
SECOND DERIVATIVES FOR OPTIMIZING EIGENVALUES OFSYMMETRIC MATRICESMICHAEL L. OVERTON� AND ROBERT S. WOMERSLEYyAbstract. Let A denote an n� n real symmetric matrix-valued function depending on a vectorof real parameters, x 2 <m. Assume that A is a twice continuously di�erentiable function of x, withthe second derivative satisfying a Lipschitz condition. Consider the following optimization problem:minimize the largest eigenvalue of A(x). Let x� denote a minimum. Typically, the maximum eigen-value of A(x�) is multiple, so the objective function is not di�erentiable at x�, and straightforwardapplication of Newton's method is not possible. Nonetheless, the formulation of a method with localquadratic convergence is possible. The main idea is to minimize the maximum eigenvalue subjectto a constraint that this eigenvalue has a certain multiplicity. The manifold 
 of matrices withsuch multiple eigenvalues is parameterized using a matrix exponential representation, leading to thede�nition of an appropriate Lagrangian function. Consideration of the Hessian of this Lagrangianfunction leads to the second derivative matrix used by Newton's method. The convergence proof isnonstandard because the parameterization of 
 is explicitly known only in the limit. In the specialcase of multiplicity one, the maximum eigenvalue is a smooth function and the method reduces to astandard Newton iteration.Key words. nonsmooth optimization, multiple eigenvaluesAMS subject classi�cations. 15A18, 65F15, 65K10, 90C251. Introduction. Let A denote an n�n real symmetric matrix-valued functiondepending on a vector of real parameters, x 2 <m. Assume that A depends smoothlyon x, speci�cally that it is at least twice continuously di�erentiable, with the secondderivative satisfying a Lipschitz condition in x. Denote the eigenvalues of A(x) by�1(x) � � � � � �n(x):The eigenvalues �i are Lipschitz continuous functions of x [7] and, in any regionwhere they are distinct from one another, it is well known that they are (Fr�echet)di�erentiable; in fact, they inherit the C2 smoothness of the function A(x) [7, p.134].Let bx be given, with A(bx) = bQb� bQT ; ; bQT bQ = I;(1.1)where b� = Diag(b�1; . . . ; b�n); bQ = [bq1; . . . ; bqn]:(1.2)Thus, fb�ig and fbqig are respectively the eigenvalues and an orthonormal set of eigen-vectors of A(bx). Assume that b�1 � � � � � b�n, so that b�i = �i(bx). Then formulas forthe �rst and second partial derivatives of the eigenvalues �i at x = bx, assuming thatthe b�i are distinct, are @�i(bx)@xk = bqTi @A(bx)@xk bqi(1.3)� Computer Science Department, Courant Institute of Mathematical Sciences, New York Univer-sity, New York. The work of this author was supported in part by National Science FoundationGrant CCR-9101649. This author would also like to acknowledge the kind hospitality of the Centrefor Process Systems Engineering, Imperial College, London, where part of this work was conductedwith support from the U.K. Science and Engineering Research Council.y School of Mathematics, University of New South Wales, Australia1



2 M. L. OVERTON AND R. S. WOMERSLEYand @2@xk@xj �i(bx) = bqTi @2A(bx)@xk@xj bqi + 2Xs6=i bqTi @A(bx)@xk bqsbqTi @A(bx)@xj bqsb�i � b�s :(1.4)The �rst of these formulas is well known, and the second may be found in a varietyof sources; see [8], [9], as well as (in a somewhat less accessible form) [7, p.95]. Bothwill follow as special cases of the results given in this paper.However, if A(x) has multiple eigenvalues at a point x = bx, its eigenvalues, whilestill Lipschitz continuous, may not generally be written as di�erentiable functions ofseveral variables at x = bx. For example, considerA(x) = � 1 + x1 x2x2 1� x1 �:The eigenvalues are �1;2 = 1�qx21 + x22:Thus �1, the largest eigenvalue of A(x), is generally not a smooth function of x;furthermore, it cannot even be written as the maximum of n smooth functions of x,if x has two or more components. Also, the eigenvectors of A(x) cannot generally bewritten as continuous functions of x; this is a consequence of the fact that eigenvectorscorresponding to simple eigenvalues are unique (up to sign and normalization) whilethose corresponding to multiple eigenvalues are not.Generally speaking, applications involving eigenvalues of matrices depending onfree parameters fall into one of two categories. In the �rst, it is speci�ed that some orall of the eigenvalues �i(x) achieve some given values ��i ; this is known as an inverseeigenvalue problem. If these given values are distinct, the inverse eigenvalue problemmay be formulated as a di�erentiable system of nonlinear equations, and, if the num-ber of free parameters and the number of equations is the same, the application ofNewton's method is straightforward, using (1.3). In [4] it was shown how, even inthe multiple eigenvalue case, the inverse eigenvalue problem may be formulated as adi�erentiable system of nonlinear equations, so that Newton methods, with genericquadratic convergence, are applicable.In the second class of applications, the eigenvalues are not required to have par-ticular values, but rather it is desired to solve some optimization problem involvingthe eigenvalues. A particularly common case is the \min-max" problemminx 2 <m�(x)(1.5)where �(x) = �1(x), the largest eigenvalue of A(x). Let x� be a locally uniqueminimizer of �. If x� has the property that the eigenvalue �1(x�) is simple, i.e. hasmultiplicity one, then the function to be minimized, �1, is twice continuously di�eren-tiable in a neighborhood of x�, and Newton's method for unconstrained minimizationmay be applied, using the Hessian matrix de�ned by (1.4). However, it is more oftenthe case that A(x�) has multiple eigenvalues; this is a consequence of the optimizationobjective, which in driving all the eigenvalues down as much as possible usually forcesthe coalescence of some of them. In such a case �1 is generally not di�erentiable atx = x�.



