SECOND DERIVATIVES FOR OPTIMIZING EIGENVALUES OF
SYMMETRIC MATRICES
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Abstract. Let A denote an n X n real symmetric matrix-valued function depending on a vector
of real parameters, z € . Assume that A is a twice continuously differentiable function of z, with
the second derivative satisfying a Lipschitz condition. Consider the following optimization problem:
minimize the largest eigenvalue of A(z). Let z* denote a minimum. Typically, the maximum eigen-
value of A(z*) is multiple, so the objective function is not differentiable at #*, and straightforward
application of Newton’s method is not possible. Nonetheless, the formulation of a method with local
quadratic convergence is possible. The main idea is to minimize the maximum eigenvalue subject
to a constraint that this eigenvalue has a certain multiplicity. The manifold € of matrices with
such multiple eigenvalues is parameterized using a matrix exponential representation, leading to the
definition of an appropriate Lagrangian function. Consideration of the Hessian of this Lagrangian
function leads to the second derivative matrix used by Newton’s method. The convergence proof is
nonstandard because the parameterization of € is explicitly known only in the limit. In the special
case of multiplicity one, the maximum eigenvalue is a smooth function and the method reduces to a
standard Newton iteration.
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1. Introduction. Let A denote an n x n real symmetric matrix-valued function
depending on a vector of real parameters, € R7. Assume that A depends smoothly
on z, specifically that it is at least twice continuously differentiable, with the second
derivative satisfying a Lipschitz condition in . Denote the eigenvalues of A(x) by

Ar(z) > - > Ap(a).

The eigenvalues A; are Lipschitz continuous functions of z [7] and, in any region
where they are distinct from one another, it is well known that they are (Fréchet)
differentiable; in fact, they inherit the C* smoothness of the function A(z) [7, p.134].
Let Z be given, with

(1.1) A@) =QAQ", QTQ=1,

where

(1.2) A =Diag(A1,.. ., An), @=[G1,....Gn).

Thus, {XZ} and {g;} are respectively the eigenvalues and an orthonormal set of eigen-

vectors of A(Z). Assume that Xl > ... > A,, so that XZ = Ai(Z). Then formulas for
the first and second partial derivatives of the eigenvalues A; at x = Z, assuming that
the A; are distinct, are

ON(E) _ 7 0AG)
al‘k - ql a$k ql

(1.3)
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The first of these formulas is well known, and the second may be found in a variety
of sources; see [8], [9], as well as (in a somewhat less accessible form) [7, p.95]. Both
will follow as special cases of the results given in this paper.

However, if A(x) has multiple eigenvalues at a point # = Z, its eigenvalues, while
still Lipschitz continuous, may not generally be written as differentiable functions of
several variables at * = Z. For example, consider

Alr) = [ l+z ]

9 1—1‘1

The eigenvalues are

/\172: 1i\/$%+l‘%

Thus Aq, the largest eigenvalue of A(z), is generally not a smooth function of #;
furthermore, it cannot even be written as the maximum of n smooth functions of =z,
if  has two or more components. Also, the eigenvectors of A(x) cannot generally be
written as continuous functions of ; this is a consequence of the fact that eigenvectors
corresponding to simple eigenvalues are unique (up to sign and normalization) while
those corresponding to multiple eigenvalues are not.

Generally speaking, applications involving eigenvalues of matrices depending on
free parameters fall into one of two categories. In the first, it is specified that some or
all of the eigenvalues A;(x) achieve some given values AY; this is known as an inverse
etgenvalue problem. If these given values are distinct, the inverse eigenvalue problem
may be formulated as a differentiable system of nonlinear equations, and, if the num-
ber of free parameters and the number of equations is the same, the application of
Newton’s method is straightforward, using (1.3). In [4] it was shown how, even in
the multiple eigenvalue case, the inverse eigenvalue problem may be formulated as a
differentiable system of nonlinear equations, so that Newton methods, with generic
quadratic convergence, are applicable.

In the second class of applications, the eigenvalues are not required to have par-
ticular values, but rather it is desired to solve some optimization problem involving
the eigenvalues. A particularly common case is the “min-max” problem

(1.5) N Iélig%mfb(l‘)

where ¢(x) = Ai(x), the largest eigenvalue of A(z). Let z* be a locally unique
minimizer of ¢. If * has the property that the eigenvalue A;(z*) is simple, i.e. has
multiplicity one, then the function to be minimized, Aq, is twice continuously differen-
tiable in a neighborhood of z*, and Newton’s method for unconstrained minimization
may be applied, using the Hessian matrix defined by (1.4). However, it is more often
the case that A(z*) has multiple eigenvalues; this is a consequence of the optimization
objective, which in driving all the eigenvalues down as much as possible usually forces
the coalescence of some of them. In such a case A; i1s generally not differentiable at
r=a".
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This paper is concerned with the formulation of a method to solve optimization
problems involving eigenvalues in exactly this case, where multiple eigenvalues occur
at the solution. We shall show that the correct problem formulation leads to a method
with generic quadratic convergence. This method was first given by [10], inspired in
part by [3,4]. Quadratic convergence was demonstrated by numerical examples. The
purpose of the present paper is primarily to prove the quadratic convergence property
for the method presented in [10], justifying the Hessian matrix formulas given there,
which were originally derived only formally and stated without any derivation or proof.
The ideas of this paper can be applied to other classes of eigenvalue and singular value
optimization problems, e.g. those discussed in [1,6,11,12,14,18 19], as well as many
other references which can be found in these papers. However, we concentrate on the
model problem (1.5). We consider only the issue of local convergence. For details of
how to use the method and related methods in practice, see [11].

2. Tensor Notation. We shall have frequent need to refer to the first and second
derivatives, with respect to several variables, of matrix-valued functions. Such objects
are, respectively, tensors in three and four dimensions, a matrix being a tensor in two
dimensions. We shall use subscripts to denote differentiation: thus A, and A, refer
to the first and second derivatives of the matrix-valued function A, with respect to the
variable # € R™. Rather than attempt to describe the elements of a tensor, however,
we shall describe its action as a linear operator, the result having the same dimension
as the undifferentiated quantity, whether a matrix, a vector, or a scalar. For example,
we write [AzAx] to mean

> (Arjra
k=1 Lk

and [AzzAxzAz] to mean

ZZ{Aw}k{Ax}j%%A.

k=1j=1

We shall reserve square brackets [, | for this purpose, and we shall use parentheses (,
) primarily to mean “evaluated at”. We shall use braces {, } to indicate expression
precedence. For example, the first and second derivatives of ¢(x) = A1(z) at & = Z,
when A1(Z) is simple, given by (1.3)-(1.4), are written in tensor notation as

[6:(F)Az] = 4] [A:(2)Ac] @y

and

ATA A ~12
[600(B)A2Az] = §T [Are ArAa]fi +2 3 M
s#1 1 = As

Because the second derivative of a twice continuously differentiable function is sym-
metric with respect to its two arguments of differentiation, there is no ambiguity
in this notation. There should be no confusion between those subscripts indicating
differentiation and those indicating components.

