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Stabilization via Nonsmooth, Nonconvex
Optimization

James V. Burke, Didier Henrion, Adrian S. Lewis and Michael L. Overton

Abstract— Nonsmooth variational analysis and related com-
putational methods are powerful tools that can be effectively
applied to identify local minimizers of nonconvex optimization
problems arising in fixed-order controller design. We support
this claim by applying nonsmooth analysis and methods to
a challenging “Belgian chocolate” stabilization problem posed
in 1994: find a stable, minimum phase, rational controller
that stabilizes a specified second-order plant. Although easily
stated, this particular problem remained unsolved until 2002,
when a solution was found using an 11th order controller. Our
computational methods find a stabilizing 3rd order controller
without difficulty, suggesting explicit formulas for the controller
and for the closed loop system, which has only one pole with
multiplicity 5. Furthermore, our analytical techniques prove that
this controller is locally optimal in the sense that there is no
nearby controller with the same order for which the closed loop
system has all its poles further left in the complex plane. Although
the focus of the paper is stabilization, once a stabilizing controller
is obtained, the same computational techniques can be used to
optimize various measures of the closed loop system, including
its complex stability radius or H∞ performance.

I. INTRODUCTION

Fixed order control design is a challenging problem in
theory and in practice, and is considered important in a broad
context ranging from the complexity of control problems to
real industrial practice. We believe that nonsmooth variational
analysis and computational methods have great potential for
applications in this field. Three of us are developers of
nonsmooth analytical techniques for functions of roots of
polynomials and eigenvalues of matrices [11], [8] as well as
computational methods appropriate for nonsmooth, nonconvex
optimization [10]. Throughout the development of this body of
work, we have been partially motivated by potential applica-
tions in control, both in theory and practice. It is only recently,
however, that, we have taken explicit steps in this direction [9],
[7]. One of the purposes of this paper is to provide a generally
accessible introduction to our techniques.
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In this paper, we focus specifically on stabilization. The
most basic requirement of a controlled system is that the
closed loop system should be stable, yet the nonconvexity of
the cone of stable polynomials makes stabilization inherently
difficult. Here by a stable polynomial we mean one whose
roots1 are in the open left half of the complex plane, as is
relevant for continuous-time dynamical systems, but all our
techniques are equally well suited to discrete-time systems
where the stability region is the open unit disk. Similarly, the
cone of stable matrices is nonconvex, where by a stable matrix,
we mean one whose eigenvalues are in the open left half-
plane. Because of this nonconvexity, incorporating stability
criteria into an optimization problem, whether as part of the
objective or in the constraints, normally leads to a nonconvex,
and indeed typically also nonsmooth, optimization problem.
Such problems are often tackled by introducing Lyapunov
matrix variables, leading to a new optimization problem with
bilinear matrix inequality constraints that may, or may not, be
easier to solve than the original problem. In contrast, in our
work we tackle nonsmooth, nonconvex optimization problems
arising from stabilization objectives directly.

We believe that our techniques are quite broadly applicable.
But we also believe that it is very useful to focus on a
specific, challenging example, to demonstrate the potential of
the approach. More than a decade ago, Blondel [2, p.150],
[3] offered a prize of a kilogram of Belgian chocolate for the
solution of the following stabilization problem:

Problem 1.1: Let a(s) = s2 − 2δs + 1 and b(s) = s2 − 1.
Find the range of real values for δ for which there exist stable
polynomials x(s) and y(s) with deg(x) ≥ deg(y) such that
ax+by is stable. Equivalently, in the language of control, find
the range of real values for δ for which there exists a stable,
minimum phase, proper rational controller y/x (one whose
poles and zeros are in the open left half-plane) that stabilizes
the plant b/a (for which the closed loop transfer function,
by/(ax + by), has all its poles in the open left half-plane).

Blondel also offered a kilo of Belgian chocolate for a
solution of a special case:

Problem 1.2: Show whether or not 0.9 is in the range of
values for δ for which stabilization is possible.

For δ = 1, ax+by is not stable for any x and y because s−1
is a common factor of a and b. Conversely, stabilization is easy
for δ ≤ 0.5, say. But for δ = 0.9 stabilization is surprisingly
difficult. Problem 1.2 went unsolved for eight years until Patel
et al. [13] found a solution with deg(x) = deg(y) = 11, using
a randomized search method.

