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Abstract

It is shown that for an appropriate class of dissipatively perturbed Hamiltonian systems,
the number of unstable modes of the dynamics linearized at a nondegenerate equilibrium is
determined solely by the index of the equilibrium regarded as a critical point of the Hamiltonian.
In addition, the movement of the associated eigenvalues in the limit of vanishing dissipation is
analyzed.

1. Introduction

An autonomous Hamiltonian system of ordinary differential equations has the
form

(1.1) &= J(x) VH(x),

where VH denotes the gradient of the Hamiltonian H (z) with respect to the
variable #, the matrix J(z) is skew-symmetric for all #, and solutions x(t) of
(1.1) are curves in phase space. In the classic setting with n degrees of freedom,

z(t) € R?" and

(1) =0 4],

each identity block having dimension n. Although we need not assume J(x) has
this particular form, we shall assume throughout that J(x) is nonsingular. Thus
the equilibrium solutions of (1.1), i.e. trajectories satisfying &. = 0, are precisely
the critical points of the Hamiltonian, i.e. those points in phase space satisfying

(1.3) VH () = 0.

We shall also assume that critical points are nondegenerate in the sense that
VZH (z.), the second variation of the Hamiltonian, is nonsingular. This as-
sumption excludes interesting cases of relative equilibria where the singularity
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of V2H (z.) is associated with an underlying symmetry of the dynamics. Such
singular cases will be discussed in future work.

At an equilibrium point z. there are two eigenvalue problems bearing upon
the stability of the dynamical system. The first is a nonsymmetric problem,
obtained by linearizing the dynamics (1.1) and separating out time:

(1.4) JSu = Au,

where S = V2H (z.) and J = J(z.). The matrix JS is said to be Hamiltonian (or
infinitesimally symplectic). Because of the special structure of JS, its eigenvalues
have two-fold symmetry, i.e. they are symmetrically placed in the complex plane
with respect to both the real and imaginary axes. If all eigenvalues are imaginary,
the equilibrium point is said to be spectrally stable (or elliptic). Spectral stability
is a necessary, though far from sufficient, condition for stability under the full
nonlinear dynamics.

The second eigenvalue problem is the symmetric one associated with the sec-
ond variation of the Hamiltonian:

(1.5) Sv = kv.

The connection between the two eigenvalue problems (1.5) and (1.4) is a classic
topic of investigation, and there are some simple conclusions that are immediate.
For example, if (1.5) has only positive eigenvalues, the matrix S has a real sym-
metric square root and JS is similar to the skew-symmetric matrix S/2J5/2 so
(1.4) has only imaginary eigenvalues. However, it is possible that (1.4) has only
imaginary eigenvalues while (1.5) has eigenvalues of both signs, which allows the
possibility that spectral stability may occur at critical points of the Hamiltonian
which are not minima. Thus, there is not a sharp correspondence between the
two eigenvalue problems.

We shall show that there is a sharp correspondence between (1.5) and certain
dissipative perturbations of (1.4). The perturbed eigenvalue problem is generated
by adding damping to the original system (1.1). A mathematically convenient
and physically sensible way to do this is to consider dynamics of the form

(1.6) &= (J(z)—eD(2))VH(z),

where D(z) is real, symmetric, positive semidefinite, and ¢ > 0. Since J(z) is
nonsingular and skew-symmetric, (J(z) — eD(z)) is nonsingular for all e. Conse-
quently the two systems (1.1) and (1.6) have the same equilibrium points, namely
the critical points of the Hamiltonian.

The eigenvalue problem obtained from linearizing (1.6) at an equilibrium z.
is

(1.7) (J — eD)Su = pu,
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where D = D(z.). Provided that the semidefinite dissipation matrix D satisfies
the condition

(1.8) 2*SDSz >0, V eigenvectors z of JS with pure imaginary eigenvalues,

it will be shown that for all € > 0, the number of eigenvalues of (1.7) in the right
half-plane equals the number of negative eigenvalues of (1.5). In this statement,
we adopt the conventions that half-plane means strict half-plane, excluding the
imaginary axis, and that any multiple eigenvalues are counted according to their
algebraic multiplicity. Furthermore, we demonstrate that no eigenvalue of (1.7)
can remain on the imaginary axis for € > 0, so the number in the left half-plane
equals the number of positive eigenvalues of (1.5).

Our results imply that, given condition (1.8) and nondegeneracy of the criti-
cal point, the number of exponentially growing modes of the linearized dynamics
equals the index of the equilibrium regarded as a critical point of the Hamilto-
nian. Furthermore, there are no polynomially growing modes. It follows that the
only nondegenerate equilibria of (1.6) that are linearly stable are minima of the
Hamiltonian. Any such equilibrium point is a nonlinearly stable solution of the
undamped dynamics (1.1) by the Lagrange-Dirichlet Theorem [22], p. 208, and,
for appropriate classes of dissipation D(z), can be shown to be an asymptotically
stable solution of the damped dynamics (1.6) by a Lyapunov argument.

The result just described is precisely stated in Theorem 1 below, and is proven
by a simple homotopy connecting the two eigenvalue problems (1.5) and (1.7).
However that argument does not explicitly describe the behavior of eigenvalues of
(1.7) in the limit of vanishing dissipation as € = 0. The bulk of our presentation
18 concerned with a perturbation analysis that addresses this issue in detail.
If the eigenvalues of the unperturbed problem are all assumed to be simple,
the perturbation analysis is straightforward, but here we deal with the case of
arbitrary Jordan structure.

Our perturbation analysis also demonstrates that the definiteness hypothesis
(1.8) is necessary in the sense that without this assumption the conclusion of
Theorem 1 is false. In Section 9 we demonstrate that the framework (1.6) captures
a wide class of systems arising in applications, namely Lagrangian dynamics
subject to Rayleigh dissipation. For such systems hypothesis (1.8) can be verified
without any explicit knowledge of the eigenvectors.

While we do not consider it fruitful to attempt to make a general classification
of those infinite dimensional problems to which our results can be applied, it 1s
apparent that our methods of proof, namely either homotopy or analytic pertur-
bation theory, are not intrinsically finite dimensional. Accordingly our analysis
could be extended to provide analogous theorems pertaining to various classes of
Hamiltonian systems of partial differential equations. A rigorous analysis of such
examples is necessarily more technical, and we shall not pursue such a course
here.

Perturbation analysis of Hamiltonian systems received much attention in the
1950’s, primarily in the context of perturbations that preserve the Hamiltonian
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structure and that therefore also preserve the two-fold symmetry of the eigenval-
ues [8], [12], [19]. Surveys may be found in [7], [9], [14], [24]. In contrast to these
works, our main interest is in the effect of dissipative perturbations that break
the Hamiltonian structure. Effects of dissipation on the dynamics of mechanical
systems were extensively considered by Rayleigh and Kelvin amongst others [5]
Article 40, [13] Chpt. XTI, [10], [17] Chpt. 6.10, [20] Chpt. X, [23] Article 345,
[25] Chpt. 4.2. Various connections between the two eigenvalue problems (1.4)
and (1.5) were known to these authors. For example, if (1.5) has an odd number
of negative eigenvalues, then (1.4) has at least one real pair of eigenvalues. Al-
ternatively for canonical systems where (1.2) holds and the Hamiltonian is of a
special decoupled form involving the sum of a positive definite quadratic kinetic
energy and a potential, there is an immediate sharp correspondence between the
locations of eigenvalues of (1.5) and of (1.4). Tt was also realised that in the ab-
sence of decoupling there was no such simple relation, and the coupling terms are
often referred to as gyroscopic because they are responsible for the stabilization
of an upright spinning top.