OPTIMIZING EIGENVALUES OF SYMMETRIC MATRICES 3This paper is concerned with the formulation of a method to solve optimizationproblems involving eigenvalues in exactly this case, where multiple eigenvalues occurat the solution. We shall show that the correct problem formulation leads to a methodwith generic quadratic convergence. This method was �rst given by [10], inspired inpart by [3,4]. Quadratic convergence was demonstrated by numerical examples. Thepurpose of the present paper is primarily to prove the quadratic convergence propertyfor the method presented in [10], justifying the Hessian matrix formulas given there,which were originally derived only formally and stated without any derivation or proof.The ideas of this paper can be applied to other classes of eigenvalue and singular valueoptimization problems, e.g. those discussed in [1,6,11,12,14,18,19], as well as manyother references which can be found in these papers. However, we concentrate on themodel problem (1.5). We consider only the issue of local convergence. For details ofhow to use the method and related methods in practice, see [11].2. Tensor Notation. We shall have frequent need to refer to the �rst and secondderivatives, with respect to several variables, of matrix-valued functions. Such objectsare, respectively, tensors in three and four dimensions, a matrix being a tensor in twodimensions. We shall use subscripts to denote di�erentiation: thus Ax and Axx referto the �rst and second derivatives of the matrix-valued function A, with respect to thevariable x 2 <m. Rather than attempt to describe the elements of a tensor, however,we shall describe its action as a linear operator, the result having the same dimensionas the undi�erentiated quantity, whether a matrix, a vector, or a scalar. For example,we write [Ax�x] to mean mXk=1f�xgk @@xkAand [Axx�x�x] to mean mXk=1 mXj=1f�xgkf�xgj @2@xk@xjA:We shall reserve square brackets [, ] for this purpose, and we shall use parentheses (,) primarily to mean \evaluated at". We shall use braces f, g to indicate expressionprecedence. For example, the �rst and second derivatives of �(x) � �1(x) at x = bx,when �1(bx) is simple, given by (1.3){(1.4), are written in tensor notation as[�x(bx)�x] = bqT1 [Ax(bx)�x]bq1and [�xx(bx)�x�x] = bqT1 [Axx�x�x]bq1+ 2Xs6=1 fbqT1 [Ax�x]bqsg2b�1 � b�s :Because the second derivative of a twice continuously di�erentiable function is sym-metric with respect to its two arguments of di�erentiation, there is no ambiguityin this notation. There should be no confusion between those subscripts indicatingdi�erentiation and those indicating components.We shall use jj � jj to denote the Euclidean vector norm. The expression A � B,where A and B are symmetric matrices of the same dimension, means the matrix



4 M. L. OVERTON AND R. S. WOMERSLEYinner product A �B = tr AB:The operator \vec" maps the set of symmetric matrices of dimension t into the cor-responding vector space <t(t+1)=2, multiplying the o�-diagonal components by thefactor p2 so that (vec A)T (vec B) = A �B:Consequently jjvec Ajj = jjAjjF ;the Frobenius norm of A.3. The Matrix Exponential Formulation. Let x� be a locally unique mini-mizer of � � �1, and let ��i = �i(x�), i = 1; . . . ; n. Suppose that��1 = � � � = ��t > ��t+1 > � � � > ��n(3.1)i.e. the maximum eigenvalue of A(x�) has multiplicity t, but all other eigenvalues aresimple. The latter assumption usually holds in practice; it could be relaxed, at thecost of more complex notation. Let��1 = ��1I; ��2 = Diag(��t+1; . . . ; ��n);(3.2)the identity block having order t, and let Q� = [q�1; . . . ; q�n] be a corresponding orthog-onal basis of eigenvectors, withQ�1 = [q�1 . . .q�t ]; Q�2 = [q�t+1 . . .q�n]:(3.3)The matrix Q�2 is unique, up to the choice of signs for its columns, but the matrixQ�1 is not, since any particular choice of basis may be rotated by postmultiplying bya t� t orthogonal matrix.It was shown in [11] that a necessary condition for x� to minimize �(x) is thatthere exist a t by t symmetric matrix V �, with V � positive semi-de�nite, such thattr V � = 1; V � � fQ�1gT [Ax(x�)�x]Q�1 = 0;(3.4)for all �x. In the case t = 1, when Q�1 consists of a single column q�1, this reduces tothe statement that fq�1gT [Ax(x�)�x]q�1 = 0, equivalently [�x(x�)�x] = 0 for all �x,i.e. the gradient of �(x�) is zero. If A(x) is an a�ne function, the necessary conditionis also su�cient for optimality.We wish to consider the correct local formulation of a Newton-based method sothat quadratic convergence to x� is obtained generically. We assume that the optimalmultiplicity t is known. This is not the case in practice, and must be determinedduring the course of the computation, as explained in [10,11]. If t is set incorrectly,the method to be described would converge locally to a minimizer of � subject tothe wrong multiplicity constraint, which might not be a minimizer of �. This canbe avoided, by computing an approximation to V � and verifying that the necessaryconditions for optimality, including the positive semi-de�nite condition on V �, aresatis�ed. See [11] for discussion of the case where all optimality conditions except thepositive semi-de�nite condition are satis�ed.



OPTIMIZING EIGENVALUES OF SYMMETRIC MATRICES 5Assuming, then, that the optimal value of t is known, the local minimizer x� of� clearly also locally solves the constrained problemminx;! !(3.5) subject toA(x) 2 
(t; !)(3.6)where x 2 <m, ! is a real parameter, and 
(t; !) is the set of matrices whose greatesteigenvalue has multiplicity t and value !. The set 
(t; !) is an analytic manifoldcontained in the space of n by n symmetric matrices. The structure of this manifoldis well known. It was observed as early as 1929 [17] that the number of conditionsimposed on the space of symmetric matrices by the restriction that a matrix lie onthis manifold is t(t+1)2 . In other words, the codimension of the manifold 
(t; !) ist(t+1)2 . Formulas for the tangent space to the manifold 
(t; !) at any point can becomputed using standard techniques in di�erential geometry [13,15]. Much less obvi-ous, however, is how to parameterize a description of the manifold which is suitablefor the application of Newton methods. This is really the main point of the paper.The key idea, following [4], is to parameterize the orthogonal matrix of eigenvec-tors using a matrix exponential. Any orthogonal matrix P with detP = 1 can berepresented by P = eY = I + Y + 12Y 2 + � � � ;where Y is skew-symmetric, i.e. Y = �Y T . Since eigenvector signs are arbitrary, theassumption that detP = 1 is not a restriction. A proof that this representation isalways possible and locally unique is given in the Appendix.Let bx be a given point, with the eigenvalues and eigenvectors of A(bx) given by(1.1){(1.2). Let b�1 = Diag(b�1; . . . ; b�t); b�2 = Diag(b�t+1; . . . ; b�n);(3.7)and let bQ1 = [bq1 . . . bqt]; bQ2 = [bqt+1 . . . bqn]:(3.8)De�ne the twice continuously di�erentiable n� n symmetric matrix-valued functionbF (x; Y; !;�) = � !I 00 � �� e�Y bQTA(x) bQeY ;(3.9)where x 2 <m, ! is a real scalar, � = Diag(�1; . . . ; �n�t) is a real diagonal matrix oforder n � t , and Y is a real n � n skew-symmetric matrix. From the context, it isclear that I is used to mean the identity matrix of order t. Subsequent block matriceswill have dimensions conforming with those of bF . We shall �nd it useful to writeY = � Y11 Y12�Y12T Y22 �;(3.10)where Y11 and Y22 are skew-symmetric but Y12 is not. Note that the de�nition of bFdepends on bx through bQ. Of course, bQ could be removed from bF by absorbing it intoeY . The reason for the explicit inclusion of bQ in the de�nition of bF is so that thefunction eY can always be expanded about Y = 0.