1 We speak of roots, not zeros, of polynomials, to avoid confusion with
zeros of a transfer function.
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Problem 1.1 remains unsolved. However, it follows from re-
sults in [5] that there exists a number δ∗ such that stabilization
is possible for all δ < δ∗ and is not possible for δ > δ∗. Thus,
Problem 1.1 reduces to determining δ∗. Results on the range
of analytic functions proved in [6] imply that δ∗ < 0.99998
[3], [4], and it is known from the experiments reported in [13]
that δ∗ > 0.937.

In this paper we give a solution to Problem 1.2 with
far lower degree than had previously been thought possible.
Specifically, we show stabilization is possible with deg(x) = 3
and deg(y) = 0 for

δ < δ̄ =

√

2 +
√

2

2
= 0.924 . . .

and with deg(x) = 4 and deg(y) = 0 for

δ < δ̃ =

√

10 + 2
√

5

4
= 0.951 . . . .

Furthermore, the controllers have a systematic structure that
we describe in detail. Stabilization is still possible for some
δ > δ̃, but becomes much more difficult as the structure of
the controllers changes. We still do not know the answer to
Problem 1.1, but we know that δ∗ > 0.96.

These stabilizing controllers were obtained by application of
a new numerical method for nonsmooth, nonconvex optimiza-
tion called gradient sampling. The controllers that we found
are locally optimal in a specific sense. Although they were
found experimentally, we prove their local optimality for the
case deg(x) = 3. In particular, for the boundary case δ = δ̄,
we exhibit a stable cubic polynomial x and scalar y for which
ax + by is exactly the monomial s5, and for which any small
perturbation to x or y moves at least one root of ax + by
into the open right half-plane. Our theoretical analysis builds
on recent work on nonsmooth analysis of the cone of stable
polynomials.

We believe that our work is significant not because the
Belgian chocolate problem is important by itself, but because
the solution of a challenging problem by new techniques
suggests that the same ideas should be useful in a far broader
context and presents an illustrative and intuitive example that
can be easily understood. Indeed, the reason that the chocolate
problem is so difficult is that for δ near 1, a and b have
unstable roots that are nearly equal to each other, or in
the language of control, that an unstable pole and unstable
zero of b/a (the transfer function of the open loop system)
nearly cancel each other. Exactly this phenomenon arises in
physically relevant engineering problems, such as the X-29
prototype aircraft design problem or Klein’s bicycle design
problem mentioned in [1]. It is our hope, as was Blondel’s,
that a detailed analysis of the chocolate problem will provide
insight that is useful in many other contexts. We note also that
our techniques are not limited to polynomials, and that indeed
much of our work is oriented towards stabilization of matrices.
Furthermore, our interests are not limited to stabilization.
We are currently developing a MATLAB toolbox for fixed-
order controller design which allows specification of various
optimization objectives, including H∞ performance.

The remainder of the paper is organized as follows. In
Section II, we discuss our computational approach to the
chocolate problem and present numerical results. In Section III
we present our local optimality analysis, using key theoretical
properties of the cone of stable polynomials. In Section IV,
we make some concluding remarks.

II. EXPERIMENTAL ANALYSIS

Let P
n (respectively P

n
R) denote the space of polynomials

with complex (respectively real) coefficients and with degree
less than or equal to n, and let MP

n and MP
n
R denote the

corresponding subsets of monic polynomials with degree n.
For p ∈ P

n, let α(p) denote the abscissa of p,

α(p) = max{Re s : p(s) = 0}

(interpreted as −∞ if p is a nonzero constant). Problem 1.1
asks for what range of δ do there exist polynomials x and y
with deg(x) ≥ deg(y) such that α(xy(ax + by)) < 0, and
Problem 1.2 addresses the case δ = 0.9.

Now consider the problem of choosing polynomials x and
y to minimize α(xy(ax + by)). For convenience we restrict
x, but not y, to be monic. We thus consider the problem: for
fixed real δ and integers n and m with m ≤ n + 1, minimize
α(xy(ax + by)) over x ∈ MP

n+1

R and y ∈ P
m
R . This is a

nonconvex optimization problem in n + m + 2 real variables.
For a given x and y, we say that a root of x, y or ax +

by is an active root if its real part equals α(xy(ax + by)).
The objective function α is, as we shall see, typically not
differentiable at local minimizers, either because there are two
or more active roots, or because there is a multiple active root,
or both. Furthermore, it is not the case that α is an ordinary
“max function”, that is the pointwise maximum of a finite
number of smooth functions. On the contrary, α is not even
Lipschitz because of the possibility of multiple roots.

