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Abstract. Let f be a continuous function on Rn, and suppose f is continuously differentiable
on an open dense subset. Such functions arise in many applications, and very often minimizers are
points at which f is not differentiable. Of particular interest is the case where f is not convex,
and perhaps not even locally Lipschitz, but is a function whose gradient is easily computed where
it is defined. We present a practical, robust algorithm to locally minimize such functions, based on
gradient sampling. No subgradient information is required by the algorithm.

When f is locally Lipschitz and has bounded level sets, and the sampling radius ε is fixed, we
show that, with probability 1, the algorithm generates a sequence with a cluster point that is Clarke
ε-stationary. Furthermore, we show that if f has a unique Clarke stationary point x̄, then the set of
all cluster points generated by the algorithm converges to x̄ as ε is reduced to zero.

Numerical results are presented demonstrating the robustness of the algorithm and its applica-
bility in a wide variety of contexts, including cases where f is not locally Lipschitz at minimizers. We
report approximate local minimizers for functions in the applications literature which have not, to our
knowledge, been obtained previously. When the termination criteria of the algorithm are satisfied,
a precise statement about nearness to Clarke ε-stationarity is available. A matlab implementation
of the algorithm is posted at http://www.cs.nyu.edu/overton/papers/gradsamp/alg.
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1. Introduction. The analysis of nonsmooth, nonconvex functions has been a
rich area of mathematical research for three decades. Clarke introduced the notion of
generalized gradient in [Cla73, Cla83]; comprehensive studies of more recent develop-
ments may be found in [CLSW98, RW98]. The generalized gradient of a function f at
a point x reduces to the gradient if f is smooth at x and to the subdifferential if f is
convex; hence, we follow common usage in referring to the generalized gradient as the
(Clarke) subdifferential, or set of (Clarke) subgradients. Its use in optimization algo-
rithms began soon after its appearance in the literature. In particular, the concept
of the ε-steepest descent direction for locally Lipschitz functions was introduced by
Goldstein in [Gol77]; another early paper is [CG78]. It is well known that the ordinary
steepest descent algorithm typically fails by converging to a nonoptimal point when
applied to nonsmooth functions, whether convex or not. The fundamental difficulty
is that most interesting nonsmooth objective functions have minimizers where the
gradient is not defined.

An extensive discussion of several classes of algorithms for the minimization of
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nonsmooth, nonconvex, locally Lipschitz functions, complete with convergence anal-
ysis, may be found in Kiwiel’s book [Kiw85]. What these algorithms have in common
is that, at each iteration, they require the computation of a single subgradient (not
the entire subdifferential set) in addition to the value of the function. The algo-
rithms then build up information about the subdifferential properties of the func-
tion using ideas known as bundling and aggregation. Such “bundle” algorithms, as
they are generally known, are especially effective for nonsmooth, convex optimiza-
tion because of the global nature of convexity, and the ideas in this case trace back
to [Lem75, Wol75]; for a comprehensive discussion of the convex case, see [HUL93].
However, for nonconvex functions, subgradient information is meaningful only locally
and must be discounted when no longer relevant. The consequence is that bundle
algorithms are necessarily much more complicated in the nonconvex case. Other con-
tributions to nonconvex bundle methods since Kiwiel’s book was published in 1985
include [FGG02, Gro02, LSB91, LV98, MN92, OKZ98, SZ92]. Despite this activity
in the field, the only publicly available nonconvex bundle software of which we are
aware are the Bundle Trust (BT) fortran code dating from 1991 [SZ92] and some
more recent fortran codes of [LV98].

In addition to this body of work on general nonsmooth, nonconvex optimization,
there is a large literature on more specialized problems, including nonconvex polyhe-
dral functions [Osb85], compositions of convex and smooth functions [Bur85, Fle87],
and quasi-differentiable functions [DR95].

There are many reasons why most algorithms for nonsmooth optimization do
not ask the user to provide a description of the entire subdifferential set at each
iterate. One is that this would demand a great deal of the user in all but the simplest
applications. More fundamentally, it is not clear how one would represent such a set
in general since it is already a formidable task in the polyhedral setting [Osb85]. Even
if this were resolved, implementation would be difficult for the user given the inherent
complexity of the continuity properties of these set-valued mappings. Asking the user
to provide only one subgradient at a point resolves these difficulties.

In virtually all interesting applications, the function being minimized is continu-
ously differentiable almost everywhere, although it is often not differentiable at min-
imizers. Under this assumption, when a user is asked to provide a subgradient at a
randomly selected point, with probability 1 the subgradient is unique, namely, the
gradient. This observation led us to consider a simple gradient sampling algorithm,
first presented without any analysis in [BLO02b]. At a given iterate, we compute
the gradient of the objective function on a set of randomly generated nearby points,
and use this information to construct a local search direction that may be viewed as
an approximate ε-steepest descent direction, where ε is the sampling radius. As is
standard for algorithms based on subgradients, we obtain the descent direction by
solving a quadratic program. Gradient information is not saved from one iteration
to the next, but discarded once a lower point is obtained from a line search. A key
motivating factor is that, in many applications, computing the gradient when it ex-
ists is little additional work once the function value is computed. Often, well-known
formulas for the gradient are available; alternatively, automatic differentiation might
be used. No subgradient information is required from the user. We have found the
gradient sampling algorithm to be very effective for approximating local minimizers of
a wide variety of nonsmooth, nonconvex functions, including non-Lipschitz functions.

In a separate work [BLO02a], we analyzed the extent to which the Clarke sub-
differential at a point can be approximated by random sampling of gradients at nearby
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points, justifying the notion that the convex hull of the latter set can serve as a
surrogate for the former.

This paper is organized as follows. The gradient sampling (GS) algorithm is
presented in section 2. The sampling radius ε may be fixed for all iterates or may
be reduced dynamically; this is controlled by the choice of parameters defining the
algorithm.

A convergence analysis is given in section 3, making the assumption that the
function f : Rn → R is locally Lipschitz, has bounded level sets, and, in addition,
is continuously differentiable on an open dense subset of Rn. Our first convergence
result analyzes the GS algorithm with fixed ε, and establishes that, with probability
1, it generates a sequence with a cluster point that is Clarke ε-stationary, in a sense
that will be made precise. A corollary shows that if f has a unique Clarke stationary
point x̄, then the sets of all cluster points generated by the GS algorithm converge
to x̄ as ε is reduced to zero. These results are then strengthened for the case where
f is either convex or smooth. In all cases, when the termination criteria of the GS
algorithm are satisfied, a precise statement about nearness to Clarke ε-stationarity is
available.

We should emphasize that although Clarke stationarity is a first-order optimality
condition, there are two considerations that allow us to expect that, in practice, cluster
points of the GS algorithm are more than just approximate stationary points, but
are in fact approximate local minimizers. The first consideration is a very practical
one: the line search enforces a descent property for the sequence of iterates. The
second consideration is more theoretical: we are generally interested in applying the
algorithm to a nonsmooth function that, although not convex, is subdifferentially
regular [RW98] (equivalently, its epigraph is regular in the sense of Clarke [Cla83]).
Clarke stationarity at a point of subdifferential regularity implies the nonnegativity
of the usual directional derivative in all directions. This is much stronger than Clarke
stationarity in the absence of regularity. For example, 0 is a Clarke stationary point
of the function f(x) = −|x|, but f is not subdifferentially regular at 0.

In section 4, we present numerical results that demonstrate the effectiveness and
robustness of the GS algorithm and its applicability in a variety of contexts. We set
the parameters defining the GS algorithm so that the sampling radius ε is reduced
dynamically. We begin with a classical problem: Chebyshev exponential approxima-
tion. Our second example involves minimizing a product of eigenvalues of a symmetric
matrix; it arises in an environmental data analysis application. We then turn to some
important functions arising in nonsymmetric matrix analysis and robust control, in-
cluding non-Lipschitz spectral functions, pseudospectral functions, and the distance
to instability. We conclude with a stabilization problem for a model of a Boeing 767
at a flutter condition. As far as we know, none of the problems that we present has
been solved previously by any method.

Finally, we make some concluding remarks in section 5. Our matlab implemen-
tation of the GS algorithm is freely available on the Web.1

2. The gradient sampling algorithm. The GS algorithm is conceptually very
simple. Basically, it is a stabilized steepest descent algorithm. At each iteration, a
descent direction is obtained by evaluating the gradient at the current iterate and at
additional nearby points and then computing the vector in the convex hull of these
gradients with smallest norm. A standard line search is then used to obtain a lower

1http://www.cs.nyu.edu/overton/papers/gradsamp/alg/.
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point. Thus, stabilization is controlled by the sampling radius used to sample the
gradients. In practice, we begin with a large sampling radius and then reduce this
according to rules that are set out in section 4, where we show, using various examples,
how well the algorithm works.

Despite the simplicity and power of the algorithm, its analysis is not so simple.
One difficulty is that it is inherently probabilistic, since the gradient is not defined
on the whole space. Another is that analyzing its convergence for a fixed sampling
radius is already challenging, and extending our results in that case to a version
of the algorithm that reduces the sampling radius dynamically presents additional
difficulties. In order to take care of both fixed and dynamically changing sampling
radius, the statement of the algorithm becomes a little more complicated. We set
out the algorithmic details in this section and present the convergence analysis in the
next section.

