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1 Introduction

The root radius of a polynomial is the maximum of the moduli of its roots (ze-
ros). This is a fundamental function that arises in many applications. Perhaps
one of the most important application areas is feedback control in the fre-
quency domain, which is modeled by rational system transfer functions. For a
transfer function to be discrete-time stable, its denominator—a polynomial—
must have its roots in the open unit disk, or equivalently, its root radius must
be less than one.

When the coefficients of a polynomial family depend on parameters, it is
natural to consider minimizing the polynomial root radius to obtain or enhance
stability. However, such an optimization problem is nontrivial because the root
radius is not convex, and furthermore it is not locally Lipschitz at points in
polynomial space with multiple roots—more specifically, multiple active roots,
that is, roots whose moduli equal the maximum modulus. Nonetheless, as we
show in this paper, the global minimizers of these optimization problems have
a remarkable structural property when dependence on the parameters is affine,
or, equivalently, affine constraints are imposed on the polynomial coefficients.
Specifically, for the polynomial root radius optimization problem over monic
polynomials of degree n with either real or complex coefficients, if k consistent
affine constraints are imposed on the coefficients, then there always exists an
optimal polynomial with at most k − 1 inactive roots, that is, with at least
n− k + 1 active roots.

As far as we know, such results have not been obtained or even contem-
plated previously, except that such a conjecture was made, based on experi-
mental results, by Blondel, Gürbüzbalaban, Overton and Megretski [1, section
V]. That paper, building on results of Chen in [10] and [9], obtained stronger
results for the special case k = 1, concerning not only root activity, but also
root multiplicity. Specifically, in the case of minimizing the root radius over
polynomials with complex coefficients subject to just one affine constraint, it
was shown in [1] that there always exists an optimal polynomial of the form
p(z) = (z − γ)n for some γ ∈ C, meaning not only that there are n active
roots, but that they actually coincide. When the coefficients are restricted to
be real, it was shown that there always exists an optimal polynomial of the
form p(z) = (z− γ)m(z+ γ)n−m for some γ ∈ R and m ∈ {0, . . . , n}, implying
the existence of an optimal polynomial with multiple roots when n ≥ 3. In
contrast, when k > 1, there may not exist an optimal polynomial with multiple
roots.

As a concrete example, consider minimizing the root radius of the cubic
polynomial p(z) = z3+az+1 over a ∈ R, or equivalently, imposing k = 2 affine
constraints: the quadratic coefficient is 0 and the constant coefficient is 1. The
minimal value 1 is attained by the unique optimal polynomial p∗(z) = z3 + 1
with three active roots, one more than required by our general theorem, but
these are the three cube roots of unity and hence are distinct; multiple active
roots do not occur. In contrast, consider minimizing the root radius of the
polynomial p(z) = z3 + bz2 +az+1 over a ∈ R, b ∈ R, allowing both the linear
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and quadratic coefficients to vary, or equivalently, imposing just one constraint:
the constant coefficient is 1. Then the minimal value remains 1, but the optimal
polynomial is no longer unique; any polynomial with a = b ∈ [−1, 3] has root
radius 1, and in particular, when a = b = −1, there are two active roots at 1
and one at −1, while for a = b = 3, all three active roots coincide at −1.

The proofs of the results given in [1] for a single constraint were completely
different for the cases of real and complex coefficients, with the latter being far
more complicated than the former. Our proof of root activity when there are
several affine constraints uses a more general approach that applies to both real
and complex coefficients and recovers the activity (but not the multiplicity)
results for the case where there is just one constraint.

The root radius is one of a class of functions known as max root functions
for polynomials. A great deal is known about variational analysis of polynomial
max root functions [7,5]. That analysis focuses on the challenges presented
by the non-Lipschitz behavior of these functions around polynomials with
multiple active roots, a phenomenon studied in one variable by Newton using
his “Newton diagram” or “Newton polygon” (see [16]). However, the focus
there is on describing the variational properties of max root functions when
the active root multiplicities are known. The present work is concerned with
what active root structure is possible at minimizers.

The paper is organized as follows. We start in Section 2 by proving the
simplest case of our main result, namely, when the number of affine constraints
k is just one less than the polynomial degree n and the coefficients are restricted
to be real. Section 3 lays the groundwork for the general case, establishing some
key lemmas for optimization of polynomial max root functions. Section 4 then
presents our main results for optimization of the root radius, applicable to both
real and complex coefficients. Section 5 presents some examples that arise in
feedback control, illustrating our results. Section 6 makes some concluding
remarks.