Reliable software for both smooth, nonconvex optimization
and for nonsmooth, convex optimization is widely available,
but there are not many options for tackling nonsmooth, non-
convex optimization problems. We have developed a method
based on gradient sampling that is very effective in practice
and for which a local convergence theory has been established
[10], [12]. This method is intended for finding local mini-
mizers of functions f that are continuous and for which the
gradient exists and is readily computable almost everywhere
on the design parameter space, even though the gradient may
(and often does) fail to exist at a local optimizer. Briefly,
the method generates a sequence of points in the parameter
space, say R

N , as follows. Given ξν , the gradient ∇f is
computed at ξν and at randomly generated points near ξν

within a sampling diameter η, and the convex combination
of these gradients with smallest 2-norm, say d, is computed
by solving a quadratic program. One should view −d as a kind
of stabilized steepest descent direction. A line search is then
used to obtain ξν+1 = ξν − td/‖d‖, with f(xν+1) < f(xν),
for some t ≤ 1. If ‖d‖ is below a prescribed tolerance, or a
prescribed iteration limit is exceeded, the sampling diameter η
is reduced by a prescribed factor, and the process is repeated.
For the numerical examples to be discussed, we used sampling
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Fig. 1. Optimal roots for deg(x) = 3, plotted in the complex plane for
various values of δ. Crosses and plus signs are respectively roots of ax + by
and x when the abscissa α(x(ax+by)) is minimized over monic cubic x and
scalar y. Circles and diamonds are respectively roots of ax+ by and x when
stabilization is achieved and the stability radius min(β(x), β(ax + by)) is
maximized. The third panel shows that Problem 1.2 is solved by an order 3
controller.

diameters 10−j , j = 1, . . . , 6, with a maximum of 100 iterates
per sampling diameter and a tolerance 10−6 for ‖d‖, and we
set the number of randomly generated sample points to 2N
(twice the number of design variables) per iterate. Besides
its simplicity and wide applicability, a particularly appealing
feature of the gradient sampling algorithm is that it provides
approximate “optimality certificates”: ‖d‖ being small for a
small sampling diameter η suggests that a local minimizer
has been approximated. A MATLAB implementation of the
gradient sampling algorithm is freely available.2

The abscissa of a polynomial is the spectral abscissa (largest
of the real parts of the eigenvalues) of its companion matrix,
and so α(xy(ax + by)) is the spectral abscissa of a block
diagonal matrix, with blocks that are companion matrices for
x, y and ax + by respectively. Computing the gradient of
the spectral abscissa in matrix space is convenient, because
the gradient of a simple eigenvalue λ (with respect to the
real trace inner product 〈A, B〉 = Re tr(A∗B) is the rank-one
matrix uv∗, where u and v are respectively the left and right
eigenvectors corresponding to λ, normalized so that u∗v = 1.
The ordinary chain rule then easily yields the gradient of the
spectral abscissa with respect to the relevant coefficients of x
and y when it exists, which is exactly when there is only one
real eigenvalue or one conjugate pair whose real part equals
the spectral abscissa, and that eigenvalue or conjugate pair is
simple. The gradient of α on polynomial space depends on
the inner product we choose: nothing a priori in the problem
defines our choice. For our numerical experiments, simply for
computational convenience, we define the inner product to
coincide, for monic polynomials, with the inner product of
the corresponding companion matrices.

We now summarize the numerical results that we obtained
when we applied the gradient sampling algorithm to minimize

2http://www.cs.nyu.edu/overton/papers/gradsamp/alg/

α(xy(ax + by)) for various values of δ, n and m. We began
with δ = 0.9 and m = n + 1. We soon found negative
optimal values for α(xy(ax + by)) for small values of n,
thus solving Problem 1.2. Furthermore, we observed that the
leading coefficient of the non-monic polynomial y converged
to zero as the apparent local optimizer was approached. This
led to numerical difficulties since constructing a companion
matrix requires normalizing the polynomial to be monic;
hence, the norm of the companion matrix blows up as the
leading coefficient of the polynomial goes to zero. These
difficulties were avoided by explicitly reducing m, the degree
of y and the size of its corresponding companion matrix
block, when it was realized that the leading coefficient was
converging to zero, restarting the optimization in a smaller
parameter space. This phenomenon was observed again for
smaller values of m, and we soon became quite confident
that, for δ = 0.9 and n ≤ 3, the function α(xy(ax + by)) is
minimized when m = 0, that is, the polynomial y is a scalar,
so α(xy(ax+ by)) = α(x(ax+ by)). Further experimentation
showed that α(x(ax + by)) could be reduced to a negative
value when n = 2 (deg(x) = 3), but not when n < 2.
Furthermore, the structure of the minimizer is striking: the
polynomial ax + by evidently has only one (distinct) root,
which, for n = 2, is a quintuple root (multiplicity 5), since a
is quadratic. This is the only active root; the roots of x have
smaller real part. The structure is clearly seen in the third panel
of Figure 1, where the roots of the polynomials ax+by and x
obtained by minimizing α(x(ax + by)) are shown as crosses
and plus signs respectively; disregard the circles and diamonds
in the plot for the moment. The five roots of ax+ by are very
close to each other, indicating the likelihood of coalescence to
a single root for the exact local optimizer, while the three roots
of x are well to their left. The other panels in the same figure
show similar results for δ ranging from 0.875 to 0.9375 (still
with n = 2 and m = 0). In all six cases, the approximately
optimal ax + by has a nearly multiple (quintuple) root, but
for the two largest values of δ, this root is to the right of the
imaginary axis, causing a change in the automatic scaling of
the horizontal axes in the last two panels, and indicating that
stabilization was not achieved. For δ = 0.9, the approximately
optimal abscissa was attained by y = 1.8867980 and

