
Stability Theory for DissipativelyPerturbed Hamiltonian SystemsJOHN H. MADDOCKSDepartment of Mathematics and Institute for Physical Science and TechnologyUniversity of Maryland, College ParkANDMICHAEL L. OVERTONComputer Science DepartmentCourant Institute of Mathematical SciencesAbstractIt is shown that for an appropriate class of dissipatively perturbed Hamiltonian systems,the number of unstable modes of the dynamics linearized at a nondegenerate equilibrium isdetermined solely by the index of the equilibriumregarded as a critical point of the Hamiltonian.In addition, the movement of the associated eigenvalues in the limit of vanishing dissipation isanalyzed. 1. IntroductionAn autonomous Hamiltonian system of ordinary di�erential equations has theform(1.1) _x = J(x)rH(x);where rH denotes the gradient of the Hamiltonian H(x) with respect to thevariable x, the matrix J(x) is skew-symmetric for all x, and solutions x(t) of(1.1) are curves in phase space. In the classic setting with n degrees of freedom,x(t) 2 <2n and(1.2) J(x) = � 0 I�I 0 � ;each identity block having dimension n. Although we need not assume J(x) hasthis particular form, we shall assume throughout that J(x) is nonsingular. Thusthe equilibrium solutions of (1.1), i.e. trajectories satisfying _xe = 0, are preciselythe critical points of the Hamiltonian, i.e. those points in phase space satisfying(1.3) rH(xe) = 0:We shall also assume that critical points are nondegenerate in the sense thatr2H(xe), the second variation of the Hamiltonian, is nonsingular. This as-sumption excludes interesting cases of relative equilibria where the singularityCommunications on Pure and Applied Mathematics, Vol. XLVIII, 1{28 (1995)c 1995 John Wiley & Sons, Inc. CCC 0010{3640/95/060001{28



2 J. H. MADDOCKS AND M. L. OVERTONof r2H(xe) is associated with an underlying symmetry of the dynamics. Suchsingular cases will be discussed in future work.At an equilibrium point xe there are two eigenvalue problems bearing uponthe stability of the dynamical system. The �rst is a nonsymmetric problem,obtained by linearizing the dynamics (1.1) and separating out time:(1.4) JSu = �u;where S = r2H(xe) and J = J(xe). The matrix JS is said to be Hamiltonian (orin�nitesimally symplectic). Because of the special structure of JS, its eigenvalueshave two-fold symmetry, i.e. they are symmetrically placed in the complex planewith respect to both the real and imaginary axes. If all eigenvalues are imaginary,the equilibrium point is said to be spectrally stable (or elliptic). Spectral stabilityis a necessary, though far from su�cient, condition for stability under the fullnonlinear dynamics.The second eigenvalue problem is the symmetric one associated with the sec-ond variation of the Hamiltonian:(1.5) Sv = �v:The connection between the two eigenvalue problems (1.5) and (1.4) is a classictopic of investigation, and there are some simple conclusions that are immediate.For example, if (1.5) has only positive eigenvalues, the matrix S has a real sym-metric square root and JS is similar to the skew-symmetric matrix S1=2JS1=2, so(1.4) has only imaginary eigenvalues. However, it is possible that (1.4) has onlyimaginary eigenvalues while (1.5) has eigenvalues of both signs, which allows thepossibility that spectral stability may occur at critical points of the Hamiltonianwhich are not minima. Thus, there is not a sharp correspondence between thetwo eigenvalue problems.We shall show that there is a sharp correspondence between (1.5) and certaindissipative perturbations of (1.4). The perturbed eigenvalue problem is generatedby adding damping to the original system (1.1). A mathematically convenientand physically sensible way to do this is to consider dynamics of the form(1.6) _x = (J(x)� �D(x))rH(x);where D(x) is real, symmetric, positive semide�nite, and � > 0. Since J(x) isnonsingular and skew-symmetric, (J(x)� �D(x)) is nonsingular for all �. Conse-quently the two systems (1.1) and (1.6) have the same equilibrium points, namelythe critical points of the Hamiltonian.The eigenvalue problem obtained from linearizing (1.6) at an equilibrium xeis(1.7) (J � �D)Su = �u;



STABILITY THEORY FOR HAMILTONIAN SYSTEMS 3where D = D(xe). Provided that the semide�nite dissipation matrix D satis�esthe condition(1.8) z�SDSz > 0; 8 eigenvectors z of JS with pure imaginary eigenvalues;it will be shown that for all � > 0, the number of eigenvalues of (1.7) in the righthalf-plane equals the number of negative eigenvalues of (1.5). In this statement,we adopt the conventions that half-plane means strict half-plane, excluding theimaginary axis, and that any multiple eigenvalues are counted according to theiralgebraic multiplicity. Furthermore, we demonstrate that no eigenvalue of (1.7)can remain on the imaginary axis for � > 0, so the number in the left half-planeequals the number of positive eigenvalues of (1.5).Our results imply that, given condition (1.8) and nondegeneracy of the criti-cal point, the number of exponentially growing modes of the linearized dynamicsequals the index of the equilibrium regarded as a critical point of the Hamilto-nian. Furthermore, there are no polynomially growing modes. It follows that theonly nondegenerate equilibria of (1.6) that are linearly stable are minima of theHamiltonian. Any such equilibrium point is a nonlinearly stable solution of theundamped dynamics (1.1) by the Lagrange-Dirichlet Theorem [22], p. 208, and,for appropriate classes of dissipationD(x), can be shown to be an asymptoticallystable solution of the damped dynamics (1.6) by a Lyapunov argument.The result just described is precisely stated in Theorem 1 below, and is provenby a simple homotopy connecting the two eigenvalue problems (1.5) and (1.7).However that argument does not explicitly describe the behavior of eigenvalues of(1.7) in the limit of vanishing dissipation as �! 0. The bulk of our presentationis concerned with a perturbation analysis that addresses this issue in detail.If the eigenvalues of the unperturbed problem are all assumed to be simple,the perturbation analysis is straightforward, but here we deal with the case ofarbitrary Jordan structure.Our perturbation analysis also demonstrates that the de�niteness hypothesis(1.8) is necessary in the sense that without this assumption the conclusion ofTheorem 1 is false. In Section 9 we demonstrate that the framework (1.6) capturesa wide class of systems arising in applications, namely Lagrangian dynamicssubject to Rayleigh dissipation. For such systems hypothesis (1.8) can be veri�edwithout any explicit knowledge of the eigenvectors.While we do not consider it fruitful to attempt to make a general classi�cationof those in�nite dimensional problems to which our results can be applied, it isapparent that our methods of proof, namely either homotopy or analytic pertur-bation theory, are not intrinsically �nite dimensional. Accordingly our analysiscould be extended to provide analogous theorems pertaining to various classes ofHamiltonian systems of partial di�erential equations. A rigorous analysis of suchexamples is necessarily more technical, and we shall not pursue such a coursehere.Perturbation analysis of Hamiltonian systems received much attention in the1950's, primarily in the context of perturbations that preserve the Hamiltonian



