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A dynamical systeṁx = Ax is robustly stable when all eigenvalues of complex matrices
within a given distance of the square matrixA lie in the left half-plane. The ‘pseudospectral
abscissa’, which is the largest real part of such an eigenvalue, measures the robust stability
of A. Wepresent an algorithm for computing the pseudospectral abscissa, prove global and
local quadratic convergence, and discuss numerical implementation. As with analogous
methods for calculatingH∞ norms, our algorithm depends on computing the eigenvalues
of associated Hamiltonian matrices.
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1. Introduction

The spectrum of a square matrix provides crucial information about the asymptotic
behaviour of associated dynamical systems. Consider a fixedn-by-n real or complex matrix
A, and denote thespectral abscissa of A (the largest of the real parts of the eigenvalues) by
α. Then trajectoriesz(t) in Rn or Cn satisfyingż = Az converge to the origin faster than
eβt (for given realβ < 0) if and only if α < β. In other words, the spectral abscissa of a
matrix measures the asymptotic rate of decay of associated trajectories.

Unfortunately however, the spectrum alone may be misleading as an indicator of
dynamic properties associated withA. Even when α < 0 and so the corresponding
dynamical system is asymptotically stable, if complex matrices close toA have eigenvalues
with positive real parts, the trajectoriesz(t) may exhibit large transient peaks before
converging to the origin, and may be unstable under small nonlinearities or forcing terms
in the dynamical system. By examining the eigenvalues of all complex matrices in given
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neighbourhoods ofA (the so-calledpseudospectra), we obtain a more robust indication
of stability. For a recent survey on pseudospectra, including a discussion of some of these
issues, see Trefethen (1999) and the references therein. The ‘pseudospectral gateway’ web-
site (Pseudospectral Gateway, 2003, http://web.comlab.ox.ac.uk/projects/pseudospectra/)
is a good general source.

Motivated by this pseudospectral philosophy, our aim in this paper is to compute the
pseudospectral abscissa of A, namely

αε = max{Reλ : λ an eigenvalue ofX and‖X − A‖ � ε},

where the real constantε > 0 is fixed at the outset, and‖ · ‖ denotes the usual matrix
operator or 2-norm. In other words, we wish to maximize the real part of a point in the
ε-pseudospectrum ofA.

Clearly, the pseudospectral abscissaαε is negative exactly when all matrices within a
distanceε of A are stable (that is, have all eigenvalues in the open left half-plane), or in
other words, when thedistance to instability of A is larger thanε. This distance, introduced
in Van Loan (1985), is also commonly called thecomplex stability radius (Hinrichsen &
Pritchard, 1986): computing it is a special case of calculating theH∞ norm of a transfer
matrix. Specifically, theH∞ norm of the functionH(s) = (s I − A)−1 is defined as
‖H‖∞ = supω∈R ‖H(iω)‖, and this quantity is just the reciprocal of the distance to
instability (see for example Boydet al., 1989). In our notation,

αε < 0 ⇔ ‖H‖∞ <
1

ε
.

The interest of the distance to instability and theH∞ norm in robust control has
encouraged broad study of algorithms for computing these quantities. The basic bisection
method for the distance to instability appeared in Byers (1988) (see also Hinrichsen &
Motscha, 1988), and was generalized to theH∞ norm in Boydet al. (1989). Quadratically
convergent versions soon followed (Boyd & Balakrishnan, 1990; Bruinsma & Steinbuch,
1990), and research on faster methods continues—see for example Geninet al. (1998), He
& Watson (1998).

Although a very simple relationship links the pseudospectral abscissa on the one hand
with the complex stability radius on the other, using this relationship to convert an effective
algorithm for the latter into one for the former does not seem immediate. A basic bisection
method for the pseudospectral abscissa, akin to that of Byers (1988), appears in Burkeet
al. (2003).

In this paper we present a globally and locally quadratically convergent algorithm for
computing the pseudospectral abscissa, motivated by the algorithms referenced above for
the complex stability radius andH∞ norm. Like them, the new algorithm depends heavily
on computing eigenvalues of Hamiltonian matrices. Unlike those algorithms, however,
the new method relies on a ‘criss-cross’ procedure to explore the possibly complicated
two-dimensional geometry of the pseudospectrum. Extensive numerical tests suggest the
algorithm is fast, accurate and reliable, and should prove a helpful tool in robust stability
analysis.

http://web.comlab.ox.ac.uk/projects/pseudospectra/
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2. Cross-sections of the pseudospectrum

We begin with some notation. As before, we consider a fixedn-by-n matrix A, and a
fixed realε > 0. The (ε-)pseudospectrum ofA is then just the set of eigenvalues of
complex matrices whose 2-norm distance fromA is no more thanε. However, while this
is a conceptually simple approach to the pseudospectrum, an equivalent definition is more
helpful computationally.