Dissipative perturbations and eigenvalue problems arising in Hamiltonian sys-
tems are still of contemporary interest, c.f. [15] and [4]. The results obtained in
these two works are described in more detail in, respectively, Sections 8 and 9,
but the primary contrasts are that our analysis permits arbitrary Jordan struc-
ture in the unperturbed eigenvalue problem (1.4), and obtains a precise count on
the number of perturbed eigenvalues in the right half-plane.

Our presentation 1s organized as follows. The correspondence between the
eigenvalues of (1.5) and (1.7) is stated and proven in Section 2 using a homotopy
argument. A general perturbation result is also stated in Section 2, but the proofs
and detailed analysis of eigenvalue behavior are deferred to Section 4. Section
3 treats the special case where any multiple eigenvalue is semisimple, i.e. has a
complete set of eigenvectors. The notation required in the general perturbation
analysis is rather complicated, so in Section 5 we illustrate the theory through
a comparatively straightforward example involving a non-semisimple eigenvalue.
Sections 6 and 7 generalize our analysis to cases where the perturbation D is,
respectively, nonsymmetric but still semidefinite, and skew-symmetric. Con-
nections with classic results for Hamiltonian perturbation theory are described
in Section 8. Section 9 demonstrates that our results apply to many standard
mechanical systems with second-order Lagrangian time dynamics perturbed by
Rayleigh dissipation.

2. Main Results

Assume J and S are real, square, nonsingular 2n x 2n matrices, with J
skew-symmetric (J = —J7) and S symmetric (S = ST). Consider dissipative
perturbations of the form

(2.1) A(e) = (J — eD)S
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where € > 0 is a real parameter and D is a real, symmetric, positive semidefinite
matrix. Let z* denote the complex conjugate transpose of z.

THEOREM 1. Suppose that
(2.2) 2*SDSz >0, VY eigenvectors z of JS with pure imaginary eigenvalues.

Then, for all e > 0 and counting algebraic multiplicity, the number of eigenvalues
of A(e) in the right half-plane equals the number of negative eigenvalues of S.
Furthermore, no eigenvalue of A(e) is imaginary for e > 0.

Proof: Consider the family of eigenvalue problems
(2.3) (r(J —€eD)— (1 = 1)]) Su = pu, 0<r<l.

We claim that (2.3) has no eigenvalue on the imaginary axis for any value of
T € [0,1]. Suppose the contrary, i.e. (2.3) holds with p pure imaginary and u
nonzero. Take the scalar product of Su with (2.3) and rearrange to obtain

(2.4) Tu*SJSu —u*S (reD + (1 — 7)) Su = pu*Su.

Using the symmetry of S and D, the skew-symmetry of J, and the fact that € is
real and p is imaginary, we find, upon taking the real part of (2.4), that

u*S (reD+ (1 —71)1) Su=0.

This 1dentity contradicts the properties of D and S. In particular, we have
e > 0, D positive semidefinite and S nonsingular, so for 0 < 7 < 1, we must
have u = 0, and the contradiction is immediate. For 7 = 1 we still obtain an
immediate contradiction unless DSwu = 0, in which case u is also an eigenvector
of JS with imaginary eigenvalue y, which contradicts (2.2).

It may therefore be concluded that (2.3) has no eigenvalue on the imaginary
axis for any € > 0 and 0 < 7 < 1. It follows from continuous dependence of
eigenvalues on the parameter 7 that the number of eigenvalues (counting algebraic
multiplicity) in each half-plane is a homotopy invariant, i.e. is constant for all
0 < 7 < 1. Theorem 1 follows, since for 7 = 1 the matrix in (2.3) reduces to
(1.4), while for 7 = 0 it reduces to —S. Q.E.D.

The homotopy is also applicable in the case ¢ = 0, where it allows us to
conclude that for 0 < 7 < 1, (2.3) has no eigenvalue on the imaginary axis.
However for ¢ = 0, as 7 — 1 eigenvalues can approach the imaginary axis. Now
(2.3) involves only real matrices, so eigenvalues must occur in complex conjugate
pairs. It follows that if S has an odd number of negative eigenvalues, at least
one eigenvalue in the right half-plane remains real as 7 — 1. By assumption
JS 1s nonsingular, so this eigenvalue cannot converge to zero. Thus at critical
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points of odd index, J.S has at least one positive real eigenvalue. This conclusion
is the classic result already mentioned in the introduction ([23] Article 3457, [5]
Article 40). In the finite dimensional case a more elementary proof is available
by simply considering the determinant of JS. However, the more constructive
homotopy proof focuses attention on the main difficulty, namely movement of
pure imaginary eigenvalues of J.S under perturbation.

For e small, and for a given imaginary eigenvalue A, Theorem 2 below gives
more detailed information describing the perturbed eigenvalues associated with
A. Before stating Theorem 2 we need to introduce some further notation.

Any eigenvalue of JS that is not pure imaginary is of little interest, since small
perturbations cannot move it across the imaginary axis. Accordingly denote the
wmaginary eigenvalues of JS by

Al""’ Al/a_Ala"'a_Al/a

where A; and —A; have algebraic multiplicity m;, and A; is positive imaginary.
Denote the associated eigenvalues of A(e) by the continuous functions

pi(e), i)
with the understanding that
/1;1»(0):/\]', g=1,....m;, j=1,..., 0.

Recall that the geometric eigenspace for A; is the null space of JS — A; 1, and the
invariant subspace for A; is the null space of (JS — A; )™,

THEOREM 2. Let j € {l,...,v}, and assume that
SDS restricted to the geometric eigenspace for A;
1s positive definite. Then, for ¢ sufficiently small, the number of the eigenvalues
/,L;]»(E) wn the right half-plane is equal to the number of negative eigenvalues of
S restricted to the invariant subspace for A;.

If A; is simple, Theorem 2 follows easily from well known perturbation results.
But if A; has multiplicity m; > 1, the behavior of the eigenvalues of the perturbed
matrix is potentially quite complicated. We emphasize that both Theorems 1 and
2 hold regardless of the Jordan structure of JS.

Recall that an eigenvalue A; is semusimple if the geometric eigenspace and
the invariant subspace corresponding to A; are equal; equivalently, the part of
the Jordan form of J.S corresponding to A; is diagonal. An eigenvalue A; is
nonderogatory if the geometric eigenspace for A; is a one-dimensional subspace
of the invariant subspace for A;; equivalently, the part of the Jordan form of
JS corresponding to A; consists of a single Jordan block. In the analysis of
multiple eigenvalues, semisimple and nonderogatory eigenvalues lie at opposite
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structural extremes (minimum and maximum number of entries in the corre-
sponding off-diagonal positions of the Jordan form). A simple eigenvalue is both
nonderogatory and semisimple.

