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A B S T R A C T

We make an experimental comparison of methods for computing the numerical radius of an 𝑛×𝑛
complex matrix, based on two well-known characterizations, the first a nonconvex optimization
problem in one real variable and the second a convex optimization problem in 𝑛2 + 1 real
variables. We make comparisons with respect to both accuracy and computation time using
publicly available software.

. Introduction

Let 𝐴 ∈ 𝐌𝑛, the space of 𝑛×𝑛 complex matrices. The numerical radius 𝑟(𝐴) is defined as the maximum, in modulus, of the points
n the field of values (numerical range), i.e.,

𝑟(𝐴) = max
{

|𝑣∗𝐴𝑣| ∶ 𝑣 ∈ C𝑛, ‖𝑣‖2 = 1
}

.

well-known result (Johnson [1]; see also Kippenhahn [2]) is

𝑟(𝐴) = max
𝜃∈[0,2𝜋)

ℎ(𝜃) (1)

here

ℎ(𝜃) = 𝜆max(𝐻(𝜃))

nd

𝐻(𝜃) = 1
2
(

𝑒𝐢𝜃𝐴 + 𝑒−𝐢𝜃𝐴∗) ,

ith 𝜆max(⋅) denoting largest eigenvalue of a Hermitian matrix, 𝐢 the imaginary unit and ∗ denoting complex conjugate transpose.
lthough the optimization problem (1) has only one real variable, it is nontrivial to solve because ℎ is nonconvex. Various algorithms
ave been introduced to solve (1), including the level-set method of Mengi and Overton [3] (based on earlier work of He and
atson [4] and of Boyd and Balakrishnan [5]), and a cutting plane method of Uhlig [6] (based on earlier work of Johnson [1]).
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Fig. 1. The elapsed running times of the five methods tested are shown. For problems that took at most 3 min to solve, the reported times are the average of
five trials in order to account for timing variability, while all other reported times are from a single run. Due to their high cost, CF, SDPT3, and SeDuMi were
only tested up to size 𝑛 = 200, and on the complex matrix with 𝑛 = 200, both SDPT3 and SeDuMi crashed, and thus their times are only reported up to 𝑛 = 100
in the right plot.

More recently, improvements to both of these approaches have been given by Mitchell [7, Algorithms 3.1 and 5.1], along with a
state-of-the-art hybrid method [7, section 6] that combines the virtues of both in order to remain efficient in all cases.

A second well-known characterization of 𝑟(𝐴) (Mathias [8]; see also Ando [9]) is

𝑟(𝐴) = min
𝑐∈R,𝑍∈𝐌𝑛 ,𝑍=𝑍∗

{

𝑐 ∶
[

𝑐𝐼𝑛 +𝑍 𝐴
𝐴∗ 𝑐𝐼𝑛 −𝑍

]

⪰ 0
}

, (2)

where 𝑀 ⪰ 0 means a Hermitian matrix 𝑀 is positive semidefinite. Thus, 𝑟(𝐴) can be computed by solving a convex optimization
problem, known as a semidefinite program (SDP), in 𝑛2+1 real variables. If 𝐴 is real, then 𝑍 can be restricted to be real symmetric,
o the optimization problem has 𝑛(𝑛 + 1)∕2 + 1 variables. It is well known that such convex optimization problems can be solved,
p to any given accuracy, in polynomial time using the Turing complexity model; the traditional method guaranteeing such
omplexity is the ellipsoid method, but more practical interior-point methods have also recently been designed with polynomial-time
omplexity [10].

However, for all practical purposes, interior-point methods for computing 𝑟(𝐴) via (2) are very slow compared to more direct
ethods based on (1). In this note we illustrate this with some experimental computations carried out using Mitchell’s codes available

rom the supplemental materials published in [7] as well as the latest stable release (version 2.2, build 1148) of the well-known CVX
oftware for ‘‘disciplined convex programming’’ [11]. CVX uses a variety of primal–dual interior-point ‘‘solvers’’ for SDP; we use
wo of these, SDPT3 and SeDuMi. CVX lacks the polynomial-time guarantees of the methods described by [10], but it is much faster
han such methods, partly because it uses floating point arithmetic, while any rigorous polynomial-time method would necessarily
ave to be implemented using arbitrary precision integer or rational arithmetic, as discussed at the end of [10].