6 M. L. OVERTON AND R. S. WOMERSLEYNow consider the nonlinear programminx;Y;!;� !(3.11) subject to bF (x; Y; !;�) = 0:(3.12)It is clear that if fx; Y; !;�g solves (3.12), with ! > �i, i = 1; . . . ; n� t, then fx; !gsatis�es the constraint (3.6), with A(x) having eigenvalues !; . . . ; !, �1; . . .�n�t, andeigenvectors given by the columns of bQeY . Conversely, if x; ! satisfy (3.6), then,regardless of bQ, (3.12) has a solution fx; Y; !;�g, with �i = �t+i(x) and eY = bQTQ,where Q is an orthogonal matrix of eigenvectors for A(x).The number of equations in (3.12) is n(n+1)2 . Formulation (3.11){(3.12) introducesadditional variables Y;� which are not present in (3.5){(3.6), with correspondingspace dimension n(n�1)2 + n� t = n(n+1)2 � t. The di�erence between the number ofequations and number of extra variables is t, which is not the codimension of 
(t; !).This shows that there is a di�culty with regularity in the parameterization of 
(t; !)given by (3.12).This di�culty is clari�ed by a key observation. ConsiderF �(x; Y; !;�) = � !I 00 � �� e�Y (Q�)TA(x)Q�eYand the associated nonlinear programminx;Y;!;� !(3.13) subject toF �(x; Y; !;�) = 0:(3.14)The functions bF and F � coincide if bx = x� and the same basis bQ = Q� is used inboth de�nitions. We have A(x�) 2 
(t; ��1) and(Q�)TA(x�)Q� = � ��1I 00 ��2 �so Y satisfying (3.14) is not unique if t > 1. Speci�cally, any Y of the formY = � Y11 00 0 �solves (3.14) with x = x�, ! = ��1, � = ��2. Consequently, to obtain regularity in(3.13){(3.14), the additional conditionY11 = 0(3.15)should be imposed in (3.10). The number of equations in (3.14) reduced by thedimension of the space of variables Y , � is thenn(n+ 1)2 � (n(n� 1)2 � t(t � 1)2 ) � (n � t) = t(t+ 1)2 ;which is the codimension of 
(t; !). Ideally then, we would like to parameterize(3.5){(3.6), not by (3.11){(3.12), but by (3.13){(3.14) together with (3.10), (3.15).However, this is not possible in practice, because Q� is known only in the limit. The



OPTIMIZING EIGENVALUES OF SYMMETRIC MATRICES 7best we can do is to use (3.11){(3.12), where bQ is the matrix of eigenvectors for bx, thecurrent best approximation to the solution x�. Thus, we shall work with a di�erentfunction bF at each step of the iteration.But now a second key point must be emphasized. Although the Y11 variables areredundant in (3.14), they are not redundant in (3.12) if bx 6= x�, or more speci�callyif A(bx) 62 
(t; b�1). On the contrary, the freedom in Y11 is necessary to ensure thata feasible solution to (3.12) exists in general. Clearly, the closer bx is to x�, i.e. thecloser A(bx) is to 
(t; b�1), the closer the Y11 variables come to being redundant. Thisobservation is quanti�ed by the following theorem, which follows directly from [4],Corollary 3.1 and subsequent remarks. It will be convenient to denote the variablesfx; Y; !;�g collectively by a single variable Z, which lies in a space of dimensionn(n+1)2 +m+ 1� t.Theorem 1. There exist � > 0, C <1 such that, if jjbx�x�jj � �, then bF (Z) = 0has a solution bZ� = fx�; bY �; ��1;��2g withjjbY �jj � Cjjbx� x�jjand with the leading t by t block of bY � satisfyingjjbY �11jj � Cjjbx� x�jj2:Here bY � and bZ� are so denoted because, unlike x�, they depend on the choice offunction bF .Roughly speaking, the Y variables describe the rotation of the eigenvectors bqineeded to transform them to eigenvectors of A(x�), while Y11 describes the rotationof the �rst t of these eigenvectors within the t-dimensional space they span. Therotation of the latter kind becomes relatively unimportant, as bx! x�, because of thenonuniqueness of the eigenvectors of A(x�).Straightforward application of Newton's method to solve (3.11){(3.12) is not satis-factory, since inclusion of the Y11 variables, which are redundant in the limit, preventsrapid convergence. On the other hand, setting Y11 = 0 in (3.11){(3.12) makes (3.12)infeasible in general. We shall see that the solution to these di�culties is to removeY11 from each linearization step, but include Y11 in the convergence analysis of thisprocedure. Thus, our convergence analysis is nonstandard.Let us calculate the derivatives of bF . The appearance of the matrix exponentialfunction in the de�nition makes this an easy task. We obtain[ bFx�x] = �e�Y bQT [Ax(x)�x] bQeY ;(3.16) [ bFY�Y ] = �B � BT ; where(3.17)B = f��Y + 12f�Y gY + 12Y f�Y g+O(Y 2)g bQTA(x) bQfI + Y +O(Y 2)g;[ bF!�!] = � �! I 00 0 �;(3.18)



8 M. L. OVERTON AND R. S. WOMERSLEY[ bF���] = � 0 00 �� �:(3.19)Here �x;�Y;�!;�� are variables with the same dimensions as x; Y; !;�, respec-tively; for example �Y , like Y , is an n by n skew-symmetric matrix, with�Y = � f�Y g11 f�Y g12�f�Y gT12 f�Y g22 �;(3.20)where �Y11 and �Y22 are skew-symmetric (but �Y12 is not). We shall use �Z todenote f�x;�Y;�!;��g.Now let us evaluate bF and its derivatives bFx, bFY at the pointbZ = fbx; bY ; b�1; b�2g;(3.21)where bY = 0;this equation being essential to keep the formulas simple. The derivatives bF! and bF�are constant. We have bF ( bZ) = � b�1I � b�1 00 0 �;(3.22) [ bFx( bZ)�x] = � bQT [Ax(bx)�x] bQ;(3.23) [ bFY ( bZ)�Y ] = �b�f�Y g+ f�Y gb� =(3.24) " �b�1f�Y g11 + f�Y g11b�1 �b�1f�Y g12 + f�Y g12b�2b�2f�Y gT12 � f�Y gT12b�1 �b�2f�Y g22 + f�Y g22b�2 #:Notice that the leading t by t block of this matrix is zero if and only if b�1 is a multipleof the identity matrix, i.e. A(bx) 2 
(t; b�1).An immediate consequence of Theorem 1 which we shall need later isjj bZ � bZ�jj = O(jjbx� x�jj);(3.25)using (3.21) and the Lipschitz continuity of the eigenvalues.The rest of the paper is organized as follows. In the next section, we analyzethe special case t(t+1)2 = m + 1, when the dimension of the variable space matchesthe number of conditions imposed by the multiple eigenvalue, and hence quadraticconvergence to a local solution of (1.5) can be achieved by a method which only uses�rst derivative information. In the subsequent section, we consider the general case,where second derivative information is necessary.