x(s) = s3 + 2.3628818 s2 + 3.3978859 s + 1.8868496.

This was the best result found in 100 runs of the gradient
sampling algorithm starting from randomly generated starting
points.

The appearance of the multiple root at a local optimizer is
a very interesting phenomenon that we discuss further in the
next section. However, it is well known that the roots of a
polynomial with a nominally stable multiple root are highly
sensitive to perturbation and therefore such a polynomial has
poor stability properties in a practical setting. For this reason,
we also consider a more robust measure than the abscissa,
namely the complex stability radius of a monic polynomial in
MP

k,

β(p) = sup{ε : α(q) < 0 for all q ∈ MP
k with ‖p−q‖ ≤ ε}.

Here the norm is just the 2-norm of the coefficient vector.
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Fig. 2. Optimal roots for deg(x) = 4, plotted in the complex plane for
various values of δ. Crosses and plus signs are respectively roots of ax + by
and x when the abscissa α(x(ax + by)) is minimized over monic quartic x
and scalar y. Circles and diamonds are respectively roots of ax + by and x
when stabilization is achieved and the stability radius min(β(x), β(ax+by))
is maximized. The structure of the abscissa optimizer changes in the last panel,
causing a root of ax + by and of x to shoot off into the left half-plane.

The quantity β(p) can be computed by standard software.3 It
is the reciprocal of the H∞ norm for the state space realization
(A, B, C, D), where A, B, C and D are respectively the
companion matrix for p (with its negated coefficients in the
first column), the identity matrix, the first row of the identity
matrix, and a zero row, since then C(sI − A)−1B + D =
[sk−1 . . . s2 s 1]/p(s). Like the abscissa, the complex stability
radius is differentiable almost everywhere and its gradient is
easily computed [9].

When deg(y) = 0, a natural maximization objective is

β̃(x, y) = min(β(x), β(ax + by)).

We applied the gradient sampling algorithm to minimize
−β̃(x, y) over x ∈ MP

n+1

R and y ∈ P
0
R, using the same

values for δ and n as earlier. A key point is that the complex
stability radius is identically zero in a small neighborhood of
any polynomial with a root in the open right half-plane. We
therefore used the locally optimal x and y found by minimiz-
ing α (as already described above) to initialize minimization
of −β̃ over the same parameter space. This optimization
produced locally optimal x and y for which the roots of
ax + by are well separated; for n = 2 and m = 0, the
roots of the optimal ax + by and x are shown as circles and
diamonds respectively in the first four panels of Figure 1. For
the two largest values of δ, stabilization was not achieved, so
optimization of the stability radius could not be initialized.

In order to achieve stabilization for larger values of δ, we
increased n to 3 (deg(x) = 4). Results are shown in Figure
2: the optimal y is again a scalar, and for all δ for which
stabilization is achieved, the optimal ax + by apparently has
only one root, which is hextuple (multiplicity 6), with the
roots of x inactive. We were able to achieve stabilization up

3 We used the norm function in the MATLAB Control System Toolbox.
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Fig. 3. Optimal roots for deg(x) = 5, plotted in the complex plane for
various values of δ. Crosses and plus signs are respectively roots of ax + by
and x when the abscissa α(x(ax + by)) is minimized over monic quintic x
and scalar y. Stabilization is achieved only in the first panel. The structure
of the optimizer is consistent with the final panel of Figure 3, with a root of
ax + by and of x moving further into the left half-plane as δ is increased.
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Fig. 4. Summary of minimized abscissa values. The pattern changes abruptly
as δ is increased beyond 0.95, reflecting a change in the structure of the
optimizing solution.

to δ = 0.94375, for which the approximately optimal abscissa
was attained by y = 2.0465513 and

x(s) = s4 + 2.1853347 s3 + 3.1991472 s2

+ 3.8629224 s + 2.0465529.