The algorithm may be applied to any function f : Rn → R that is continuous on
Rn and differentiable almost everywhere. However, all our theoretical results assume
that f is locally Lipschitz continuous and continuously differentiable on an open dense
subset D of Rn. In addition, we assume that there is a point x̃ ∈ Rn for which the
set L = {x | f(x) ≤ f(x̃)} is compact.

The local Lipschitz hypothesis allows us to approximate the Clarke subdifferential
[Cla83] as follows. For each ε > 0, define the multifunction Gε : Rn ⇒ Rn by

Gε(x) = cl conv∇f((x + εB) ∩D),

where B = {x | ‖x‖ ≤ 1} is the closed unit ball and ‖·‖ is the 2-norm. The sets Gε(x)
can be used to give the following representation of the Clarke subdifferential of f at
a point x:

∂̄f(x) =
⋂
ε>0

Gε(x).

We also make use of the ε-subdifferential introduced by Goldstein [Gol77]. For each
ε > 0, the Clarke ε-subdifferential is given by

∂̄εf(x) = cl conv ∂̄f(x + εB).

Clearly, Gε(x) ⊂ ∂̄εf(x), and for 0 < ε1 < ε2 we have ∂̄ε1f(x) ⊂ Gε2(x). In addition,
it is easily shown that the multifunction ∂̄εf has closed graph.

We say that a point x is a Clarke ε-stationary point for f if 0 ∈ ∂̄εf(x). This
notion of ε-stationarity is key to our approach. Indeed, the algorithm described below
is designed to locate Clarke ε-stationary points. For this reason we introduce the
following scalar measure of proximity to Clarke ε-stationarity:

ρε(x) = dist (0 |Gε(x) ) .(1)

We now state the GS algorithm. Scalar parameters are denoted by lowercase
Greek letters. A superscript on a scalar parameter indicates taking that scalar to the
power of the superscript.

In order to facilitate the reading and analysis of the algorithm, we provide a
partial glossary of the notation used in its statement.
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Glossary of Notation

k: Iteration counter. µ: Sampling radius reduction factor.
xk: Current iterate. θ: Optimality tolerance reduction factor.
γ: Backtracking reduction factor. m: Sample size.
L: {x | f(x) ≤ f(x̃)}. D: Points of differentiability.
ukj : Unit ball samples. xkj : Sampling points.
β: Armijo parameter. gk: Shortest approximate subgradient.
εk: Sampling radius. dk: Search direction.
νk: Optimality tolerance. tk: Step length.

The GS algorithm.
Step 0: (Initialization)

Let x0 ∈ L ∩ D, γ ∈ (0, 1), β ∈ (0, 1), ε0 > 0, ν0 ≥ 0, µ ∈ (0, 1], θ ∈ (0, 1],
k = 0, and m ∈ {n + 1, n + 2, . . . }.

Step 1: (Approximate the Clarke ε-subdifferential by gradient sampling)
Let uk1, . . . , ukm be sampled independently and uniformly from B, and set

xk0 = xk and xkj = xk + εku
kj , j = 1, . . . ,m.

If for some j = 1, . . . ,m the point xkj /∈ D, then STOP; otherwise, set

Gk = conv {∇f(xk0),∇f(xk1), . . . ,∇f(xkm)},

and go to Step 2.
Step 2: (Compute a search direction)

Let gk ∈ Gk solve the quadratic program ming∈Gk
‖g‖2

, i.e.,∥∥gk∥∥ = dist (0 |Gk ) and gk ∈ Gk.

If νk =
∥∥gk∥∥ = 0, STOP. If

∥∥gk∥∥ ≤ νk, set tk = 0, νk+1 = θνk, and
εk+1 = µεk, and go to Step 4; otherwise, set νk+1 = νk, εk+1 = εk, and
dk = −gk/

∥∥gk∥∥, and go to Step 3.
Step 3: (Compute a step length)

Set

tk = max γs

subject to s ∈ {0, 1, 2, . . . } and
f(xk + γsdk) < f(xk) − βγs

∥∥gk∥∥ ,
and go to Step 4.

Step 4: (Update)
If xk + tkd

k ∈ D, set xk+1 = xk + tkd
k, k = k + 1, and go to Step 1. If

xk + tkd
k /∈ D, let x̂k be any point in xk + εkB satisfying x̂k + tkd

k ∈ D and

f(x̂k + tkd
k) < f(xk) − βtk

∥∥gk∥∥(2)

(such an x̂k exists due to the continuity of f). Then set xk+1 = x̂k + tkd
k,

k = k + 1, and go to Step 1.
The algorithm is designed so that every iterate xk is an element of the set L∩D.

We now show that the line search defined in Step 3 of the algorithm is well defined in
the sense that the value of tk can be determined by a finite process. Let NC(x) denote
the normal cone to the set C at a point x [Roc70], and recall from convex analysis
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that gk solves infg∈Gk
‖g‖ if and only if −gk ∈ NGk

(gk), that is,
〈
g − gk ,−gk

〉
≤ 0

for all g ∈ Gk. Therefore, if
∥∥gk∥∥ = dist (0 |Gk ) 	= 0, then

∇f(xk)T dk ≤ sup
g∈Gk

〈
g , dk

〉
≤ −

∥∥gk∥∥ .
Since xk ∈ D, we have f ′(xk; dk) = ∇f(xk)T dk. Hence, there is a t̄ > 0 such that

f(xk + tdk) ≤ f(xk) + tβ∇f(xk)T dk ≤ f(xk) − tβ
∥∥gk∥∥ ∀ t ∈ (0, t̄).

The choice of search direction used in the GS algorithm is motivated by the
direction of steepest descent in nonsmooth optimization. Recall that the Clarke di-
rectional derivative for f at a point x is given by the support functional for the Clarke
subdifferential at x:

f◦(x; d) = max
z∈∂̄f(x)

〈z , d〉 .

Therefore, the direction of steepest descent is obtained by solving the problem

min
‖d‖≤1

f◦(x; d) = min
‖d‖≤1

max
z∈∂̄f(x)

〈z , d〉 .

The next lemma, which is essentially well known, shows that the search direction in
the GS algorithm is an approximate direction of steepest descent.

Lemma 2.1. Let G be any compact convex subset of Rn; then

−dist (0 |G ) = min
‖d‖≤1

max
g∈G

〈g , d〉 .(3)

Moreover, if ḡ ∈ G satisfies ‖ḡ‖ = dist (0 |G ), then d̄ = −ḡ/ ‖ḡ‖ solves the problem
on the right-hand side of (3).

Proof. The result is an elementary consequence of the von Neumann minimax
theorem. Indeed, one has

−dist (0 |G ) = −min
g∈G

‖g‖

= −min
g∈G

max
‖d‖≤1

〈g , d〉

= − max
‖d‖≤1

min
g∈G

〈g , d〉

= − max
‖d‖≤1

min
g∈G

〈g ,−d〉

= min
‖d‖≤1

max
g∈G

〈g , d〉 ,

from which it easily follows that d = −ḡ/ ‖ḡ‖ solves the problem

inf
‖d‖≤1

sup
g∈G

〈g , d〉 ,

where ḡ is the least norm element of G.
By setting G equal to the sets Gk in the GS algorithm, we obtain the approximate

steepest descent property:

−dist (0 |Gk ) = min
‖d‖≤1

max
g∈Gk

〈g , d〉 .
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The case xk + tkd
k /∈ D in Step 4 of the algorithm seems unlikely to occur, and

we do not correct for this possibility in our numerical implementation. Nonetheless,
we need to compensate for it in our theoretical analysis since we have not been able
to show that it is a zero probability event. The GS algorithm is a nondeterministic
algorithm, and in this spirit Step 4 is easily implemented in a nondeterministic fashion
as follows. At step ω = 1, 2, . . . , sample x̂ from a uniform distribution on xk+(εk/ω)B
and check to see if x̂+ tkd

k ∈ D and the inequality (2) with x̂k = x̂ is satisfied. If so,
set x̂k = x̂, xk+1 = x̂k + tkd

k, k = k + 1, and return to Step 1; otherwise, increase ω
and repeat. With probability 1 this procedure terminates finitely.

The GS algorithm can be run with ν0 = 0 and µ = 1, so that νk = 0 and εk = ε0
for all k. This instance of the algorithm plays a prominent role in our convergence
analysis. Indeed, all of our theoretical convergence results follow from the analysis in
this case. In practice, however, the algorithm is best implemented with µ < 1 and ν0

positive. When ν0 = 0, the algorithm terminates at iteration k0 if either xk0j /∈ D for
some j = 1, . . . ,m or

∥∥gk0
∥∥ = 0. The probability that xk0j /∈ D for some j = 1, . . . ,m

is zero, while
∥∥gk0

∥∥ = 0 is equivalent to ρεk0
(xk0) = 0.

Before proceeding to the convergence analysis, we make a final observation con-
cerning the stochastic structure of the algorithm, as it plays a key role in our analysis.
Although the algorithm specifies that the points uk1, . . . , ukm are sampled from B at
each iteration, we may think of this sequence as a realization of a stochastic process
{(uk1, . . . ,ukm)} where the realization occurs before the initiation of the algorithm.
In this regard, we consider only those realizations that are ergodic with respect to
B
m. Specifically, we consider only those processes that hit every positive measure

subset of B
m infinitely often. We define this subset of events as E and note that with

probability 1 the realization {(uk1, . . . , ukm)} is in E .