OPTIMIZING EIGENVALUES OF SYMMETRIC MATRICES 94. A Special Case. In this section we assume t(t+1)2 = m + 1, where t, asbefore, is the multiplicity of ��1. This is the case when the number of variablesequals the number of conditions imposed by the multiple eigenvalue, and hence x�is a locally unique solution of (3.14), given a nonsingularity condition to be de�nedshortly. Consider the following iteration.Iteration 1. Given an initial value bx:1. De�ne b�, bQ by (1.1){(1.2), and bF by (3.9). Let bZ = fbx; 0;b�1; b�2g.2. Solve the n by n symmetric matrix equation[ bFZ( bZ)�Z] = � bF ( bZ)(4.1)for �Z, imposing also the conditionf�Y g11 = 0:(4.2)Set Z = bZ +�Z.3. Replace bx by x, the x component of Z. Go to Step 1.Iteration 1 consists of a Newton iteration applied to a varying function, since thefunction which is di�erentiated, bF , changes at each step. Such a situation is notunusual; see [5,16]. The linear system (4.1) is equivalent to[ bFx( bZ)�x] + [ bFY ( bZ)�Y ] + [ bF!( bZ)�!] + [ bF�( bZ)��] = � bF ( bZ):(4.3)Because of the assumption that t(t+1)2 = m + 1, together with the fact that Y11is constrained to be zero, this is a system of n(n+1)2 equations in the same numberof variables. Examining (3.18){(3.24), we see that it separates very conveniently.Imposing the condition f�Y g11 = 0, the 1,1 block of (4.3) reduces to the t by tsymmetric matrix equation�! I � bQT1 [Ax(bx)�x] bQ1 = b�1 � b�1I:(4.4)Let us denote this system of linear equations bybK� �!�x � = bb(4.5)where bK = [vec I; �vec ( bQT1 @A(bx)@x1 bQ1); . . . ;�vec ( bQT1 @A(bx)@xm bQ1)](4.6)and bb = vec (b�1 � b�1I):(4.7)Note that bK has dimension t(t+1)=2 by m+1, i.e. it is square under the assumptionsof this section. (The operator \vec" was de�ned at the end of Section 2.)The 1,2 block of (4.3) is the t by n� t matrix equation� bQT1 [Ax(bx)�x] bQ2� b�1f�Y g12 + f�Y g12b�2 = 0(4.8)which can be solved for f�Y g12 in terms of �x by�yij = bqTi [Ax(bx)�x]bqjb�j � b�i ;(4.9)



10 M. L. OVERTON AND R. S. WOMERSLEYfor 1 � i � t, t < j � n; the denominator is bounded away from zero for bx in a smallenough neighborhood of x�. The 2,1 block of (4.3) contains the same information asthe 1,2 block. The 2,2 block of (4.3) is�� � bQT2 [Ax(bx)�x] bQ2 � b�2f�Y g22 + f�Y g22b�2 = 0:(4.10)The o�-diagonal equations of this symmetric system can be solved for f�Y g22 in amanner similar to equation (4.9), while the diagonal equations, which vanish in thelast two terms, can be solved for ��.In fact, though, we see that each step of Iteration 1 actually requires solving onlyone linear system for �! and �x, namely (4.5), a system of t(t+1)2 linear equations inm + 1 variables and therefore square by assumption. The variables �Y and �� arenot required to continue with the next iteration; their only purpose is their use in theproblem formulation and convergence analysis. Iteration 1 is therefore equivalent to:Iteration 2. Given an initial value bx:1. De�ne b�, bQ by (1.1){(1.2).2. Solve the linear system bK� �!�x � = bb, de�ned in (4.6){(4.7), for �!, �x.Set x = bx+�x.3. Replace bx by x, and go to Step 1.Let us now analyze the rate of convergence of Iteration 1, equivalently Iteration2. We �rst need:Theorem 2. De�neK� = [vec I; �vec (Q�1T @A(x�)@x1 Q�1); . . . ;�vec (Q�1T @A(x�)@xm Q�1)]:(4.11)Then the smallest singular value of K� is independent of the choice of basis Q�1.Proof. The freedom inQ�1 is that it may be postmultiplied by any t by t orthogonalmatrix. The smallest singular value of K� is, by de�nition,min�!2+jj�xjj2=1 jjK�� �!�x �jj:(4.12)The vector norm being minimized is in factjj�! I � fQ�1gT [Ax(x�)�x]Q�1jjF(see the discussion at the end of Section 2). This quantity is not changed if Q�1 ispostmultiplied by an orthogonal matrix.Using this result, we can speak unambiguously about whether or not K� is sin-gular. The convergence result may now be stated.Theorem 3. Suppose K� is nonsingular. Then there exist constants � and Csuch that, if jjbx� x�jj � �, thenjjx� x�jj � Cjjbx� x�jj2:Consequently, Iteration 1, equivalently Iteration 2, generates points bx which convergequadratically to the solution x�.



OPTIMIZING EIGENVALUES OF SYMMETRIC MATRICES 11Proof. That Iterations 1 and 2 generate the same point bx follows from the equiv-alence of (4.1){(4.2) with (4.5), (4.8),(4.10). Expanding bF in a Taylor series about bZ,using the point bZ� whose existence is guaranteed by Theorem 1, gives0 = bF ( bZ�) = bF ( bZ) + [ bFZ( bZ)f bZ� � bZg] + O(jj bZ � bZ�jj2):(4.13)By de�nition of Iteration 1, we also have0 = bF ( bZ) + [ bFZ( bZ)fZ � bZg];(4.14)noting that the Y11 component of Z is zero. The di�erence of these two equationsgives [ bFZ( bZ)fZ � bZ�g] = O(jj bZ � bZ�jj2):(4.15)Some comments here will be helpful. As usual, the proof of convergence of Newton'smethod involves three points: the current iterate, the new iterate, and the solutionpoint. Here, these are respectively bZ , Z and bZ�, the subtlety being that bZ� is thesolution to bF (Z) = 0, an equation whose de�nition depends on bZ. Equation (4.15)states that [ bFxfx� x�g] +[ bFfY11gf�bY �11g] + [ bFfY12gff�Y g12 � bY �12g] + [ bFfY22gff�Y g22 � bY �22g] +[ bF!fb�1 +�! � ��1g] + [ bF�fb�2 +�� � ��2g] = O(jjbx� x�jj2);(4.16)all of the derivatives being evaluated at bZ, the appearance of O(jjbx� x�jj2) insteadof O(jj bZ � bZ�jj2) on the right-hand side being justi�ed by (3.25). By Theorem 1, thebFfY11g term on the left-hand side can be absorbed into the right-hand side, reducing(4.16) to a linear system of n(n+1)2 equations in n(n+1)2 variables. By precisely theargument which showed the equivalence of (4.1){(4.2) with (4.5),(4.8),(4.10), thissystem can be reduced to t(t+1)2 equations in t(t+1)2 unknowns, namelybK� b�1 +�! � ��1x� x� � = O(jjbx� x�jj2):(4.17)The proof is then complete if we can assert that the norm of the inverse of bK isbounded for bx in a neighborhood of x�. Theorem 1 shows that there is an orthonormalbasis of eigenvectors for A(x�), namely Q� = bQebY � , for whichjj bQ�Q�jj = jj bQT ( bQ� Q�)jj = jjI � ebY � jj = O(jjbY �jj) = O(jjbx� x�jj):(4.18)Using this choice of Q� in (4.11), we havejj bK �K�jj = O(jjbx� x�jj):(4.19)Since K� is nonsingular by assumption, and this nonsingularity is independent of thebasis choice, the boundedness of the inverse of bK follows from the standard Banachlemma.Note that the use of the notation O(jj � jj2) to denote neglected terms in theTaylor expansion is valid even though a family of functions bF is being considered,for a sequence of values bQ de�ning bF . This is because the de�nition of bF in (3.9)shows that second and higher derivatives cannot blow up regardless of bQ, given thecorresponding smoothness assumptions on the matrix function A(x), together withthe orthogonality of bQ.