The proof of Theorem 2 is deferred to Section 4. There we give a detailed
analysis of the relationship between the inertia of S and the asymptotic behavior
of the eigenvalues of A(¢) in the case of general Jordan structure. This result is
expressed as Theorem 4. The proof of Theorem 2 demonstrates that hypothesis
(2.2) is sharp in the sense that Theorems 1 and 2 are false when (2.2) does not
hold.

Since the case in which A; is semisimple is considerably more straightfor-
ward, we address it first, summarizing the asymptotic behavior of the perturbed
eigenvalues in that case in Theorem 3.

3. Perturbation Formulas in the Semisimple Case

THEOREM 3. Let j € {1,...,v}, and assume that the imaginary eigenvalue
Aj s senusimple. Let Z; be a matriz whose m; columns form a basis for the
geometric eigenspace (equivalently the invariant subspace) for ;. Without loss
of generality, Z; can be chosen such that

(3.1) 7:S7; = K;j = Diag(+1).
LetTj = Z75DSZ;. Then
(3.2) u?(e):/\j —|—€}1€—|—O(€), g=1,... my,

where the 5}1, qg=1,...,m;, are the eigenvalues of the matriz —K;T}.

Proof: That (3.1) holds without loss of generality follows from choosing an
arbitrary eigenvector basis Z;, diagonalizing Z7SZ;, and scaling. The number
of £1’s depends only on the inertia of S restricted to the geometric eigenspace.

We have JSZ; = X\;Z; so

73808 = —(JSZ;)°S
=-(\Z)"S
= /\jZ;S.

Thus, the rows of Z7S form a basis for the left geometric eigenspace of JS.
Noting that (3.1) holds, we see that choosing

Y; = K;Z:S
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yields bases 7; and Y; for the right and left eigenspaces that satisfy the biorthog-
onality condition
Y;Z; = 1.

Therefore, I1; = Z;Y; is the eigenprojection for A;, satisfying
II; JS = JSTI; = I1; JSTL; = A;105.

Observe that

d

(3.3) -

A(0) = =DS.

Applying the well known perturbation theory for semisimple eigenvalues [11],
Theorem I1.5.4, we see that (3.2) holds, where the &’;1 are the nontrivial eigenvalues
of II; DSTL;, i.e. the eigenvalues of the m; x m; matrix

(3.4) Yj(~DS)Z; = —K;Z;SDSZ; = —K;T;.  QE.D.

Now assume that SDS is positive definite on the geometric eigenspace for
Aj, 1.e. the Hermitian matrix 7} is positive definite. Thus the Hermitian square
root 7}1/2 exists, with K;7T; similar to le/szle/z. It follows that the &’;1 are
all real and, by Sylvester’s law of inertia, their signs are determined by the sign
pattern of the matrix K;. Consequently, Theorem 2 follows from Theorem 3 in
the semisimple case.

The signs in K; = Z75Z; are called the Krein signatures associated with
the positive imaginary eigenvalue A;. This nomenclature is discussed further in
Section 8.

Theorem 3 states that the perturbed eigenvalues corresponding to the semi-
simple eigenvalue A; are differentiable with respect to the perturbation parameter
¢, with derivatives equal to the eigenvalues of the m; x m; matrix K;T;. The
matrix K;Tj;, like the unperturbed matrix J.S, is the product of two matrices,
neither of which is positive definite in general. In the introduction, it was noted
that if S 1s definite, the eigenvalues of JS are imaginary; likewise the proof of
Theorem 2 in the semidefinite case uses the hypothesis that 7; is definite, so that
the eigenvalues of the product are real with signs determined by the signs of the
factor K;. We shall use this kind of argument repeatedly, although it becomes
more complicated in the case of general Jordan structure.

If A; is simple, K;T} is just a scalar. Let z; denote the corresponding eigen-
vector. In this case, Theorem 3 reduces to the statement that the corresponding
perturbed eigenvalue is

(3.5) pi(€) = Aj + &je + o(e)

where
& =—Kr;Ty, T = Z; SDSz;, k; = Z; Sz; = £1.
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It should be noted that since we are considering only real perturbations, there
i1s no need to consider conjugate eigenvalues separately, since movement of eigen-
values in the upper half-plane determines the movement of those in the lower
half-plane.

4. Perturbation Formulas in the General Case

In the case of arbitrary Jordan structure, the behavior of the eigenvalues un-
der perturbation is quite complicated. We shall need two powerful branches of
matrix and operator theory: the theory of indefinite scalar products [9], and ana-
lytic perturbation theory for eigenvalues [2]. We begin by establishing notation.
We shall assume in the following that J.S has no eigenvalue in addition to the
nonzero imaginary numbers A1, ..., A, . Extension to the more general case is
straightforward, but notationally inconvenient, and is deferred to the end of this
section.

Let V reduce JS to Jordan form, i.e.

(4.1) VLISV = Diag(Gy,...,G,, Gy, ..., Gy),
with
(4.2) Gj = Diag(Tj, ..., Tj,...... TR T,
N———’ — _/v
and
A1
F? =

1

Aj
a Jordan block for A; with dimension mf; The Jordan block F"; appears rf times

in G, the part of the Jordan form corresponding to A;. The m?, k=1,...,p;,

are called the distinct partial multiplicities for A;, and they satisfy

Pj
s .. Pi E Emk = m;
m; > > myT, rim; = my.
k=1

1 _
;=

then p; = 1, m} = m;, and r]l» = 1. The columns of V are called Jordan vectors

(alternatively principal vectors or generalized eigenvectors). We write

If A; is semisimple, then p; = 1, m 1 and r]l» = mj;. If A; is nonderogatory,

V:[Vla"'avl/avla"'avl/]
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conformally with (4.1) and

il 1rj psl piry’
(4.3) V=V v VR VT

conformally with (4.2). FEach ijl represents a distinct chain, of length m?, of
Jordan vectors for A;, since

0 1

(4.4) (JS = X))V =V

LEMMA 1. The matriz V in (4.1) can be chosen so that
(4.5) V*SV = Diag(Hy,...,H,, Hy,..., H,)
where

: 1rj ilspi
Hj:Dlag(ﬁ}lE},...,ﬁj E}, ...... ,n? E? LK

conformally with (4.1),(4.2). Here

I{?l =+1
and
k
ok g
(4.6) I o ’

a reverse diagonal matriz of dimension m?, with

1 mf; =1 (mod 4)
. Lo
K 7 mj:2(mod4) o
(4.7) %7 21 mf; =3 (mod 4) [’ ! I
—1 mf; =0 (mod 4)

Proof: Consider the matrix :J.S. We have

(iJS)*S = 5(iJ9)
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so ¢JS 1s said to be self-adjoint with respect to the indefinite scalar product
defined by (z, z) = «*Sx [9], Section 1.2.2. The eigenvalues of i.J.S and those of
JS differ by factors of ¢, so, since the latter are imaginary, the former are real.
The Jordan form of /.5 has a structure identical to the Jordan form of J.S, given
by (4.1). Let V denote a similarity transformation reducing ¢J.S to Jordan form,

with blocks ‘z’“l corresponding to the blocks ijl of (4.3), and let F"; denote the

associated Jordan blocks. The diagonals of F"; and I:E differ by a factor of ¢, but
the superdiagonals are the same. We have

sz QF FkQ where Q = Diag(1,¢,—1,—¢,...).
Therefore, the ‘z’“l and ijl are conveniently related by
(4.8) Vi = VkQ.