We shall use | - | to denote the Euclidean vector norm. The expression A e B,
where A and B are symmetric matrices of the same dimension, means the matrix
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inner product
Ae B =tr AB.

The operator “vec” maps the set of symmetric matrices of dimension ¢ into the cor-
responding vector space RHTD/2 multiplying the off-diagonal components by the
factor /2 so that

(vec A)T(vec B) = A e B.
Consequently
[vec Al = [Alr,

the Frobenius norm of A.

3. The Matrix Exponential Formulation. Let z* be a locally unique mini-
mizer of ¢ = Ay, and let AY = A;(2*), i = 1,...,n. Suppose that

(3.1) Al = =20 > A > > A

i.e. the maximum eigenvalue of A(z*) has multiplicity ¢, but all other eigenvalues are
simple. The latter assumption usually holds in practice; it could be relaxed, at the
cost of more complex notation. Let

(3.2) = XL, A3 = Diag(My.. .. D),

the identity block having order ¢, and let @* = [¢7, ..., ¢;] be a corresponding orthog-
onal basis of eigenvectors, with

(3.3) Qi =14l .. 4f], Q5=1[diy1-- 03]

The matrix Q% is unique, up to the choice of signs for its columns, but the matrix
Q7 1s not, since any particular choice of basis may be rotated by postmultiplying by
a t X t orthogonal matrix.

It was shown in [11] that a necessary condition for #* to minimize ¢(z) is that
there exist a ¢ by ¢ symmetric matrix V7, with V* positive semi-definite, such that

(3.4) tr V=1, V*e{Q}[A.(z")AZ]Q} =0,

for all Az. In the case { = 1, when @7 consists of a single column ¢7, this reduces to
the statement that {¢}}7[A.(z*)Az]q; = 0, equivalently [¢.(z*)Az] = 0 for all Az,
i.e. the gradient of ¢(x*) is zero. If A(x) is an affine function, the necessary condition
is also sufficient for optimality.

We wish to consider the correct local formulation of a Newton-based method so
that quadratic convergence to z* is obtained generically. We assume that the optimal
multiplicity ¢ is known. This is not the case in practice, and must be determined
during the course of the computation, as explained in [10,11]. If ¢ is set incorrectly,
the method to be described would converge locally to a minimizer of ¢ subject to
the wrong multiplicity constraint, which might not be a minimizer of ¢. This can
be avoided, by computing an approximation to V* and verifying that the necessary
conditions for optimality, including the positive semi-definite condition on V*, are
satisfied. See [11] for discussion of the case where all optimality conditions except the
positive semi-definite condition are satisfied.



OPTIMIZING EIGENVALUES OF SYMMETRIC MATRICES 5

Assuming, then, that the optimal value of ¢ is known, the local minimizer z* of
¢ clearly also locally solves the constrained problem

(3.5) min w
(3.6) subject toA(z) € Q(¢,w)

where © € R™, w is a real parameter, and Q(¢,w) is the set of matrices whose greatest
eigenvalue has multiplicity t and value w. The set Q(t,w) is an analytic manifold
contained in the space of n by n symmetric matrices. The structure of this manifold
is well known. Tt was observed as early as 1929 [17] that the number of conditions
imposed on the space of symmetric matrices by the restriction that a matrix lie on

t(t41)
-—.

this manifold is In other words, the codimension of the manifold Q(¢,w) is

t(tzﬁ. Formulas for the tangent space to the manifold Q(¢,w) at any point can be
computed using standard techniques in differential geometry [13,15]. Much less obvi-
ous, however, is how to parameterize a description of the manifold which is suitable
for the application of Newton methods. This is really the main point of the paper.
The key idea, following [4], is to parameterize the orthogonal matrix of eigenvec-
tors using a matriz exponential. Any orthogonal matrix P with det P = 1 can be

represented by
P=e"=I+Y+3Y?4. .,

where Y is skew-symmetric, i.e. Y = —Y 7T Since eigenvector signs are arbitrary, the
assumption that det P = 1 is not a restriction. A proof that this representation is
always possible and locally unique is given in the Appendix.

Let # be a given point, with the eigenvalues and eigenvectors of A(Z) given by

(1.1)-(1.2). Let

(3.7) Ay = Diag(A1, ..., A), Ay = Diag(Ag1,. .., An),
and let
(3.8) Qr=1[0--@), Qo= [G+1---Tnl.

Define the twice continuously differentiable n x n symmetric matrix-valued function

(3.9) ﬁ(x,Y,w,G)) = [ WOI (g ] - e_Y@TA(J:)@eY
where € R, w is a real scalar, © = Diag(0y,...,0,_¢) is a real diagonal matrix of

order n —t , and Y is a real n X n skew-symmetric matrix. From the context, it 1s
clear that I is used to mean the identity matrix of order . Subsequent block matrices
will have dimensions conforming with those of F'. We shall find it useful to write

Y Yis ]
3.10 y = ,
(3.10) [—leT Yoo

where Y71 and Y5 are skew symmetric but Yis 1s not. Note that the definition of I
depends on T through Q Of course, Q could be removed from r by absorbing it into
e¥. The reason for the explicit 1nclus1on of Q in the definition of F' is so that the
function e¥ can always be expanded about ¥ = 0.
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Now consider the nonlinear program

(3.11) xyr}r/lyg}@ w
(3.12) subject toﬁ(x, Y,w,0)=0.

It is clear that if {#,Y,w, 0} solves (3.12), with w > 6;, i = 1,...,n — ¢, then {z,w}
satisfies the constraint (3.6), with A(z) having eigenvalues w,...,w, 01,...0,_¢, and
eigenvectors given by the columns of @ey. Conversely, if #,w satisfy (3.6), then,
regardless of @, (3.12) has a solution {z,Y,w, 0}, with 6; = A\;1;(z) and ¢¥ = @TQ,
where @) is an orthogonal matrix of eigenvectors for A(z).