Let us define a functionh : R2 → R by

h(x, y) = σmin(A − (x + iy)I ) − ε,

whereσmin denotes the smallest singular value and i is the imaginary unit. We can then
define the (ε-)pseudospectrum ofA equivalently as the set

{(x, y) ∈ R2 : h(x, y) � 0}
(see for example Trefethen, 1999). Analogously, we define thestrict pseudospectrum as

{(x, y) ∈ R2 : h(x, y) < 0}.
With this notation, the pseudospectral abscissa ofA is given by

αε = max{x : (x, y) ∈ R2, h(x, y) � 0}.
The algorithm we present relies heavily on a step we call avertical search: for a fixed

real x , we look for real zeros of the functionh(x, ·). For this purpose, the following easy
and well-known result (going back to Byers, 1988) is fundamental for us, both theoretically
and computationally.

LEMMA 2.1 (Hamiltonian eigenvalues) For real numbersx and y, the numberε > 0 is
a singular value of the matrixA − (x + iy)I if and only if iy is an eigenvalue of the
Hamiltonian matrix

H(x) =
[

x I − A∗ ε I
−ε I A − x I

]
. (2.1)

This holds in particular ifh(x, y) = 0.

Consider a fixed realx . It follows immediately from this lemma that the functionh(x, ·)
can have at most 2n real zeros. To find them all, we compute all the imaginary eigenvalues
{iy j } of H(x), discarding any for whichσmin(A − (x + iy j )I ) < ε. The resulting{y j } are
all the desired zeros ofh(x, ·).

We distinguish two types of zeros of the continuous real functiony �→ h(x, y):
crossing zeros, where the function changes sign, andnon-crossing zeros, where it does
not. Notice thath(x, y) > 0 whenever|y| is sufficiently large. So if we write out a non-
decreasing list of the zeros, writing non-crossing zeros twice, then the list will be even in
length, say 2m(x), and we can write it as

l1(x) � u1(x) � l2(x) � u2(x) � · · · � um(x)(x). (2.2)



362 J. V. BURKE ET AL.

If one of the inequalities holds with equality, any immediately neighbouring inequality is
strict. We haveh(x, y) < 0 for y in the set

m(x)⋃
j=1

(l j (x), u j (x))

(which we can think of as a vertical ‘cross-section’ of the strict pseudospectrum), and
h(x, y) > 0 for y in the set

(−∞, l1(x)) ∪
m(x)−1⋃

j=1

(u j (x), l j+1(x)) ∪ (um(x), ∞).

The following result is useful for distinguishing crossing and non-crossing zeros.
Recall that a singular valueσ of ann-by-n matrix B is simple if σ 2 is a simple eigenvalue
of B∗ B. If σ > 0, this is equivalent toσ being a simple eigenvalue of the Hermitian matrix[

0 B
B∗ 0

]
.

We remark that, generically, we expect the matrixA to have the property thatA − z I has
all simple singular values for all complexz. To see this, we argue as follows. Denote the
real vector space ofn-by-n Hermitian matrices byHn . This vector space has dimensionn2.
The subsetHn

0 of matrices with a multiple eigenvalue has dimensionn2 − 3 (aresult going
back to von Neumann & Wigner, 1929). Hence for a generic matrixA, the two-dimensional
manifold

{(A − z I )∗(A − z I ) : z ∈ C} ⊂ Hn

will not intersectHn
0, and soA − z I has all simple singular values for all complexz.

In the case when the matrixA is real, the argument needs slightly more care. In
this case, the relevant space consists of then-by-n real symmetric matrices, which has
dimensionn(n + 1)/2. The subset of those matrices having a multiple eigenvalue equal
to ε2 has dimensionn(n + 1)/2 − 3, and hence again will typically miss the two-
dimensional manifold above. Thus for a generic real matrixA, at every complex z
satisfyingσmin(A − z I ) = ε this smallest singular value is simple.

Of course, there are non-generic examples of matricesA, real and complex, for which
a multiple σmin(A − z I ) occurs for somez. In particular, this occurs whenA is normal
(AA∗ = A∗ A). In this case, the pseudospectrum is simply the union of discs with
radiusε and so, as long asA has at least two distinct eigenvalues, the boundary of the
pseudospectrum must be non-smooth for sufficiently largeε, with the non-smoothness
occurring at pointsz for whichσmin(A − z I ) is multiple.