As in Figure 1, the circles and diamonds in the first four panels
of Figure 2 show the roots of the optimal ax + by and x
when the complex stability radius is optimized instead of the
abscissa; these roots are well separated.

As δ increases, a complex conjugate pair of roots of x
moves to the right, and we see that this pair becomes active,
having the same real part as the hextuple root of ax + by,
at approximately the same critical value of δ beyond which
stabilization is not possible. In other words, the trajectories of
the rightmost conjugate pair of roots of the optimizing x and
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hextuple root of the corresponding ax + by as a function of
δ reach the imaginary axis at approximately the same value
of δ (approximately 0.95). In fact, as discussed at the end of
Section III-B, these events occur at exactly the same critical
value δ̃ = 0.951 . . .. Beyond this value the structure of the
local optimizer changes; a conjugate pair of roots of x is active
and the hextuple root of ax+by splits into a quintuple root and
a simple root. This simple root of ax+by and a corresponding
root of x shoot off together into the left half-plane (see the
final panel of Figure 2, for which the automatic scaling of the
horizontal axis changes abruptly in order to fit all the roots in
the panel).

In order to achieve stabilization for larger δ, we increased
n to 4 (deg(x) = 5), with deg(y) still set to 0. The results
are shown in Figure 3. The structure of the optimizers remains
consistent with the final panel of Figure 2: a conjugate pair
of roots of x is active, and ax + by, which has degree 7,
has one active hextuple root. Both ax + by and x have a
simple root well into the left half-plane, causing a change
in the automatic scaling of the real axis, and the other roots
all appear to be very close to the imaginary axis as a result.
Stabilization was achieved for δ = 0.95, but not for larger
δ. Stabilization was possible for somewhat larger values by
further raising the degrees of both x and y, for example, with
δ = 0.96, n = 7 (deg(x) = 8) and m = deg(y) = 2, but the
numerical optimization problem is much more difficult than it
is for smaller values of δ.

Figures 4 and 5 summarize the numerical experiments,
respectively showing the optimal values of the abscissa
α(x(ax + by)) and stability radius β̃(x, y) (the latter on a
log scale) as a function of δ, for deg(x) ranging from 1 to
5 (n from 0 to 4), with m = deg(y) = 0. Note the way
the underlying curves are regularly spaced for δ ≤ 0.95, with
each increment in deg(x) providing a substantial increase in
the range of δ for which stabilization is possible, while for
δ > 0.95, little is gained by increasing deg(x). This is a
consequence of the change in structure of the optimal solution
when δ increases beyond δ̃ = 0.951 . . ..

III. THEORETICAL ANALYSIS

We now present a theoretical analysis inspired by the
experimental results reported in the previous section. We
observed that, for 0 ≤ n ≤ 3 and for certain ranges of δ
that depend on n, local minimizers4 (xδ , yδ) of α(x(ax + by))
on MP

n+1

R × P
0
R apparently have a very special property,

namely, that axδ + byδ has only one (distinct) root. Since the
polynomial ax + by is

s 7→ (s2 − 2δs + 1)x(s) + (s2 − 1)y(s), (3.1)

we can write this observed optimality property explicitly as
the polynomial identity

(s2 −2δs+1)
(

sn+1 +
n

∑

k=0

wδ
ksk

)

+(s2 −1)vδ ≡ (s− zδ)
n+3

(3.2)
where zδ is the root, wδ

k are the coefficients of xδ and vδ is
the constant (and only) coefficient of yδ. The dependence of
the coefficients and the root on δ is expressed explicitly, but
the dependence on n is suppressed. Using the identity (3.2),
it is not difficult to derive, for n = 0, . . . , 3, a formula for
the critical value δ for which zδ = 0 and to observe that for
smaller values of δ, we have zδ less than 0 and greater than
the real part of any root of xδ . The real contribution of our
analysis is a proof that, for δ sufficiently near its critical value,
(xδ , yδ) is indeed strictly locally optimal, which we present
for n = 0 (the simplest case) and n = 2 (covering the simplest
solution to Problem 1.2).

In what follows we make use of the terminology sub-
differential (set of subgradients), horizon subdifferential (set
of horizon subgradients) and subdifferentially regular, all
standard notions of nonsmooth analysis, as is the nonsmooth
chain rule we use below; see [14, Chap. 8] and [8].