4 J. H. MADDOCKS AND M. L. OVERTONstructure and that therefore also preserve the two-fold symmetry of the eigenval-ues [8], [12], [19]. Surveys may be found in [7], [9], [14], [24]. In contrast to theseworks, our main interest is in the e�ect of dissipative perturbations that breakthe Hamiltonian structure. E�ects of dissipation on the dynamics of mechanicalsystems were extensively considered by Rayleigh and Kelvin amongst others [5]Article 40, [13] Chpt. XI, [10], [17] Chpt. 6.10, [20] Chpt. X, [23] Article 345,[25] Chpt. 4.2. Various connections between the two eigenvalue problems (1.4)and (1.5) were known to these authors. For example, if (1.5) has an odd numberof negative eigenvalues, then (1.4) has at least one real pair of eigenvalues. Al-ternatively for canonical systems where (1.2) holds and the Hamiltonian is of aspecial decoupled form involving the sum of a positive de�nite quadratic kineticenergy and a potential, there is an immediate sharp correspondence between thelocations of eigenvalues of (1.5) and of (1.4). It was also realised that in the ab-sence of decoupling there was no such simple relation, and the coupling terms areoften referred to as gyroscopic because they are responsible for the stabilizationof an upright spinning top.Dissipative perturbations and eigenvalue problems arising in Hamiltonian sys-tems are still of contemporary interest, c.f. [15] and [4]. The results obtained inthese two works are described in more detail in, respectively, Sections 8 and 9,but the primary contrasts are that our analysis permits arbitrary Jordan struc-ture in the unperturbed eigenvalue problem (1.4), and obtains a precise count onthe number of perturbed eigenvalues in the right half-plane.Our presentation is organized as follows. The correspondence between theeigenvalues of (1.5) and (1.7) is stated and proven in Section 2 using a homotopyargument. A general perturbation result is also stated in Section 2, but the proofsand detailed analysis of eigenvalue behavior are deferred to Section 4. Section3 treats the special case where any multiple eigenvalue is semisimple, i.e. has acomplete set of eigenvectors. The notation required in the general perturbationanalysis is rather complicated, so in Section 5 we illustrate the theory througha comparatively straightforward example involving a non-semisimple eigenvalue.Sections 6 and 7 generalize our analysis to cases where the perturbation D is,respectively, nonsymmetric but still semide�nite, and skew-symmetric. Con-nections with classic results for Hamiltonian perturbation theory are describedin Section 8. Section 9 demonstrates that our results apply to many standardmechanical systems with second-order Lagrangian time dynamics perturbed byRayleigh dissipation. 2. Main ResultsAssume J and S are real, square, nonsingular 2n � 2n matrices, with Jskew-symmetric (J = �JT ) and S symmetric (S = ST ). Consider dissipativeperturbations of the form(2.1) A(�) = (J � �D)S



STABILITY THEORY FOR HAMILTONIAN SYSTEMS 5where � > 0 is a real parameter and D is a real, symmetric, positive semide�nitematrix. Let z� denote the complex conjugate transpose of z.Theorem 1. Suppose that(2.2) z�SDSz > 0; 8 eigenvectors z of JS with pure imaginary eigenvalues:Then, for all � > 0 and counting algebraic multiplicity, the number of eigenvaluesof A(�) in the right half-plane equals the number of negative eigenvalues of S.Furthermore, no eigenvalue of A(�) is imaginary for � > 0.Proof: Consider the family of eigenvalue problems(2.3) (� (J � �D)� (1� � )I)Su = �u; 0 � � � 1:We claim that (2.3) has no eigenvalue on the imaginary axis for any value of� 2 [0; 1]. Suppose the contrary, i.e. (2.3) holds with � pure imaginary and unonzero. Take the scalar product of Su with (2.3) and rearrange to obtain(2.4) �u�SJSu � u�S (��D + (1� � )I)Su = �u�Su:Using the symmetry of S and D, the skew-symmetry of J , and the fact that � isreal and � is imaginary, we �nd, upon taking the real part of (2.4), thatu�S (��D + (1� � )I)Su = 0:This identity contradicts the properties of D and S. In particular, we have� > 0, D positive semide�nite and S nonsingular, so for 0 � � < 1, we musthave u = 0, and the contradiction is immediate. For � = 1 we still obtain animmediate contradiction unless DSu = 0, in which case u is also an eigenvectorof JS with imaginary eigenvalue �, which contradicts (2.2).It may therefore be concluded that (2.3) has no eigenvalue on the imaginaryaxis for any � > 0 and 0 � � � 1. It follows from continuous dependence ofeigenvalues on the parameter � that the number of eigenvalues (counting algebraicmultiplicity) in each half-plane is a homotopy invariant, i.e. is constant for all0 � � � 1. Theorem 1 follows, since for � = 1 the matrix in (2.3) reduces to(1.4), while for � = 0 it reduces to �S. Q.E.D.The homotopy is also applicable in the case � = 0, where it allows us toconclude that for 0 � � < 1, (2.3) has no eigenvalue on the imaginary axis.However for � = 0, as � ! 1 eigenvalues can approach the imaginary axis. Now(2.3) involves only real matrices, so eigenvalues must occur in complex conjugatepairs. It follows that if S has an odd number of negative eigenvalues, at leastone eigenvalue in the right half-plane remains real as � ! 1. By assumptionJS is nonsingular, so this eigenvalue cannot converge to zero. Thus at critical



6 J. H. MADDOCKS AND M. L. OVERTONpoints of odd index, JS has at least one positive real eigenvalue. This conclusionis the classic result already mentioned in the introduction ([23] Article 345x, [5]Article 40). In the �nite dimensional case a more elementary proof is availableby simply considering the determinant of JS. However, the more constructivehomotopy proof focuses attention on the main di�culty, namely movement ofpure imaginary eigenvalues of JS under perturbation.For � small, and for a given imaginary eigenvalue �, Theorem 2 below givesmore detailed information describing the perturbed eigenvalues associated with�. Before stating Theorem 2 we need to introduce some further notation.Any eigenvalue of JS that is not pure imaginary is of little interest, since smallperturbations cannot move it across the imaginary axis. Accordingly denote theimaginary eigenvalues of JS by�1; : : : ; �� ;��1; : : : ;���;where �j and ��j have algebraic multiplicity mj , and �j is positive imaginary.Denote the associated eigenvalues of A(�) by the continuous functions�qj(�); �qj(�)with the understanding that�qj(0) = �j ; q = 1; : : : ;mj; j = 1; : : : ; �:Recall that the geometric eigenspace for �j is the null space of JS��jI, and theinvariant subspace for �j is the null space of (JS � �jI)mj .Theorem 2. Let j 2 f1; : : : ; �g, and assume thatSDS restricted to the geometric eigenspace for �jis positive de�nite. Then, for � su�ciently small, the number of the eigenvalues�qj (�) in the right half-plane is equal to the number of negative eigenvalues ofS restricted to the invariant subspace for �j.If �j is simple, Theorem 2 follows easily fromwell known perturbation results.But if �j has multiplicitymj > 1, the behavior of the eigenvalues of the perturbedmatrix is potentially quite complicated. We emphasize that both Theorems 1 and2 hold regardless of the Jordan structure of JS.Recall that an eigenvalue �j is semisimple if the geometric eigenspace andthe invariant subspace corresponding to �j are equal; equivalently, the part ofthe Jordan form of JS corresponding to �j is diagonal. An eigenvalue �j isnonderogatory if the geometric eigenspace for �j is a one-dimensional subspaceof the invariant subspace for �j ; equivalently, the part of the Jordan form ofJS corresponding to �j consists of a single Jordan block. In the analysis ofmultiple eigenvalues, semisimple and nonderogatory eigenvalues lie at opposite