The number of equations in (3.12) is @ Formulation (3.11)—(3.12) introduces
additional variables ¥,© which are not present in (3.5)—(3.6), with corresponding
space dimension @ +n—t= @ — t. The difference between the number of
equations and number of extra variables is ¢, which is not the codimension of Q(t,w).
This shows that there is a difficulty with regularity in the parameterization of Q(¢, w)
given by (3.12).

This difficulty is clarified by a key observation. Consider

Feveo=| 4 g |- @ awe

and the associated nonlinear program

(3.13) min w
z,Y w,®
(3.14) subject toF*(z,Y,w,0) = 0.

The functions F' and F* coincide if # = z* and the same basis @ = " 1s used in

both definitions. We have A(z*) € Q(¢, A}) and

()T A(2")Q" = [ /\(*1;1 182 ]

so Y satisfying (3.14) is not unique if ¢ > 1. Specifically, any ¥ of the form

_ Y110
=[]

solves (3.14) with # = #*, w = A}, © = A%. Consequently, to obtain regularity in
(3.13)—(3.14), the additional condition

(3.15) Y1 =0

should be imposed in (3.10). The number of equations in (3.14) reduced by the
dimension of the space of variables Y, © is then

n(n+1) n(n—1) tt—1) (4 1)
T )

which is the codimension of Q(t,w). Ideally then, we would like to parameterize
(3.5)-(3.6), not by (3.11)—(3.12), but by (3.13)—(3.14) together with (3.10), (3.15).

However, this is not possible in practice, because Q™ is known only in the limil. The
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best we can do is to use (3.11)—(3.12), where @ is the matrix of eigenvectors for z, the
current best approximation to the solution z*. Thus, we shall work with a different
function F at each step of the iteration.

But now a second key point must be emphasized. Although the Y17 variables are
redundant in (3.14), they are not redundant in (3.12) if Z # *, or more specifically
if A(Z) ¢ Q(t,xl). On the contrary, the freedom in Y11 is necessary to ensure that
a feasible solution to (3.12) exists in general. Clearly, the closer Z is to «*, i.e. the
closer A(Z) is to Q(t,xl), the closer the Y11 variables come to being redundant. This
observation is quantified by the following theorem, which follows directly from [4],
Corollary 3.1 and subsequent remarks. It will be convenient to denote the variables
{z,Y,w,0} collectively by a single variable Z, which lies in a space of dimension
POAD Lo 1t

THEOREM 1. There exist € > 0, C' < oo such that, if |z —a*| < ¢, then ﬁ(Z) =0
has a solution Z* = {&*,Y* AT, AL} with

Yl < Cle— 27|
and with the leading t by t block of v+ satisfying
1¥71] < Oz — =]

Here Y* and 7% are so denoted because, unlike x*, they depend on the choice of
function F.

Roughly speaking, the Y variables describe the rotation of the eigenvectors ;
needed to transform them to eigenvectors of A(z*), while Y71 describes the rotation
of the first ¢ of these eigenvectors within the ¢-dimensional space they span. The
rotation of the latter kind becomes relatively unimportant, as z — x*, because of the
nonuniqueness of the eigenvectors of A(z*).

Straightforward application of Newton’s method to solve (3.11)-(3.12) is not satis-
factory, since inclusion of the Y7, variables, which are redundant in the limit, prevents
rapid convergence. On the other hand, setting Y1; = 0 in (3.11)—(3.12) makes (3.12)
infeasible in general. We shall see that the solution to these difficulties is to remove
Y11 from each linearization step, but include Y7; in the convergence analysis of this
procedure. Thus, our convergence analysis is nonstandard.

Let us calculate the derivatives of F'. The appearance of the matrix exponential
function in the definition makes this an easy task. We obtain

(3.16) [FoAz] = —e Y QT [A(2)Ax]Qe";
(3.17) [FyAY]=—B— BT, where

B ={-AY + HAY}Y + LY {AY} + O(Y)IQT A(x)Q{I + Y + O(Y )}

(3.18) [F,Aw] =
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(3.19) [FoAO] =

0 O

0 Ao |’

Here Az, AY, Aw, AO are variables with the same dimensions as z,Y,w,©, respec-
tively; for example AY, like Y, 1s an n by n skew-symmetric matrix, with

(3.20) AY = [ {AY} {AY} ]’

—{AY}], {AY}as

where AY7; and AYys are skew-symmetric (but AY7s is not). We shall use AZ to
denote {Axz, AY, Aw, AO}.

Now let us evaluate I and its derivatives ﬁx, ﬁy at the point

=0

(3.21) Z=1{2,Y, 2, A5},

where
Y=o,

this equation being essential to keep the formulas simple. The derivatives ﬁw and ﬁ@
are constant. We have

(3.22) F(Z)=

(3.23) [Fo(Z2)Ax] = —Q"[4,(2)Ax]Q;
(3.24) [Fy(Z)AY] = —A{AY} + {AY}A =

—AK1{AY}11 + {AY}nﬁl —51{AY}12 + {AY}12§2
A{AYYT, —{AY LA —Ao{AY }oo + {AY }o0As

Notice that the leading ¢ by ¢ block of this matrix is zero if and only if Kl is a multiple
of the identity matrix, i.e. A(Z) € Q(¢, A1).
An immediate consequence of Theorem 1 which we shall need later is

(3.25) |1Z — 27| = Oz — «*|),

using (3.21) and the Lipschitz continuity of the eigenvalues.

The rest of the paper is organized as follows. In the next section, we analyze
the special case t(tzﬁ = m + 1, when the dimension of the variable space matches
the number of conditions imposed by the multiple eigenvalue, and hence quadratic
convergence to a local solution of (1.5) can be achieved by a method which only uses
first derivative information. In the subsequent section, we consider the general case,

where second derivative information is necessary.
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4. A Special Case. In this section we assume t(tzﬁ = m + 1, where t, as
before, is the multiplicity of Aj. This is the case when the number of variables
equals the number of conditions imposed by the multiple eigenvalue, and hence z*
is a locally unique solution of (3.14), given a nonsingularity condition to be defined
shortly. Consider the following iteration.

ITERATION 1. Given an initial value T : R R
1. Define A, Q by (1.1)-(1.2), and F by (3.9). Let 7 = {Z,0, A1, A2},

2. Solve the n by n symmetric matriz equation
(4.1) [Fy(Z)AZ) = —F(Z)
for AZ, tmposing also the condition
(4.2) {AY}11 = 0.