LEMMA 2.4 (crossing versus non-crossing zeros) Given real numbersx andy0, suppose
that iy0 is an eigenvalue of the Hamiltonian matrixH(x), and that the singular value
σmin(A − (x + iy0)I ) is simple and equalsε. Then y0 is a crossing zero of the function
h(x, ·) if and only if the eigenvalue iy0 has odd algebraic multiplicity.
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Proof. If the eigenvalue iy0 has algebraic multiplicitym, then the functionp : R → C
defined by

p(y) = det(H(x) − iy I ) = det

[
x I − A∗ − iy I ε I

−ε I A − x I − iy I

]

satisfies

p(y) ∼ β(y − y0)
m for y close toy0,

for some non-zeroβ ∈ C. But by multiplying the firstn rows of the above determinant by
−1 and then interchanging them with the corresponding secondn rows, we obtain

p(y) = det

[ −ε I A − (x + iy)I
(A − (x + iy)I )∗ −ε I

]

= (−1)n
n∏

j=1

[σ j (A − (x + iy)I ) − ε] [σ j (A − (x + iy)I ) + ε]

whereσ j (·) denote the singular values, listed by multiplicity. In particularp is real-valued,
and so changes sign aty0 if and only if the multiplicitym is odd.

On the other hand, for all realy close toy0, each factor in the above product is strictly
positive, except the single factor

σmin(A − (x + iy)I ) − ε = h(x, y).

Hence for suchy, the signs ofp(y) andh(x, y) are related by a factor of(−1)n , and the
result now follows. �

In addition to the vertical search, our algorithm also relies on ahorizontal search: for
fixed realy, we look for the largest real zero of the functionh(·, y). For this purpose, the
following result, quite analogous to Lemma 2.1 (Hamiltonian eigenvalues), is fundamental.

LEMMA 2.5 (horizontal search) For real numbersx andy, the numberε > 0 is asingular
value of the matrixA − (x + iy)I if and only if ix is an eigenvalue of the Hamiltonian
matrix

H̃(y) =
[

i A∗ − y I ε I
−ε I i A + y I

]
.

This holds in particular ifh(x, y) = 0. Furthermore,x is the largest real zero ofh(·, y) if
and only if ix is the imaginary eigenvalue of̃H(y) with largest imaginary part.

Proof. The singular values of the matrixA − (x + iy)I are the same as those of

i(A − (x + iy)I ) = i A − (−y + ix)I .

Now applying Lemma 2.1 (Hamiltonian eigenvalues) withA, x , andy replaced by iA, −y,
andx respectively proves the first statement. The second is an immediate consequence.
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To prove the last statement, we first make a subsidiary claim: if ix ′ is an imaginary
eigenvalue of the matrix̃H(y), then the functionh(·, y) has a real zero greater than or
equal tox ′. To see this, observe thatε is a singular value of the matrixA − (x ′ + iy)I , so

ε � σmin(A − (x ′ + iy)I ) = h(x ′, y) + ε,

and henceh(x ′, y) � 0. Since the functionx ∈ R �→ h(x, y) is continuous, and positive
for large values ofx , it must have a real zerox � x ′.

Returning to the last statement, supposex is the largest real zero ofh(·, y). Then ix is an
imaginary eigenvalue of the matrix̃H(y). Furthermore, for any other imaginary eigenvalue
ix ′, the claim we proved above shows the existence of a real zerox ′′ � x ′ for h(·, y). But
by assumption,x � x ′′, so ix must be the imaginary eigenvalue with largest imaginary
part.

Conversely, suppose ix ′ is the imaginary eigenvalue of the matrix̃H(y) with largest
imaginary part. Again using our claim, the functionh(·, y) has a real zerox � x ′. But then
ix is an imaginary eigenvalue of̃H(y), so by assumption we must in fact havex = x ′. We
have therefore shown thatx ′ is a real zero ofh(·, y). Finally, if x ′′ is any other real zero,
then ix ′′ is an imaginary eigenvalue of̃H(y), so by assumption,x ′′ � x , which concludes
the proof. �

To analyse our algorithm we need the following technical result. It states that any
vertical line of points with first coordinate strictly between the spectral abscissa and the
pseudospectral abscissa must intersect the strict pseudospectrum.

THEOREM 2.6 (non-degenerate components) For any realx in the interval(α, αε), there
exists a realy such thath(x, y) < 0.