3. Convergence analysis. Throughout this section it is assumed that the func-
tion f : Rn → R is locally Lipschitz continuous on Rn and continuously differentiable
on an open dense subset D of Rn. We begin with two technical lemmas.

Lemma 3.1. Let v ∈ C, where C is a nonempty closed convex subset of Rn

that does not contain the origin. If δ > 0, η > 0, and u, ū ∈ C are such that
η ≤ ‖ū‖ = dist (0 |C ) and ‖u‖ ≤ ‖ū‖ + δ, then〈

v − u ,
−u

‖u‖

〉
≤
[
‖v‖

√
2

η
+
√

[2 ‖ū‖ + δ]

]√
δ.

Proof. Since ‖ū‖ = dist (0 |C ), we have −ū ∈ NC(ū). Hence, for all h ∈ C

〈h− ū ,−ū〉 ≤ 0,

or, equivalently,

‖ū‖2 ≤ 〈h , ū〉 .

Therefore,

1 −
〈

u

‖u‖ ,
ū

‖ū‖

〉
≤ 1 − ‖ū‖2

‖u‖ ‖ū‖ =
1

‖u‖ [‖u‖ − ‖ū‖] ≤ δ

‖u‖ ≤ δ

‖ū‖ ,

∥∥∥∥ u

‖u‖ − ū

‖ū‖

∥∥∥∥
2

= 2

[
1 −

〈
u

‖u‖ ,
ū

‖ū‖

〉]
≤ 2δ

‖ū‖ ,
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‖u− ū‖2
= ‖u‖2 − 2 〈u , ū〉 + ‖ū‖2

≤ ‖u‖2 − ‖ū‖2

= (‖u‖ + ‖ū‖)(‖u‖ − ‖ū‖)
≤ [2 ‖ū‖ + δ]δ,

and

‖v − ū‖2
= ‖v‖2 − 2 〈v , ū〉 + ‖ū‖2

≤ ‖v‖2 − ‖ū‖2

≤ ‖v‖2
.

Consequently,〈
v − u ,

−u

‖u‖

〉
=

〈
v − ū ,

−ū

‖ū‖

〉
+

〈
v − ū ,

ū

‖ū‖ − u

‖u‖

〉
+

〈
u− ū ,

u

‖u‖

〉

≤
〈
v − ū ,

ū

‖ū‖ − u

‖u‖

〉
+

〈
u− ū ,

u

‖u‖

〉

≤ ‖v − ū‖
∥∥∥∥ u

‖u‖ − ū

‖ū‖

∥∥∥∥+ ‖u− ū‖

≤ ‖v‖
√

2δ

‖ū‖ +
√

[2 ‖ū‖ + δ]δ

≤
[
‖v‖

√
2

η
+
√

[2 ‖ū‖ + δ]

]√
δ .

The next lemma establishes properties of the set of all points close to a given
point x′ that can be used to provide a δ-approximation to the element of Gε(x

′) of
least norm. Specifically, let m ≥ n + 1, δ > 0, and x′, x ∈ Rn be given, and set

Dm
ε (x) =

m∏
1

(D ∩ (x + εB)) ⊂
m∏
1

Rn.

Consider the set Rε(x
′, x, δ) ⊂

∏m+1
1 Rn of all (m+1)-tuples (x1, . . . , xm, g) satisfying

(x1, . . . , xm) ∈ Dm
ε (x) and g =

m∑
j=1

λj∇f(xj)

for some 0 ≤ λj , j = 1, 2, . . . ,m, with

m∑
j=1

λj = 1 and

∥∥∥∥∥∥
m∑
j=1

λj∇f(xj)

∥∥∥∥∥∥ ≤ ρε(x
′) + δ.

We need to understand the local behavior of this set as well as its projections

Vε(x
′, x, δ) =

{
(x1, . . . , xm) : ∃g with (x1, . . . , xm, g) ∈ Rε(x

′, x, δ)
}

and

Uε(x
′, x, δ) =

{
g : ∃(x1, . . . , xm) with (x1, . . . , xm, g) ∈ Rε(x

′, x, δ)
}
.

Lemma 3.2. For ε > 0, let ρε be as defined in (1), and let m ≥ n+ 1, δ > 0, and
x̄ ∈ Rn be given with 0 < ρε(x̄).
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(i) There is a τ > 0 such that the set Vε(x̄, x, δ) contains a nonempty open subset
whenever ‖x− x̄‖ ≤ τ .

(ii) τ > 0 may be chosen so that there is a nonempty open set V̄ ⊂ Vε(x̄, x̄, δ)
such that V̄ ⊂ Vε(x̄, x, δ) for all x ∈ x̄ + τB.

(iii) By definition, we have Uε(x̄, x, δ) ⊂ Gε(x) for all x ∈ Rn, and so

ρε(x) ≤ ‖u‖ ≤ ρε(x̄) + δ ∀u ∈ Uε(x̄, x, δ), x ∈ Rn.

In addition, if τ > 0 is as given by statement (i) or (ii), then the set Uε(x̄, x, δ)
is guaranteed to be nonempty whenever ‖x− x̄‖ ≤ τ .

(iv) The function ρε is upper semicontinuous, i.e.,

lim sup
x→x̄

ρε(x) ≤ ρε(x̄).

(v) Let η > 0. Then for every compact subset K of the set L for which infK ρε(x) ≥
η there exist µ̄ > 0, an integer  ≥ 1, τj ∈ (0, ε/3), j = 1, . . . , , and a set
of points {z1, z2, . . . , z�} ⊂ K such that the union ∪�

j=1(z
j + τj int B) is an

open cover of K and for each j = 1, . . . ,  there is a point (zj1, . . . , zjm) ∈
Vε(z

j , zj , δ) such that

(zj1, . . . , zjm) + µ̄B
m ⊂ Vε(z

j , x, δ) whenever x ∈ zj + τjB.

Proof. Let u ∈ conv {∇f(x) |x ∈ (x̄ + εB) ∩D} be such that

‖u‖ < ρε(x̄) + δ.

Then Carathéodory’s theorem [Roc70] implies the existence of (x̄1, . . . , x̄m) ∈ Dm
ε (x̄)

and λ̄ ∈ Rm
+ with

∑m
j=1 λ̄j = 1 such that u =

∑m
j=1 λ̄j∇f(x̄j). Since f is con-

tinuously differentiable on the open set D, there is an ε0 > 0 such that f is con-
tinuously differentiable on x̄j + ε0 int B ⊂ x̄ + εB for j = 1, . . . ,m. Define F :
(x̄1 + ε0 int B) × · · · × (x̄m + ε0 int B) → Rn by F (x1, . . . , xm) =

∑m
j=1 λ̄j∇f(xj).

The mapping F is continuous on (x̄1 + ε0 int B) × · · · × (x̄m + ε0 int B). Next define
U = {u ∈ Rn | ‖u‖ < ρε(x̄) + δ }. Then, by definition, the set

V = F−1(U) ∩
(
(x̄1 + ε0 int B) × · · · × (x̄m + ε0 int B)

)
is a nonempty open subset of Vε(x̄, x̄, δ). Now since the sets x+εB converge to the set
x̄+ εB in the Hausdorff metric as x → x̄, we must have that V ∩ ((x + ε int B) × · · ·×
(x + ε int B)) is open and nonempty for all x sufficiently close to x̄. This proves
statement (i).

To see that statement (ii) is true, observe that since Vε(x̄, x̄, δ) contains a nonempty
open subset Ṽ there must exist an ε̃ ∈ (0, ε) such that

V̄ = Ṽ ∩ ((x̄ + ε̃ int B) × · · · × (x̄ + ε̃ int B))

is open and nonempty. Since the Hausdorff distance between x + εB and x̄ + εB is
‖x− x̄‖ whenever ‖x− x̄‖ < ε/2, we have that V̄ ⊂ Vε(x̄, x, δ) whenever ‖x− x̄‖ ≤
(ε− ε̃)/2 = τ . This proves statement (ii).

Statement (iii) follows immediately from statement (ii), while statement (iv) fol-
lows from statement (iii) by letting δ → 0.

Statement (ii) and compactness imply statement (v). Indeed, statement (ii) im-
plies that for each x′ ∈ K there is a τ(x′) ∈ (0, ε/3) and a nonempty open set
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V (x′) ⊂ Vε(x
′, x′, δ) such that V (x′) ⊂ Vε(x

′, x, δ) whenever x ∈ x′ + τ(x′)B. The
sets x′ + τ(x′) int B form an open cover of K. Since K is compact, this open cover
contains a finite subcover zj + τj int B, j = 1, . . . , . Let (zj1, . . . , zjm) ∈ Vε(z

j , zj , δ)
and µ̄j > 0 be such that (zj1, . . . , zjm) + µ̄jB

m ⊂ V (zj) for j = 1, . . . , . By setting
µ̄ = min{µ̄1, . . . , µ̄�} we obtain the result.

We also need the following mean value inequality [Cla83, Theorem 2.3.7].
Theorem 3.3 (Lebourg mean value theorem). Let f : Rn → R be locally

Lipschitz and let x, y ∈ Rn. Then there exist z ∈ [x, y] and w ∈ ∂̄f(z) such that

f(y) − f(x) = 〈w , y − x〉 .