Set 7 =7+ AZ.
3. Replace T by Z, the x component of Z. Go to Step 1.
Iteration 1 consists of a Newton iteration applied to a varying function, since the
function which is differentiated, F', changes at each step. Such a situation is not
unusual; see [5,16]. The linear system (4.1) is equivalent to

(4.3) [Fo(Z)Az] + [Fy (2)AY] + [Fu(Z)Aw] + [Fo(Z)AB] = —F(Z).

Because of the assumption that ﬁt;’—ll = m + 1, together with the fact that Y,
is constrained to be zero, this is a system of @ equations in the same number
of variables. Examining (3.18)-(3.24), we see that it separates very conveniently.
Imposing the condition {AY};; = 0, the 1,1 block of (4.3) reduces to the ¢ by ¢
symmetric matrix equation

~

(4.4) Aw I — QT [Ax()A2]Qr = Ay — Ay 1.

Let us denote this system of linear equations by

= Aw | o
(4.5) A[ A ] =b
where
- ~p 0A(Z) 4 ~p OA(Z) A
_ i T _ T
(4.6) K =[vec I, —vec (@] oz, Q1),...,—vec (@ . Q1))
and
(4.7) b =vec (Ay — A D).

Note that /X has dimension t(t+1)/2 by m+1,i.e. it is square under the assumptions
of this section. (The operator “vec” was defined at the end of Section 2.)
The 1,2 block of (4.3) is the ¢ by n — ¢t matrix equation

(4.8) — QT [Ax(2)A2]Q2 — A {AY }15 + {AY 1124, = 0
which can be solved for {AY}15 in terms of Az by

/\T o~ o~
7; [Az(T)Ax|g;
Aj— A

bl
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for 1 <i<t,t < j<n;the denominator is bounded away from zero for Z in a small
enough neighborhood of «*. The 2,1 block of (4.3) contains the same information as

the 1,2 block. The 2,2 block of (4.3) is
(4.10) AO — QA (Z)A2)Qs — Ao {AY }og + {AY }59A, = 0.

The off-diagonal equations of this symmetric system can be solved for {AY }29 in a
manner similar to equation (4.9), while the diagonal equations, which vanish in the
last two terms, can be solved for AG@.

In fact, though, we see that each step of Iteration 1 actually requires solving only
one linear system for Aw and Az, namely (4.5), a system of ﬁt;’—ll linear equations in
m 4+ 1 variables and therefore square by assumption. The variables AY and A© are
not required to continue with the next iteration; their only purpose is their use in the
problem formulation and convergence analysis. Iteration 1 is therefore equivalent to:

ITERATION 2. Given an initial value Z:

1. Define A, Q by (1.1)-(1.2).
. ~ | Aw
2. Solve the linear system K A

] :E, defined in (4.6)-(4.7), for Aw, Ax.

SetT =7+ Ax.
3. Replace * by T, and go to Step 1.
Let us now analyze the rate of convergence of Iteration 1, equivalently Iteration

2. We first need:

THEOREM 2. Define

4.11 [\7* = |vec I’ —vec «T 814(1; )Q* ..., —Vec T aA(l‘ )
1 9 1 1
L1

Q)]

Oz,

Then the smallest singular value of K™ 1s independent of the choice of basis Q7.
Proof. The freedom in )7 is that it may be postmultiplied by any ¢ by ¢ orthogonal
matrix. The smallest singular value of K* is, by definition,

x| Aw
K [AJ; ]”

The vector norm being minimized is in fact

(4.12) |

min
Aw?4|Az|?2=1

|Aw I = {Q7} [Aa(x")A2]Qi | F

(see the discussion at the end of Section 2). This quantity is not changed if Q7 is
postmultiplied by an orthogonal matrix. d

Using this result, we can speak unambiguously about whether or not K* is sin-
gular. The convergence result may now be stated.

THEOREM 3. Suppose K™ s nonsingular. Then there exist constants € and C
such that, if | — a*| < ¢, then

|7 — 2] < Ol — 2.

Consequently, Iteration 1, equivalently Iteration 2, generates poinis T which converge
quadratically to the solution z™.
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Proof. That Iterations 1 and 2 generate the same point & follows from the equiv-
alence of (4.1)—(4.2) with (4.5), (4.8),(4.10). Expanding F in a Taylor series about Z,
using the point Z* whose existence is guaranteed by Theorem 1, gives

(4.13) 0=F(Z") = F(Z) +[F2(2{ 7" = 2N+ O(1Z = Z*|).
By definition of Iteration 1, we also have

(4.14) 0=F(Z)+ [Fz(2){Z - Z}),

noting that the Yi; component of Z is zero. The difference of these two equations
gives

(4.15) [F2(2){Z =27} = O(1Z = Z|P).

Some comments here will be helpful. As usual, the proof of convergence of Newton’s
method involves three points: the current iterate, the new iterate, and the solution
point. Here, these are respectively Z Z and Z* the subtlety bemg that Z* is the

solution to F(Z) = 0, an equation Whose deﬁnltlon depends on Z. Equation (4.15)
states that

[Fo{T — 2*}] +
Py {=Y5] + [Py LAY b = Y33+ [Py {H{AY Yoo — V)] +

(416)  [Fofd+ Aw = X[} + [Fo{ds + A0 — A3} = O(Jz — "),

all of the derivatives being evaluated at Z, the appearance of O(|z — =*||?) instead
of O(|Z — Z*|?) on the right-hand side being justified by (3.25). By Theorem 1, the
Fyy,,1 term on the left-hand side can be absorbed into the right-hand side, reducing

(4.16) to a linear system of @ equations in @ variables. By precisely the
argument which showed the equivalence of (4.1)-(4.2) with (4.5),(4.8),(4.10), this

system can be reduced to M equations in ﬁt;’—ll unknowns, namely

X+ Aw — A

T —x*

(4.17) = O(J& - 2" ).