Proof. Using Burkeet al. (2003, Theorems 4.5 and 5.1), there exists a continuous path in
the complex planeC from an eigenvalue ofA to an endpoint with real partαε , and with
the exception of this endpoint, the path lies entirely in the strict pseudospectrum (using the
natural identification ofR2 andC). Clearly the vertical line of points with first component
x must intersect this curve, and the result follows. �

3. Computing the pseudospectral abscissa

The simple method we describe in this section is motivated by an algorithm of Boyd &
Balakrishnan (1990). Consider the minimization problem

µ̄ = min
y∈R

σmin(A − yi I )

(a special case of the problem they consider). Their approach, in outline, is as follows.
Given a current estimateµ � µ̄, find all real y satisfyingσmin(A − iy I ) = µ, using
Lemma 2.1 (Hamiltonian eigenvalues). Denote the solutions byy1 � y2 � · · · � y2m ,
listing non-crossing solutions twice, analogously to the list (2.2). Now update

µ := min
j

σmin

(
A − y2 j−1 + y2 j

2
i I

)
,
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and iterate. Geometrically, this method amounts to considering intersection points of the
graph of the functiony �→ σmin(A − yi I ) with various horizontal and vertical lines. The
iterates converge globally and locally quadratically toµ̄ (Boyd & Balakrishnan, 1990).

Our algorithm for computing the pseudospectral abscissaαε uses a similar approach.
It depends on finding zeros of the functionsh(x, ·) (for fixed realx) andh(·, y) (for fixed
real y) as we described in the previous section, by computing the imaginary eigenvalues
of associated Hamiltonian matrices. Figures illustrating the behaviour of the algorithm on
two examples may be found in Section 6, where implementation issues are also discussed.

ALGORITHM 3.1 (criss-cross method)

1. Initialize: x1 = α andr = 1.
2. Vertical search: Find all zeros

lr
1 � ur

1 � lr
2 � ur

2 � · · · � ur
mr

of the functionh(xr , ·), listing non-crossing zeros twice.
3. Horizontal searches: For eachj = 1, 2, . . . , mr , define

yr
j = lr

j + ur
j

2
,

and find the largest zeroxr
j of the functionh(·, yr

j ).
4. Update: Define

xr+1 = max{xr
j : j = 1, 2, . . . , mr },

incrementr by one, and return to Step 2.

Notice that, with the notation of the list (2.2), we havemr = m(xr ), lr
j = l j (xr ), and

ur
j = u j (xr ). Notice also that ifk is any maximizing choice of the indexj in Step 4

(Update) of ther th iteration of the algorithm, then in Step 2 (Vertical search) of the next
iteration,yr

k must appear in the list of zeros of the functionh(xr+1, ·).
The vertical search is, as already noted, accomplished by computing the imaginary

eigenvalues ofH(xr ) and discarding those that correspond to singular values larger thanε.
This avoids unnecessary horizontal searches in the next step. On the other hand, there is no
need to check the correspondence between imaginary eigenvalues ofH̃(yr

j ) and singular
values during horizontal searches; all we need is the imaginary eigenvalue with largest
imaginary part, by Lemma 2.5 (horizontal search).

THEOREM 3.2 (global convergence) The criss-cross method generates increasing iterates
xr , with limit the pseudospectral abscissaαε .

Proof. First observe that the new iteratexr+1 generated in Step 3 is a zero ofh(·, yr
j ) for

some indexj , and soxr+1 � αε . It follows by induction thatxr � αε for all r .
At each iterationr , if lr

j = ur
j for each j then the vertical line of points with

first componentxr misses the strict pseudospectrum entirely, so by Theorem 2.6 (non-
degenerate components) we deducexr = αε and we have nothing more to prove. If, on the
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other hand,lr
j < ur

j for some j , thenh(xr , yr
j ) < 0, and soxr+1 > xr . So we can assume

that the sequence(xr ) is strictly increasing, and bounded above strictly byαε .
Suppose, by way of contradiction, thatxr approaches a limitx∞ < αε . Since the

numbersmr are uniformly bounded (by 2n), we can choose a subsequenceS of the natural
numbersN such thatmr equals some constantm for all indicesr in S, and such that for
some cluster pointsl∞j , u∞

j andy∞
j (for j = 1, 2, . . . , m) we have

lr
j → l∞j , ur

j → u∞
j , and yr

j → y∞
j asr → ∞ in S.

For any realµ ∈ [0, 1] we know

h(xr , µlr
j + (1 − µ)ur

j ) � 0,

so by continuity we deduce

h(x∞, µl∞j + (1 − µ)u∞
j ) � 0.

Hence

h(x∞, y) � 0 wheneverl∞j � y � u∞
j .

If l∞j < u∞
j for some indexj , thenl∞j < y∞

j < u∞
j , so

l∞j < yr
j < u∞

j for all larger ∈ S.

For such an indexr we deduceh(x∞, yr
j ) � 0, so by the definition of the horizontal search

process we must have the contradictionxr+1 � x∞.
Thus we can assume

l∞j = u∞
j for eachj = 1, 2, . . . , m. (3.1)

But sinceα < x∞ < αε , Theorem 2.6 (non-degenerate components) implies the existence
of a realy∞ satisfyingh(x∞, y∞) < 0. By continuity, there existsδ > 0 such that

h(x, y) < 0 whenever|x − x∞| < δ and|y − y∞| < δ.