By [9], Section 1.3.2, V can be chosen so that

(4.9) V*SV = Diag(H,y,..., H, H., ... H)
with
11 pl 1’31' 1 Wil pri Pty e

Hj = Diag(r}' Pl ..k, PH L Al SR P )

and
I = Diag((x}") P}, (5]7) P, (R PR (KT P
where
I{?l = =1, (Iﬁ??l)/ ==+1

and

1

1

a reversing permutation matrix of dimension mf; Using (4.8) and (4.9), we see
that V*SV is also block diagonal, with

(4.10) (VEY svF = @ (V) svF Q= ki'a  PFQ = k55,

This proves Lemma 1. Note that applying the same argument to the conjugate
blocks in the second half of V' shows that

(4.11) (VR SVF = (uh1y'sh,
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so that, since identities (4.10) and (4.11) are conjugates of each other,

Kl k
(Kikl)/ _J K] m; is odd Q.ED
IO =k m¥ iseven [ - R
J J

Lemma 1 displays the inertia of S in the convenient form 4.5. The backwards
diagonal matrix E"; is Hermitian and unitary with half of its eigenvalues equal to
41 and half of them equal to —1. When mf; is odd the extra eigenvalue is +1,
since the trace of E"; is one. The presence of Jordan blocks in the Jordan form
of JS therefore places strong restrictions on the inertia of S restricted to the
corresponding invariant subspace. Specifically, if JS has a Jordan block of size
m, where m is even, then S, restricted to the corresponding invariant subspace,
must have m/2 positive and m/2 negative eigenvalues, and the same is true on
the invariant subspace for the conjugate eigenvalue. This fact is at the heart of
the theory of indefinite scalar products [9]. It generalizes the well known fact
that the presence of any nontrivial Jordan block in the spectral decomposition of
a matrix precludes the possibility that the matrix is self-adjoint with respect to
the usual definite inner product.

We are now ready to state and prove the main result of this section. Assume
that V' satisfies the conditions expressed in Lemma 1. Let zfl denote the first
columnoijkl, l= 1,...,7“?, k=1,...,p;,5=1,...,v,and let

k
ZE =K.

The columns of Zf form a set of r}“ eigenvectors of grade mf; for A;, i.e. they are
associated with r}“ distinct Jordan chains of length mf; Let

Zy=1[2j,..., 2.
The columns of Z; span the geometric eigenspace for A;. Also, let

kr®

(4.12) K} = Diag(sf', ... k7)),

denote the diagonal matrix of signs.

THEOREM 4. Let j € {1,...,v}, and assume that SDS is nonsingular on
the geometric eigenspace for the imaginary eigenvalue A;, v.e. Z3SDSZ; 1is non-
singular. Then the eigenvalues of A(e) converging to A\; as € — 0 consist of
groups

k k k
(4.13) p51E) = g+ () AT o)

g=1,...,m" l:l,...,r?, k=1,...,p;
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where
(i) the notation p?(e) used in Theorem 2 has been refined to the more specific
notation u?lq(e) which groups the eigenvalues of A(e) according to the Jordan
structure of JS
g , . kig _ k
(ii) the equation (4.13) means that the distinct values 1 (€), forq=1,...,mj,
are defined by taking the mf; distinct m?-th roots of E’fl
wi) for k = 1, we. the case corresponding to Jordan blocks i G; with largest
; 14 g J q

dimension, the E’fl, that 1s 5’]1’, l=1,..., r]l», are the eigenvalues of the r]l» by
r]l» matriz
T pelgl
—o; K15,
where
(4.14) T} = (2;)*SDSZ;
(iv) for k > 1, the E’fl, I=1,... rf, are the eigenvalues of the r}“ by r}“ matrix
% ok
(4.15) -0 KT},

where, omitting sub- and superscripts for brevity

Tf =C - B'F'B,

with
(4.16) [E]: g] = [(i(g;)l*)*]SDS[Xf—l Z%]
and

k—1 __ 1 k—1
Xt =zl 2.

Proof: Equation (4.4) shows that the columns of ijl form a chain, of length
m?, of Jordan vectors for A;. Furthermore,

(VI SIS = A) = (N = ISV
0
—1.

kly=
Vit)s

—

-1 0
i.e. the rows of (ijl)*S form a chain, of length m?, of left Jordan vectors for A;.

Reversing the order of this chain and scaling appropriately gives

U]{cl — K?‘l;lE‘l;(V]kl)*S,
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which satisfies

UHJS = X5) = . Ut

Furthermore, from (4.5), we have
U]kl‘/jk:l — K‘I;:lE‘l;:(‘/]k:l)*S‘/]kl — (K§1)2(2§)2 -7

a biorthogonality condition on the right chain defined by the columns of ijl and
the left chain defined by the rows of Ufl. Indeed, collecting all left chains Ufl
in a matrix U, we have the biorthogonality condition UV = I. For each pair of
chains ijl, Ufl, the associated right and left eigenvectors are respectively the

first column of ijl, denoted z¥!, and the last row of U¥!

e 7%, namely

Collect all such left eigenvectors for A; associated with chains of length mf; in a
matrix
k P
(4.17) YE=[F, Ly = KR (2,
recalling that Kf was defined in (4.12).

We are now 1n a position to apply the analytic perturbation theory for multiple
eigenvalues with arbitrary Jordan structure, which was developed by Lidskii
and others in the Russian literature in the 1960’s and refined and extended by
Baumgartel [2]. Specifically, we shall use [2] Thm. 7.4.7 (p. 306) together with
Thm. 7.4.6 (p. 305) and Lemma 7.4.9 (p. 298). Using (3.3), these show that
the eigenvalues of A(e) associated with the largest Jordan blocks for A;, namely
those of dimension m}, have expansions given by

i) = A (G o(Hm),
where the 5;’ are the eigenvalues of the r]l» by r]l» matrix
Y (—DS)Z} = —c}Kj(Z})*SDSZ} = —c} KT}

This proves the theorem for the case k = 1. The case k > 1 is more complicated.
Using

1
Y

E—1 _ [l k-1 k=1 _ .
X _[Zj,...,Zj ] and Wi = : ,

J
k-1
Y
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the results in Baumgartel just quoted show that, provided Wf_lDSXf_l 18
nonsingular, the eigenvalues of A(e) associated with Jordan blocks of size mf; for
A; have expansions given by (4.13), where the E’fl are the roots of the polynomial

n &

(4.18) detqmg:](—DS)[Xf—l 78] - 5[8 ?D

J

the identity block having dimension rf. Let
Ef7' = Diag(ol K}, ... of T KETY),

and observe, using (4.17), that Wf_lDSXf_l = Ef_lF, where I is defined
in (4.16). Thus, the assumption that SDS is nonsingular on the geometric
eigenspace provides the required nonsingularity condition. Furthermore, (4.18)
reduces, using (4.16) and (4.17), to

Er1 0 F B
(4.19) —da([ ; U_fo] [B* C+£ID'

We have

F B I ol[F B
det[B* C+51]:det<[—B*F—1 1] [B* c+51])

— det F B
o c-Br'B4¢r

so the roots of (4.19) are the eigenvalues of (4.15), which completes the proof of
Theorem 4. Q.E.D.