Essential to our local optimality analysis is the following
result of Burke and Overton [11, p.1668,1673]. The result was
originally stated for the abscissa map α on the affine space
MP

n+1. However, it is more convenient to work with a related
map on the linear space P

n, namely

γ(p) = max{Re s : sn+1 + p(s) = 0}. (3.3)

We can identify P
n with the Euclidean space C

n+1, with the
inner product 〈u, v〉 = Re

∑n

j=0
u∗

jvj . For j = 0, 1, 2, . . ., we
define the polynomial ej by

ej(s) = sj .

Theorem 3.4 (abscissa subdifferential): The map γ defined
in (3.3) is everywhere subdifferentially regular. The sub-
differential and horizon subdifferential at 0 are respectively
given by

∂γ(0) =
{

∑

j

cjej : cn = − 1

n + 1
, Re cn−1 ≤ 0

}

∂∞γ(0) =
{

∑

j

cjej : cn = 0, Re cn−1 ≤ 0
}

.

4The use of a superscript δ indicating the dependence of the minimizer
on δ should not be confused with use of superscripts to mean exponentiation
elsewhere.
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A. The simplest case

In the case n = 0, the polynomial (3.1) reduces to

s 7→ (s2 − 2δs + 1)(s + w) + (s2 − 1)v, (3.5)

writing x(s) = s + w and y(s) = v. Identity (3.2) reduces to

(s2 − 2δs + 1)(s + wδ) + (s2 − 1)vδ ≡ (s − zδ)
3, (3.6)

where we have abbreviated wδ
0 to wδ. Multiplying out factors

and equating terms leads to the following result.
Lemma 3.7 (condition for triple root): Identity (3.6) holds

if and only if

wδ = δ − 3

2
zδ −

1

2
z3

δ ,

vδ = δ − 3

2
zδ +

1

2
z3

δ ,

and zδ solves the equation

δz3 − 3z2 + 3δz + 1 − 2δ2 = 0. (3.8)
The next lemma follows from the implicit function theorem.

For technical reasons associated with the nonsmooth chain rule
we use, we will in fact allow w and v to be complex variables.
Consequently, we may as well also allow the parameter δ to
be complex.

Lemma 3.9 (definition of zδ, linear case): For complex δ
near δ̂ = 1/

√
2, the equation (3.8) has a unique solution zδ

near 0, depending analytically on δ. For real δ near δ̂, the
solution zδ is real, and increases strictly with δ, with z

δ̂
= 0.

Equipped with these lemmas, we can proceed to our main
result for the case n = 0.

Theorem 3.10 (minimizing the abscissa, linear case):
Consider the problem of choosing a monic linear polynomial
x and scalar y to minimize the maximum of the real
parts of the roots of the polynomial x(ax + by), where
a(s) = s2 − 2δs + 1 and b(s) = s2 − 1. For all complex δ
near δ̂ = 1/

√
2 this problem has a strict local minimizer at

the unique pair (x, y) for which ax+ by has a triple root near
0. Furthermore, x is stable, and for δ real, ax + by is stable
if and only if δ < δ̂.

Proof Define zδ as in Lemma 3.9. The unique pair (x, y)
in the theorem statement is therefore given by x(s) = xδ(s) =
s + wδ and y = vδ , where wδ and vδ are given by Lemma
3.7. Notice w

δ̂
= δ̂ > 0, so xδ is stable and α(x(ax + by)) =

α(ax + by) for all (x, y) near (xδ , vδ).
Consider the polynomial (3.5), and make the following

changes of variables:

t = s − zδ, q = w − wδ , r = v − vδ.

With this notation, a calculation shows that minimizing α(ax+
by) is equivalent to minimizing the abscissa of the polynomial

t 7→ t3 + Aδ(q, r)(t)

where the linear map Aδ : C2 → P
2 is given by

Aδ(q, r)(t) = q(t2 + 2(zδ − δ)t + (z2
δ − 2δzδ + 1))

+ r(t2 + 2zδt + (z2
δ − 1)).

We therefore need to prove that the point (0, 0) is a strict
local minimizer of the composite function γ ◦ Aδ , where the
function γ is defined by equation (3.3).

The adjoint map A∗

δ : P2 → C
2 is given by

A∗

δ

(

∑

j

cjej

)

=

[

c2 + 2(zδ − δ)c1 + (z2
δ − 2δzδ + 1)c0

c2 + 2zδc1 + (z2
δ − 1)c0

]

and in particular,

A∗

δ̂

(

∑

j

cjej

)

=

[

c2 − 2δ̂c1 + c0

c2 − c0

]

.