The main convergence result follows.
Theorem 3.4 (convergence for fixed sampling radius). If {xk} is a sequence

generated by the GS algorithm with ε0 = ε, ν0 = 0, and µ = 1, then with probability
1 either the algorithm terminates finitely at some iteration k0 with ρε(x

k0) = 0 or
there is a subsequence J ⊂ N such that ρε(x

k) →J 0 and every cluster point x̄ of the
subsequence {xk}J satisfies 0 ∈ ∂̄εf(x̄).

Proof. We may assume that event E occurs (see the discussion at the end of
section 2). That is, we may assume that the sequence {(uk1, . . . , ukm)} hits every
positive measure subset of B

m infinitely often. As previously noted, this event occurs
with probability 1.

We begin by considering the case where the algorithm terminates finitely. Let
x ∈ L and ε > 0, and let z be a realization of a random variable that is uniformly
distributed on B. Then the probability that x+εz /∈ D is zero. Hence, with probability
1 the algorithm does not terminate in Step 1. Therefore, if the algorithm terminates
finitely at some iteration k0, then with probability 1 it did so in Step 2 with ρε(x

k0) =
0.

We now restrict our attention to the set of events Ê ⊂ E where the algorithm
does not terminate finitely. For such events, we have that xkj ∈ D for j = 0, 1, . . . ,m
and k = 0, 1, 2, . . . . Conditioned on Ê occurring, we show that with probability 1
there is a subsequence J ⊂ N such that ρε(x

k) →J 0 and every cluster point x̄ of the
subsequence {xk}J satisfies 0 ∈ ∂̄εf(x̄).

Since the sequence {f(xk)} is decreasing and L is compact, it must be the case

that there is a κ > 0 and an f̂ such that κ is a Lipschitz constant for f on all of L+B

and f(xk) ↓ f̂ . Consequently, (f(xk+1) − f(xk)) → 0, and so by Step 3 of the GS
algorithm

tk
∥∥gk∥∥→ 0.

If the result were false, then with positive probability there is an η > 0 such that

η = inf
k∈N

ρε(x
k) ≤ inf

k∈N

∥∥gk∥∥ ,(4)

since by definition ρε(x) = dist (0 |Gε(x) ) and
∥∥gk∥∥ = dist (0 |Gk ). For such an

event tk ↓ 0.
Let us assume that event (4) has occurred, and let K be the set of points x ∈ L

having ρε(x) ≥ η. Then

{xk} ⊂ K .(5)
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The set K is closed by part (iv) of Lemma 3.2 and so K is compact since L is compact.
Choose δ > 0 so that [

κ

√
2

η
+
√

2κ + δ

]√
δ < (1 − β)

η

2
.(6)

Let µ̄ > 0, τj ∈ (0, ε/3), zj ∈ K, and (zj1, . . . , zjm) ∈ Vε(z
j , zj , δ) for j = 1, . . .  be

associated with K as in part (v) of Lemma 3.2 for ε > 0 and δ > 0 as given above.
Thus, in particular,

K ⊂
�⋃

j=1

(
zj + τj int B

)
.(7)

By (5) and (7), there exists for each k = 1, 2, . . . a jk ∈ {1, 2, . . . , } such that

xk ∈ zjk + τjk int B.

Hence, by part (v) of Lemma 3.2,

(zjk1, . . . , zjkm) + µ̄B
m ⊂ Vε(z

jk , xk, δ) ⊂ Dm
ε (xk).

Since the xki (i = 1, . . . ,m) are uniformly distributed random variables supported on
Dm

ε (xk), it follows that

prob{xki ∈ zjki + µ̄B} =
vol(µ̄B)

vol(εB)
=
( µ̄
ε

)n
.

Hence,

prob{(xk1, . . . , xkm) ∈ (zjk1, . . . , zjkm) + µ̄B
m} =

( µ̄
ε

)nm
.

Consequently, since event (4) has occurred, we have with probability 1 that there is
an infinite subsequence J ⊂ N and a j̄ ∈ {1, . . . , } such that for all k ∈ J

γ−1tk < min
{
γ,

ε

3

}
,(8)

xk ∈ zj̄ +
ε

3
B, and(9)

(xk1, . . . , xkm) ∈ (zj̄1, . . . , zj̄m) + µ̄B
m ⊂ Vε(z

j̄ , zj̄ , δ) ⊂ Dm
ε (zj̄),

which implies that for all k ∈ J

{xk0, xk1, . . . , xkm} ⊂ zj̄ + εB and(10)

η ≤
∥∥gk∥∥ ≤ dist

(
0
∣∣∣ Ĝk

)
≤ ρε(z

j̄) + δ,(11)

where Ĝk = conv {∇f(xk1), . . . ,∇f(xkm)}.
By construction we have that

−γ−1βtk
∥∥gk∥∥ ≤ f(xk + γ−1tkd

k) − f(xk) ∀ k ∈ J.

Theorem 3.3 yields for each k ∈ J the existence of x̃k ∈ [xk + γ−1tkd
k, xk] and

vk ∈ ∂̄f(x̃k) such that

f(xk + γ−1tkd
k) − f(xk) = γ−1tk

〈
vk , dk

〉
.
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Since
∥∥dk∥∥ = 1, relations (8) and (9) imply that x̃k ∈ zj̄ + εB and so vk ∈ Gε(z

j̄) for

all k ∈ J . In addition, the Lipschitz continuity hypothesis implies that
∥∥vk∥∥ ≤ κ for

all k ∈ J . Hence,

−γ−1βtk
∥∥gk∥∥ ≤ γ−1tk

〈
vk , dk

〉
∀ k ∈ J,

or, equivalently,

−β
∥∥gk∥∥ ≤ −

∥∥gk∥∥+
〈
vk − gk , dk

〉
∀ k ∈ J,

which in turn implies that

0 ≤ (β − 1)η +

〈
vk − gk ,

−gk

‖gk‖

〉
∀ k ∈ J.(12)

By combining (10) and (11) with Lemma 3.1, where C = Gε(z
j̄), and then applying

the bound (6), we find that〈
vk − gk ,

−gk

‖gk‖

〉
≤
[
κ

√
2

η
+
√

2κ + δ

]√
δ < (1 − β)

η

2
.

Plugging this into (12) yields the contradiction

0 <
1

2
(β − 1)η ∀ k ∈ J.

Consequently, the event (4) cannot occur with positive probability, which proves that
if Ê occurs, then with probability 1 there is a subsequence J ⊂ N such that ρε(x

k) → 0.
Finally, if x̄ is a cluster point of the subsequence {xk}J with J ⊂ N, then

dist
(
0
∣∣ ∂̄εf(xk)

)
→J 0

since 0 ≤ dist
(
0
∣∣ ∂̄εf(xk)

)
≤ ρε(x

k) →J 0. Hence 0 ∈ ∂̄εf(x̄) for every cluster point
x̄ of the subsequence {xk}J since the multifunction ∂̄εf is closed.

Theorem 3.4 tells us that when f has compact level sets then with probability 1
the GS algorithm generates a sequence of iterates having at least one cluster point
that is Clarke ε-stationary. It is interesting to note that we have deduced this without
having shown that the values

∥∥gk∥∥ = dist (0 |Gk ) converge to zero. Indeed, if this
sequence of values did converge to zero, then every cluster point of the sequence
{xk} would be a Clarke ε-stationary point. A convergence result of the type where
every cluster point satisfies some kind of approximate stationarity condition is what
is usually obtained in the smooth case. We now show that the GS algorithm also
has this property under a smoothness hypothesis. In the same vein, if one assumes
convexity, then a much stronger result is possible, and we cover this case as well in
our next result. This is introduced to provide intuition into the behavior of the GS
algorithm in the familiar settings of smoothness and convexity. By no means are
we suggesting that the GS algorithm is a useful method when either smoothness or
convexity is present.

Corollary 3.5. Let the hypotheses of Theorem 3.4 hold.
1. If the function f is everywhere continuously differentiable, then either the GS

algorithm terminates finitely at a point x̄ for which 0 ∈ Gε(x̄) = ∂̄εf(x̄) or the
sequences {xk} and {

∥∥gk∥∥} are such that
∥∥gk∥∥→ 0 and every cluster point x̄

of the sequence {xk} satisfies 0 ∈ Gε(x̄) = ∂̄εf(x̄).
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2. If the function f is convex, then with probability 1 either the GS algorithm
terminates finitely at a point x̄ for which 0 ∈ ∂̄εf(x̄ + εB) or every cluster
point x̄ of the sequence {xk} satisfies

f(x̄) ≤ min
Rn

f(x) + 2κε,(13)

where κ is any Lipschitz constant for f on L.
Remark. Condition (13) is equivalent to the condition that 0 ∈ ∂2κεf(x̄), where

∂εf(x) denotes the ε-subdifferential from convex analysis:

∂εf(x) = {z | f(y) ≥ f(x) + 〈z , y − x〉 − ε ∀ y ∈ Rn } .