In the semisimple case, Theorem 4 reduces to Theorem 3 since all Jordan
blocks have dimension one, all Jordan vectors are eigenvectors and 0']1» K}le re-
duces to K;T; of Theorem 3. In the nonderogatory case, A; is again associated
with only one size Jordan block, namely a single block of size m;. In this case
0']1»[(]17}1 is a scalar, and the associated perturbed eigenvalues split along rays
separated by angles of 2m/m;. In the case that A; is simple, both these special
cases reduce to (3.5).

We are now ready to prove Theorem 2, stated in Section 2.

Proof of Theorem 2:  Consider a group of eigenvalues u?lq(e) corresponding

to Jordan blocks for the imaginary eigenvalue A; with size mf; By assumption,
SDS is positive definite on the geometric eigenspace. This ensures, in the case
k = 1, that 7}1 is positive definite, and, in the case k > 1, that (4.16) is positive
definite and therefore that the Schur complement Tf = (' — B*F~'B is positive
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definite. Consequently, using (4.7), the eigenvalues E’fl of (4.15) are real if mf;
is odd and imaginary if mf; is even, with sign pattern determined by —O'_fo =
—U_fDiag(/f";l). The mf; m?—th roots of each E’fl are equally spaced around a
circle centered at the origin in the complex plane. In the case that mf;
? m?—th roots of the imaginary quantities E’fl are either real or
imaginary, so, for each eigenvalue E’fl, half of the m?—th roots lie strictly in the

left half-plane and half in the right. Now suppose that mf; 18 odd, so that the

18 even,

none of the m

E’fl are real with signs determined by a?l = —;?K?l, l=1,..., rf. The only real
m?—th root of oz";l has the same sign as a?l. One must then distinguish between
the cases m% = 1 (mod 4) and mf; = 3 (mod 4) to count how many roots lie

in the left half-plane and how many in the right. It is easily seen that, in both
cases, (mf; + I{?l)/Q of the m?—th roots of E’fl lie strictly in the left half-plane,
and the others lie in the right. Tt follows from (4.13) that for € sufficiently small,
klq
J
which the corresponding m?—th root of E’fl lies.

To complete the proof of Theorem 2, we need only determine the inertia of .S

restricted to the invariant subspace for A;. This is displayed in the block diagonal

form (4.5). Specifically, we have, for [ =1,.. ., rf, k=1...p;

the half-plane in which p;"?(€) lies is completely determined by the half-plane in

(4.20) (VY SvF = kiish

In the case mf; is even, half of the eigenvalues of (4.20) are positive and half
are negative, while if mf; is odd, exactly (mf; + I{?l)/Q are positive and the rest
are negative. Thus, for e sufficiently small, the number of eigenvalues u?lq(e),
g=1,.. .,m?, in the right half-plane and the number of positive eigenvalues of
(4.20) is the same. Since (4.5) is block diagonal, the number of negative eigen-
values of S restricted to the invariant subspace is obtained from summing the
number of negative eigenvalues in the components 4.20. This proves Theorem 2.

Q.E.D.

A restricted version of Theorem 1, in which ¢ is assumed sufficiently small,
may now be proved using Theorem 2 together with Lemma 1. Before we can do
this, we must remove the assumption that all eigenvalues of JS are imaginary,
as follows. By two-fold symmetry, all non-imaginary eigenvalues occur in pairs
(A, —X). These eigenvalues cannot cross the imaginary axis under infinitesimal
perturbation, so there is no need to analyze their behavior under perturbation:
the number in the left half-plane is the same as the number in the right half-
plane. We now need to verify that the counts of positive and negative eigenval-
ues of S restricted to the corresponding invariant subspaces are the same. In
order to do this, we must extend the block diagonal decomposition (4.5) to cover
non-imaginary eigenvalues. The pair (X, —A) for JS corresponds to a complex
conjugate pair (i\, —i\) for i.J.S. Using [9], Sec 1.3.2, we see that each such pair,
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with corresponding Jordan vectors in V| introduces an additional set of matrices
of the form E?, into (4.5). The number and dimensions of these blocks depend
on the Jordan form of the pair (A, —X), but since the dimensions are all even, the
contributions to the number of positive and negative eigenvalues of S restricted
to the corresponding invariant subspace are the same.

The proof that Theorem 1 holds for sufficiently small ¢ is then immediate.
The inertia of S and of V*SV are the same, and the latter is displayed in the
block diagonal form (4.5). Therefore, the number of negative eigenvalues of S is
obtained by adding together the number of negative eigenvalues of S restricted
to each of the invariant subspaces. The movement of the conjugate eigenvalues
in the lower half-plane is determined by the eigenvalues in the upper half-plane.

Finally, we note that Theorems 2, 3 and 4 and the restricted version of The-
orem 1 (for e sufficiently small) all hold when the linear perturbation (J — e¢D)S
is replaced by an analytic perturbation (J — eD — €D’ — --)S. The proofs are
unchanged.

5. Example

In order to illustrate the rather intricate arguments required in the statement
and proof of Theorem 4, we shall now describe a comparatively straightforward
example in which all computations can be carried out explicitly, and the eigen-
values of the perturbed problem can easily be determined numerically. We con-
sider the simplest case where a multiple eigenvalue is neither semisimple nor
nonderogatory. Let n = 3, so that JS has order six, and suppose J.S has one
conjugate pair of imaginary eigenvalues A1, each of multiplicity three. Suppose
further that A\, has two independent eigenvectors, 1.e. L = JS — A1 has nullity
two. It follows that A; has two Jordan blocks, of sizes two and one. Using stan-
dard methods it is easy to compute vectors a, b and ¢ satisfying Lb = a, La =0
and Le = 0. Thus a and b form a Jordan chain of length two and ¢ is a Jordan
chain of length one. Both «a and ¢ are eigenvectors, but b is a Jordan vector, or
generalized eigenvector. Furthermore, a*S and —b*S form a left Jordan chain of
length two, and ¢*S a left Jordan chain of length one.

Multiplying the equation Lb = @ on the left by the left eigenvector a¢*.S, we
see that a*Sa = 0, and doing the same with the left eigenvector ¢*S yields
c*Sa = 0. Similarly multiplying the same equation on the left by the left Jordan
vector —b* S, we find that a*Sb = —b*Sa. It follows that a*Sb is imaginary. We
therefore have

a 0
(5.1) [a b ¢]"S[a b ¢e]l=|—-a B ¥
¥ 4

where « is imaginary. Furthermore, it 1s easy to show from the assumption on
the Jordan form that o and § are both nonzero.
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We now wish to normalize a, b and ¢ such that (5.1) is consistent with the
block diagonal form given in Lemma 1. First scale a and b by 1/4/]a*Sb|, so that
o = a*Sb = +i. Then replace b by b — «(b*Sb)/2 a, so that 6*Sb = 0. These
rescalings do not change the property that @ and b form a Jordan chain, and do
not affect the value of ¢*.Sb since a*Sa = 0. Then replace ¢ by the eigenvector
¢ — a(b*Sc)a, so that b*Se = 0. Finally, scale the new choice of ¢ by 1/4/]¢*S¢|,
so that ¢*Se = +1. Then (5.1) holds with a = +¢, 8 = v =0, and § = 1. Thus
with Vi = [a b ¢], V = [Vi V4] satisfies (4.5).