STABILITY THEORY FOR HAMILTONIAN SYSTEMS 7structural extremes (minimum and maximum number of entries in the corre-sponding o�-diagonal positions of the Jordan form). A simple eigenvalue is bothnonderogatory and semisimple.The proof of Theorem 2 is deferred to Section 4. There we give a detailedanalysis of the relationship between the inertia of S and the asymptotic behaviorof the eigenvalues of A(�) in the case of general Jordan structure. This result isexpressed as Theorem 4. The proof of Theorem 2 demonstrates that hypothesis(2.2) is sharp in the sense that Theorems 1 and 2 are false when (2.2) does nothold.Since the case in which �j is semisimple is considerably more straightfor-ward, we address it �rst, summarizing the asymptotic behavior of the perturbedeigenvalues in that case in Theorem 3.3. Perturbation Formulas in the Semisimple CaseTheorem 3. Let j 2 f1; : : : ; �g, and assume that the imaginary eigenvalue�j is semisimple. Let Zj be a matrix whose mj columns form a basis for thegeometric eigenspace (equivalently the invariant subspace) for �j. Without lossof generality, Zj can be chosen such that(3.1) Z�j SZj = Kj = Diag(�1):Let Tj = Z�j SDSZj . Then(3.2) �qj(�) = �j + �qj �+ o(�); q = 1; : : : ;mj ;where the �qj , q = 1; : : : ;mj, are the eigenvalues of the matrix �KjTj .Proof: That (3.1) holds without loss of generality follows from choosing anarbitrary eigenvector basis Zj , diagonalizing Z�j SZj , and scaling. The numberof �1's depends only on the inertia of S restricted to the geometric eigenspace.We have JSZj = �jZj so Z�j SJS = �(JSZj )�S= �(�jZj)�S= �jZ�j S:Thus, the rows of Z�j S form a basis for the left geometric eigenspace of JS.Noting that (3.1) holds, we see that choosingYj = KjZ�j S



8 J. H. MADDOCKS AND M. L. OVERTONyields bases Zj and Yj for the right and left eigenspaces that satisfy the biorthog-onality condition YjZj = I:Therefore, �j = ZjYj is the eigenprojection for �j , satisfying�jJS = JS�j = �jJS�j = �j�j:Observe that(3.3) dd�A(0) = �DS:Applying the well known perturbation theory for semisimple eigenvalues [11],Theorem II.5.4, we see that (3.2) holds, where the �qj are the nontrivial eigenvaluesof �jDS�j , i.e. the eigenvalues of the mj �mj matrix(3.4) Yj(�DS)Zj = �KjZ�j SDSZj = �KjTj: Q:E:D:Now assume that SDS is positive de�nite on the geometric eigenspace for�j , i.e. the Hermitian matrix Tj is positive de�nite. Thus the Hermitian squareroot T 1=2j exists, with KjTj similar to T 1=2j KjT 1=2j . It follows that the �qj areall real and, by Sylvester's law of inertia, their signs are determined by the signpattern of the matrix Kj . Consequently, Theorem 2 follows from Theorem 3 inthe semisimple case.The signs in Kj = Z�j SZj are called the Krein signatures associated withthe positive imaginary eigenvalue �j . This nomenclature is discussed further inSection 8.Theorem 3 states that the perturbed eigenvalues corresponding to the semi-simple eigenvalue �j are di�erentiable with respect to the perturbation parameter�, with derivatives equal to the eigenvalues of the mj � mj matrix KjTj . Thematrix KjTj , like the unperturbed matrix JS, is the product of two matrices,neither of which is positive de�nite in general. In the introduction, it was notedthat if S is de�nite, the eigenvalues of JS are imaginary; likewise the proof ofTheorem 2 in the semide�nite case uses the hypothesis that Tj is de�nite, so thatthe eigenvalues of the product are real with signs determined by the signs of thefactor Kj . We shall use this kind of argument repeatedly, although it becomesmore complicated in the case of general Jordan structure.If �j is simple, KjTj is just a scalar. Let zj denote the corresponding eigen-vector. In this case, Theorem 3 reduces to the statement that the correspondingperturbed eigenvalue is(3.5) �j(�) = �j + �j�+ o(�)where �j = ��j�j; �j = z�j SDSzj ; �j = z�jSzj = �1:



STABILITY THEORY FOR HAMILTONIAN SYSTEMS 9It should be noted that since we are considering only real perturbations, thereis no need to consider conjugate eigenvalues separately, since movement of eigen-values in the upper half-plane determines the movement of those in the lowerhalf-plane. 4. Perturbation Formulas in the General CaseIn the case of arbitrary Jordan structure, the behavior of the eigenvalues un-der perturbation is quite complicated. We shall need two powerful branches ofmatrix and operator theory: the theory of inde�nite scalar products [9], and ana-lytic perturbation theory for eigenvalues [2]. We begin by establishing notation.We shall assume in the following that JS has no eigenvalue in addition to thenonzero imaginary numbers ��1; : : : ;��� . Extension to the more general case isstraightforward, but notationally inconvenient, and is deferred to the end of thissection.Let V reduce JS to Jordan form, i.e.(4.1) V �1JSV = Diag(G1; : : : ; G�; G1; : : : ; G�);with(4.2) Gj = Diag(�1j ; : : : ;�1j| {z }r1j ; : : : : : : ;�pjj ; : : : ;�pjj| {z }rpjj );and �kj = 26664�j 1� �� �� 1�j 37775a Jordan block for �j with dimensionmkj . The Jordan block �kj appears rkj timesin Gj, the part of the Jordan form corresponding to �j . The mkj , k = 1; : : : ; pj,are called the distinct partial multiplicities for �j , and they satisfym1j > � � � > mpjj ; pjXk=1 rkjmkj = mj :If �j is semisimple, then pj = 1, m1j = 1 and r1j = mj . If �j is nonderogatory,then pj = 1, m1j = mj , and r1j = 1. The columns of V are called Jordan vectors(alternatively principal vectors or generalized eigenvectors). We writeV = [V1; : : : ; V�; V1; : : : ; V�]



10 J. H. MADDOCKS AND M. L. OVERTONconformally with (4.1) and(4.3) Vj = [V 11j ; : : : ; V 1r1jj ; : : : : : : ; V pj1j ; : : : ; V pjrpjjj ]conformally with (4.2). Each V klj represents a distinct chain, of length mkj , ofJordan vectors for �j , since(4.4) (JS � �j)V klj = V klj 26664 0 1� �� �� 1037775 :Lemma 1. The matrix V in (4.1) can be chosen so that(4.5) V �SV = Diag(H1; : : : ;H�;H1; : : : ;H�)where Hj = Diag(�11j �1j ; : : : ; �1r1jj �1j ; : : : : : : ; �pj1j �pjj ; : : : ; �pjrpjjj �pjj )conformally with (4.1),(4.2). Here �klj = �1and(4.6) �kj = 266664 �kj��kj�kj�� 377775 ;a reverse diagonal matrix of dimension mkj , with(4.7) �kj = 8>><>>: 1 mkj � 1 (mod 4)i mkj � 2 (mod 4)�1 mkj � 3 (mod 4)�i mkj � 0 (mod 4)9>>=>>; ; i = p�1:Proof: Consider the matrix iJS. We have(iJS)�S = S(iJS)



STABILITY THEORY FOR HAMILTONIAN SYSTEMS 11so iJS is said to be self-adjoint with respect to the inde�nite scalar productde�ned by hx; xi = x�Sx [9], Section I.2.2. The eigenvalues of iJS and those ofJS di�er by factors of i, so, since the latter are imaginary, the former are real.The Jordan form of iJS has a structure identical to the Jordan form of JS, givenby (4.1). Let eV denote a similarity transformation reducing iJS to Jordan form,with blocks eV klj corresponding to the blocks V klj of (4.3), and let f�kj denote theassociated Jordan blocks. The diagonals of �kj and f�kj di�er by a factor of i, butthe superdiagonals are the same. We havei�kj = 
�f�kj
 where 
 = Diag(1; i;�1;�i; : : :):Therefore, the eV klj and V klj are conveniently related by(4.8) V klj = eV klj 
:By [9], Section I.3.2, eV can be chosen so that(4.9) eV �S eV = Diag( eH1; : : : ; eH�; eH01; : : : ; eH0�)with eHj = Diag(�11j P 1j ; : : : ; �1r1jj P 1j ; : : : : : : ; �pj1j P pjj ; : : : ; �pjrpjjj P pjj )and eH0j = Diag((�11j )0P 1j ; : : : ; (�1r1jj )0P 1j ; : : : : : : ; (�pj1j )0P pjj ; : : : ; (�pjrpjjj )0P pjj )where �klj = �1; (�klj )0 = �1and P kj = 26664 1���1 37775 ;a reversing permutation matrix of dimension mkj . Using (4.8) and (4.9), we seethat V �SV is also block diagonal, with(4.10) (V klj )�SV klj = 
�(eV klj )�S eV klj 
 = �klj 
�P kj 
 = �klj �kj :This proves Lemma 1. Note that applying the same argument to the conjugateblocks in the second half of V shows that(4.11) (V klj )�SV klj = (�klj )0�kj ;