The proof is then complete if we can assert that the norm of the inverse of K is
bounded for ¥ in a neighborhood of *. Theorem 1 shows that there is an orthonormal

basis of eigenvectors for A(z*), namely Q* = @e?/*, for which

418)  [Q-Q =1QT(Q-@)=[I-e"]=0(Y"]) = Oz — a"|).
Using this choice of @* in (4.11), we have

(4.19) = O(]z — "))

Since K™ is nonsingular by assumption, and this nonsingularity is independent of the
basis choice, the boundedness of the inverse of K follows from the standard Banach

- K*

lemma. O

Note that the use of the notation O(] - |*) to denote neglected terms in the
Taylor expansion is valid even though a family of functions Fis being considered,
for a sequence of values Q defining F'. This is because the definition of I in (3. 9)
shows that second and higher derivatives cannot blow up regardless of Q, given the
corresponding smoothness assumptions on the matrix function A(z), together with

the orthogonality of @
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5. The General Case. In this section we assume that @ < m+ 1. Since

the codimension of Q(¢,w) is ﬁt;’—ll, and the dimension of the z,w variable space is
m++ 1, the opposite inequality can hold only nongenerically. Equality can be expected
to hold only occasionally since relatively few of the integers have the form ﬁt;’—ll
In the general case, the constraints (3.12) are not enough to define z* locally, so
minimization of (3.11) must also be considered.

Define the Lagrangian function for (3.11)—(3.12) by

(5.1) L(Z,U)=w—U e F(Z)

where U is an n x n symmetric matrix of Lagrange multipliers corresponding to the
n X n symmetric matrix constraint (3.12). The matrix U is called the dual matriz since
its components are dual variables. The Frobenius inner product A e B was defined at
the end of Section 2. Assuming a full rank condition to be discussed in detail later,
the first-order necessary conditions for Z to minimize (3.11) subject to (3.12) are that,
in addition to the satisfaction of (3.12) by Z, there exists U satisfying

(5.2) Ly (Z,U) =0,
(5.3) UeF,(Z)=0,
(5.4) UeFy(Z)=0,
(5.5) UeF, =1,

and

(5.6) UeFe=0.

~

Here (5.3), for example, is understood to mean U e [F(Z)Az] = 0 for all Az, i.e.

Ue agx(kz) =0,1 <k < m. A pair Z,U which satisfies conditions (5.3)-(5.6) is
denoted 2*, U~.
In the following Newton iteration we shall, as in the previous section, impose

the additional condition that {AY};; = 0, and we shall therefore also relaz the
corresponding dual condition U e Fiy,,1(Z) = 0, replacing (5.4) by

(5.7) UeFy,1(Z) =0, UeFy, (Z)=0.

Each step of the iteration requires a dual matrix estimate [7, which is necessary to
define the Lagrangian function. It is important to note that a dual matrix estimate
from the previous step of the iteration cannot be used, since the function F' changes
from one iteration to the next, with the basis (), which defines F', not converging in
general.
ITERATION 3. Given an initial value T : R R
1. Define A, Q by (1.1)-(1.2), and F by (3.9). Let 7 = {Z,0, A1, A2},
2. Define U to be any n x n symmetric matriz such that the norm of the residual

of equations (5.3),(5.7),(5.5),(5.6), with Z = Z, U = U, is O(|Z — Z*|).
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3. Solve the quadratic program

(5.8) nAnZn[EZ(Z U)AZ) + L[Lz2(Z, U)AZAZ]
(5.9) subject to [Fy(2)AZ] = —F(Z)

with the restriction also that

Set 7 =7+ AZ.
4. Replace T by T, the  component of Z. Go to Step 1.
Like Tteration 1, Iteration 3 can be substantially simplified using the structure of
the problem. We begin with a closer look at the dual matrix. Suppose we choose

5o [711 0
(5.11) U_[ . 0].

and consider (5.3)—(5.6) with 7 = 2, U = U. We see then that, for U = [7, (3.19)
implies (5.6) and (3.24) implies (5.4). In order to satisfy the condition in Step 2, then,
we see from (3.18) and (3.23) that we need only ensure that

(5.12) tr Uy = 14 O(|z — 2*])
and
L 0AR) A S
(5.13) Uy o QF ( )leO(Hx—x D, 1<k<m.

al‘k
This is a system of m + 1 equations in ﬁt;’—ll unknowns, which can also be written
(5.14) KT {vec U1} = e1 + O(|z — 2*]).

As we shall see in Theorem 6 below, this can be achieved by solving the least squares
problem

(5.15) min K7 {vec Uy} — e1].
Ull

The constraints (5.9)—(5.10) are identical to the condition in Step 2 of Tteration 1,
the only difference being that the system of linear equations is underdetermined rather
than square. The same argument given following Iteration 1 therefore shows that
(5.9)—(5.10) is equivalent to the constraint (4.5) on Az, Aw together with (4.8),(4.10)
deﬁning {AY}lz, {AY}ZZ

It is instructive to consider the special case ¢ = 1 at this point: in this case the
max eigenvalue function ¢(z) is differentiable at z*. Then @1 consists of a single
column ¢y, U1 is a scalar which can be taken to be the number 1, (5.13) states that
the gradient of ¢ at @ = # is O(||z — «*||), and the constraint (4.5) states that

(5.16) Aw = [¢;Az].

Now let us consider the quadratic objective function (5.8). The linear term may
be replaced by Aw, since the rest of this term is fixed by the constraint (5.9). To
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evaluate the quadratic term in (5.8), we need to calculate the second derivatives of F.
Clearly, all terms involving w or © are zero. Differentiating (3.16)—(3.17) we obtain

~

[Foo(Z)AxAz] = —Q7 [Ape(3) Az Az]Q;
[Foy (2)AzAY] = [Fyo(Z)AY Az]
= {AV}Q7[4.(2)A2]Q — QT[A.(7)Ax]Q{AY };
[Fyy (Z)AYAY] = AY{A{AY} — {AV}A} — {A{AY]} — {AY}A}AY.
Since U satisfies (5.11), we need only the 1,1 block of each of these terms. Using
(5.10) and (3.20), we obtain
[Fro(Z)A2Az]11 = —QF [Aue () Az AZ]Qs;
[Foy (Z)AxAY 11 = {AY 11205 [A(@)Aw]Q1 + QT [Ax () Az] Qo {AY };
[Fyy (Z)AY AY ] = {AY Jia{ = A {AY}, + {AYY LA} +
{A{AY 1o — {AY 20 HAY Y,
But since AY must satisfy the constraint (5.9), whose 1,2 block is (4.8), we see that
(5.17) [Fyy (Z)AY AY 1y = —[Foy (Z)AzAY ).
We therefore have
[Fr2(Z2)AZAZ)1 = [Fop(Z)Ax A1) + [Foy (Z)AzAY)y,
+[Fyx(Z)AYA$]11 + [FYY(Z)AIAY]ll
= —Q1 [Aer (D) ArAZ]Q1 + {AY }12Q5 [A:(Z) Ax]Qu
+QT [Ax () A2]Qx{AY } .