Proof.
1. If the algorithm terminates finitely at iteration k0, then it must do so in Step

2, in which case 0 ∈ Gε(x̄).
Next suppose that the algorithm does not terminate finitely. Further, let us

suppose to the contrary that the sequence of values
∥∥gk∥∥ contains a subsequence

J ⊂ N that is bounded away from zero:

0 < η := inf
J

∥∥gk∥∥ .
Since the sequence {f(xk)} is decreasing and the set L is compact, we may assume with
no loss of generality that there is a point x̄ ∈ L such that xk →J x̄ and f(xk) ↓ f(x̄).
In addition, we have

f(xk+1) − f(xk) < −tkβ
∥∥gk∥∥ ,

and so tk
∥∥gk∥∥ → 0. For the subsequence J this implies that tk → 0. Thus, we may

assume again with no loss of generality that tk ↓J 0 with tk < 1 for all k ∈ J . Hence,
for all k ∈ J there exists zk ∈ [xk, xk + γ−1tkd

k] such that

−γ−1tkβ
∥∥gk∥∥ ≤ f(xk + γ−1tkd

k) − f(xk)

= γ−1tk
〈
∇f(zk) , dk

〉
= γ−1tk

〈
∇f(xk) , dk

〉
+ γt−1

k

〈
∇f(zk) −∇f(xk) , dk

〉
≤ γ−1tk

[
sup
g∈Gk

〈
g , dk

〉]
+ γt−1

k

∥∥∇f(zk) −∇f(xk)
∥∥

= −γ−1tk
∥∥gk∥∥+ γt−1

k

∥∥∇f(zk) −∇f(xk)
∥∥ ,

where the first inequality follows since tk < 1, the first equality is an application of the
mean value theorem, and the third equality follows by construction since dk solves the
problem inf‖d‖≤1 supg∈Gk

〈g , d〉. Dividing through by γ−1tk and rearranging yields
the inequality

0 ≤ (β − 1)
∥∥gk∥∥+

∥∥∇f(zk) −∇f(xk)
∥∥ ≤ (β − 1)η +

∥∥∇f(zk) −∇f(xk)
∥∥ .

Taking the limit over J and using the continuity of ∇f we obtain the contradiction
0 ≤ (β − 1)η < 0. Hence

∥∥gk∥∥→ 0.
The final statement in part 1 of the corollary now follows from the inequality

0 ≤ dist (0 |Gε(x̄) ) ≤
∥∥gk∥∥ and the continuity of the gradient.
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2. Theorem 3.4 states that with probability 1 either the GS algorithm terminates
finitely at a point x̄ satisfying 0 ∈ Gε(x̄) ⊂ ∂̄εf(x̄) or there is a cluster point x̂ that
is a Clarke ε-stationary point of f . Hence we need only focus on the case where we
obtain the cluster point x̂. Since the GS algorithm is a descent method we know that
f(x̂) = f(x̄), where x̄ is any cluster point of the sequence generated by the algorithm.
Hence we need only show that (13) holds for x̂.

Since 0 ∈ ∂̄εf(x̂), Carathéodory’s theorem states that there exist pairs (z1, w1),
(z2, w2), . . . , (zn+1, wn+1) ∈ Rn × Rn and nonnegative scalars 0 ≤ λj ≤ 1, j =

1, . . . , n+ 1, such that zj ∈ x̂+ εB, wj ∈ ∂̄f(zj), j = 1, . . . , n+ 1,
∑n+1

j=1 λj = 1, and∑n+1
j=1 λjw

j = 0. The subdifferential inequality implies that for every x ∈ Rn

f(x) ≥ f(zj) +
〈
wj , x− zj

〉
, j = 1, . . . , n + 1.(14)

Let w ∈ ∂f(x̂). Multiply each of the inequalities in (14) by its associated λj and sum
up. Then

f(x) ≥
n+1∑
j=1

λjf(zj) +

n+1∑
j=1

λj

〈
wj , x− zj

〉

≥
n+1∑
j=1

λj(f(x̂) +
〈
w , zj − x̂

〉
) +

〈
n+1∑
j=1

λjw
j , x− x̂

〉
+

n+1∑
j=1

λj

〈
wj , x̂− zj

〉

≥ f(x̂) +

n+1∑
j=1

λj

〈
wj − w , x̂− zj

〉

≥ f(x̂) −
n+1∑
j=1

λj(
∥∥wj

∥∥+ ‖w‖)
∥∥x̂− zj

∥∥

≥ f(x̂) −
n+1∑
j=1

λj2κε

= f(x̂) − 2κε,

where w ∈ ∂f(x̂) and we have used the fact that κ is a bound on any subgradient at
a point in L.

Our next convergence result is in the spirit of the sequential unconstrained min-
imization technique (SUMT) employed in [FM68]. Here we consider the behavior of
the set of cluster points of the GS algorithm in fixed ε mode as ε is decreased to zero.

Corollary 3.6. Let {εj} be a sequence of positive scalars decreasing to zero.
For each j = 1, 2, . . . consider the GS algorithm with ν0 = 0 and ε = εj. Let Cj

denote either the point of finite termination of the iterates or, alternatively, the set
of all cluster points of the resulting infinite sequence of iterates. By Theorem 3.4,
with probability 1 there exists a sequence {xj} with xj ∈ Cj , j = 1, 2, . . . , satisfying
0 ∈ ∂̄εjf(xj) for each j = 1, 2, . . . . Then every cluster point of the sequence {xj} is a
Clarke stationary point for f . Moreover, if the set L contains only one Clarke station-
ary point x̄, in which case x̄ is the strict global minimizer of f , then with probability
1 the entire sequence {xj} must converge to x̄ and sup {‖x− x̄‖ |x ∈ Cj } → 0; that
is, the sets Cj converge to the single point x̄ in the Hausdorff sense.

Proof. Let {δj} be any positive sequence of scalars decreasing to zero. Since
0 ∈ ∂̄εjf(xj) for each j = 1, 2, . . . , Carathéodory’s theorem tells us that for each
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j = 1, 2, . . . there exists {xj
1, . . . , x

j
n+1} ⊂ xj + εjB, {zj1, . . . , z

j
n+1} ⊂ Rn with

zjs ∈ ∂̄f(xj
s), s = 1, . . . n + 1, and λj

1, . . . , λ
j
n+1 ∈ R+ with

∑n+1
s=1 λj

s = 1 such that

‖
∑n+1

s=1 λj
sz

j
s‖ ≤ δj . Note that we need to choose the δj ’s strictly positive due to the

closure operation in the definition of ∂̄εf . Let x̂ be any cluster point of the sequence
{xj} with associated subsequence J ⊂ N such that xj →J x̂. By compactness and
the upper semicontinuity of ∂̄f , we may assume with no loss in generality that there
exist λ1, . . . , λn+1 ∈ R+ with

∑n+1
s=1 λs = 1 and zs ∈ ∂̄f(x̂) such that λj

s →J λs

and zjs →J zs, s = 1, . . . , n + 1. Then
∑n+1

s=1 λj
sz

j
s →J

∑n+1
s=1 λszs ∈ ∂̄f(x̂). But

by construction ‖
∑n+1

s=1 λj
sz

j
s‖ ≤ δj with δj ↓ 0. Hence it must be the case that∑n+1

s=1 λszs = 0, which shows that 0 ∈ ∂̄f(x̂).
Next assume that the set L contains only one Clarke stationary point x̄. If

the sequence {xj} does not converge to x̄, then there is a subsequence that remains
bounded away from x̄. Since the GS algorithm only generates iterates in the compact
set L, this subsequence must have a cluster point in L that differs from x̄. Since we
have just shown that this cluster point must be a Clarke stationary point of f , we
obtain the contradiction that establishes the result.

Finally suppose that x̄ is a local minimizer of f . Since any local minimizer
is a Clarke stationary point, we have that x̄ is the unique local minimizer of f in
the level set L and hence is the unique global minimizer of f in the level set L
as well. Observe that since the GS algorithm is a descent algorithm, we have that
f(x) = f(xj) for all x ∈ Cj and all j = 1, 2, . . . . We have just shown that xj → x̄;
hence f(xj) → f(x̄). Now if the sequence of values sup {‖x− x̄‖ |x ∈ Cj } does
not converge to zero, then there must be a sequence {x̂j} with x̂j ∈ Cj for each
j = 1, 2, . . . such that the sequence is bounded away from x̄. Due to compactness
there is a subsequence J ⊂ N such that {x̂j} converges to some x̂ ∈ L. But then
f(x̄) = limJ f(xj) = limJ f(x̂j) = f(x̂). Therefore, x̂ must also be a global minimizer
of f on L. Since this global minimizer is unique, we arrive at the contradiction x̂ = x̄,
which proves the result.

Corollary 3.7. Suppose that the set L contains a unique Clarke stationary
point x̄ of f , in which case x̄ is the unique global minimizer of f . Then for every
δ > 0 there exists an ε̄ > 0 such that if the GS algorithm is initiated with ε ∈ (0, ε̄),
then with probability 1 either the algorithm terminates finitely at a point within a
distance δ of x̄ or, alternatively, every cluster point of the resulting infinite sequence
of iterates is within a distance δ of x̄.

Proof. Suppose the result is false. Then with positive probability there exists
δ > 0 and a sequence εj ↓ 0 such that the set of cluster points Cj (or the finite
termination point) of the sequence of iterates generated by the GS algorithm with
ε = εj satisfy sup {‖x− x̄‖ |x ∈ Cj } > δ. But this contradicts the final statement of
Corollary 3.6 whereby the result is established.

The convergence results stated above describe the behavior of the GS algorithm
in fixed ε mode. We now give a final convergence result for the algorithm in the case
where εk and νk are allowed to decrease.

Theorem 3.8. Let {xk} be a sequence generated by the GS algorithm with ν0 >
0, ε0 > 0, µ ∈ (0, 1), and θ ∈ (0, 1). With probability 1 the sequence {xk} is infinite.
Moreover, if the sequence {xk} converges to some point x̄, then, with probability 1,
νk ↓ 0 and x̄ is a Clarke stationary point for f .