But then for all larger we have

h(xr , y) < 0 whenever|y − y∞| < δ,

so there must exist an indexj such thatur
j − lr

j � 2δ, contradicting (3.1). �

A bisection method for computing the pseudospectral abscissa was presented in Burke
et al. (2003). As we show below, the criss-cross method has the added merit of local
quadratic convergence.
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4. The boundary of the pseudospectrum

To prove quadratic convergence, we need to study the boundary of the pseudospectrum
near a local maximizer for thepseudospectral abscissa problem

αε = max{x : (x, y) ∈ R2, h(x, y) � 0}.
The following result is central to our analysis. It gives a local description of the

pseudospectrum, using a single real-analytic function.

THEOREM 4.1 (simple singular values) For any point(x0, y0) ∈ R2, if the smallest
singular value of the matrixA − (x0 + iy0)I is simple, then the functionh is real-analytic
near(x0, y0), with gradient

∇h(x0, y0) = [−Re(u∗v), Im (u∗v)] (4.1)

for any consistent pair of unit left and right singular vectorsu, v ∈ Cn corresponding to
the smallest singular value. Suppose furthermore thath(x0, y0) = 0, and Re(u∗v) < 0.
Then there is a functionf : R → R, real-analytic near zero, such that

f (0) = 0, f ′(0) = − Im (u∗v)

Re(u∗v)
,

and the signs of the functionsh(x, y) and x − x0 + f (y − y0) coincide for all points
(x, y) ∈ R2 close to(x0, y0).

Proof. The matrix

S(p, q) =
[

0 A − (p + iq)I
A∗ − (p − iq)I 0

]

has a simple eigenvalueσmin(A − (x0 + iy0)I ) when the parameter(p, q) ∈ C2 equals
(x0, y0). SinceS(p, q) depends linearly on(p, q), this eigenvalueλ(p, q) is a holomorphic
function of(p, q) (see Kato, 1982). Furthermore, for realx andy we have

λ(x, y) = σmin(A − (x + iy)I ) = h(x, y) + ε.

Hence the functionh is real-analytic near(x0, y0).
The unit (left and right) eigenvector of the Hermitian matrixS(x0, y0) corresponding

to the eigenvalueσmin(A − (x0 + iy0)I ) is

w = 1√
2

[
u
v

]
.

Now standard perturbation theory (Kato, 1982) shows that the partial derivatives of the
functionsλ : C2 → C andh : R2 → R at (x0, y0) are

λp(x0, y0) = hx (x0, y0) = w∗
[

0 −I
−I 0

]
w = − Re(u∗v)

λq(x0, y0) = hy(x0, y0) = w∗
[

0 −i I
i I 0

]
w = Im (u∗v)

as required.
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Now, since by assumption the partial derivativeλp(x0, y0) is non-zero, the equation
λ(p, q) = ε definesp(q) as a holomorphic function ofq near the point(x0, y0) ∈ C2

(see Dienes, 1957, for example). On the other hand, sincehx (x0, y0) is non-zero, we could
equally well apply the classical implicit function theorem to the real equationh(x, y) = 0,
to definex(y) as a real function ofy near the point(x0, y0) ∈ R2. The two functionsp(y)

andx(y) must coincide for realy, so the function we obtain is real-analytic.
Thus there is a functionf : R → R, real-analytic near zero, such thatf (0) = 0 and

h(x0 − f (y − y0), y) = 0

for all real y close toy0. The formula for f ′(0) follows easily by the chain rule.
Finally, notice that

hx (x0 − f (y − y0), y) > 0

for all real y close toy0, since the left-hand side is continuous iny and strictly positive
wheny = y0. Hence we deduce

h(x, y) > 0 ⇔ x > x0 − f (y − y0)

holds for all points(x, y) ∈ R2 close to(x0, y0). �
To paraphrase, under the assumptions of the theorem the pseudospectrum is defined

near the point(x0, y0) by the real-analytic inequality

x − x0 � − f (y − y0), (4.2)

and locally the functionh is zero exactly at points(x, y) where this holds with equality.
(Clearly, with identical assumptions except that Re(u∗v) > 0, the same result holds, except
that now the functionsh(x, y) andx − x0 + f (y − y0) have opposite signs.)

We now introduce the idea of a regular point for a matrix. Regular points are ‘non-
degenerate’ in the sense of Burkeet al. (2003). However, unlike non-degenerate points, a
regular point must correspond to a simple smallest singular value.

DEFINITION 4.4 (regularity) We call a point(x0, y0) ∈ R2 regular for the matrixA if the
matrix A − (x0 + iy0)I has a simple smallest singular value with corresponding unit left
and right singular vectorsu, v ∈ Cn satisfyingu∗v �= 0.