Let us denote the right-hand side of this equation by —]\/4\; then we see that, under
the constraints (5.9)—(5.10),

[Lzz(Z,U)AZAZ] = Uy 0 M.

Using (4.8) we see that the elements of the ¢ x ¢ matrix M are given by

(5.18)  Mij = ¢f [Aew(@)AxA2]gi + Y 7ijsd] [AeAa]ls G [Ac A,
s=t+1
where 1 <i<+¢,1<j5<¢and
1 1 2

5.19 is = e + ——— = ——— + O(|z — 7).
(5.19) il wes b v wik v Wl )

Writing out the double sums in the square brackets explicitly we see that, under the

constraints (5.9)—-(5.10),
(5.20) [Lzz(Z,NAZAZ] = Uy 0 M = {Az}TW{Az}
where W is an m by m symmetric matrix whose k! element satisfies

(5.21) Wit = U1y o G
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with G*! defined to be the ¢ by ¢ symmetric matrix with elements

. O A®F 2 OAR) . g OA(E) .
5.22 Gy = F —2 15y s qr ‘-
(5.22) 16"} =4 ;17] o e

Again, the case ¢ = 1 is instructive: then, since [711 =1, G is the scalar_quantity
(1.4) (with ¢ = 1), i.e. the second partial derivative of ¢ at # = Z, and W is the
Hessian matrix of ¢ at x =%.
Therefore, Tteration 3, with U satisfying (5.11), reduces to:
ITERATION 4. Given an initial value x:
1. Define A, Q by (1.1)-(1.2).
2. Define Un by any t by t symmetric matriz such that (5.14) holds.
3. Define W by (5.19)-(5.22). Solve the following quadratic program:

(5.23) Argyingw + %{Al‘}TW{Al‘}
. ~| Aw o~
(5.24) subject to K [ Ax ] =

where the latter constraint is defined by (4.6)-(4.7). Set T =¥ + Ax.
4. Replace T by T and go to Step 1.
In the case t = 1, we see from (5.16) that (5.23)—(5.24) reduces to the ordinary
Newton iteration

min(6,(2)Aa] + $[drr (2) AwAal.

Tteration 4 is the method given by [10], with two exceptions: (i) [10] addresses a
slightly different problem, namely minimizing max(A;(2),—A,(x)), with A assumed
to be an affine matrix function; (ii) the method of [10] substitutes the quantities
2/{X1 — Xs} for 7;;s, dropping the last term on the right-hand side of (5.19). With
this simplification, the corresponding formulas for (5.18), (5.22) can be written con-
veniently using matrix notation as

(5.25) M = QT[Ass(3)A2Az]Qr + 20T [A0(2)A2)Q2 D~ QF [A4(2)A2] Qs

with D = le—xz,

(5.26) Qla é)Q +2QT A( )Q D™ 1QT8A( )Ql
0y

and

(5.27) Wi = Ury e GHL

The use of W instead of W does not affect the convergence rate of Iteration 4, but
the advantage of the latter formula is that it leads to the following observation, due

to M.K.H. Fan[2]:

THEOREM 4. Suppose A is an affine function, v.e. Ay = 0. Then of [711 15
posttive semi-definite, W 1s also positive semi-definite, regardless of the magnitude of
T — .
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Proof. Since Ay = 0, it is clear that, for any choice of Az, M 1s positive semi-
definite. Since U11 1s positive semi- deﬁmte the inner product U11 oM is nonnegative
for all Az, which is equivalent to the condltlon {Aa:}TW{Ax} > 0 for all Az. 0

Clearly, the same result holds if [A,,(Z )Al‘Al‘] Is positive semi-definite for all
Az. Furthermore, if Z is close enough to z*, and W is positive definite, then W
is positive definite. However, even if A is afﬁne W is not positive semi- deﬁmte n
general. For example, suppose n = 3, ¢ = 2, and Q = I. The condition that M is
positive semi-definite then reduces to the condltlon Y1137Y223 > 7123, regardless of A, .

Choosing A = Diag(2,1,0) gives
y113 = 1, 7123 = 7213 = 1.5, 7223 = 2.

so that M is indefinite. Then U11 can be chosen positive semi-definite such that (5 20)
1s negatlve However, substituting 2/(A1 /\3) for 7;;, results in the matrices M and
W, which are positive semi-definite. R

The positive semi-definite condition on Uy is a natural one, because, as indicated
by the next two theorems, U; is an approximation to the matrix V* given in (3.4).
Specifically, note that equation (5.30) defining U7y in the following theorem is identical
to equation (3.4) defining V*. There is no condition on the definiteness of U, because
in the formulation of the nonlinear program (3.13)—(3.14) we assumed that the optimal
multiplicity ¢ is known; consequently, indefiniteness of U indicates that ¢ was chosen
wmcorrectly and hence that #* does not minimize ¢.

THEOREM 5.
1. Consider the v by (m=+1) matriz K*, defined by (4.11), where r = t(t+1)/2.

Then the rih singular value of K* does not depend on the choice of basis Q7.

2. Suppose that the rth singular value of K* is nonzero, i.e. K* has linearly
independent rows. Consider the nonlinear program (3.13)-(3.15), noting that the
latter constraint removes Y11 from the variable set. Let

L(Z,U)=w—U e F*(2).
A necessary condition for 7* = (x*,0,A7,A%) to solve (3.13)-(3.15) is that there

exists an n by n symmetric matriz U™, satisfying

(5.28) Ly (77, U") = 0.
Furthermore, U* is unique, with

« | UL 0
(5.29) U = [ 0 0 ],

where the t by t block U, satisfies
(5.30) {K* Y {vec U} = ey.
3. Define W* to be the m by m symmetric matriz with elements
Wi = U e G
where G**! is the t by t symmetric matriz with elements

TﬁZA( ") TaA( ) TaA( ")

G = Q7 Q1+2{Q } Q3T — A5} H{Q3}

Then W™ s independent of the choice of basis Q7.

Q1
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4. The null space of K* 1s independent of the choice of basis Q7. Consequently,
of N* 1s a matriz with orthonormal columns spanning the null space of K*, the eigen-
values of the reduced Hessian matriz
(5.31) (N} 0 | N

0 W=
are independent of the choice of bases @, N*. (The matriz in the center of this
expression has dimension m+1 by m+1.)
Proof.
1. The rth singular value of K* can be written
||{f\*}T{VeC SH,
||5|| =

where S is a ¢ by t symmetric matrix. (The quantity (4.12) is zero in the general case
that K* has more columns than rows.) The quantity being minimized is

8A( “)

({tr 517 + 3 {S e {Q]}" Q12 )z,

k=1

This minimum value is independent of the choice of basis )], since any rotation of
the basis can be absorbed into 5.