12 J. H. MADDOCKS AND M. L. OVERTONso that, since identities (4.10) and (4.11) are conjugates of each other,(�klj )0 = � �klj mkj is odd��klj mkj is even� : Q:E:D:Lemma 1 displays the inertia of S in the convenient form 4.5. The backwardsdiagonal matrix �kj is Hermitian and unitary with half of its eigenvalues equal to+1 and half of them equal to �1. When mkj is odd the extra eigenvalue is +1,since the trace of �kj is one. The presence of Jordan blocks in the Jordan formof JS therefore places strong restrictions on the inertia of S restricted to thecorresponding invariant subspace. Speci�cally, if JS has a Jordan block of sizem, where m is even, then S, restricted to the corresponding invariant subspace,must have m=2 positive and m=2 negative eigenvalues, and the same is true onthe invariant subspace for the conjugate eigenvalue. This fact is at the heart ofthe theory of inde�nite scalar products [9]. It generalizes the well known factthat the presence of any nontrivial Jordan block in the spectral decomposition ofa matrix precludes the possibility that the matrix is self-adjoint with respect tothe usual de�nite inner product.We are now ready to state and prove the main result of this section. Assumethat V satis�es the conditions expressed in Lemma 1. Let zklj denote the �rstcolumn of V klj , l = 1; : : : ; rkj , k = 1; : : : ; pj, j = 1; : : : ; �, and letZkj = [zk1j ; : : : ; zkrkjj ]:The columns of Zkj form a set of rkj eigenvectors of grade mkj for �j , i.e. they areassociated with rkj distinct Jordan chains of length mkj . LetZj = [Z1j ; : : : ; Zpjj ]:The columns of Zj span the geometric eigenspace for �j . Also, let(4.12) Kkj = Diag(�k1j ; : : : ; �krkjj );denote the diagonal matrix of signs.Theorem 4. Let j 2 f1; : : : ; �g, and assume that SDS is nonsingular onthe geometric eigenspace for the imaginary eigenvalue �j , i.e. Z�j SDSZj is non-singular. Then the eigenvalues of A(�) converging to �j as � ! 0 consist ofgroups(4.13) �klqj (�) = �j + (�klj )1=mkj �1=mkj + o(�1=mkj )q = 1; : : : ;mkj ; l = 1; : : : ; rkj ; k = 1; : : : ; pj



STABILITY THEORY FOR HAMILTONIAN SYSTEMS 13where(i) the notation �qj(�) used in Theorem 2 has been re�ned to the more speci�cnotation �klqj (�) which groups the eigenvalues of A(�) according to the Jordanstructure of JS(ii) the equation (4.13) means that the distinct values �klqj (�), for q = 1; : : : ;mkj ,are de�ned by taking the mkj distinct mkj -th roots of �klj(iii) for k = 1, i.e. the case corresponding to Jordan blocks in Gj with largestdimension, the �klj , that is �1lj , l = 1; : : : ; r1j , are the eigenvalues of the r1j byr1j matrix ��1jK1j T 1j ;where(4.14) T 1j = (Z1j )�SDSZ1j(iv) for k > 1, the �klj , l = 1; : : : ; rkj , are the eigenvalues of the rkj by rkj matrix(4.15) ��kjKkj T kj ;where, omitting sub- and superscripts for brevityT kj = C � B�F�1B;with(4.16) � F BB� C � = � (Xk�1j )�(Zkj )� �SDS [Xk�1j Zkj ]and Xk�1j = [Z1j ; : : : ; Zk�1j ]:Proof: Equation (4.4) shows that the columns of V klj form a chain, of lengthmkj , of Jordan vectors for �j . Furthermore,(V klj )�S(JS � �j) = ((�j � JS)V klj )�S= 26664 0�1� �� �� ��1 037775 (V klj )�Si.e. the rows of (V klj )�S form a chain, of length mkj , of left Jordan vectors for �j .Reversing the order of this chain and scaling appropriately givesUklj = �klj �kj (V klj )�S;



14 J. H. MADDOCKS AND M. L. OVERTONwhich satis�es Uklj (JS � �j) = 26664 0 1� �� �� 1037775Uklj :Furthermore, from (4.5), we haveUklj V klj = �klj �kj (V klj )�SV klj = (�klj )2(�kj )2 = Ia biorthogonality condition on the right chain de�ned by the columns of V klj andthe left chain de�ned by the rows of Uklj . Indeed, collecting all left chains Ukljin a matrix U , we have the biorthogonality condition UV = I. For each pair ofchains V klj , Uklj , the associated right and left eigenvectors are respectively the�rst column of V klj , denoted zklj , and the last row of Uklj , namelyyklj = �klj �kj (zklj )�S:Collect all such left eigenvectors for �j associated with chains of length mkj in amatrix(4.17) Y kj = [yk1j ; : : : ; ykrkjj ] = �kjKkj (Zkj )�S;recalling that Kkj was de�ned in (4.12).We are now in a position to apply the analytic perturbation theory for multipleeigenvalues with arbitrary Jordan structure, which was developed by Lidskiiand others in the Russian literature in the 1960's and re�ned and extended byBaumg�artel [2]. Speci�cally, we shall use [2] Thm. 7.4.7 (p. 306) together withThm. 7.4.6 (p. 305) and Lemma 7.4.9 (p. 298). Using (3.3), these show thatthe eigenvalues of A(�) associated with the largest Jordan blocks for �j , namelythose of dimension m1j , have expansions given by�1lqj (�) = �j + (�1lj )1=m1j �1=m1j + o(�1=m1j );where the �1lj are the eigenvalues of the r1j by r1j matrixY 1j (�DS)Z1j = ��1jK1j (Z1j )�SDSZ1j = ��1jK1j T 1j :This proves the theorem for the case k = 1. The case k > 1 is more complicated.Using Xk�1j = [Z1j ; : : : ; Zk�1j ] and W k�1j = 264 Y 1j...Y k�1j 375 ;