In the notation of Section 4 we have m; =3, p1 =2, mi =2, ri =1, m? =1,
r? =1, 0f =4, and 07 = 1. Furthermore Vi = [Vi! V2] where V11 = [a b],
V2 = ¢ Zt = 2! = a, and Z7 = 2! = c. The signs of k1! and x}! are
determined by the signs of « and §.

Part (iii) of Theorem 4 then states that two of the eigenvalues of the perturbed
matrix

(5.2) Ale) = (J —eD)S
satisfy, for ¢ = 1, 2,
prt? = A JEVE + 0(V6),

where

= —olklta*SDSa = ik{*a™ SDSa.

Part (iv) states that the third eigenvalue of the perturbed matrix corresponding
to the unperturbed eigenvalue A; satisfies

pit =Mt e+ o(e),

where a*SDSH?
*SD
21 _ _ 21 * G DGe — a .
h k1 (¢"SDSe —SDSe )
Specifically, suppose that J has the form (1.2) and
101 0 0 0
0 1 0 0 0 0
g 1 0 0 0 0 0
“]0 0 0 1 0 —1/4
0 00 0 1/4 0
000 —1/4 0 0

This matrix S has two negative and four positive eigenvalues. The matrix JS has
one pair of eigenvalues Ay = +0.5¢, each with multiplicity three and two Jordan
blocks. After carrying out the computations described above we find

0.6233 — 0.33381 0 0

0 0 0.70712
o~ —0.3117 + 0.1669: b A —0.3338 — 0.62331 ~ 0
0.3338 4 0.62337 |’ 0 ’ 0

0 0 —1.414

0.6677 4 1.2467: —2.4934 4 1.3353: 0



STABILITY THEORY FOR HAMILTONIAN SYSTEMS

with a = —1, 6= 1, Kj%l = -1, /{%1 = 1.

Arbitrarily choosing
12 3 -1 -2 =3
—_ T _
D=8FE b= 1 -2 3 1 2 =3

we have

%1 = —ia*SDSa ~ —13.0625:

and

|a*SDSbh|?
a*SDSa
Therefore two of the eigenvalues of (5.2) satisfy, for ¢ = 1,2,

gyt = 0.50 % (2.555631 — 2.5556314)\/c + o(/€),
while the third satisfies

2= _(¢"SDSe — ) & —4.904306.

pitt = 0.5 — 4.904306¢ + o(e).

0.6+ + o] 4

04r 0 + 1

_1 | | | | | | | | |
-1 -08 -06 -04 -02 0 0.2 0.4 0.6 038 1

Figure 1: The splitting of an eigenvalue with algebraic multiplicity three and
geometric multiplicity two. Plus signs (respectively circles) show eigenvalues of
(J — €D)S for equally spaced values of € > 0 (respectively € < 0).
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These results can be compared with a numerical computation of the eigenval-
ues of (5.2) for ¢ = 107°. Those with positive imaginary part are approximately

—0.002559674 + 0.502555636¢
0.002551578 4 0.497444364+
—0.000004904306 4 0.5¢,

confirming the formulas derived above.

Figure 1 plots the eigenvalues of (5.2) for 11 discrete choices of ¢ uniformly
spaced between —0.01 and 0.01, using the symbol “+” for positive values of € and
“o” for negative values of €. Attention may be restricted to the upper half-plane.
Notice that two of the eigenvalues move much more rapidly than the third, and
that the “fast” eigenvalues change directions through an angle of 7/2 as they
pass through 0.5¢ (e = 0). By comparison the third eigenvalue moves very slowly
and the symbols centered on the distinct perturbed values overlap in the plot.
This sharp distinction between “strong” and “weak” interaction of eigenvalues is
well known (e.g.[21]), and is a direct consequence of the Jordan structure of JS.
The plot illustrates the main result of this paper, which is that the number of
eigenvalues in the right half-plane for positive € is precisely equal to the number
of negative eigenvalues of S| in this case two.

6. Nonsymmetric Dissipative Perturbations

Theorems 1, 2, 3 and 4 all hold in the presence of more general dissipative per-
turbations in which D is nonsymmetric, but its symmetric part D+ D7 is positive
semidefinite, with the analogue of hypothesis (2.2) holding, namely S(D + DT)S
positive definite on the geometric eigenspaces for imaginary eigenvalues. In the
homotopy proof of Theorem 1, D is merely broken into its symmetric and skew-
symmetric parts. The proofs of Theorems 3 and 4 are unchanged. Theorem 2 is
proven from Theorem 3 in the semisimple case by remarking that with the no-
tation T; = Z7SDSZ;, T + 17 1s positive definite, and consequently the matrix
T; is inertia preserving [3], 1.e. the half-planes in which the eigenvalues of K;T;
lie are determined by the signs in Kj.

To prove Theorem 2 from Theorem 4 for nonsymmetric dissipative perturba-
tions, one needs in addition only a generalization of the classic result for positive
definiteness of Schur complements. If

' B
v=lo c]

and M + M~™ is positive definite, then T+ T™ is also positive definite, where T’
is the Schur complement 7' = C' — GF~1B [6], Theorem 4.1.5.
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7. Nondissipative Perturbations

If D(z) is skew-symmetric then the modified dynamics (1.6) remains within
the class of Hamiltonian systems, but with a perturbed Poisson structure matrix
J(x)—eD(z). (Strictly the perturbation D(x) should also be such that the Jacobi
identity holds for J(z) — eD(z), but we make no use of that property.) The
perturbation formulas of Theorems 3 and 4 hold exactly as before, assuming, in
the case of Theorem 4, that SD.S is nonsingular on the geometric eigenspaces for
imaginary eigenvalues. However, no analogues of Theorems 1 and 2 hold. Indeed,
sharp counts on the number of eigenvalues in the right half-plane are not possible
without detailed knowledge of the perturbation D. Nevertheless, Theorems 3 and
4 can be used to recover a variant of classic results characterizing Hamiltonian
systems that are strongly stable. In this context, and anticipating connections
with the classic theory that are described in the next section, we shall say that a
Hamiltonian system linearized at a spectrally stable equilibrium point is strongly
(or parametrically) stable, if the equilibria of all perturbed systems of the form
(1.6) with D = —DT are spectrally stable.

Suppose therefore that D is skew-symmetric. Assume first that the imaginary
eigenvalue )A; is semisimple. From Theorem 3, the derivatives of the perturbed
eigenvalues p?(e) are the eigenvalues of —K;T;, or equivalently 7; K;, where
1; = Z;SDSZ;, and K; = Z75Z; is a diagonal matrix of signs. Since T}
is skew-Hermitian and K is real diagonal, 7 K; is Hamiltonian, which is not
surprising, since the derivatives of the p?(e) must have two-fold symmetry. When
the signs in K; are all the same, i.e. S is definite on the eigenspace, it follows
that the derivatives of the eigenvalues /J;]»(E), i.e. the eigenvalues of T; K;, are all
imaginary. If K; contains mixed signs, it does not necessarily follow that an
eigenvalue p?(e) moves off the imaginary axis. This indeterminacy in the effect
of Hamiltonian perturbations is exactly analogous to the lack of sharpness in the
correspondence between the eigenvalues of (1.4) and (1.5). However, it is clear
that some skew-symmetric perturbation D moves eigenvalues off the imaginary
axis whenever K; has mixed signs. Therefore we say that A; is not strongly
stable in this case.