Notice that when δ = δ̂ we have the implication

A∗

δ

(

∑

j

cjej

)

= 0 and c2 = 0 ⇒ c =





c0

c1

c2



 = 0.

Since the map Aδ depends continuously on δ, the same
implication holds for all δ near δ̂. We are now in a position to
apply Theorem 3.4 (abscissa subdifferential). First, we observe
the constraint qualification

N(A∗

δ) ∩ ∂∞γ(0) = {0},

where N denotes null space. Consequently we can apply the
nonsmooth chain rule [8, Lemma 4.4] to deduce that the
composite function γ ◦Aδ is subdifferentially regular at zero,
with subdifferential

∂(γ ◦ Aδ)(0) = A∗

δ∂γ(0) =
{[ − 1

3
+ 2(zδ − δ)c1 + (z2

δ − 2δzδ + 1)c0

− 1

3
+ 2zδc1 + (z2

δ − 1)c0

]

:

Re c1 ≤ 0, c0 ∈ C

}

.

The matrix

Bδ =

[

2zδ − 2δ z2
δ − 2δzδ + 1

2zδ z2
δ − 1

]

depends continuously on δ, and, since z
δ̂

= 0, the vector
[

c1

c0

]

= B−1

δ̂

[

1

3
1

3

]

= −
[

1

3δ̂
1

3

]

satisfies Re c1 < 0. Hence, by continuity, the subdifferential
∂(γ ◦ Aδ)(0) contains zero in its interior. Together with
subdifferential regularity, this implies [8, Prop. 4.3] that the
function γ ◦Aδ has a “sharp” local minimizer at zero: it grows
at least linearly at this point. 2

This result proves that any small perturbation to the locally
optimal polynomials x or y splits the triple root of ax+by and
moves at least one root strictly to the right, and into the open
right half-plane when δ = δ̂. A simple argument based on the
Routh-Hurwitz conditions shows that stabilization by a first-
order controller is not possible when δ > δ̂, thus providing
a global optimality certificate for our local optimizer when
δ = δ̂.
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B. The chocolate problem

We now turn to the case n = 2, providing what is almost
certainly the simplest possible solution to Problem 1.2. The
polynomial ax + by is now

s 7→ (s2 − 2δs + 1)
(

s3 +
2

∑

k=0

wksk
)

+ (s2 − 1)v. (3.11)

The identity (3.2) becomes

(s2−2δs+1)
(

s3+
2

∑

k=0

wδ
ksk

)

+(s2−1)vδ ≡ (s−zδ)
5. (3.12)

Multiplying out factors and equating terms leads to an ana-
logue of Lemma 3.7 with explicit formulas for wδ

k and vδ ;
for brevity, we omit the details and proceed to the following
result. The proof uses the implicit function theorem.

Lemma 3.13 (definition of zδ, cubic case): For complex δ

near δ̄ = 1

2

√

2 +
√

2 the equation

δz5 − 5z4 + 10δz3 + 10(1 − 2δ2)z2

+ 5δ(4δ2 − 3)z + (−1 + 8δ2 − 8δ4) = 0

has a unique solution zδ near 0, depending analytically on
δ. For real δ near δ̄, the solution zδ is real, and increases
strictly with δ, with zδ̄ = 0. Furthermore, there exist analytic
functions of δ, namely wδ ∈ C

3 and vδ ∈ C, for which the
identity (3.12) holds. Finally, the polynomial

s3 +

2
∑

k=0

wδ
ksk

is stable, with

wδ̄ =
[

2δ̄ , 4δ̄2 − 1 , 2δ̄ − 1

2δ̄

]T

and vδ̄ = 2δ̄ − 1

2δ̄
.

We now present the main result of the paper.
Theorem 3.14 (minimizing the abscissa, cubic case):

Consider the problem of choosing a monic cubic polynomial
x and a scalar y to minimize the maximum of the real
parts of the roots of the polynomial x(ax + by), where
a(s) = s2 − 2δs + 1 and b(s) = s2 − 1. For all complex δ

near the value δ̄ = 1

2

√

2 +
√

2 this problem has a strict local
minimizer at the unique pair (x, y) for which ax + by has
a quintuple root near 0. Furthermore, x is stable, and for δ
real, ax + by is stable if and only if δ < δ̄.