If the point(x0, y0) is regular, we see by Theorem 4.1 (smallest singular values) that the
functionh is real-analytic around(x0, y0), with non-zero gradient. Our main interest is in
maximizers for the pseudospectral abscissa problem: when a local maximizer is a regular
point, the local structure of the pseudospectrum is easy to describe, as the following result
shows.

COROLLARY 4.5 (local maximizers) Suppose that the point(x0, y0) ∈ R2 is a local
maximizer of the pseudospectral abscissa problem, and is regular. Then there is a function
f : R → R, real-analytic around zero, such that

f (0) = 0, f ′(0) = 0, . . . , f (2k−1)(0) = 0, f (2k)(0) > 0 wherek ∈ N, (4.3)

and such that the signs of the functionsh(x, y) andx − x0 + f (y − y0) coincide for all
points(x, y) ∈ R2 close to(x0, y0).
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Proof. By Theorem 4.1 (simple singular values), the functionh is real-analytic around
(x0, y0). If a vectord ∈ R2 satisfiesd · ∇h(x0, y0) < 0 then by the chain rule, for all small
realt > 0 we have

h((x0, y0) + td) = h(x0, y0) + t (d · ∇h(x0, y0)) + O(t2) < 0

so the point(x0, y0) + td lies in the strict pseudospectrum. Since(x0, y0) is a local
maximizer, we deduced1 < 0. It follows easily that∇h(x0, y0) is a positive multiple
of the vector(1, 0).

Now by (4.1), for unit left and right singular vectorsu and v corresponding to the
smallest singular valueε, weknowu∗v is real and negative. Hence Theorem 4.1 shows the
existence of the real-analytic functionf satisfying f (0) = 0 = f ′(0) such that, near the
point (x0, y0), the pseudospectrum is defined by inequality (4.2). But now we know that
the origin is a local maximizer for the problem

max{s : s � − f (t), s, t ∈ R},
and property (4.3) now follows by considering the Taylor expansion of the functionf
around zero. �

5. Quadratic convergence

Our technique for proving quadratic convergence is based on an analogous idea in Boyd &
Balakrishnan (1990). The key tool is the following result.

LEMMA 5.1 (bisection) Consider a functionf : R → R that is real-analytic around zero
and satisfies property (4.3). Construct a positive real sequence(vr ) iteratively by choosing
an initial small positivev0 and then, for each indexr = 0, 1, 2, . . . , defining

vr+1 = f
( û + ū

2

)
,

whereû and ū are the two small solutions of the equationf (u) = vr . Then there exists
a constantM such that 0� vr+1 � Mv2

r for all r , so the sequence(vr ) decreases
quadratically to zero.

Proof. For small realu we have the Taylor expansion

f (u) = βu2k + O(u2k+1)

for some realβ > 0. For some smallδ > 0 we know that the functionf is strictly
decreasing on[−δ, 0] and strictly increasing on[0, δ]. Hence f has inverse functionsp :
[0, f (−δ)] → [−δ, 0] andq : [0, f (δ)] → [0, δ]. These functions have Puiseux series
expansions (Dienes, 1957, p. 246), so a simple calculation shows

p(v) = −β−1/2k v1/2k + O(v1/k)

q(v) = β−1/2k v1/2k + O(v1/k)
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for smallv � 0. Since

û + ū

2
= p(vr ) + q(vr )

2
= O(v

1/k
r ),

we deducevr+1 = O((v
1/k
r )2k) = O(v2

r ), as required. �

By applying this result at each global maximum in the pseudospectral abscissa
problem, we obtain a quadratic convergence result for the criss-cross method, assuming
regularity (see Definition 4.4).

THEOREM 5.2 (quadratic convergence) If each global maximizer in the pseudospectral
abscissa problem is regular, then the criss-cross method produces iteratesxr that increase
to the pseudospectral abscissaαε with locally quadratic rate.

Proof. Theorem 3.2 (global convergence) shows thatxr increases toαε . Suppose the
global maximizers are(αε, y j ) (for j = 1, 2, . . . , m). By Corollary 4.5 (local maximizers),
near the point(αε, y j ) the pseudospectrum can be defined by a single inequality of the form

x − αε � − f j (y − y j ),

where each functionf j : R → R is real-analytic around zero and satisfies property (4.3).
We now apply Lemma 5.1 (bisection) to each of these functionsf j . We deduce the

existence of constantsM1, M2, . . . , Mm such that

αε − xr+1 � M j (αε − xr )2

for each indexj and for all larger . The result now follows. �

Remarkably, quadratic convergence for the algorithm of Boyd & Balakrishnan (1990)
needs no regularity assumption. Analogously, we conjecture that the criss-cross method
always converges quadratically even without the regularity assumption of the above result.