STABILITY THEORY FOR HAMILTONIAN SYSTEMS 15the results in Baum�gartel just quoted show that, provided W k�1j DSXk�1j isnonsingular, the eigenvalues of A(�) associated with Jordan blocks of size mkj for�j have expansions given by (4.13), where the �klj are the roots of the polynomialin �(4.18) det��W k�1jY kj � (�DS) [Xk�1j Zkj ] � � � 0 00 I �� ;the identity block having dimension rkj . LetEk�1j = Diag(�1jK1j ; : : : ; �k�1j Kk�1j );and observe, using (4.17), that W k�1j DSXk�1j = Ek�1j F , where F is de�nedin (4.16). Thus, the assumption that SDS is nonsingular on the geometriceigenspace provides the required nonsingularity condition. Furthermore, (4.18)reduces, using (4.16) and (4.17), to(4.19) �det��Ek�1j 00 �kjKkj � � F BB� C + �I �� :We have det � F BB� C + �I � = det�� I 0�B�F�1 I � � F BB� C + �I ��= det �F B0 C � B�F�1B + �I �so the roots of (4.19) are the eigenvalues of (4.15), which completes the proof ofTheorem 4. Q.E.D.In the semisimple case, Theorem 4 reduces to Theorem 3 since all Jordanblocks have dimension one, all Jordan vectors are eigenvectors and �1jK1jT 1j re-duces to KjTj of Theorem 3. In the nonderogatory case, �j is again associatedwith only one size Jordan block, namely a single block of size mj . In this case�1jK1j T 1j is a scalar, and the associated perturbed eigenvalues split along raysseparated by angles of 2�=mj . In the case that �j is simple, both these specialcases reduce to (3.5).We are now ready to prove Theorem 2, stated in Section 2.Proof of Theorem 2: Consider a group of eigenvalues �klqj (�) correspondingto Jordan blocks for the imaginary eigenvalue �j with size mkj . By assumption,SDS is positive de�nite on the geometric eigenspace. This ensures, in the casek = 1, that T 1j is positive de�nite, and, in the case k > 1, that (4.16) is positivede�nite and therefore that the Schur complement T kj = C � B�F�1B is positive



16 J. H. MADDOCKS AND M. L. OVERTONde�nite. Consequently, using (4.7), the eigenvalues �klj of (4.15) are real if mkjis odd and imaginary if mkj is even, with sign pattern determined by ��kjKkj =��kjDiag(�klj ). The mkj mkj -th roots of each �klj are equally spaced around acircle centered at the origin in the complex plane. In the case that mkj is even,none of the mkj mkj -th roots of the imaginary quantities �klj are either real orimaginary, so, for each eigenvalue �klj , half of the mkj -th roots lie strictly in theleft half-plane and half in the right. Now suppose that mkj is odd, so that the�klj are real with signs determined by �klj = ��kj�klj , l = 1; : : : ; rkj . The only realmkj -th root of �klj has the same sign as �klj . One must then distinguish betweenthe cases mkj � 1 (mod 4) and mkj � 3 (mod 4) to count how many roots liein the left half-plane and how many in the right. It is easily seen that, in bothcases, (mkj + �klj )=2 of the mkj -th roots of �klj lie strictly in the left half-plane,and the others lie in the right. It follows from (4.13) that for � su�ciently small,the half-plane in which �klqj (�) lies is completely determined by the half-plane inwhich the corresponding mkj -th root of �klj lies.To complete the proof of Theorem 2, we need only determine the inertia of Srestricted to the invariant subspace for �j . This is displayed in the block diagonalform (4.5). Speci�cally, we have, for l = 1; : : : ; rkj ; k = 1; : : : ; pj(4.20) (V klj )�SV klj = �klj �kj :In the case mkj is even, half of the eigenvalues of (4.20) are positive and halfare negative, while if mkj is odd, exactly (mkj + �klj )=2 are positive and the restare negative. Thus, for � su�ciently small, the number of eigenvalues �klqj (�),q = 1; : : : ;mkj , in the right half-plane and the number of positive eigenvalues of(4.20) is the same. Since (4.5) is block diagonal, the number of negative eigen-values of S restricted to the invariant subspace is obtained from summing thenumber of negative eigenvalues in the components 4.20. This proves Theorem 2.Q.E.D.A restricted version of Theorem 1, in which � is assumed su�ciently small,may now be proved using Theorem 2 together with Lemma 1. Before we can dothis, we must remove the assumption that all eigenvalues of JS are imaginary,as follows. By two-fold symmetry, all non-imaginary eigenvalues occur in pairs(�;��). These eigenvalues cannot cross the imaginary axis under in�nitesimalperturbation, so there is no need to analyze their behavior under perturbation:the number in the left half-plane is the same as the number in the right half-plane. We now need to verify that the counts of positive and negative eigenval-ues of S restricted to the corresponding invariant subspaces are the same. Inorder to do this, we must extend the block diagonal decomposition (4.5) to covernon-imaginary eigenvalues. The pair (�;��) for JS corresponds to a complexconjugate pair (i�;�i�) for iJS. Using [9], Sec I.3.2, we see that each such pair,



STABILITY THEORY FOR HAMILTONIAN SYSTEMS 17with corresponding Jordan vectors in V , introduces an additional set of matricesof the form �kj , into (4.5). The number and dimensions of these blocks dependon the Jordan form of the pair (�;��), but since the dimensions are all even, thecontributions to the number of positive and negative eigenvalues of S restrictedto the corresponding invariant subspace are the same.The proof that Theorem 1 holds for su�ciently small � is then immediate.The inertia of S and of V �SV are the same, and the latter is displayed in theblock diagonal form (4.5). Therefore, the number of negative eigenvalues of S isobtained by adding together the number of negative eigenvalues of S restrictedto each of the invariant subspaces. The movement of the conjugate eigenvaluesin the lower half-plane is determined by the eigenvalues in the upper half-plane.Finally, we note that Theorems 2, 3 and 4 and the restricted version of The-orem 1 (for � su�ciently small) all hold when the linear perturbation (J � �D)Sis replaced by an analytic perturbation (J � �D � �2D0 � � � �)S. The proofs areunchanged. 5. ExampleIn order to illustrate the rather intricate arguments required in the statementand proof of Theorem 4, we shall now describe a comparatively straightforwardexample in which all computations can be carried out explicitly, and the eigen-values of the perturbed problem can easily be determined numerically. We con-sider the simplest case where a multiple eigenvalue is neither semisimple nornonderogatory. Let n = 3, so that JS has order six, and suppose JS has oneconjugate pair of imaginary eigenvalues ��1, each of multiplicity three. Supposefurther that �1 has two independent eigenvectors, i.e. L = JS � �1I has nullitytwo. It follows that �1 has two Jordan blocks, of sizes two and one. Using stan-dard methods it is easy to compute vectors a, b and c satisfying Lb = a, La = 0and Lc = 0. Thus a and b form a Jordan chain of length two and c is a Jordanchain of length one. Both a and c are eigenvectors, but b is a Jordan vector, orgeneralized eigenvector. Furthermore, a�S and �b�S form a left Jordan chain oflength two, and c�S a left Jordan chain of length one.Multiplying the equation Lb = a on the left by the left eigenvector a�S, wesee that a�Sa = 0, and doing the same with the left eigenvector c�S yieldsc�Sa = 0. Similarly multiplying the same equation on the left by the left Jordanvector �b�S, we �nd that a�Sb = �b�Sa. It follows that a�Sb is imaginary. Wetherefore have(5.1) [a b c ]� S [ a b c ] = 24 0 � 0�� � 0  � 35where � is imaginary. Furthermore, it is easy to show from the assumption onthe Jordan form that � and � are both nonzero.