2. Let
Uy Uy
s = 11 12 ]
[ {U530 Usy

We claim that (5.28) is equivalent to the two conditions (5.29)-(5.30). To see that
(5.28) implies (5.29)—(5.30), observe, by analogy with (5.3)—(5.7) and (3.18)—(3.24),
that U* e ' = 0 implies the diagonal elements of U3, are zero, while U* e Fy (Z*) =0
and U* o Fy, (Z*) = 0, together with (3.1), imply respectively that the off-diagonal
elements of U3, and all elements of U, are zero. The conditions U*e F; =1 and U* e
Fx(7Z*) = 0 then reduce to (5.30). Conversely, if (5.29)-(5.30) hold, it is easily verified
that (5.28) holds. The linear independence of the columns of { K*}7 | equivalently the
columns of the coefficient matrix of the linear system (5.28), provides a constraint
qualification guaranteeing the existence and uniqueness of U*.

3. Let M™* be defined by (5.25) with Z, A Q replaced respectively by %, A*, Q*.
(This is equivalent to (5.18) in this case since A} = --- = A}.) When Q7 is postmul—
tiplied by a ¢ by ¢ orthogonal matrix P, it has the following effect: the first column
of K is unchanged and the others are replaced by vec PTQT%i—*ZQ’{P; the matrix
M~ is replaced by PTM* P; the matrix U7, is replaced by PTU;, P. By analogy with
(5.20), {Az}TW*{Az} = U, @« M* for all {Az}, so it follows that W* is independent
of the choice of basis Q7.

4. The null space of K* is

{v: K*v=0}
le.

8A( )

{v="(vov1...0;m)" : Uof-l-z Q)

k=1

Q1 =0},

which is unchanged if @7 is postmultiplied by an orthogonal matrix.
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0

The previous theorem was concerned only with quantities involving z* and F'*.
In order to prove convergence of Iterations 3 and 4, however, we need to quantify the
relationship between U and U*, the latter quantity being the dual matrix associated

with the solution of (3.11)-(3.12).

THEOREM 6. Suppose K* has linearly independent rows and that T is sufficiently
close to x*. Consider the nonlinear program (3.11)-(3.12), which has no constraint
that Y11 = 0. A necessary condition for 7% = (J:*,EA/*,/\’{,AE) to solve (3.11)-(3.12)
1s that there exists an n by n symmetric matriz U~ satisfying

(5.32) Ly (Z*,U*) =0,

i.e. (5.3)-(5.6) hold for 7 = 2*, U=0U". Furthermore, U* is unique. Now assume
that the discrepancy in (5.3)-(5.6), with Z = Z, U = U is O(|Z — Z*|), as required
by Iteration 3. Then

(5.33) |7 =T~ =0(1Z - Z|).

Furthermore, such a matriz U is obtained by using the block structure (5.11) and
solving the least squares problem (5.15).

Proof. From Theorem 5, the independence of the rows of K* and the independence
of the columns of the coefficient matrix defining the linear system (5.28) are equivalent.
Using (4.18)—(4.19), it follows that if |# — ™| is sufficiently small, the columns of the
linear system (5.32) are also independent. (The fact that the columns of the latter
system have more rows than the columns of the former, because of the presence of the
additional variables Y71, does not affect the linear independence.) This rank condition

provides a constraint qualification guaranteeing the existence and uniqueness of ﬁ*,
satisfying (5.32), i.e.

(5.34) U* e Fy(Z*) = v,

where v is a vector with one nonzero element, namely 1, in the position corresponding
to the variable w. By definition, U satisfies

UeFz(Z)=v+0(Z - Z7|),

which has no equations corresponding to Yi;. Subtracting this equation from the
corresponding equations in (5.34), ignoring the Y71 equations in (5.34), and noting
that Fz is Lipschitz, gives

{U-U"} e Fz(Z)=0(|2Z - Z7|).
The independence of the columns of the coefficient matrix defining this system then
gives (5.33).
The proof of the final statement of the theorem is as follows. From (5.30),
K*{K*Y {vec U} = K*ey
and, from (5.15),

IA(IA(T{Vec ﬁll} = [A(Tel.
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It follows as a consequence, using (4.19) and the fact that K* is full rank, that
U = Ui | = O]z — «7|).
Combining this equation with (4.19) and (5.30) gives
KT {vec U11} = e1 4+ O(|F — 2*])

from which the result follows. a0
We are now ready to prove the main convergence theorem.

THEOREM 7. Suppose that K* has independent rows and that the reduced Hessian
(5.31) is positive definite. Then there exist constants € and C such that, if |z—z"| < €,
then

|7 - "] < O — 27|

for both Iterations 3 and 4. Consequently, both iterations gemerate points T which
converge quadratically to the solution x*

Proof. From Theorem 6, assuming that z 1s sufficiently close to z*, a necessary
condition for a pair Z* U* to solve the nonlinear program (3.11)-(3.12) (without
the condition Y13 = 0 1mposed) is that, in addition to (3.12), the equation (5 32)
holds. Theorem 1 shows that we can take the Y* component of Z* to satisfy IV*| =

O(|z — «*|) and 1Y, 5 = O(]z — #*|?). Furthermore, we can expand F in a Taylor
series just as in the proof of Theorem 3, obtaining all of equations (4.13)-(4.16) exactly
as before, the only difference being that these equations are not square systems.
Specifically, (4.16), with its Y1; terms absorbed into the right-hand side, gives

(5.35) [F2(21{7Z = Z°Y] = O(|& — «"|).

Now let us expand (5.32) in a Taylor series. We have

~

0=Lz(Z2*,U")=Ly(Z,0)+[Lzz(Z, U1 2" = ZY + [Lzv(Z,U){U" - U}]

+O(1Z = Z°1* + 12 = Z*||U = U"])

using the linearity of E(Z, U)in U. Note that the terms in square brackets, although
involving second-order differentiation, are summed over only one argument and are
therefore vectors of length n(n + 1)/2 + m + 1 — ¢, the number of variables in Z.
This system of equations has a row and a column corresponding to each element
of 7 = (2,Y,w,0). Let us discard the rows corresponding to Y71, and absorb the
columns corresponding to Y11 into the O term, which is permissible since Y = 0,
Y = O(|z — 2*|?). Using the fact that Ly = —FZ, this gives

(5.360 = Lz(Z,U) + [Lzz(Z, U 2" = ZY ]~ {U* = U} o Fz(Z) + O(|7 — z*|*)

with the understanding that all Y1, terms are omitted. The O(|z — 2*|?) term on the
right-hand side is justified by (3.25) and (5.33).