Proof. We restrict our discussion to instances of the GS algorithm in E . The
algorithm terminates finitely only if it terminates in either Step 1 or 2. As previously
observed, finite termination in Step 1 has zero probability. Finite termination occurs
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in Step 2 if νk =
∥∥gk∥∥ = 0. But by construction, 0 < νk for all k if 0 < ν0. Hence

the algorithm cannot terminate in Step 2. Therefore, with probability 1 the sequence
{xk} is infinite.

Let us first observe that if νk ↓ 0, then every cluster point is a Clarke stationary
point due to the upper semicontinuity of ∂̄f and the relation

dist
(
0
∣∣ ∂̄εkf(xk)

)
≤ dist

(
0
∣∣Gεk(xk)

)
≤ dist (0 |Gk ) =

∥∥gk∥∥ ≤ νk.

In this case it follows that the entire sequence must converge to x̄ since x̄ is the unique
Clarke stationary point.

Hence, we may as well assume that

ν̄ = inf
k
νk > 0.

If ν̄ > 0, then it must be the case that νk and εk were updated only finitely many
times. That is, there is an index k0 and an ε̄ > 0 such that

νk = ν̄ and εk = ε̄ ∀ k ≥ k0.

This places us in the context of Theorem 3.4 where finite termination almost surely
does not occur since εk = ε̄ and

∥∥gk∥∥ > νk = ν̄ for all k sufficiently large. Hence the
cluster point x̄ must be a Clarke ε̄-stationary point of f . By part (i) of Lemma 3.2,
there is a τ > 0 and a nonempty open set V̄ such that the set Vε(x̄, x, ν̄/2) contains V̄
whenever ‖x− x̄‖ ≤ τ . Now since we assume event E , the sequence {(uk1, . . . , ukm)}
hits every open subset of the unit ball B

m infinitely often, or, equivalently, the se-
quence {(ε̄uk1, . . . , ε̄ukm)} hits every open subset of ε̄Bm infinitely often. As xk → x̄,
we have that the sequence {(xk1, . . . , xkm)} hits V̄ infinitely often. But then it must
be the case that

∥∥gk∥∥ ≤ ν̄/2 infinitely often since ρε(x̄) = 0. This is the contradiction
that proves the result.

We end this section with a summary of some open questions.
1. Theorem 3.4 indicates that the algorithm may not terminate. Under what

conditions can one guarantee that the GS algorithm terminates finitely?
2. In Theorem 3.4, we show that if the GS algorithm does not terminate finitely,

then there exists a subsequence J ⊂ N such that ρε(x
k) →J 0. But we

cannot show that the corresponding subsequence gk converges to 0. Can one
show that

∥∥gk∥∥ →J 0? Or, is there a counterexample? We believe that a
counterexample should exist.

3. We have successfully applied the GS algorithm in many cases where the func-
tion f is not Lipschitz continuous. Is there an analogue of Theorem 3.4 in
the non-Lipschitzian case?

4. Is it possible to remove the uniqueness hypothesis in Corollary 3.7?
5. In Theorem 3.8, can one show that all cluster points of the sequence are

Clarke stationary points?

4. Numerical results. We have had substantial experience using the GS algo-
rithm to solve a wide variety of nonsmooth, nonconvex minimization problems that
arise in practice. In this section we describe some of these problems and present some
of the numerical results. As far as we are aware, none of the problems we describe
here has been solved previously by any method.

We begin by describing our choices for the parameters defining the GS algorithm
as well as changes that must be made to implement it in finite precision. We have
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attempted to minimize the discrepancies between the theoretical and implemented
versions of the method, but some are unavoidable. The algorithm was implemented
in matlab, which uses IEEE double precision arithmetic (thus accuracy is limited to
about 16 decimal digits). For the solution of the convex quadratic program required
in Step 2, we tried several QP solvers; we found mosek [Mos03] to be the best of
these in terms of reliability, efficiency, and accuracy.

Sample size. Bearing in mind the requirement that the sample size m must be
greater than n, the number of variables, we always set m = 2n.

Sampling parameters. We used ε0 = µ = 0.1, thus initializing the sampling radius
to 0.1 and reducing it by factors of 0.1. Naturally, appropriate choices depend on
problem scaling; these values worked well for our problems.

Optimality tolerance parameters. We used ν0 = 10−6 and θ = 1, thus fixing the
optimality tolerance to 10−6 throughout. (We experimented with θ < 1, so that a
coarser sampling radius is associated with a coarser optimality tolerance; this reduced
the iteration counts for easier problems but led to difficulty on harder ones.)

Line search parameters. We set the backtracking reduction factor γ to the stan-
dard choice of 0.5, but we set the Armijo parameter β to the decidedly nonstandard
choice of 0. The theoretical analysis requires β > 0, but in practice, on difficult
problems, even a modest “sufficient decrease” test can cause the algorithm to fail
prematurely, and we never encountered any convergence difficulty that could be at-
tributed to the choice β = 0. Setting β to a very small number such as 10−16 is, for
all practical purposes, equivalent to setting it to zero.

Maximum number of iterations and line search failure. We limited the number
of iterations for each sampling radius to 100; once the limit of 100 is reached, the
sampling radius is reduced just as if the condition

∥∥gk∥∥ ≤ νk = 10−6 in Step 2
were satisfied, so the line search is skipped, and sampling continues with the smaller
sampling radius. The smallest sampling radius allowed was 10−6; instead of reducing
it to 10−7, the algorithm terminates. Thus, the total number of iterations is at most
600. Also, the line search may fail to find a lower function value (either because a
limit on the number of backtracking steps, namely, 50, is exceeded, or because the
computed direction of search is actually not a descent direction). Line search failure
is quite common for the more difficult problems and generally indicates that, roughly
speaking, the maximum accuracy has been achieved for the current sampling radius.
When line search failure occurs, we reduce the sampling radius and continue, just as
if the condition

∥∥gk∥∥ ≤ νk = 10−6 were satisfied or the limit of 100 iterations were
reached.

Skipping the differentiability check. We do not attempt to check whether the
iterates lie in the set D where f is differentiable, in either Step 1 or Step 4. This is
simply impossible in finite precision and in any case would make life very difficult for
the user who provides function and gradient values. The user need not be concerned
about returning special values if the gradient is not defined at a point; typically, this
happens because a “tie” takes place in the evaluation of the function, and the user
may simply break the tie arbitrarily. The justification for this is that, for all practical
purposes, in finite precision the set D is never encountered except in contrived, trivial
cases.

Ensuring boundedness. In practice it is advisable to terminate the algorithm if an
a priori bound on the norm of the iterates xk is exceeded; we set this bound to 1000,
but it was not activated in the runs described here.

All parameters and limits described above are easily changed by users of our
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matlab implementation.
We now present a selection of numerical results for the GS algorithm, concen-

trating on problems that have not, to our knowledge, been solved previously. In the
tables below, each line corresponds to running the GS algorithm on one problem (one
instance of f). Because of the stochastic nature of the algorithm, we ran it 10 times,
either from one given starting point, when specified, or from 10 different random start-
ing points, when so indicated; the results shown are for the run achieving the lowest
value of f . For each problem class, we display the results for a range of problems,
ranging from easiest to hardest, and collected in a single table. Each line of every
table displays the final value of f , the total number of iterations for all six sampling
radii (the total number of times Step 2 was executed), and an approximate “optimal-
ity certificate.” The last deserves a detailed explanation. An approximate optimality
certificate consists of two numbers; the first is an “optimality residual norm”

∥∥gk∥∥,
and the second is the value of the sampling radius εk for which the first value

∥∥gk∥∥
was achieved. These quantities together provide an estimate of nearness to Clarke
stationarity. Instead of simply displaying the final optimality certificate, we show the
certificate for the smallest sampling radius εk for which the test

∥∥gk∥∥ ≤ νk = 10−6

was satisfied, or, if it was satisfied for no εk, simply the final values.
We note that for the problems described in sections 4.1 through 4.4 we think that

the local minimizers approximated by the GS algorithm are in fact global minimizers,
based on the failure to find other locally minimal optimal values when initializing
the algorithm at other starting points.2 However, we discuss the difficulty of finding
global minimizers in section 4.5.

We also remark that, for comparison purposes, we have attempted to solve the
same problems by other methods, particularly the Bundle Trust (BT) fortran code
of [SZ92]. It is faster than our code but, in our experience, generally provides less
accurate results and is unable to solve any of the harder problems described below. We
also experimented with a variety of “direct search” methods which are not intended
for nonsmooth problems but are so robust that they are worth trying anyway. Of
these, the most successful was the well-known Nelder–Mead method, but it was only
able to solve the easier problems with very small size n. An important observation is
that a user of the BT code or Nelder–Mead method generally has no way of knowing
how good a computed approximation might be in the absence of any kind of local
optimality certificate.