18 J. H. MADDOCKS AND M. L. OVERTONWe now wish to normalize a, b and c such that (5.1) is consistent with theblock diagonal form given in Lemma 1. First scale a and b by 1=pja�Sbj, so that� = a�Sb = �i. Then replace b by b � �(b�Sb)=2 a, so that b�Sb = 0. Theserescalings do not change the property that a and b form a Jordan chain, and donot a�ect the value of a�Sb since a�Sa = 0. Then replace c by the eigenvectorc� �(b�Sc)a, so that b�Sc = 0. Finally, scale the new choice of c by 1=pjc�Scj,so that c�Sc = �1. Then (5.1) holds with � = �i, � =  = 0, and � = �1. Thuswith V1 = [a b c], V = [V1 V1] satis�es (4.5).In the notation of Section 4 we have m1 = 3, p1 = 2, m11 = 2, r11 = 1, m21 = 1,r21 = 1, �11 = i, and �21 = 1. Furthermore V1 = [V 111 V 211 ], where V 111 = [a b],V 211 = c, Z11 = z111 = a, and Z21 = z211 = c. The signs of �111 and �211 aredetermined by the signs of � and �.Part (iii) of Theorem 4 then states that two of the eigenvalues of the perturbedmatrix(5.2) A(�) = (J � �D)Ssatisfy, for q = 1; 2, �11q1 = �1 �q�111 p�+ o(p�);where �111 = ��11�111 a�SDSa = i�111 a�SDSa:Part (iv) states that the third eigenvalue of the perturbed matrix correspondingto the unperturbed eigenvalue �1 satis�es�2111 = �1 + �211 �+ o(�);where �211 = ��211 (c�SDSc � ja�SDSbj2a�SDSa ):Speci�cally, suppose that J has the form (1.2) andS = 26666641 0 1 0 0 00 1 0 0 0 01 0 0 0 0 00 0 0 1 0 �1=40 0 0 0 1=4 00 0 0 �1=4 0 0 3777775 :This matrix S has two negative and four positive eigenvalues. The matrix JS hasone pair of eigenvalues �1 = �0:5i, each with multiplicity three and two Jordanblocks. After carrying out the computations described above we �nda � 2666664 0:6233� 0:3338i0�0:3117 + 0:1669i0:3338 + 0:6233i00:6677 + 1:2467i 3777775 ; b � 2666664 00�0:3338� 0:6233i00�2:4934 + 1:3353i3777775 ; c � 2666664 00:7071i00�1:4140 3777775



STABILITY THEORY FOR HAMILTONIAN SYSTEMS 19with � = �i, � = 1, �111 = �1, �211 = 1:Arbitrarily choosingD = ETE; E = �1 2 3 �1 �2 �31 �2 3 1 2 �3 �we have �111 = �ia�SDSa � �13:0625iand �211 = �(c�SDSc � ja�SDSbj2a�SDSa ) � �4:904306:Therefore two of the eigenvalues of (5.2) satisfy, for q = 1; 2,�11q1 = 0:5i� (2:555631� 2:555631i)p�+ o(p�);while the third satis�es �2111 = 0:5i� 4:904306�+ o(�):
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Figure 1: The splitting of an eigenvalue with algebraic multiplicity three andgeometric multiplicity two. Plus signs (respectively circles) show eigenvalues of(J � �D)S for equally spaced values of � > 0 (respectively � < 0).



20 J. H. MADDOCKS AND M. L. OVERTONThese results can be compared with a numerical computation of the eigenval-ues of (5.2) for � = 10�6. Those with positive imaginary part are approximately�0:002559674+ 0:502555636i0:002551578+ 0:497444364i�0:000004904306+ 0:5i;con�rming the formulas derived above.Figure 1 plots the eigenvalues of (5.2) for 11 discrete choices of � uniformlyspaced between �0:01 and 0:01, using the symbol \+" for positive values of � and\o" for negative values of �. Attention may be restricted to the upper half-plane.Notice that two of the eigenvalues move much more rapidly than the third, andthat the \fast" eigenvalues change directions through an angle of �=2 as theypass through 0:5i (� = 0). By comparison the third eigenvalue moves very slowlyand the symbols centered on the distinct perturbed values overlap in the plot.This sharp distinction between \strong" and \weak" interaction of eigenvalues iswell known (e.g.[21]), and is a direct consequence of the Jordan structure of JS.The plot illustrates the main result of this paper, which is that the number ofeigenvalues in the right half-plane for positive � is precisely equal to the numberof negative eigenvalues of S, in this case two.6. Nonsymmetric Dissipative PerturbationsTheorems 1, 2, 3 and 4 all hold in the presence of more general dissipative per-turbations in whichD is nonsymmetric, but its symmetric part D+DT is positivesemide�nite, with the analogue of hypothesis (2.2) holding, namely S(D +DT )Spositive de�nite on the geometric eigenspaces for imaginary eigenvalues. In thehomotopy proof of Theorem 1, D is merely broken into its symmetric and skew-symmetric parts. The proofs of Theorems 3 and 4 are unchanged. Theorem 2 isproven from Theorem 3 in the semisimple case by remarking that with the no-tation Tj = Z�j SDSZj , Tj + T �j is positive de�nite, and consequently the matrixTj is inertia preserving [3], i.e. the half-planes in which the eigenvalues of KjTjlie are determined by the signs in Kj .To prove Theorem 2 from Theorem 4 for nonsymmetric dissipative perturba-tions, one needs in addition only a generalization of the classic result for positivede�niteness of Schur complements. IfM = �F BG C � ;and M +M� is positive de�nite, then T + T � is also positive de�nite, where Tis the Schur complement T = C � GF�1B [6], Theorem 4.1.5.



STABILITY THEORY FOR HAMILTONIAN SYSTEMS 217. Nondissipative PerturbationsIf D(x) is skew-symmetric then the modi�ed dynamics (1.6) remains withinthe class of Hamiltonian systems, but with a perturbed Poisson structure matrixJ(x)��D(x). (Strictly the perturbation D(x) should also be such that the Jacobiidentity holds for J(x) � �D(x), but we make no use of that property.) Theperturbation formulas of Theorems 3 and 4 hold exactly as before, assuming, inthe case of Theorem 4, that SDS is nonsingular on the geometric eigenspaces forimaginary eigenvalues. However, no analogues of Theorems 1 and 2 hold. Indeed,sharp counts on the number of eigenvalues in the right half-plane are not possiblewithout detailed knowledge of the perturbationD. Nevertheless, Theorems 3 and4 can be used to recover a variant of classic results characterizing Hamiltoniansystems that are strongly stable. In this context, and anticipating connectionswith the classic theory that are described in the next section, we shall say that aHamiltonian system linearized at a spectrally stable equilibrium point is strongly(or parametrically) stable, if the equilibria of all perturbed systems of the form(1.6) with D = �DT are spectrally stable.Suppose therefore that D is skew-symmetric. Assume �rst that the imaginaryeigenvalue �j is semisimple. From Theorem 3, the derivatives of the perturbedeigenvalues �qj(�) are the eigenvalues of �KjTj , or equivalently TjKj , whereTj = Z�j SDSZj , and Kj = Z�j SZj is a diagonal matrix of signs. Since Tjis skew-Hermitian and Kj is real diagonal, TjKj is Hamiltonian, which is notsurprising, since the derivatives of the �qj(�) must have two-fold symmetry. Whenthe signs in Kj are all the same, i.e. S is de�nite on the eigenspace, it followsthat the derivatives of the eigenvalues �qj(�), i.e. the eigenvalues of TjKj , are allimaginary. If Kj contains mixed signs, it does not necessarily follow that aneigenvalue �qj(�) moves o� the imaginary axis. This indeterminacy in the e�ectof Hamiltonian perturbations is exactly analogous to the lack of sharpness in thecorrespondence between the eigenvalues of (1.4) and (1.5). However, it is clearthat some skew-symmetric perturbation D moves eigenvalues o� the imaginaryaxis whenever Kj has mixed signs. Therefore we say that �j is not stronglystable in this case.Now, again assuming that D is skew-symmetric, suppose that the imaginaryeigenvalue �j has at least one nontrivial Jordan block. Suppose for simplicity thatthere is only one such block, and that it has dimension two, with correspondingeigenvector zj. Theorem 4 shows that this block is associated with two perturbedeigenvalues �j �p�jp�+ o(p�);where �j = i�j�j; �j = z�jSDSzj ; �j = �1:Since �j is imaginary, �j is real, so the eigenvalues must split in opposite directionseither along the imaginary axis or along the line passing through �j parallel to thereal axis. It is impossible to know which case applies without knowing the signof the imaginary quantity �j, but for some skew-symmetric D, the perturbation