6. Numerical implementation

Wehave implemented the criss-cross method in MATLAB and tested it extensively. The key
computational step is finding the eigenvalues of the Hamiltonian matricesH(x) (which is
real if A is) and H̃(y) (which is complex even ifA is real). Hamiltonian matrices have
eigenvalues that are symmetric with respect to the imaginary axis, so all non-imaginary
eigenvalues occur in pairs and the number of imaginary eigenvalues is always even (since
the order of the matrix is even). We use real and complex implementations (Benneret
al., 1999, 2000) of Van Loan’s square-reduced algorithm (Van Loan, 1984), which takes
advantage of Hamiltonian structure and delivers eigenvalues that are exactly symmetric
with respect to the imaginary axis. As noted in Byers’ original paper (Byers, 1988), this
property is important if one wishes to be able to reliably determine whether a Hamiltonian
matrix has an imaginary eigenvalue. To be more specific, suppose that for a given iteration
r , the zeros{lr

j , ur
j } are all crossing zeros (so are distinct), and furthermore that their

numerical values are well separated. Suppose also that for each zero, the corresponding
imaginary eigenvalue of the Hamiltonian matrixH(xr ) is simple. Then the specialized
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Hamiltonian eigenvalue solver delivers the imaginary eigenvalues with real parts exactly
equal to zero, uncontaminated by rounding errors, since small Hamiltonian perturbations
to H(xr ) cannot move a simple imaginary eigenvalue off the imaginary axis.

However, this observation does not hold in the limit as the algorithm converges. Let
(αε, ỹ) denote a maximizer of the real part over the pseudospectrum. Clearly,ỹ is a non-
crossing zero ofh(αε, ·), and consequently the imaginary eigenvalue iỹ of H(αε) has
multiplicity two (or possibly higher in non-generic cases). For allxr < αε , there is a pair
of crossing zeros, saylr , ur , with ur − lr → 0 asr → ∞. As the algorithm converges,
it becomes progressively more difficult to detect numerically whether the Hamiltonian
matrix has two distinct but close imaginary eigenvalues, a double imaginary eigenvalue, or,
because of rounding errors, a pair of distinct but close nonimaginary eigenvalues with the
same imaginary part; all these scenarios are consistent with the Hamiltonian structure. In
our implementation, we simply terminate the algorithm as soon aseither the eigensolver
fails to return an exactly imaginary eigenvalue in the vertical search of Step 2,or the
horizontal search of Step 3 returnsxr+1 � xr . The occurrence of either event indicates that
the accuracy limits inherent in floating point arithmetic have been reached. Furthermore,
one of these eventsmust occur eventually in floating point arithmetic, and, because of
the quadratic convergence, typically occurs within 3 to 5 iterations. We have not found it
necessary to use tolerances for either test.

A crucial advantage of the specialized Hamiltonian eigensolvers is that the property
that the number of imaginary eigenvalues is even holds in the presence of rounding errors.
This is essential for the criss-cross algorithm, because any loss of parity in the pair structure
displayed in (2.2) may cause the algorithm to fail. The vertical search in the ideal algorithm
without rounding discards imaginary eigenvalues iy j for whichσmin(A − (x + iy j )I ) < ε.
In the presence of rounding, it is tempting to introduce a tolerance into this inequality, but
this can create trouble if there is more than one singular value close toε. It is much more
reliable to check whetherσmin(A − (x + iy j )I ) is the singular value ofA − (x + iy j )I
that is closest toε, discarding the iy j for which this is not the case. Discards must take
place in pairs, a property that is automatic if the matrix is real, since then the eigenvalues
are also symmetric with respect to the real axis. Clearly, when the matrix is real, it is not
necessary to carry out horizontal searches in both the lower and upper half-planes.

There is a further subtlety, which is well illustrated by an example of Demmel (1987),

A =




−1 −5 −25 −125 −625
0 −1 −5 −25 −125
0 0 −1 −5 −25
0 0 0 −1 −5
0 0 0 0 −1


 .

The matrixA has only one eigenvalue,−1. The smooth curve in Fig. 1 shows the boundary
of the pseudospectrum ofA for ε = 0·01, generated by the software package EigTool
(Wright, 2002). (The legend on the right indicates that log10(ε) = −2.) The plot allows us
to immediately estimate the value ofα0·01(A) to low accuracy, but not to high accuracy,
since the computation depends on interpolation ofσmin(A−(x+iy)I ) on a two-dimensional
grid. Superimposed on this pseudospectral plot are line segments, crosses and plus signs
that clearly illustrate the vertical and horizontal searches in Steps 2 and 3 of the criss-
cross method to computeα0·01(A). In this example, the first vertical search finds two
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FIG. 1. Computing the pseudospectral abscissa for the Demmel example.