The necessary condition for a pair AZ, AU to solve the quadratic program defining
a step of Tteration 3 is, in addition to the constraints (5.9)-(5.10), that there exists a
dual matrix AU such that

(5.37) AU e Fy(Z) = Ly(Z,U)+ [Lzz(Z,U)AZ].
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where rows and columns of the coefficient matlix colresponding to Y71 have been
omitted because of (5.10). Noting that AZ = Z — Z and subtracting (5.36) from
(5.37) gives

(5.38) [Lz2(Z,U4Z = 2*}] = {U - U*} e F2(Z) = O(|F — 2* |,

where U = U + AU.
Equations (5.35),(5.38) state the first-order optimality conditions for the quadratic
program

(5.39) min  h {7 = 2} + $[Ly2(Z, 0147 = Z°HZ - 77}
Z—Z*
(5.40) subject to [Fe(2)Z = 2} = O(|7 — z*|*)

where the first term in (5.39) is an inner product, with A (which has the same structure
as Z) satisfying h = O(]|]z — z*||?). It is understood that there are no Y;; terms in
Z, 7*. Note that the Hessian and constraint coefficients of this quadratic program
are identical to those of (5.8)-(5.9). We shall now simplify this quadratic program,
using an argument similar to that which reduced (5.8)-(5.9) to (5.23)—(5.24). First
consider the linear term in (5.39). We have

(5.41) hAZ -7y =h | MTAYTAL |y

T—x
where h € R and ¢ € R satisfy h = O(|z — «*|*) and ¥ = O(|z — z*||*). This
equation holds because of the constraint (5.40), which defines the ¥ and © elements
of Z — 7* in terms of the z and w components, by analogy with (4.8)-(4.10). Now
consider the quadratic term in (5.39). The argument that showed that the quadratic
form in (5.8) reduces to that in (5.23) uses (5.17), which follows from the 1,2 block of

(5.9), namely (4.8). We now use a similar argument to simplify the quadratic term

in (5.39). Instead of (4.8), we have, from the 1,2 block of (5.40),
—QT[Ax(@){F — 2 }]Q2 — M{AY = Y ha + {AY = V" }uhs = O(J7 — 27]%).
Instead of (5.17), we conclude that

[Fyy (Z){AY — Y HAY — Y* iy + [Foy (2){F — " HAY =V *}]ut

= O(J& — 2" P|AY = Y|

Again using (5.40) to define AY — Y* in terms of the z and w components of Z — 2*,
we see that the right-hand side consists of two terms, of which one can be absorbed
into the first term of (5.41), and the other into the second. We therefore see that, just
as the quadratic form in (5.8) reduces to that in (5.23), the quadratic form in (5.39)
reduces to

A+ Aw— A

T —z*

(5.42) o+l | by W)

where h = O(]z — 2*|?). The constraint (5.40) reduces to (4.17), i.e.

A[Xl—l—Aw—/\T

(5.43) | Mt ) S oga- o)
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The optimality conditions for the quadratic program defined by (5.42)—(5.43) are

0 0 o X+ Aw — AT
[0 W] -k [ 7 "

K 0 vec {U11 — Ut}

(5.44) = O(J& - 2"|),

By assumption, K* has full rank and (5.31) is positive definite, so

0 0 ~x T
0w | )
K* 0

is nonsingular. Therefore, using (4.18)—(4.19) and noting that ||/I/I7—W* | = Oz — =*|),
we see that the inverse of the coefficient matrix of (5.44) is bounded for Z near z*.
The desired quadratic contraction is therefore proved. d

6. Concluding Remarks. The convergence proof just given is complicated, be-
cause of the disparity in the number of free parameters in the equations ' = 0 and
F* =0, even as ¥ — z*. An alternative analysis of the same method has been given
recently by Shapiro and Fan [15], in contemporary, independent work. Our results and
those of [15] complement each other nicely. The analysis in [15] is shorter than ours
but rests on several nontrivial results. The principal idea is that although eigenvectors
are not smooth, eigenprojections are differentiable, and indeed derivative formulas are
known (Kato [7]). Shapiro and Fan show how to construct a smoothly varying or-
thonormal basis for the eigenprojection which agrees with a given orthonormal basis
of eigenvectors at a point, though not in a neighborhood of the point. Neither the
results from Kato nor the construction of the eigenprojection basis could be said
to be elementary, though both are powerful. By contrast, our convergence proof is
completely self-contained. The Hessian formulas arise simply from differentiating the
function F' and do not require any machinery from Kato. The only outside result
which is needed is Theorem 1, whose proof is elementary [4].

Appendix. The following shows that any real orthogonal matrix P with det P =
1 may be written in the form P = ¢¥', where Y = —YT. This derivation was suggested
by J.-P. Haeberly. It is undoubtedly well known, though we lack a standard reference.

An orthogonal matrix has eigenvalues of the form +1 and cosf 4+ isin#, with a
corresponding orthogonal set of eigenvectors. Thus, there exists an orthogonal matrix

V such that
VTPV = Diag(Dy, ..., Dy)
where each D) is either the number £1, or a 2 x 2 matrix of the form

[ cos@ —sinf ]

sinf  cos@

Since det P = 1, the number of —1’s that occur must be even, so we may assume that
the D;’s are either the number +1 or a 2 x 2 matrix as above. But 1 = €, and

cosf) —sind | 0 -6
sinff  cos@ =Pl ’
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Hence, Diag(Dy, ..., Di) = eX for some block diagonal matrix X with nonzero diag-
onal blocks of the form

0 —6

6 0 |°

Note that X = —X7T. Defining Y = VXV? we have
P = VDiag(Dy,..., D) VT = VeX vl =€V,
It remains to show that Y is skew-symmetric:
(VXVHT =vXTVvT =v(-x)VT = -VvXxVv’

The matrix Y is not unique, since incrementing # by multiples of 27 does not change
e¥, but the solution set consists of isolated points in matrix space. In our local
convergence analysis, we are concerned only with P = ¢ in a neighborhood of the
identity matrix and the corresponding Y in a neighborhood of the zero matrix (see
Theorem 3.1).
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