22 J. H. MADDOCKS AND M. L. OVERTONis unstable. If there is a Jordan block of size m > 2, the splitting must take placealong rays separated by angles of 2�=m, so eigenvalues move o� the imaginaryaxis for all skew-symmetric D. Without detailed knowledge of the perturbationD it is not possible to count how many eigenvalues move into the right half-plane.But for all D, at least one eigenvalue moves into the right half-plane.In summary, strongly stable systems are precisely those for which all eigen-values �j are semisimple, with S positive de�nite on each eigenspace.8. Relations with Classic ResultsThe conclusions of the last section are completely consistent with the Gel'fand-Krein-Lidskii-Moser strong stability theorem [8], [12], [14], [18] (p. 56), [19], [24](p. 192). In fact, the remarks of Section 7 can be regarded as a paraphrase ofthe strong stability theorem, with the following three di�erences.The �rst di�erence is that the classic form of the strong stability theoremactually pertains to linearization about periodic solutions, so that a linear systemwith periodic coe�cients arises, and the result is accordingly usually describedin terms of the movement of the Floquet multipliers, which are eigenvalues of thesymplectic monodromy matrix. Since Hamiltonian and symplectic matrices arerelated by matrix exponentiation, an eigenvalue of a Hamiltonian matrix in theright half-plane corresponds to an eigenvalue of the associated symplectic matrixoutside the unit circle. Consequently, when specialized to equilibrium points, thestrong stability theorem provides information concerning eigenvalue movementwith respect to the imaginary axis (Moser, [19], especially p. 112). Conversely,our results can be couched in terms of symplectic matrices. But in that context,the motivation for the physically appropriate form of dissipative perturbation isless clear.Second, the original motivation for the strong stability theorem was to char-acterize those linearly stable systems that remain stable under Hamiltonian per-turbations. It is therefore natural to restrict attention to the semisimple case,because unperturbed eigenvalues with nontrivial Jordan blocks correspond tounstable modes of the linearized dynamics with polynomial growth in time. How-ever, in order to obtain the results of primary interest here, namely the sharpcharacterization of exponentially growing modes in the presence of dissipation, itis necessary to consider the more intricate case of perturbation of general Jordanstructures, as described by Theorem 4.Third, the family of perturbations that is considered in the classic form of thestrong stability theorem is(8.1) B(�) = J(S + �E);which stands in contrast to (2.1). In (8.1) the perturbation is Hamiltonian when-ever E is symmetric, which is naturally associated with perturbations in theHamiltonian H(x). In (2.1) the perturbation is Hamiltonian whenever D is



STABILITY THEORY FOR HAMILTONIAN SYSTEMS 23skew-symmetric, which is naturally associated with perturbations in the Pois-son structure matrix J(x). Since J and S are both assumed to be nonsingular,arbitrary linear perturbations of JS can be factored into either the form (2.1)or the form (8.1). However Darboux's Theorem and associated changes of co-ordinates must be invoked to investigate the full connections between the twoschemes. For our purposes, where the primary focus is on dissipative perturba-tions, the family (2.1) is more natural because of the simple relationship with thedamped nonlinear system (1.6).Nonetheless, it is of interest to briey consider extension of Theorems 3 and 4to the perturbation family (8.1). Instead of (3.3), we havedd�B(0) = JE:Let us restrict attention to the semisimple case. Note that with J of the form(1.2), SZj = ��jJZj , so that Kj can also be written in the form ��jZ�j JZj .A related observation is that, again assuming (1.2), the left eigenvector basisYj = KjZ�j S can also be written Yj = ��jKjZ�j J . Consequently the derivativesof the eigenvalues of B corresponding to �j are the eigenvalues of(8.2) YjJEZj = ��jKjZ�j J2EZj = �jKjTjwhere Tj = Z�jEZj . Suppose E is symmetric, so that (8.1) is a Hamiltonianperturbation. If we further assume that either S or E is de�nite on the eigenspace,so that either Kj or Tj has a Hermitian square root, it follows that the eigenvaluesof �jKjTj, i.e. the derivatives of the eigenvalues of B, are imaginary. If neitherS nor E is de�nite on the eigenspace, the derivatives may be non-imaginary.These conclusions comprise the classic form of the strong stability theo-rem, translated from symplectic to Hamiltonian matrices, and restricted to thesemisimple case. (In the non-semisimple case strong stability is not possible,as already explained in the previous section.) The signs in the matrix Kj areequivalent to the Krein signatures of the positive imaginary eigenvalue �j, asde�ned in [7], p. 11, for example. In the classic discussions, Krein signatures arede�ned such that �j and its conjugate ��j have signatures of opposite signs. Inthat case, there are always a total of n positive and n negative Krein signatures.It is perhaps of interest to remark that, according to the discussion in [8],pp. 147{149, in his original treatment Krein [12] considered perturbations of theform (8.1) for two choices of perturbation E. First he took E to have the skew-Hermitian form E = iF , where F is real, symmetric and positive de�nite, andused an argument, directly analogous to the proof of Theorem 1 given here, toshow that no eigenvalue remains on the imaginary axis. The symmetry of timereversal was exploited to claim that n eigenvalues move into each half-plane. Thisdichotomy was used to label each eigenvalue as being of either Type 1 or Type 2.Then for the second class of perturbations, namely E = F , a real, symmetric andpositive de�nite perturbation, the classi�cation was combined with a homotopyargument to conclude that eigenvalues cannot move o� the imaginary axis to form



24 J. H. MADDOCKS AND M. L. OVERTONcomplex quadruplets unless a Type 1 and Type 2 eigenvalue coincide. Theseconclusions also follow immediately from (8.2). With E = iF , Tj is i timesa Hermitian, positive-de�nite matrix, so the derivatives of the pure imaginaryeigenvalues �j are all real. The signs of any one group of perturbed eigenvaluesare determined by the inertia of S restricted to the corresponding unperturbedeigenspace. In total, n eigenvalues move left and n move right, because thederivatives are real with a factor of �j, so the sign pattern for the perturbationof �j is the opposite to that for the conjugate eigenvalue ��j . Type 1 and 2eigenvalues coincide precisely when S is inde�nite on a given eigenspace, and,as already explained, that is the case when Hamiltonian perturbations can moveeigenvalues o� the imaginary axis.In recent work, MacKay [15] analyzes dissipative perturbations using the per-turbation family (8.1) for general matrices E. He gives a formula closely relatedto (8.2) in the case where �j is simple, and interprets it in terms of energy andenergy decay rate of the linearized dynamics. MacKay remarks that extensionto the case of multiple eigenvalues would be of interest. This generalization isprovided by our results.9. Lagrangian Dynamics with Rayleigh DissipationIn this section we shall demonstrate that a large class of systems arisingin classical mechanics are encompassed by the framework that was adopted inSection 1. Consider autonomous Lagrangian systems, i.e. second-order equationsof the form(9.1) � ddtL _q + Lq = 0:Here the Lagrangian L(q; _q) : <2n ! < is a given function of the generalizedcoordinates q(t) 2 <n and associated generalized velocities _q(t), and the sub-scripts denote partial derivatives. Provided that the matrix L _q _q is nonsingular,the de�nition p � L _q(q; _q)of the conjugate momenta p 2 <n can be inverted locally, yielding_q = Q(q; p):As is well known, the second-order system (9.1) is equivalent to a �rst-orderHamiltonian system of the form (1.1) with the canonical structure matrix (1.2),x = (q; p), and(9.2) H(q; p) = pQ(q; p)� L(q;Q(q; p)):The Lagrangian is often a convex function of the generalized velocities, for ex-ample a positive de�nite quadratic form, in which case, with appropriate growth