TABLE 1 Iterates for the Demmel example

r xr mr yr
1 yr

2
1 −1·000000000000000 1 0·000000000000000 —
2 −0·283 307 773 738 337 2 −1·151 342 702 176 112 1·151 342 702 176 112
3 0·110 378 777 480 711 2 −1·328 011 519 739 448 1·328 011 519 739 448
4 0·122 855 725 365 556 2 −1·327 743 418 800 731 1·327 743 418 800 731
5 0·122 855 754 071 588 2 −1·327 743 418 079 968 1·327 743 418 079 968
6 0·122 855 754 072 281 0 — —

crossing zeros, with, sinceA is real,l1
1 = −u1

1, so y1
1 = 0 and hence the first horizontal

search takes place along the real axis. For many real matrices, the resulting iterate(x2, 0)

would be optimal and the algorithm would correctly terminate, but in this example(x2, 0)

is a stationary point, but not a maximizer, of the real part over the pseudospectrum.
Since A is real, 0 is a non-crossing zero ofh(x2, ·), and 0 is a double eigenvalue of the
Hamiltonian matrixH(x2). In addition,h(x2, ·) has two crossing zeros respectively at the
top and bottom of Fig. 1. Suppose rounding errors cause the eigensolver to return only two
imaginary eigenvalues, instead of the correct number of four, counting the zero eigenvalue
twice. We would then havel1

2 = −u1
2, and the algorithm would terminate withx3 = x2,

which is the wrong answer.
A safeguard to avoid this failure is easily enacted: in the update at Step 4 of iterationr of

the algorithm, save they value(s) (sayyr
k ) corresponding to the maximum valuexr+1 and

then check whether the list of zeros generated by the vertical search in Step 2 of iteration
r + 1 includesyr

k . More specifically, since we cannot expect the agreement to be exact in
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FIG. 2. Computing the pseudospectral abscissa for the perturbed Demmel example.

the presence of rounding errors, we do the following: if the list of zeros at iterationr + 1
is non-empty and

yr
k ∈

[
lr+1

j + δr+1
j , ur+1

j − δr+1
j

]
,

with δr+1
j = τ(ur+1

j − lr+1
j ), for somej ∈ {1, . . . , mr+1} and a fixedτ << 1, then break

the pair(lr+1
j , ur+1

j ) into two pairs(lr+1
j , yr

k ) and(yr
k , ur+1

j ), substituting two horizontal
searches defined by the two new midpoints for the one that would otherwise take place
defined by the midpoint of(lr+1

j , ur+1
j ). A reasonable choice forτ is 0·01, small enough

that the breaking of one pair into two will take place when it is needed, as in the Demmel
example, but large enough that the cost of an additional horizontal search will be incurred
only when necessary. In order to avoid an unnecessary additional horizontal search just
before termination, the safeguard just described may be invoked only if the quantityur+1

j −
lr+1

j is not very small. Table 1 shows the iterates for the Demmel example to 16 decimal
digits, the limit of the standard IEEE double-precision floating-point format.

For a second example, we introduce a complex perturbation to the Demmel example,
changing the 5, 1 entry from 0 to 0·001i, so that the pseudospectrum is no longer symmetric
with respect to the real axis. Figure 2 shows the pseudospectrum forε = 0·01, along with
the perturbed eigenvalues (shown as heavy dots) and the iterates of the criss-cross method.
The numerical values of the iterates are given in Table 2.

Wehave also tested the criss-cross method on much larger matrices. The computational
time is dominated, of course, by the cost of computing the eigenvalues ofH(x) andH̃(y).
Typically, there are only a small number of eigenvalue computations, because the algorithm
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TABLE 2 Iterates for the perturbed Demmel example

r xr mr yr
1 yr

2
1 −0·442 437 235 099 235 1 −0·126 565 274 824 285 —
2 −0·276 899 490 766 155 2 −1·276 126 382 561 665 1·110 482 209 299 681
3 0·124 058 778 702 449 1 1·226 173 510 815 744 —
4 0·130 272 463 584 219 1 1·225 424 774 480 370 —
5 0·130 272 723 577 035 0 — —

converges so rapidly. This number is further reduced if only the first few digits of the
pseudospectral abscissa are required.

An analogous algorithm to compute the pseudospectral radius has recently been
developed by Emre Mengi. The MATLAB code implementing our algorithm is freely
available at http://www.cs.nyu.edu/faculty/overton/software/ and has been incorporated as
afeature of EigTool (Wright, 2002), along with codes to compute the pseudospectral radius
and related quantities.
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