12 M. L. OVERTON AND R. S. WOMERSLEY5. The General Case. In this section we assume that t(t+1)2 � m + 1: Sincethe codimension of 
(t; !) is t(t+1)2 , and the dimension of the x; ! variable space ism+1, the opposite inequality can hold only nongenerically. Equality can be expectedto hold only occasionally since relatively few of the integers have the form t(t+1)2 .In the general case, the constraints (3:12) are not enough to de�ne x� locally, sominimization of (3.11) must also be considered.De�ne the Lagrangian function for (3.11){(3.12) bybL(Z;U ) = ! � U � bF (Z)(5.1)where U is an n � n symmetric matrix of Lagrange multipliers corresponding to then�n symmetric matrix constraint (3.12). The matrix U is called the dual matrix sinceits components are dual variables. The Frobenius inner product A �B was de�ned atthe end of Section 2. Assuming a full rank condition to be discussed in detail later,the �rst-order necessary conditions for Z to minimize (3.11) subject to (3.12) are that,in addition to the satisfaction of (3.12) by Z, there exists U satisfyingbLZ(Z;U ) = 0;(5.2)i.e. U � bFx(Z) = 0;(5.3) U � bFY (Z) = 0;(5.4) U � bF! = 1;(5.5)and U � bF� = 0:(5.6)Here (5.3), for example, is understood to mean U � [ bFx(Z)�x] = 0 for all �x, i.e.U � @bF (Z)@xk = 0, 1 � k � m. A pair Z;U which satis�es conditions (5.3){(5.6) isdenoted bZ�; bU�.In the following Newton iteration we shall, as in the previous section, imposethe additional condition that f�Y g11 = 0, and we shall therefore also relax thecorresponding dual condition U � bFfY11g(Z) = 0, replacing (5.4) byU � bFfY12g(Z) = 0; U � bFfY22g(Z) = 0:(5.7)Each step of the iteration requires a dual matrix estimate bU , which is necessary tode�ne the Lagrangian function. It is important to note that a dual matrix estimatefrom the previous step of the iteration cannot be used, since the function bF changesfrom one iteration to the next, with the basis bQ, which de�nes bF , not converging ingeneral.Iteration 3. Given an initial value bx:1. De�ne b�, bQ by (1.1){(1.2), and bF by (3.9). Let bZ = fbx; 0;b�1; b�2g.2. De�ne bU to be any n�n symmetric matrix such that the norm of the residualof equations (5.3),(5.7),(5.5),(5.6), with Z = bZ , U = bU , is O(jj bZ � bZ�jj).



OPTIMIZING EIGENVALUES OF SYMMETRIC MATRICES 133. Solve the quadratic programmin�Z [bLZ( bZ; bU)�Z] + 12 [bLZZ( bZ; bU )�Z�Z](5.8) subject to [ bFZ( bZ)�Z] = � bF ( bZ)(5.9)with the restriction also that f�Y g11 = 0:(5.10)Set Z = bZ +�Z.4. Replace bx by x, the x component of Z. Go to Step 1.Like Iteration 1, Iteration 3 can be substantially simpli�ed using the structure ofthe problem. We begin with a closer look at the dual matrix. Suppose we choosebU = � bU11 00 0 �:(5.11)and consider (5.3){(5.6) with Z = bZ, U = bU . We see then that, for U = bU , (3.19)implies (5.6) and (3.24) implies (5.4). In order to satisfy the condition in Step 2, then,we see from (3.18) and (3.23) that we need only ensure thattr bU11 = 1 + O(jjbx� x�jj)(5.12)and bU11 � bQT1 @A(bx)@xk bQ1 = O(jjbx� x�jj); 1 � k � m:(5.13)This is a system of m + 1 equations in t(t+1)2 unknowns, which can also be writtenbKT fvec bU11g = e1 +O(jjbx� x�jj):(5.14)As we shall see in Theorem 6 below, this can be achieved by solving the least squaresproblem minbU11 jj bKTfvec bU11g � e1jj:(5.15)The constraints (5.9){(5.10) are identical to the condition in Step 2 of Iteration 1,the only di�erence being that the system of linear equations is underdetermined ratherthan square. The same argument given following Iteration 1 therefore shows that(5.9){(5.10) is equivalent to the constraint (4.5) on �x, �! together with (4.8),(4.10)de�ning f�Y g12, f�Y g22.It is instructive to consider the special case t = 1 at this point: in this case themax eigenvalue function �(x) is di�erentiable at x�. Then bQ1 consists of a singlecolumn bq1, bU11 is a scalar which can be taken to be the number 1, (5.13) states thatthe gradient of � at x = bx is O(jjbx� x�jj), and the constraint (4.5) states that�! = [�x�x]:(5.16)Now let us consider the quadratic objective function (5.8). The linear term maybe replaced by �!, since the rest of this term is �xed by the constraint (5.9). To