. The experiments and the results

We experimented with the following methods using matlab R2023a Update 5 and a 2023 Mac Mini configured with a 12-core
2 Pro Apple Silicon CPU and 16 GB RAM running macOS 13.6:

• ILS: solve (1) via the Improved Level-Set Algorithm 3.1 in [7]
• ICP: solve (1) via the Improved Cutting-Plane Algorithm 5.1 in [7]2

• CF: solve (1) using Chebfun via adaptive Chebyshev interpolation3

• SDPT3: solve (2) using CVX [11] with the SDPT3 solver

2 We forgo including Mitchell’s hybrid method that uses both Algorithms 3.1 and 5.1 because on the particular problems in our benchmark here, Algorithm
.1 and Algorithm 5.1 perform quite similarly. However, note that this is not always the case. For an extensive benchmark using a large variety of matrices to
llustrate how the relative efficiencies of the level-set, cutting-plane, and hybrid approaches can differ substantially, depending on the specific geometry of the
ield of values of the matrix, see [7, pp. A773–A778].

3 Chebfun is a package for globally approximating functions to machine precision accuracy using adaptive Chebyshev interpolation techniques; for more
etails, see [12]. By method CF, we mean using Chebfun to accurately approximate ℎ on [0, 2𝜋] followed by a call to the Chebfun max routine to find the
2

maximal value, as proposed in [6].
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Fig. 2. The plots give the pairwise relative discrepancies of the methods’ computed numerical radius estimates, i.e., |(𝑟1(𝐴) − 𝑟2(𝐴))|∕max(𝑟1(𝐴), 𝑟2(𝐴)), where
1(𝐴) and 𝑟2(𝐴) are the computed results for the two methods being compared on matrix 𝐴. Since the values returned by the ILS and ICP methods agree to
bout 15 digits, we omit other error comparisons involving the ICP method.

• SeDuMi: solve (2) using CVX [11] with the SeDuMi solver

We conducted our experiments using randomly generated real as well as complex matrices ranging in size from 𝑛 = 10 to 𝑛 = 800;
he matrix coefficients (real parts and imaginary parts, as appropriate) were generated using the standard normal distribution.4
ig. 1 shows the running times for our test matrices, with the left panel showing the results for real matrices and the right panel
he results for complex matrices. We see immediately that ILS and ICP perform similarly and they are far more efficient than the
ther three methods, and that among those other three, CF is the fastest, then SDPT3, and then SeDuMi.5 Meanwhile, Fig. 2 shows
elative discrepancies between the computed values of the numerical radius 𝑟. We see that methods ILS, ICP, and CF have relative
iscrepancies always near 10−15, indicating that they compute 𝑟 to about 14 correct digits, quite impressive considering that matlab’s
EEE double format numbers have only 53 bits of precision, or approximately 16 decimal digits. The other discrepancies show that
he interior point methods solving (2) return results which are accurate to only about 9 to 12 digits, although we note that CVX
as instructed to compute the results with high precision accuracy.6

. Conclusion

Our experiments show that although the characterization of the numerical radius as the solution of a semidefinite program is a
aluable theoretical tool, as a practical matter, Mitchell’s improved level-set and cutting-plane algorithms based on the nonconvex
haracterization are much faster. We note, however, that the SDP formulation has the appealing property that it also allows the
onvenient solution of linearly parameterized optimization problems involving the numerical radius, such as the one given in [13,
ec. 2.1].
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ata availability

Data will be made available on request.

4 Code for replicating all of our experiments here has been permanently archived on Zenodo and can be downloaded at https://doi.org/10.5281/zenodo.
0449890.

5 We note that CVX uses precompiled binary files for both SDPT3 and SeDuMi; if these were instead implemented in matlab, they would presumably be even
slower.

6

3

By setting cvx_precision high in the calling code.

https://doi.org/10.5281/zenodo.10449890
https://doi.org/10.5281/zenodo.10449890
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