i) is the scalar 1, and the other is empty. Consequently, for
eachk, By is a diagonal matrix consisting of the entriesfpcorresponding to nonzero
primal variables. Suppose there am@f these. The primal nondegeneracy condition (see
Definition 3) requires théBx (k = 1, ..., m) to be linearly independent, and hence

r > m. FurthermoreDy = By, and the dual nondegeneracy condition requires the
Bk (k=1,...,m) to span the space of diagonal matrices of dimensj@nd hence

m > r. Thusr = m, and the nondegeneracy conditions reduce to the standard condition
in LP, namely nonsingularity of the basis matrix.
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