Now, again assuming that D is skew-symmetric, suppose that the imaginary
eigenvalue A; has at least one nontrivial Jordan block. Suppose for simplicity that
there is only one such block, and that it has dimension two, with corresponding
eigenvector z;. Theorem 4 shows that this block is associated with two perturbed

eigenvalues
A £ VEVE + o),

where
— 4 . . P * . P
& =k;Ty, T = Z; SDSz;, &k; ==+£1.

Since 7; is imaginary, £; is real, so the eigenvalues must split in opposite directions
either along the imaginary axis or along the line passing through A; parallel to the
real axis. It is impossible to know which case applies without knowing the sign
of the imaginary quantity 7;, but for some skew-symmetric D, the perturbation
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is unstable. If there is a Jordan block of size m > 2, the splitting must take place
along rays separated by angles of 27 /m, so eigenvalues move off the imaginary
axis for all skew-symmetric D. Without detailed knowledge of the perturbation
D it 1s not possible to count how many eigenvalues move into the right half-plane.
But for all D, at least one eigenvalue moves into the right half-plane.

In summary, strongly stable systems are precisely those for which all eigen-
values A; are semisimple, with S’ positive definite on each eigenspace.

8. Relations with Classic Results

The conclusions of the last section are completely consistent with the Gel’fand-
Krein-Lidskii-Moser strong stability theorem [8], [12], [14], [18] (p. 56), [19], [24]
(p. 192). In fact, the remarks of Section 7 can be regarded as a paraphrase of
the strong stability theorem, with the following three differences.

The first difference is that the classic form of the strong stability theorem
actually pertains to linearization about periodic solutions, so that a linear system
with periodic coefficients arises, and the result i1s accordingly usually described
in terms of the movement of the Floguet multipliers, which are eigenvalues of the
symplectic monodromy matrix. Since Hamiltonian and symplectic matrices are
related by matrix exponentiation, an eigenvalue of a Hamiltonian matrix in the
right half-plane corresponds to an eigenvalue of the associated symplectic matrix
outside the unit circle. Consequently, when specialized to equilibrium points, the
strong stability theorem provides information concerning eigenvalue movement
with respect to the imaginary axis (Moser, [19], especially p. 112). Conversely,
our results can be couched in terms of symplectic matrices. But in that context,
the motivation for the physically appropriate form of dissipative perturbation is
less clear.

Second, the original motivation for the strong stability theorem was to char-
acterize those linearly stable systems that remain stable under Hamiltonian per-
turbations. It 1s therefore natural to restrict attention to the semisimple case,
because unperturbed eigenvalues with nontrivial Jordan blocks correspond to
unstable modes of the linearized dynamics with polynomial growth in time. How-
ever, in order to obtain the results of primary interest here, namely the sharp
characterization of exponentially growing modes in the presence of dissipation, it
18 necessary to consider the more intricate case of perturbation of general Jordan
structures, as described by Theorem 4.

Third, the family of perturbations that is considered in the classic form of the
strong stability theorem is

(8.1) B(e) = J(S + ¢E),

which stands in contrast to (2.1). In (8.1) the perturbation is Hamiltonian when-
ever F 1s symmetric, which is naturally associated with perturbations in the
Hamiltonian H(z). In (2.1) the perturbation is Hamiltonian whenever D is
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skew-symmetric, which i1s naturally associated with perturbations in the Pois-
son structure matrix J(x). Since J and S are both assumed to be nonsingular,
arbitrary linear perturbations of J.S can be factored into either the form (2.1)
or the form (8.1). However Darboux’s Theorem and associated changes of co-
ordinates must be invoked to investigate the full connections between the two
schemes. For our purposes, where the primary focus is on dissipative perturba-
tions, the family (2.1) is more natural because of the simple relationship with the
damped nonlinear system (1.6).

Nonetheless, it is of interest to briefly consider extension of Theorems 3 and 4
to the perturbation family (8.1). Instead of (3.3), we have

d
T B(0) = JE.

Let us restrict attention to the semisimple case. Note that with J of the form
(1.2), SZ; = —);JZ;, so that K; can also be written in the form —X;77JZ;.
A related observation is that, again assuming (1.2), the left eigenvector basis
Y; = K;Z5 5 can also be written Y; = —A; K;Z7 J. Consequently the derivatives
of the eigenvalues of B corresponding to A; are the eigenvalues of

(8.2) Y;JEZ; = —NK; 27 JPEZ; = N KT

where T; = ZFEZj;. Suppose E Is symmetric, so that (8.1) is a Hamiltonian
perturbation. If we further assume that either S or E is definite on the eigenspace,
so that either K; or T} has a Hermitian square root, it follows that the eigenvalues
of A; KT}, i.e. the derivatives of the eigenvalues of B, are imaginary. If neither
S nor F is definite on the eigenspace, the derivatives may be non-imaginary.
These conclusions comprise the classic form of the strong stability theo-
rem, translated from symplectic to Hamiltonian matrices, and restricted to the
semisimple case. (In the non-semisimple case strong stability is not possible,
as already explained in the previous section.) The signs in the matrix K; are
equivalent to the Krein signatures of the positive imaginary eigenvalue A;, as
defined in [7], p. 11, for example. In the classic discussions, Krein signatures are
defined such that A; and its conjugate —\; have signatures of opposite signs. In
that case, there are always a total of n positive and n negative Krein signatures.
It is perhaps of interest to remark that, according to the discussion in [8],
pp. 147-149, in his original treatment Krein [12] considered perturbations of the
form (8.1) for two choices of perturbation E. First he took E to have the skew-
Hermitian form E = ¢F, where F' is real, symmetric and positive definite, and
used an argument, directly analogous to the proof of Theorem 1 given here, to
show that no eigenvalue remains on the imaginary axis. The symmetry of time
reversal was exploited to claim that n eigenvalues move into each half-plane. This
dichotomy was used to label each eigenvalue as being of either Type 1 or Type 2.
Then for the second class of perturbations, namely £ = I, a real, symmetric and
positive definite perturbation, the classification was combined with a homotopy
argument to conclude that eigenvalues cannot move off the imaginary axis to form
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complex quadruplets unless a Type 1 and Type 2 eigenvalue coincide. These
conclusions also follow immediately from (8.2). With E = iF, T; is 7 times
a Hermitian, positive-definite matrix, so the derivatives of the pure imaginary
eigenvalues A; are all real. The signs of any one group of perturbed eigenvalues
are determined by the inertia of S restricted to the corresponding unperturbed
eigenspace. In total, n eigenvalues move left and n move right, because the
derivatives are real with a factor of A;, so the sign pattern for the perturbation
of A; is the opposite to that for the conjugate eigenvalue —A;. Type 1 and 2
eigenvalues coincide precisely when S is indefinite on a given eigenspace, and,
as already explained, that is the case when Hamiltonian perturbations can move
eigenvalues off the imaginary axis.

In recent work, MacKay [15] analyzes dissipative perturbations using the per-
turbation family (8.1) for general matrices E. He gives a formula closely related
to (8.2) in the case where A; is simple, and interprets it in terms of energy and
energy decay rate of the linearized dynamics. MacKay remarks that extension
to the case of multiple eigenvalues would be of interest. This generalization is
provided by our results.