Proof Define zδ as in Lemma 3.13. The unique pair (x, y)
in the theorem statement is given by x(s) = xδ(s) = s3 +
∑2

k=0
wδ

ksk and y = vδ . By the lemma, the polynomial xδ(s)
is stable and α(x(ax + by)) = α(ax + by) for all (x, y) near
(xδ , vδ).

We therefore wish to check that, for all complex δ close to
δ̄, choosing x = xδ and v = vδ gives a strict local minimum
for α(ax + by). To verify this, we first check the case δ = δ̄,
and then, as in the previous section, but with fewer details,
appeal to a continuity argument.

We make the change of variables

q = w − wδ̄ ∈ C
3, r = v − vδ̄ ∈ C.

With this notation, minimizing α(ax + by) is equivalent to
minimizing the abscissa of the polynomial

s 7→ s5 + Aδ̄(q, r)(s)

where

Aδ̄(q, r)(s) = (s2 − 2δ̄s + 1)(q2s
2 + q1s + q0) + (s2 − 1)r.

So, we wish to show that (q, r) = (0, 0) is a strict local
minimizer of the function γ ◦ Aδ̄ . A calculation shows that
the adjoint map A∗

δ̄
: P

4 → C
4 is given by

A∗

δ̄

(

4
∑

j=0

cjej

)

=









c2 − 2δ̄c1 + c0

c3 − 2δ̄c2 + c1

c4 − 2δ̄c3 + c2

c2 − c0









.

We have

A∗

δ̄

(

4
∑

j=0

cjej

)

= 0 and c4 = 0 ⇒ c = 0.

We now use Theorem 3.4 (abscissa subdifferential). First, we
observe the constraint qualification

N(A∗

δ̄
) ∩ ∂∞γ(0) = {0}.

Hence the nonsmooth chain rule holds:

∂(γ ◦ Aδ̄)(0) = A∗

δ̄
∂γ(0),

yielding

∂(γ ◦ Aδ̄)(0) =
{

A∗

δ̄

(

− 1

5
e4 +

3
∑

j=0

cjej

)

: Re c3 ≤ 0
}

.

(3.15)
A straightforward check shows the affine map from C

4 to C
4

defined by

(c3, c2, c1, c0) 7→ A∗

δ̄

(

− 1

5
e4 +

3
∑

j=0

cjej

)

is invertible, and the inverse image of zero has Re c3 < 0.
Consequently, by equation (3.15), we have the condition for a
sharp minimizer

0 ∈ int ∂(γ ◦ Aδ̄)(0).

A continuity argument now completes the proof. 2

It follows from this theorem that any small perturbation to
the locally optimal polynomials x or y splits the quintuple root
of ax + by and moves at least one root strictly to the right,
and into the open right half-plane when δ = δ̄.

We now turn briefly to the case n = 3. The identity (3.2)
reduces to

(s2−2δs+1)
(

s4+

3
∑

k=0

wδ
ksk

)

+(s2−1)vδ ≡ (s−zδ)
6. (3.16)

Multiplying out factors and equating terms leads to the formula

δ̃ =

√

10 + 2
√

5

4
≈ 0.951 . . .
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for which zδ̃ = 0. This value is slightly larger than we
observed numerically; given the sensitivity of the roots, it
is not surprising that the optimization method was unable
to find a stabilizing solution for δ = 0.95. We verified
that, as observed in our numerical experiments, a remarkable
coincidence occurs: the real part of the rightmost conjugate
pair of roots of xδ(s) = s4 +

∑3

k=0
wδ

ksk is less than zero for
δ < δ̃ and equal to zero for δ = δ̃. Consequently, for δ > δ̃,
the structure of the optimal solution changes. The minimizer
of the abscissa of x(ax + by) is no longer a minimizer of the
abscissa of ax+by, as a conjugate pair of roots of x is active.
In principle, one could apply a parallel analysis to the new
optimal structure for n = 4, but this has diminishing returns,
especially as it seems likely that the optimal structure would
change further as δ and deg(x) (and perhaps also deg(y)) are
increased further.

IV. CONCLUDING REMARKS

This paper has two messages. First, the gradient sampling
method provides a very effective way to find local minimizers
of challenging nonsmooth, nonconvex optimization problems
of the kind that frequently arise in control. Secondly, stability
objectives and constraints can be analyzed theoretically using
recent results on nonsmooth analysis of the cone of stable
polynomials. These approaches extend to encompass other key
quantities of great practical interest, such as optimization of
H∞ performance. We are addressing these issues in ongoing
work. In particular, we are developing a MATLAB toolbox
called HIFOO (H∞ Fixed Order Optimization) that will allow
engineers convenient free access to our techniques via a
friendly user interface [7].
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