14 M. L. OVERTON AND R. S. WOMERSLEYevaluate the quadratic term in (5.8), we need to calculate the second derivatives of bF .Clearly, all terms involving ! or � are zero. Di�erentiating (3.16){(3.17) we obtain[ bFxx( bZ)�x�x] = � bQT [Axx(bx)�x�x]bQ;[ bFxY ( bZ)�x�Y ] = [ bFY x( bZ)�Y�x]= f�Y g bQT [Ax(bx)�x] bQ� bQT [Ax(bx)�x] bQf�Y g;[ bFYY ( bZ)�Y�Y ] = �Y fb�f�Y g � f�Y gb�g � fb�f�Y g � f�Y gb�g�Y:Since bU satis�es (5.11), we need only the 1,1 block of each of these terms. Using(5.10) and (3.20), we obtain[ bFxx( bZ)�x�x]11 = � bQT1 [Axx(bx)�x�x]bQ1;[ bFxY ( bZ)�x�Y ]11 = f�Y g12 bQT2 [Ax(bx)�x] bQ1 + bQT1 [Ax(bx)�x] bQ2f�Y gT12;[ bFYY ( bZ)�Y�Y ]11 = f�Y g12f�b�2f�Y gT12 + f�Y gT12b�1g+fb�1f�Y g12 � f�Y g12b�2gf�Y gT12:But since �Y must satisfy the constraint (5.9), whose 1,2 block is (4.8), we see that[ bFYY ( bZ)�Y�Y ]11 = �[ bFxY ( bZ)�x�Y ]11:(5.17)We therefore have[ bFZZ( bZ)�Z�Z]11 = [ bFxx( bZ)�x�x]11+ [ bFxY ( bZ)�x�Y ]11+[ bFY x( bZ)�Y�x]11+ [ bFYY ( bZ)�x�Y ]11= � bQT1 [Axx(bx)�x�x]bQ1+ f�Y g12 bQT2 [Ax(bx)�x] bQ1+ bQT1 [Ax(bx)�x] bQ2f�Y gT12:Let us denote the right-hand side of this equation by �cM ; then we see that, underthe constraints (5.9){(5.10),[bLZZ( bZ; bU )�Z�Z] = bU11 � cM:Using (4.8) we see that the elements of the t� t matrix cM are given bycMij = bqTi [Axx(bx)�x�x]bqj + nXs=t+1
ijsbqTi [Ax�x]bqs bqTj [Ax�x]bqs(5.18)where 1 � i � t, 1 � j � t and
ijs = 1b�i � b�s + 1b�j � b�s = 2b�1 � b�s +O(jjbx� x�jj):(5.19)Writing out the double sums in the square brackets explicitly we see that, under theconstraints (5.9){(5.10),[bLZZ( bZ; bU)�Z�Z] = bU11 � cM = f�xgTcWf�xg(5.20)where cW is an m by m symmetric matrix whose k; l element satis�escWkl = bU11 � bGkl(5.21)



OPTIMIZING EIGENVALUES OF SYMMETRIC MATRICES 15with bGkl de�ned to be the t by t symmetric matrix with elementsf bGklgij = bqTi @2A(bx)@xk@xl bqj + nXs=t+1 
ijsbqTi @A(bx)@xk bqs bqTj @A(bx)@xl bqs:(5.22)Again, the case t = 1 is instructive: then, since bU11 = 1, bGkl is the scalar quantity(1.4) (with i = 1), i.e. the second partial derivative of � at x = bx, and cW is theHessian matrix of � at x = bx.Therefore, Iteration 3, with bU satisfying (5.11), reduces to:Iteration 4. Given an initial value bx:1. De�ne b�, bQ by (1.1){(1.2).2. De�ne bU11 by any t by t symmetric matrix such that (5.14) holds.3. De�ne cW by (5.19){(5.22). Solve the following quadratic program:min�!;�x�! + 12f�xgTcWf�xg(5.23) subject to bK� �!�x � = bb(5.24)where the latter constraint is de�ned by (4.6){(4.7). Set x = bx+�x.4. Replace bx by x and go to Step 1.In the case t = 1, we see from (5.16) that (5.23){(5.24) reduces to the ordinaryNewton iteration min�x [�x(bx)�x] + 12 [�xx(bx)�x�x]:Iteration 4 is the method given by [10], with two exceptions: (i) [10] addresses aslightly di�erent problem, namely minimizing max(�1(x),��n(x)), with A assumedto be an a�ne matrix function; (ii) the method of [10] substitutes the quantities2=fb�1 � b�sg for 
ijs, dropping the last term on the right-hand side of (5.19). Withthis simpli�cation, the corresponding formulas for (5.18), (5.22) can be written con-veniently using matrix notation asfM = bQT1 [Axx(bx)�x�x] bQ1+ 2 bQT1 [Ax(bx)�x] bQ2D�1 bQT2 [Ax(bx)�x] bQ1(5.25)with D = b�1I � b�2,eGkl = bQT1 @2A(bx)@xk@xl bQ1 + 2 bQT1 @A(bx)@xk bQ2D�1 bQT2 @A(bx)@xl bQ1(5.26)and fWkl = bU11 � eGkl:(5.27)The use of fW instead of cW does not a�ect the convergence rate of Iteration 4, butthe advantage of the latter formula is that it leads to the following observation, dueto M.K.H. Fan[2]:Theorem 4. Suppose A is an a�ne function, i.e. Axx = 0. Then if bU11 ispositive semi-de�nite, fW is also positive semi-de�nite, regardless of the magnitude ofbx� x�.



16 M. L. OVERTON AND R. S. WOMERSLEYProof. Since Axx = 0, it is clear that, for any choice of �x, fM is positive semi-de�nite. Since bU11 is positive semi-de�nite, the inner product bU11 � fM is nonnegativefor all �x, which is equivalent to the condition f�xgTfWf�xg � 0 for all �x.Clearly, the same result holds if [Axx(bx)�x�x] is positive semi-de�nite for all�x. Furthermore, if bx is close enough to x�, and fW is positive de�nite, then cWis positive de�nite. However, even if A is a�ne, cW is not positive semi-de�nite ingeneral. For example, suppose n = 3, t = 2, and bQ = I. The condition that cM ispositive semi-de�nite then reduces to the condition 
113
223 � 
2123, regardless of Ax.Choosing b� = Diag(2; 1; 0) gives
113 = 1; 
123 = 
213 = 1:5; 
223 = 2:so that cM is inde�nite. Then bU11 can be chosen positive semi-de�nite such that (5.20)is negative. However, substituting 2=(b�1 � b�3) for 
ijs results in the matrices fM andfW , which are positive semi-de�nite.The positive semi-de�nite condition on bU11 is a natural one, because, as indicatedby the next two theorems, bU11 is an approximation to the matrix V � given in (3.4).Speci�cally, note that equation (5.30) de�ning U�11 in the following theorem is identicalto equation (3.4) de�ning V �. There is no condition on the de�niteness of U�11, becausein the formulation of the nonlinear program (3.13){(3.14) we assumed that the optimalmultiplicity t is known; consequently, inde�niteness of U�11 indicates that t was chosenincorrectly and hence that x� does not minimize �.Theorem 5.1. Consider the r by (m+1) matrix K�, de�ned by (4.11), where r = t(t+1)=2.Then the rth singular value of K� does not depend on the choice of basis Q�1.2. Suppose that the rth singular value of K� is nonzero, i.e. K� has linearlyindependent rows. Consider the nonlinear program (3.13){(3.15), noting that thelatter constraint removes Y11 from the variable set. LetL�(Z;U ) = ! � U � F �(Z):A necessary condition for Z� = (x�; 0; ��1;��2) to solve (3.13){(3.15) is that thereexists an n by n symmetric matrix U�, satisfyingL�Z(Z�; U�) = 0:(5.28)Furthermore, U� is unique, with U� = � U�11 00 0 �;(5.29)where the t by t block U�11 satis�esfK�gTfvec U�11g = e1:(5.30)3. De�ne W � to be the m by m symmetric matrix with elementsW �kl = U�11 �G�klwhere G�kl is the t by t symmetric matrix with elementsG�kl = Q�1T @2A(x�)@xk@xl Q�1 + 2fQ�1gT @A(x�)@xk Q�2f��1I � ��2g�1fQ�2gT @A(x�)@xl Q�1:Then W � is independent of the choice of basis Q�1.