The data matrices for the problems discussed in sections 4.2 and 4.5 are available
on the Web, as are the computed solutions that we obtained for all the problems.3

4.1. Chebyshev approximation by exponential sums. Our first example
is a classical one: Chebyshev approximation. The function to be minimized is

f(x) = sup
s∈[�,u]

|h(s, x)|,

where [, u] is any real interval and h : R × Rn → R is any smooth function. To
evaluate f(x) for a given x ∈ Rn, we evaluate h(·, x) on a one-dimensional grid, find
the maximum (in absolute value), and use this to initialize a one-dimensional local
maximization method, based on successive cubic interpolation using the derivative of
h with respect to s, to accurately locate a maximizer, say s̄. The finer the grid is, the

2A possible exception is the problem defined by N = 8 in section 4.2.
3http://www.cs.nyu.edu/overton/papers/gradsamp/probs/.
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Table 1

Results for exponential Chebyshev approximation, starting from x = 0.

n f Opt cert Iters
2 8.55641e-002 (9.0e-011, 1.0e-004) 42
4 8.75226e-003 (8.9e-009, 1.0e-006) 63
6 7.14507e-004 (6.5e-007, 1.0e-004) 166
8 5.58100e-005 (2.2e-005, 1.0e-006) 282

1 2 3 4 5 6 7 8 9 10
-6

-4

-2

0

2

4

6
x 10

 -5

Fig. 1. The error function for the sum of exponentials approximation to 1/s on [1, 10] for
n = 8, with nine alternation points.

more likely one is to obtain the global maximizer. The function f is differentiable if
the maximizer is unique, with gradient

∇f(x) = sign(h(s̄, x))∇hx(s̄, x).

We use

h(s, x) =
1

s
−

n/2∑
j=1

x2j−1 exp(−x2js),

where n is even and  > 0. Thus the problem is to approximate the function 1/s on
a positive interval by a sum of decaying exponentials. We chose [, u] = [1, 10] with
2000 grid points, equally spaced in the target function value 1/s.

Table 1 shows the results obtained by the GS algorithm (see above for inter-
pretation of the optimality certificate “opt cert”). We may safely conjecture on the
basis of these results that the optimal value decays exponentially with n. The accu-
racy achieved is of course limited by the conditioning of the problem and the finite
precision being used: accurate solutions were not obtainable for n > 8.

Figure 1 shows the error function h(s, x) as a function of s for the optimal pa-
rameter vector x found for n = 8. Notice the alternation in the error function; the
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Table 2

Results for minimizing eigenvalue product, using random starting points.

n N k f Mult Opt cert Iters
1 2 1 1.00000e+000 1 (1.3e-008, 1.0e-006) 10
6 4 2 7.46286e-001 2 (7.3e-006, 1.0e-006) 68
15 6 3 6.33477e-001 2 (5.8e-006, 1.0e-006) 150
28 8 4 5.58820e-001 4 (1.0e-001, 1.0e-006) 600
45 10 5 2.17193e-001 3 (1.7e-005, 1.0e-006) 277
66 12 6 1.22226e-001 4 (9.7e-003, 1.0e-006) 432
91 14 7 8.01010e-002 5 (4.5e-006, 1.0e-006) 309
120 16 8 5.57912e-002 6 (2.7e-003, 1.0e-006) 595

maximum error is achieved at nine places on the interval (the leftmost one being
essentially invisible). Work of Rice in the 1950s [Mei67] showed that if an optimal ap-
proximation exists, such alternation must take place, with the number of alternation
points equal to one plus the number of parameters, but computation of such an error
function was impossible at the time. A picture like Figure 1 may well have appeared
in the more recent literature (perhaps computed by semi-infinite programming), but
we have not seen one.

We remark that the optimal approximations seem to be unique up to the obvious
permutation of pairs of parameters with one another; the ordering of pairs (x2j−1, x2j)
is arbitrary.

4.2. Minimization of eigenvalue products. Our second example is the fol-
lowing problem: minimize the product of the largest k eigenvalues of a Hadamard
(componentwise) matrix product A ◦X, where A is a fixed positive semidefinite sym-
metric matrix and X is a variable symmetric matrix constrained to have ones on its
diagonal and to be positive semidefinite. Since the latter constraint is convex, we
could impose it via projection, but for simplicity we handle it by an exact penalty
function. Thus the function to be minimized is

f(x) =
k∏

j=1

λj(A ◦X) − ρmin(0, λN (X)),

where λj means jth largest eigenvalue and the N ×N symmetric matrix X has ones
on its diagonal and n = N(N − 1)/2 variables from the vector x in its off-diagonal
positions. We set ρ = 100. The function f is differentiable at a vector x corresponding
to a matrix X if X is positive definite and λk(A ◦X) > λk+1(A ◦X). The gradient
of f at such points is easily computed using the chain rule and the fact that the
derivative of a simple eigenvalue λj in matrix space is the outer product qqT defined
by its corresponding normalized eigenvector q. As explained earlier, the user coding
the gradient need not be concerned about ties, whether these are ties for the choice
of kth eigenvalue of A ◦X, ties for the ordering of its eigenvalues λj for j < k, or for
the boundary case λN (X) = 0.

Table 2 shows results for various instances of this problem: The matrices A are
the leading N ×N submatrices of a specific 63× 63 covariance data matrix arising in
an environmental application [AL04]. In each case we set k, the number of eigenvalues
in the product, to N/2. For each minimizer approximated for N > 2, the matrix A◦X
has a multiple interior eigenvalue including λk; its multiplicity is shown in the table.
In addition, for N > 4, the minimizer X has a multiple zero eigenvalue.

The results in Table 2 demonstrate that use of the GS algorithm is by no means
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restricted to very small n. Each iteration of the algorithm requires the solution of
a quadratic program in m variables, a cost that is a small degree polynomial in n
since m = 2n. However, solving this problem for N > 20 (n > 200) would take an
unreasonable amount of computer time at present.

4.3. Spectral and pseudospectral minimization. We now enter the realm of
nonsymmetric real matrices, whose eigenvalues may be complex and are non-Lipschitz
at some points in matrix space. We are interested in a function known as the pseu-
dospectral abscissa of a matrix, αδ(X), defined, for any given δ ≥ 0, as the maximum
of the real parts of the δ-pseudospectrum of X, that is, the set of all z in the complex
plane such that z is an eigenvalue of some complex matrix within a distance δ of
X [Tre97]. Here, distance is measured in the operator 2-norm. Pseudospectra, and
more specifically the pseudospectral abscissa, arise naturally in the study of robust
stability of dynamical systems. When δ = 0 the pseudospectral abscissa reduces to
the spectral abscissa (the maximum of the real parts of the eigenvalues of the given
matrix X). An algorithm for computing αδ was given by the authors in [BLO03b].
As is the case with so many of the applications we have encountered, computing the
function value is quite complicated, but once it is computed, the gradient is easy to
obtain where defined, in this case requiring only the computation of singular vectors
corresponding to a certain least singular value. As usual, the user coding the gradient
need not be concerned with ties for the minimum value.

We consider a simple parameterized matrix,

X(x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

−x1 1 0 · · 0
x1 0 1 0 · 0
x2 0 · · · ·
· · · · · 0
· · · · · 1
xn 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦
,(15)

where n, the number of parameters, is one less than the order of the matrix, say N .
Our optimization problem is to minimize

f(x) = αδ(X(x))(16)

over the parameter vector x. The authors showed in [BLO01] that, in the case δ = 0,
the global minimizer of f is 0. It is easy to verify in this case that f is not Lipschitz
at 0; in fact, f grows proportionally with |xn|1/N . The authors have also shown
[BLO03a] that, for fixed small positive δ, f is Lipschitz near 0, but it is not known
whether this is true on the whole parameter space.

Figure 2 shows the optimal values of (16) found by the GS algorithm for various
values of δ and N . We used x = 0 as the starting point since this is the optimal solution
for δ = 0. The figure suggests a conjecture: that the optimal value is proportional
to δ2/(N+1) for small δ. The irregularity at the top right of the plot is not numerical
error, but a reminder that the phenomenon we are studying is nonlinear. We verified
that the function (16) is indeed nonsmooth at all the minimizers approximated by the
GS algorithm.

Table 3 shows more detailed results for N = 5. Note particularly the final line
in the table, which shows the case δ = 0 (minimizing the pure spectral abscissa).
Since the solution is x = 0, we initialized the runs randomly in this case. Because
the exact optimal value of f is 0, the computed value of f necessarily has no correct
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Fig. 2. The minimal pseudospectral abscissa αδ(X(x)) plotted as a function of δ, for various n.

Table 3

Results for minimizing pseudospectral abscissa αδ(X(x)) for n = 4 (N = 5), starting from
x = 0 (except pure spectral abscissa case δ = 0, started randomly).

δ f Opt cert Iters
1 1.63547e+000 (8.4e-007, 1.0e-006) 81

1.0e-001 4.92831e-001 (4.5e-006, 1.0e-006) 105
1.0e-002 2.56467e-001 (7.4e-009, 1.0e-002) 112
1.0e-003 1.08221e-001 (7.6e-008, 1.0e-003) 163
1.0e-004 4.66477e-002 (3.2e-010, 1.0e-005) 236
1.0e-005 2.10125e-002 (3.0e-007, 1.0e-006) 322
1.0e-006 9.68237e-003 (6.3e-007, 1.0e-006) 403

0 4.03358e-003 (3.0e-007, 1.0e-006) 157

digits. However, its order of magnitude is about as good as can be expected using a
precision of 16 decimal digits, because the exact spectral abscissa of X(x) has order of
magnitude (10−15)1/5 = 10−3 for ‖x‖ = 10−15, the approximate rounding level. This
experiment indicates that the GS algorithm has no inherent difficulty with minimizing
functions that are non-Lipschitz at their minimizers.