9. Lagrangian Dynamics with Rayleigh Dissipation

In this section we shall demonstrate that a large class of systems arising
in classical mechanics are encompassed by the framework that was adopted in
Section 1. Consider autonomous Lagrangian systems, i.e. second-order equations
of the form

d

(9.1) -

Li+Ly=0.

Here the Lagrangian L(g,q) : R?" — R is a given function of the generalized
coordinates ¢(t) € RN" and associated generalized velocities ¢(¢), and the sub-
scripts denote partial derivatives. Provided that the matrix L4y is nonsingular,
the definition

P = Li(g,9)
of the conjugate momenta p € 2" can be inverted locally, yielding

i=Q(q,p).

As is well known, the second-order system (9.1) is equivalent to a first-order
Hamiltonian system of the form (1.1) with the canonical structure matrix (1.2),

z=(¢,p), and
(9.2) H(q,p) = pQ(g,p) — L(g, Q(a,P))-

The Lagrangian is often a convex function of the generalized velocities, for ex-
ample a positive definite quadratic form, in which case, with appropriate growth
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conditions, the Hamiltonian (9.2) can be defined globally by the standard Legen-
dre transform of convex analysis. We shall not make this convexity assumption,
although we shall exploit the fact that H,, = Lqqu, so that nonsingularity of Lgg
implies invertibility of H,.

The standard way to introduce dissipation into Lagrangian dynamics uses
a Rayleigh dissipation function of the form %q'TR(q)q', with R(¢) a symmetric
positive definite n x n matrix ([20], Chpt. X). Then the conservative dynamics
(9.1) is modified to the dissipative dynamics

d .
(9-3) —gp L+ La = cR(a)d,
where € 1s a positive scaling factor. If the momenta p are introduced as before,
we find that the dissipative second-order dynamics (9.3) is equivalent to the per-
turbed Hamiltonian system (1.6) where z, J, and H are defined as above, and
the positive semidefinite, symmetric perturbation matrix D(z) is defined by

(9.4 D=0

We are interested in the dynamics linearized about equilibrium solutions
(¢(1),4()) = (ge,0). Such solutions are equilibria of (9.1) and (9.3) precisely
when L4(¢ge,0) = 0. At such points the linearization of (9.3) is

(9.5) —Lgii+ { LT, = Lgq it + Logu = ek,

where wu(t) is the linearized variable, and ﬁqq = Ls5(qe,0), etc. Of course (9.5)

is itself a Lagrangian system, with a quadratic Lagrangian, that is perturbed

by Rayleigh dissipation. The associated dissipatively perturbed, linear Hamil-

tonian system can either be found by the usual transformation from (9.5), or

from linearization of (1.6) about (¢, pe). The associated quadratic Hamiltonian
1

is 5 (u, w) TS (u, w) where

_ qq gr | _ qq q:jl 99 — *~qq T tgq q:jl
(9.6) g = H H Loo L~ L L Lgo L
: = = Fo1p ) ,
Hpg Hpp ~Lag Lig Lig

and (u,w) are the linearized variables associated with (¢, p).

LEMMA 2. Suppose that S is an invertible matriz of the form (9.6) with the
H,, block also invertible, D is a matriz of the form (9.4) with R posttive definite,
and J is the canonical matriz (1.2). Then z*SDSz > 0 for all eigenvectors z of
JS, i.e. hypothesis (2.2) is automatically satisfied.
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Proof:  Suppose not. Then there exists an eigenvector z = (z1,22) with
Sz = (#3,0), i.e.
H H Z1 Z3
9.7 9 qr — ,
6.1 [Hpq pr] [22] [0]
and

=]

But by hypothesis A = 0 is not an eigenvalue, so z; = 0. Then from the second
equation in (9.7) and the invertibility of H,,, we conclude that 2z, = 0 also, a
contradiction. Q.E.D.

Lemma 2 allows application of Theorems 1 and 2 to this class of dissipatively
perturbed Lagrangian systems with no explicit knowledge of any eigenvector
required. It is by no means the case that all Hamiltonian systems are of the
form described in this section, but many are. Indeed considerable work has been
expended on such systems, and on further special cases of such systems. For
example, many Lagrangians arising in classical mechanics are decoupled with
kinetic and potential energies of the form

99) Llg.i) = 2d"Tla)i — Via),

and associated Hamiltonian

(9.9) H(q,p) = %pTT_l(Q)p +V(q),

where T'(¢) is a symmetric positive definite matrix defining a kinetic energy that is
pure quadratic in the velocities, and V'(g¢) is the potential. In this special context
the off-diagonal blocks ﬁqq and H,, vanish, and the issues discussed in this paper
are moot, for it is straightforward to show that there is a sharp correspondence
between the number of negative eigenvalues of S and the number of eigenvalues
of JS in the right half-plane, even in the absence of any dissipative perturbation.
(There are delicate questions concerning characterization of stability properties of
degenerate equilibria in such systems, e.g.[1], p. 271, but they are of an essentially
different nature.) One place to find a review of such classic issues is [16].
Accordingly it can be seen that the crucial terms are the off-diagonal entries
in the Hamiltonian (9.6), or equivalently the terms in the linearized Lagrangian
dynamics (9.5) involving the velocities @ with skew-symmetric coefficients. Since
the time of Kelvin such terms have been called gyroscopic, because they are often
associated with effects of rotation, and, in particular, the stability of steady spins
of gyroscopes. The lengthy discussions in [23], Article 345 and [5], Chpt. V
consider general perturbations of equations of the form (9.5) with ﬁqq positive
definite. See also [24], p. 333, where derivative formulas are given for eigenvalues
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arising from modes of (9.5) when subject to general perturbations, but only for
the case of semisimple eigenvalues.

The inertia theorem for Schur complements can be applied to matrices S of
the specific form (9.6) to conclude that the number of negative eigenvalues of the
2n x 2n matrix S equals the sum of the numbers of negative eigenvalues of the
two n x n blocks ﬁqq and —ﬁqq. For Lagrangians of the form

(9.1 La.d) = 3i"T(@)i + Q)i ~ V(o)

that are quadratic in the velocities ¢ with 7" > 0, we may further conclude that
at equilibria, ﬁqq = T has no negative eigenvalue, and —ﬁqq = V,q(¢). Thus for
Lagrangian systems of the form (9.10), Theorems 1 and 2 can be applied with the
number of negative eigenvalues of S being replaced with the number of negative
eigenvalues of the Hessian qu of the potential. (Moreover Lemma 2 implies that
hypothesis (2.2) is automatically satisfied.) In particular it may be concluded
that in the presence of complete Rayleigh dissipation, the only (nondegenerate)
equilibria that are stable are minima of the potential, a result sometimes known
as the Kelvin-Tait-Chetayev Theorem [10], Chpt. 5.10.

Rayleigh dissipation is also discussed in [4]. While the primary focus is on the
case of relative equilibria, they do consider the case of equilibria. Their attention
18 restricted to the important, but nevertheless special, case of Hamiltonians of
the form (9.9). They derive perturbation formulas, but only for the case of simple
eigenvalues. They also adopt a Lyapunov-type approach to prove that at critical
points that are not minima there is at least one unstable mode of the linearized
damped dynamics. QOur results give a sharp count on the number of unstable
modes for a more general class of Hamiltonians.
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