OPTIMIZING EIGENVALUES OF SYMMETRIC MATRICES 174. The null space of K� is independent of the choice of basis Q�1. Consequently,if N� is a matrix with orthonormal columns spanning the null space of K�, the eigen-values of the reduced Hessian matrixfN�gT� 0 00 W � �N�(5.31)are independent of the choice of bases Q�1, N�. (The matrix in the center of thisexpression has dimension m+ 1 by m+ 1.)Proof.1. The rth singular value of K� can be writtenminjjSjjF=1 jjfK�gTfvec Sgjj;where S is a t by t symmetric matrix. (The quantity (4.12) is zero in the general casethat K� has more columns than rows.) The quantity being minimized is(ftr Sg2 + mXk=1fS � fQ�1gT @A(x�)@xk Q�1g2 )12 :This minimum value is independent of the choice of basis Q�1, since any rotation ofthe basis can be absorbed into S.2. Let U� = � U�11 U�12fU�12gT U�22 �:We claim that (5.28) is equivalent to the two conditions (5.29){(5.30). To see that(5.28) implies (5.29){(5.30), observe, by analogy with (5.3){(5.7) and (3.18){(3.24),that U��F �� = 0 implies the diagonal elements of U�22 are zero, while U��F �Y22(Z�) = 0and U� � F �Y12(Z�) = 0, together with (3.1), imply respectively that the o�-diagonalelements of U�22 and all elements of U�12 are zero. The conditions U��F �! = 1 and U� �F �x (Z�) = 0 then reduce to (5.30). Conversely, if (5.29){(5.30) hold, it is easily veri�edthat (5.28) holds. The linear independence of the columns of fK�gT , equivalently thecolumns of the coe�cient matrix of the linear system (5.28), provides a constraintquali�cation guaranteeing the existence and uniqueness of U�.3. LetM� be de�ned by (5.25) with bx; b�; bQ replaced respectively by x�, ��; Q�.(This is equivalent to (5.18) in this case since ��1 = � � � = ��t .) When Q�1 is postmul-tiplied by a t by t orthogonal matrix P , it has the following e�ect: the �rst columnof K� is unchanged and the others are replaced by vec P TQ�1 @A(x�)@xk Q�1P ; the matrixM� is replaced by P TM�P ; the matrix U�11 is replaced by P TU�11P . By analogy with(5.20), f�xgTW �f�xg = U�11 �M� for all f�xg, so it follows that W � is independentof the choice of basis Q�1.4. The null space of K� is fv : K�v = 0gi.e. fv = (v0 v1 . . .vm)T : v0I + mXk=1 vkfQ�1gT @A(x�)@xk Q�1 = 0g;which is unchanged if Q�1 is postmultiplied by an orthogonal matrix.



18 M. L. OVERTON AND R. S. WOMERSLEYThe previous theorem was concerned only with quantities involving x� and F �.In order to prove convergence of Iterations 3 and 4, however, we need to quantify therelationship between bU and bU�, the latter quantity being the dual matrix associatedwith the solution of (3.11){(3.12).Theorem 6. Suppose K� has linearly independent rows and that bx is su�cientlyclose to x�. Consider the nonlinear program (3.11){(3.12), which has no constraintthat Y11 = 0. A necessary condition for bZ� = (x�; bY �; ��1;��2) to solve (3.11){(3.12)is that there exists an n by n symmetric matrix bU� satisfyingbLZ( bZ�; bU�) = 0;(5.32)i.e. (5.3){(5.6) hold for Z = bZ�, U = bU�. Furthermore, bU� is unique. Now assumethat the discrepancy in (5.3){(5.6), with Z = bZ, U = bU is O(jj bZ � bZ�jj), as requiredby Iteration 3. Then jjbU � bU�jj = O(jjbZ � bZ�jj):(5.33)Furthermore, such a matrix bU is obtained by using the block structure (5.11) andsolving the least squares problem (5.15).Proof. FromTheorem 5, the independence of the rows ofK� and the independenceof the columns of the coe�cient matrix de�ning the linear system (5.28) are equivalent.Using (4.18){(4.19), it follows that if jjbx� x�jj is su�ciently small, the columns of thelinear system (5.32) are also independent. (The fact that the columns of the lattersystem have more rows than the columns of the former, because of the presence of theadditional variables Y11, does not a�ect the linear independence.) This rank conditionprovides a constraint quali�cation guaranteeing the existence and uniqueness of bU�,satisfying (5.32), i.e. bU� � bFZ( bZ�) = v;(5.34)where v is a vector with one nonzero element, namely 1, in the position correspondingto the variable !. By de�nition, bU satis�esbU � bFZ( bZ) = v +O(jj bZ � bZ�jj);which has no equations corresponding to Y11. Subtracting this equation from thecorresponding equations in (5.34), ignoring the Y11 equations in (5.34), and notingthat bFZ is Lipschitz, givesfbU � bU�g � bFZ( bZ) = O(jj bZ � bZ�jj):The independence of the columns of the coe�cient matrix de�ning this system thengives (5.33).The proof of the �nal statement of the theorem is as follows. From (5.30),K�fK�gTfvec U�11g = K�e1and, from (5.15), bK bKTfvec bU11g = bKT e1:



OPTIMIZING EIGENVALUES OF SYMMETRIC MATRICES 19It follows as a consequence, using (4.19) and the fact that K� is full rank, thatjjbU11 � U�11jj = O(jjbx� x�jj):Combining this equation with (4.19) and (5.30) givesbKTfvec bU11g = e1 + O(jjbx� x�jj)from which the result follows.We are now ready to prove the main convergence theorem.Theorem 7. Suppose that K� has independent rows and that the reduced Hessian(5.31) is positive de�nite. Then there exist constants � and C such that, if jjbx�x�jj � �,then jjx� x�jj � Cjjbx� x�jj2for both Iterations 3 and 4. Consequently, both iterations generate points bx whichconverge quadratically to the solution x�.Proof. From Theorem 6, assuming that bx is su�ciently close to x�, a necessarycondition for a pair bZ�; bU� to solve the nonlinear program (3.11){(3.12) (withoutthe condition Y11 = 0 imposed), is that, in addition to (3.12), the equation (5.32)holds. Theorem 1 shows that we can take the bY � component of bZ� to satisfy jjbY �jj =O(jjbx� x�jj) and jjbY �11jj = O(jjbx� x�jj2). Furthermore, we can expand bF in a Taylorseries just as in the proof of Theorem 3, obtaining all of equations (4.13){(4.16) exactlyas before, the only di�erence being that these equations are not square systems.Speci�cally, (4.16), with its Y11 terms absorbed into the right-hand side, gives[ bFZ( bZ)fZ � bZ�g] = O(jjbx� x�jj2):(5.35)Now let us expand (5.32) in a Taylor series. We have0 = bLZ( bZ�; bU�) = bLZ( bZ; bU) + [bLZZ( bZ; bU )f bZ� � bZg] + [bLZU( bZ; bU)fbU� � bUg]+O(jj bZ � bZ�jj2 + jj bZ � bZ�jjjjbU � bU�jj)using the linearity of bL(Z;U ) in U . Note that the terms in square brackets, althoughinvolving second-order di�erentiation, are summed over only one argument and aretherefore vectors of length n(n + 1)=2 + m + 1 � t, the number of variables in Z.This system of equations has a row and a column corresponding to each elementof Z = (x; Y; !;�). Let us discard the rows corresponding to Y11, and absorb thecolumns corresponding to Y11 into the O term, which is permissible since bY = 0,bY �11 = O(jjbx� x�jj2). Using the fact that bLZU = � bFZ , this gives0 = bLZ( bZ; bU) + [bLZZ( bZ; bU)f bZ� � bZg]� fbU� � bUg � bFZ( bZ) + O(jjbx� x�jj2)(5.36)with the understanding that all Y11 terms are omitted. The O(jjbx� x�jj2) term on theright-hand side is justi�ed by (3.25) and (5.33).The necessary condition for a pair �Z;�U to solve the quadratic program de�ninga step of Iteration 3 is, in addition to the constraints (5.9){(5.10), that there exists adual matrix �U such that�U � bFZ( bZ) = bLZ( bZ; bU) + [bLZZ( bZ; bU)�Z]:(5.37)