4.4. Maximization of distance to instability. A stable matrix is one with
all its eigenvalues in the open left half-plane. The matrix X(x) defined in (15) is not
stable for any x, but the shifted matrix X(x)−sI is stable for all s > 0 and sufficiently
small ‖x‖. Given a matrix X, its distance to instability, denoted dinst(X), is the least
value δ such that some complex matrix Y within a distance δ of X is not stable. The
distance to instability is a well-studied function [Bye88], especially in robust control,
where it is known as the complex stability radius (or, more generally, as the inverse of
the H∞-norm of a transfer function) [BB90]. The relationship between αδ and dinst

is summarized by

αδ(X) = 0 for δ = dinst(X)
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s, for various n.

Table 4

Results for maximizing distance to instability −f(x) = dinst(X(x) − sI) for n = 4 (N = 5),
starting from x = 0.

s f Opt cert Iters
1 -4.49450e-001 (1.4e-006, 1.0e-006) 55

3.16228e-001 -2.31760e-002 (1.5e-005, 1.0e-006) 71
1.00000e-001 -8.12170e-004 (8.5e-007, 1.0e-002) 110
3.16228e-002 -3.28692e-005 (1.8e-006, 1.0e-006) 141

for all stable X. By definition, dinst(X) = 0 if X is not stable.
We now consider the problem of maximizing dinst(X(x)− sI) (equivalently, min-

imizing f(x) = −dinst(X(x) − sI)) over the parameter vector x, given s > 0. This is
a difficult problem for small s because the set of x for which f(x) < 0 shrinks to 0 as
s → 0. We use the starting point x = 0 since f(0) < 0 for all s > 0. Figure 3 shows
the optimal values found by the GS algorithm for various s and N . The missing data
points in the table were suppressed because the computed values were too inaccurate
to be meaningful. The figure suggests another conjecture, related to the one in the
previous subsection: that the optimal value is proportional to s(N+1)/2.

Table 4 gives details for N = 5.

4.5. Static output feedback and low-order controller design. Suppose
the following are given: an N × N matrix A associated with a dynamical system
ξ̇ = Aξ, together with an N ×m matrix B (defining controllability of the system) and
a p × N matrix C (defining observability of the system), with m < N and p < N .
Then, given an integer k < N , the order k controller design problem is to find X1,
X2, X3, and X4, respectively with dimensions m × p, m × k, k × p, and k × k, such
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Fig. 4. Eigenvalues and pseudospectra of B767 model at flutter condition with no controller.

that the matrix describing the controlled system, namely,[
A 0
0 0

]
+

[
B 0
0 I

] [
X1 X2

X3 X4

] [
C 0
0 I

]
,(17)

satisfies desired objectives. We confine our attention to optimizing the following
functions of this matrix: asymptotic stability, as measured by α0, and robust stability,
as measured by dinst, respectively defined in the previous two subsections. When
k = 0, the controlled system reduces to static (or memoryless) output feedback (SOF),
the most basic control model possible, with just mp free variables. Clearly, one may
think of the order k controller design problem as an SOF problem with (m+k)(p+k)
variables instead of mp, redefining A, B, and C as the larger block matrices in (17).

When k, m, and p are sufficiently large, it is known that stabilization is gener-
ically possible and there are various well-known techniques for finding such solu-
tions [Won85, Wil97]. However, for k,m, p � N , how to efficiently find stabilizing
X1, X2, X3, X4 (or show that this is not possible) is a long-standing open problem in
control [BGL95]. The title of this subsection reflects the fact that we are interested
only in small k.

We focus on a specific, difficult example, which arises from a model of a Boeing
767 at a flutter condition [Dav90]. The matrix A in this case describes a linearized
model when flutter has started to occur; in other words, the plane is flying so fast
that the aerodynamic and structural forces are interacting to generate an instability
in the system. The matrix A has size N = 55, but the controllability and observability
matrices B and C have only m = 2 columns and p = 2 rows, respectively. Figure 4
shows the eigenvalues and δ-pseudospectra boundaries of A as points (solid dots) and
curves in the complex plane. (Recall from section 4.3 that the δ-pseudospectrum of
A is the set of complex numbers z such that z is an eigenvalue of a complex matrix
within a distance δ of A.) The legend on the right shows the values of δ using a
log 10 scale. Note the complex conjugate pair of unstable eigenvalues near the top
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Fig. 5. Eigenvalues and pseudospectra of B767 model when spectral abscissa is minimized for
SOF (order 0 controller).

and bottom of the figure. This plot and subsequent ones were drawn using Wright’s
software EigTool [Wri02].

We first investigated the case k = 0 (SOF), applying the GS algorithm to minimize
the spectral abscissa α0 of the matrix (17) over the four free parameters (the entries
in X1). Hundreds of runs from randomly chosen starting points repeatedly found the
same unstable local minimizers, with α0 > 0. Eventually, however, the GS algorithm
found a stable local minimizer, with α0 = −7.79× 10−2 and an optimality certificate
(2.8 × 10−15, 10−5). The reason it was so difficult to find this minimizer is that
the data is very badly scaled. Once it became evident what scaling to use for the
starting point, the GS algorithm had no difficulty repeatedly finding this minimizer.
Figure 5 shows the eigenvalues and pseudospectra of the stabilized matrix. Although
all the eigenvalues are now (barely) to the left of the imaginary axis, even the 10−6-
pseudospectrum extends into the right half-plane. Thus, the matrix is not robustly
stable: Tiny perturbations to it can generate instability.

We then used this stabilizing minimizer, as well as randomly generated small
relative perturbations of it, as starting points for maximizing dinst over the same
four variables. The GS algorithm found a local optimizer with dinst = 7.91 × 10−5

and optimality certificate (9.2 × 10−7, 10−6), whose eigenvalues and pseudospectra
are shown in Figure 6. Notice that the 10−5-pseudospectrum now lies in the left
half-plane, but that the 10−4-pseudospectrum still extends into the right half-plane.

We now turn to order 1 and order 2 controllers (k = 1 and k = 2, respectively). We
used the local optimizer for k = 0 as a starting point, as well as randomly generated
small relative perturbations, to maximize the same dinst objective over the 9-variable
parametrization for an order 1 controller and the 16-variable parametrization for an
order 2 controller. For k = 1, the GS algorithm found a local optimizer with dinst =
9.98× 10−5 and with optimality certificate (7.9× 10−7, 10−4), whose eigenvalues and
pseudospectra are shown in Figure 7. For k = 2, the GS algorithm found a local
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Fig. 6. Eigenvalues and pseudospectra of B767 model when distance to instability is maximized
for SOF model (order 0 controller).
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Fig. 7. Eigenvalues and pseudospectra of B767 model when distance to instability is maximized
for order 1 controller.

optimizer with dinst = 1.02× 10−4 and with optimality certificate (7.3× 10−6, 10−6),
whose eigenvalues and pseudospectra are shown in Figure 8. For k = 1, the 10−4-
pseudospectrum extends just slightly into the right half-plane, while for k = 2, it is
barely to the left of the imaginary axis, indicating that perturbations of magnitude
10−4 or less cannot destabilize the matrix.
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Fig. 8. Eigenvalues and pseudospectra of B767 model when distance to instability is maximized
for order 2 controller.

As far as we are aware, no such low-order stabilizing controllers were known for
the Boeing 767 model before we conducted this work. The optimality certificates
that we obtained give us confidence that the optimizers we approximated are indeed
local optimizers. However, our initial difficulty in finding even one stabilizing local
minimizer of α0 in the case k = 0 illustrates how difficult it is to find global minimiz-
ers, and we certainly cannot conclude that the local optimizers we found are global
optimizers.

5. Concluding remarks. We have presented a new algorithm for nonsmooth,
nonconvex optimization, proved its convergence to Clarke stationary points under
strong assumptions, raised questions about other possible convergence results under
weaker assumptions, extensively tested the algorithm, presented solutions of quite a
number of interesting optimization problems that have not been solved previously, and
shown how approximate first-order optimality certificates may be used to give some
confidence that the solutions found are meaningful. We make a few final remarks.

All of the functions that we have minimized by the GS algorithm are subdif-
ferentially regular (in the sense of Clarke; see section 1) at the minimizers that we
found. We view regularity as a fundamental property that is crucial for the under-
standing of an optimization problem when smoothness and convexity, both of which
are essentially special cases, are lacking. It is regularity that combines with Clarke
stationarity to give a genuine first-order optimality condition: that the ordinary direc-
tional derivative is nonnegative in all directions. We have been able to show, although
we do not give details here, that Chebyshev approximation error, eigenvalue products
for symmetric matrices, and minus the distance to instability (on the stable domain)
are globally regular functions using results like [RW98, Theorem 10.31] and [Lew99,
Corollary 4]. The case of the pseudospectral abscissa, including the pure spectral
abscissa, is much more challenging. The authors’ theoretical results on regularity of
this function may be found in [BO01, BLO03a, Lew02].
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Our matlab implementation of the GS algorithm is freely available. Furthermore,
it is our intention to make publicly available a nonsmooth, nonconvex optimization
test set that will include all the problems described here, so that others may use them
in the future. For all its power, the GS algorithm is nothing more than a generalized
steepest descent method, and will hopefully provide a benchmark against which other
algorithms, perhaps more rapidly convergent and efficient, may be compared in the
future.
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