STABILITY THEORY FOR HAMILTONIAN SYSTEMS 25conditions, the Hamiltonian (9.2) can be de�ned globally by the standard Legen-dre transform of convex analysis. We shall not make this convexity assumption,although we shall exploit the fact that Hpp = L�1_q _q , so that nonsingularity of L _q _qimplies invertibility of Hpp.The standard way to introduce dissipation into Lagrangian dynamics usesa Rayleigh dissipation function of the form 12 _qTR(q) _q, with R(q) a symmetricpositive de�nite n� n matrix ([20], Chpt. X). Then the conservative dynamics(9.1) is modi�ed to the dissipative dynamics(9.3) � ddtL _q + Lq = �R(q) _q;where � is a positive scaling factor. If the momenta p are introduced as before,we �nd that the dissipative second-order dynamics (9.3) is equivalent to the per-turbed Hamiltonian system (1.6) where x, J , and H are de�ned as above, andthe positive semide�nite, symmetric perturbation matrix D(x) is de�ned by(9.4) D(q; p) = � 0 00 R(q) � :We are interested in the dynamics linearized about equilibrium solutions(q(t); _q(t)) � (qe; 0). Such solutions are equilibria of (9.1) and (9.3) preciselywhen Lq(qe; 0) = 0. At such points the linearization of (9.3) is(9.5) �L̂ _q _q�u+ nL̂T_qq � L̂ _qqo _u+ L̂qqu = �R̂ _u;where u(t) is the linearized variable, and L̂ _q _q = L _q _q(qe; 0), etc. Of course (9.5)is itself a Lagrangian system, with a quadratic Lagrangian, that is perturbedby Rayleigh dissipation. The associated dissipatively perturbed, linear Hamil-tonian system can either be found by the usual transformation from (9.5), orfrom linearization of (1.6) about (qe; pe). The associated quadratic Hamiltonianis 12 (u;w)TS(u;w) where(9.6) S � �Hqq HqpHpq Hpp � = � L̂q _qL̂�1_q _q L̂ _qq � L̂qq �L̂q _qL̂�1_q _q�L̂�1_q _q L̂ _qq L̂�1_q _q � ;and (u;w) are the linearized variables associated with (q; p).Lemma 2. Suppose that S is an invertible matrix of the form (9.6) with theHpp block also invertible, D is a matrix of the form (9.4) with R̂ positive de�nite,and J is the canonical matrix (1.2). Then z�SDSz > 0 for all eigenvectors z ofJS, i.e. hypothesis (2.2) is automatically satis�ed.



26 J. H. MADDOCKS AND M. L. OVERTONProof: Suppose not. Then there exists an eigenvector z = (z1; z2) withSz = (z3; 0), i.e.(9.7) �Hqq HqpHpq Hpp �� z1z2 � = � z30 � ;and � 0 I�I 0 � � z30 � = � � z1z2 � :But by hypothesis � = 0 is not an eigenvalue, so z1 = 0. Then from the secondequation in (9.7) and the invertibility of Hpp, we conclude that z2 = 0 also, acontradiction. Q.E.D.Lemma 2 allows application of Theorems 1 and 2 to this class of dissipativelyperturbed Lagrangian systems with no explicit knowledge of any eigenvectorrequired. It is by no means the case that all Hamiltonian systems are of theform described in this section, but many are. Indeed considerable work has beenexpended on such systems, and on further special cases of such systems. Forexample, many Lagrangians arising in classical mechanics are decoupled withkinetic and potential energies of the form(9.8) L(q; _q) = 12 _qTT (q) _q � V (q);and associated Hamiltonian(9.9) H(q; p) = 12pTT�1(q)p+ V (q);where T (q) is a symmetric positive de�nite matrix de�ning a kinetic energy that ispure quadratic in the velocities, and V (q) is the potential. In this special contextthe o�-diagonal blocks L̂q _q and Hpq vanish, and the issues discussed in this paperare moot, for it is straightforward to show that there is a sharp correspondencebetween the number of negative eigenvalues of S and the number of eigenvaluesof JS in the right half-plane, even in the absence of any dissipative perturbation.(There are delicate questions concerning characterization of stability properties ofdegenerate equilibria in such systems, e.g.[1], p. 271, but they are of an essentiallydi�erent nature.) One place to �nd a review of such classic issues is [16].Accordingly it can be seen that the crucial terms are the o�-diagonal entriesin the Hamiltonian (9.6), or equivalently the terms in the linearized Lagrangiandynamics (9.5) involving the velocities _u with skew-symmetric coe�cients. Sincethe time of Kelvin such terms have been called gyroscopic, because they are oftenassociated with e�ects of rotation, and, in particular, the stability of steady spinsof gyroscopes. The lengthy discussions in [23], Article 345 and [5], Chpt. Vconsider general perturbations of equations of the form (9.5) with L̂ _q _q positivede�nite. See also [24], p. 333, where derivative formulas are given for eigenvalues



STABILITY THEORY FOR HAMILTONIAN SYSTEMS 27arising from modes of (9.5) when subject to general perturbations, but only forthe case of semisimple eigenvalues.The inertia theorem for Schur complements can be applied to matrices S ofthe speci�c form (9.6) to conclude that the number of negative eigenvalues of the2n � 2n matrix S equals the sum of the numbers of negative eigenvalues of thetwo n � n blocks L̂ _q _q and �L̂qq . For Lagrangians of the form(9.10) L(q; _q) = 12 _qTT (q) _q + Q(q)T _q � V (q);that are quadratic in the velocities _q with T > 0, we may further conclude thatat equilibria, L̂ _q _q = T̂ has no negative eigenvalue, and �L̂qq = Vqq(q̂). Thus forLagrangian systems of the form (9.10), Theorems 1 and 2 can be applied with thenumber of negative eigenvalues of S being replaced with the number of negativeeigenvalues of the Hessian V̂qq of the potential. (Moreover Lemma 2 implies thathypothesis (2.2) is automatically satis�ed.) In particular it may be concludedthat in the presence of complete Rayleigh dissipation, the only (nondegenerate)equilibria that are stable are minima of the potential, a result sometimes knownas the Kelvin-Tait-Chetayev Theorem [10], Chpt. 5.10.Rayleigh dissipation is also discussed in [4]. While the primary focus is on thecase of relative equilibria, they do consider the case of equilibria. Their attentionis restricted to the important, but nevertheless special, case of Hamiltonians ofthe form (9.9). They derive perturbation formulas, but only for the case of simpleeigenvalues. They also adopt a Lyapunov-type approach to prove that at criticalpoints that are not minima there is at least one unstable mode of the linearizeddamped dynamics. Our results give a sharp count on the number of unstablemodes for a more general class of Hamiltonians.Acknowledgments. This research was instigated during sabbatical visits ofJHM to the Forschungsinstitut F�ur Mathematik, ETH, Z�urich, and the CourantInstitute. The hospitality of those Institutions is gratefully acknowledged. Inparticular it is a pleasure to thank Professor J.K. Moser for several stimulatingdiscussions. The authors also thank Professor A. Seyranian for various referencesto the classic literature. JHM's research is supported in part by AFOSR GrantF49620-92-J-0093 and ONR Grant N000149310017. MLO's research is supportedin part by NSF Grant CCR-9401136.E-mail: jhm@sonya.umd.edu and overton@cs.nyu.edu.Bibliography[1] Arnol'd, V. I., Kozlov, V. V., and Neishtadt, A. I., Mathematical aspects of classicaland celestial mechanics, Dynamical Systems III, Encyclop�dia of Mathematical SciencesVol. 3 (V.I. Arnol'd, ed.), Springer-Verlag, New York, 1988.[2] Baumg�artel, H., Analytic Perturbation Theory for Matrices and Operators, Birk�auserVerlag, Basel, 1985.
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