20 M. L. OVERTON AND R. S. WOMERSLEYwhere rows and columns of the coe�cient matrix corresponding to Y11 have beenomitted because of (5.10). Noting that �Z = Z � bZ and subtracting (5.36) from(5.37) gives [bLZZ( bZ; bU)fZ � bZ�g]� fU � bU�g � bFZ( bZ) = O(jjbx� x�jj2);(5.38)where U = bU +�U .Equations (5.35),(5.38) state the �rst-order optimality conditions for the quadraticprogram minZ�bZ� h � fZ � bZ�g+ 12 [bLZZ( bZ; bU)fZ � bZ�gfZ � bZ�g](5.39) subject to [ bFZ( bZ)fZ � bZ�g] = O(jjbx� x�jj2)(5.40)where the �rst term in (5.39) is an inner product, with h (which has the same structureas Z) satisfying h = O(jjbx� x�jj2). It is understood that there are no Y11 terms inZ, bZ�. Note that the Hessian and constraint coe�cients of this quadratic programare identical to those of (5.8){(5.9). We shall now simplify this quadratic program,using an argument similar to that which reduced (5.8){(5.9) to (5.23){(5.24). Firstconsider the linear term in (5.39). We haveh � fZ � bZ�g = eh � � b�1 +�! � ��1x� x� �+  (5.41)where eh 2 <m+1 and  2 < satisfy eh = O(jjbx� x�jj2) and  = O(jjbx � x�jj4). Thisequation holds because of the constraint (5.40), which de�nes the Y and � elementsof Z � bZ� in terms of the x and ! components, by analogy with (4.8){(4.10). Nowconsider the quadratic term in (5.39). The argument that showed that the quadraticform in (5.8) reduces to that in (5.23) uses (5.17), which follows from the 1,2 block of(5.9), namely (4.8). We now use a similar argument to simplify the quadratic termin (5.39). Instead of (4.8), we have, from the 1,2 block of (5.40),� bQT1 [Ax(bx)fx� x�g] bQ2 � b�1f�Y � bY �g12 + f�Y � bY �g12b�2 = O(jjbx� x�jj2):Instead of (5.17), we conclude that[ bFYY ( bZ)f�Y � bY �gf�Y � bY �g]11+ [ bFxY ( bZ)fx� x�gf�Y � bY �g]11= O(jjbx� x�jj2jj�Y � bY �jj):Again using (5.40) to de�ne �Y � bY � in terms of the x and ! components of Z � bZ�,we see that the right-hand side consists of two terms, of which one can be absorbedinto the �rst term of (5.41), and the other into the second. We therefore see that, justas the quadratic form in (5.8) reduces to that in (5.23), the quadratic form in (5.39)reduces to  + eh � � b�1 +�! � ��1x� x� �+ 12fx� x�gTcWfx� x�g(5.42)where eh = O(jjbx� x�jj2). The constraint (5.40) reduces to (4.17), i.e.bK� b�1 +�! � ��1x� x� � = O(jjbx� x�jj2):(5.43)



OPTIMIZING EIGENVALUES OF SYMMETRIC MATRICES 21The optimality conditions for the quadratic program de�ned by (5.42){(5.43) are24 � 0 00 cW � � bKTbK 0 3524 � b�1 +�! � ��1x� x� �vec fU11 � bU�11g 35 = O(jjbx� x�jj2);(5.44)By assumption, K� has full rank and (5.31) is positive de�nite, so24 � 0 00 W � � fK�gTK� 0 35is nonsingular. Therefore, using (4.18){(4.19) and noting that jjcW�W �jj= O(jjbx� x�jj),we see that the inverse of the coe�cient matrix of (5.44) is bounded for bx near x�.The desired quadratic contraction is therefore proved.6. Concluding Remarks. The convergence proof just given is complicated, be-cause of the disparity in the number of free parameters in the equations bF = 0 andF � = 0, even as bx! x�. An alternative analysis of the same method has been givenrecently by Shapiro and Fan [15], in contemporary, independent work. Our results andthose of [15] complement each other nicely. The analysis in [15] is shorter than oursbut rests on several nontrivial results. The principal idea is that although eigenvectorsare not smooth, eigenprojections are di�erentiable, and indeed derivative formulas areknown (Kato [7]). Shapiro and Fan show how to construct a smoothly varying or-thonormal basis for the eigenprojection which agrees with a given orthonormal basisof eigenvectors at a point, though not in a neighborhood of the point. Neither theresults from Kato nor the construction of the eigenprojection basis could be saidto be elementary, though both are powerful. By contrast, our convergence proof iscompletely self-contained. The Hessian formulas arise simply from di�erentiating thefunction bF and do not require any machinery from Kato. The only outside resultwhich is needed is Theorem 1, whose proof is elementary [4].Appendix. The following shows that any real orthogonal matrix P with detP =1 may be written in the formP = eY , where Y = �Y T . This derivation was suggestedby J.-P. Haeberly. It is undoubtedly well known, though we lack a standard reference.An orthogonal matrix has eigenvalues of the form �1 and cos � � i sin �, with acorresponding orthogonal set of eigenvectors. Thus, there exists an orthogonal matrixV such that V TPV = Diag(D1; . . . ; Dk)where each Dj is either the number �1, or a 2� 2 matrix of the form� cos � � sin �sin � cos � � :Since detP = 1, the number of �1's that occur must be even, so we may assume thatthe Dj 's are either the number +1 or a 2� 2 matrix as above. But 1 = e0, and� cos � � sin �sin � cos � � = exp � 0 ��� 0 � :
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