2 The Simplest Case

Let ρ denote the root radius of a polynomial, that is, the largest of the moduli
of its roots. Our result is easily obtained in the case that k, the number of
affine constraints, is n−1, particularly when the coefficients are restricted to be
real, so we treat this case first. Imposing n−1 consistent, linearly independent
affine constraints on a monic real polynomial of degree n ≥ 2 is equivalent to
parametrizing the coefficients with just one variable, that is our polynomial p
is in the set

{p(z, λ) = p0 + λp1 : λ ∈ R}

where p0 is a fixed monic polynomial of degree n and p1 is a fixed nonzero
polynomial with degree at most n − 1, not necessarily monic. For each λ, let
γ1(λ), . . . , γn(λ) denote the roots of p(z, λ), ordered first by highest-to-lowest
modulus and second by lowest-to-highest angle, where angles are measured
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from the positive real axis, and repeated according to multiplicity. Thus, we
have the factorization

p(z, λ) = p0(z) + λp1(z) =

n∏
i=1

(z − γi(λ)) (1)

and the minimization problem becomes

inf
λ∈R

ρ(p(z, λ)) ≡ inf
λ∈R
|γ1(λ)|.

We claim that there exists an optimal polynomial with at least n− k + 1 = 2
active roots, that is, at least two roots attaining the maximum modulus value.
Since the lower level sets of ρ are compact, an optimal polynomial p∗ = p(z, λ∗)
exists, and by definition, p∗ has at least one active root, γ1(λ∗). If |γ1(λ∗)| = 0,
then all of the roots of p are zero and there is nothing more to show. So suppose
|γ1(λ∗)| > 0. If the multiplicity of γ1(λ∗) is at least two, then there are at least
two active roots, and if γ1(λ∗) is complex, then its complex conjugate must
also be a root of p(z, λ), which implies there are at least two active roots. In
either case there is nothing more to show. So we may assume that γ1(λ∗) is a
simple real root, which is therefore differentiable with respect to λ at λ∗. We
have γ1(λ∗) = |γ1(λ∗)| or γ1(λ∗) = −|γ1(λ∗)|, so that the first-order optimality
condition ∂λ|λ=λ∗(|γ1(λ)|) = 0 implies that

∂λ|λ=λ∗(γ1(λ)) = 0. (2)

Differentiating (1) with respect to λ on both sides, evaluating the result at
λ = λ∗, and applying (2) leads to

p1(z) = (z − γ1(λ∗))r1(z),

where

r1(z) := ∂λ|λ=λ∗

n∏
i=2

(z − γi(λ)).

Therefore,

p(z, λ∗) = p0(z) + λ∗p1(z) = p0(z) + λ∗ (z − γ1(λ∗)) r1(z).

Substituting z = γ1(λ∗) yields p0(γ1(λ∗)) = 0, which implies that p0(z) also
has a root at γ1(λ∗). Therefore,

p(z, λ) = (z − γ1(λ∗)) (r0(z) + λr1(z)),

where r0(z) is such that p0(z) = (z − γ1(λ∗))r0(z). Note that ρ(r0(z) +
λ∗r1(z)) < |γ1(λ∗)|, since otherwise p∗ would already have two active roots.
We also have

lim inf
|λ|→∞

ρ(r0(z) + λr1(z)) =∞,
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since the lower level sets of ρ are compact and r1 cannot be zero as p1 is not
zero. Therefore, by continuity there must exist some λ̃ ∈ R for which

ρ(r0(z) + λ̃r1(z)) = |γ1(λ∗)|.

Then the polynomial

(z − γ1(λ∗)) (r0(z) + λ̃r1(z)) = p0(z) + λ̃p1(z)

attains the optimal radius |γ1(λ∗)| = ρ(p∗) and has at least two active roots.
This result can be similarly derived for polynomials with complex coeffi-

cients, but we omit the details for brevity and move on to the general case.

3 Polynomial Max Root Functions on Affine Sets

Let n ∈ N be fixed. Let Pn(F) denote the vector space of polynomials of degree
n or less over F, and let P1

n(F) ⊂ Pn(F) denote the set of monic polynomials
of degree n over F, where F is the field C or R.

Let f : C → R. The function f induces a function ϕf : Pn(F) → R in the
following way:

ϕf (p) = max{f(ζ) : p(ζ) = 0}. (3)

We call ϕf a polynomial max root function, or simply max root function. If
f is continuous, so is ϕf . Two polynomial max root functions that arise in
applications are the polynomial root radius ρ : P1

n(F)→ R, given by

ρ(p) = max{|ζ| : p(ζ) = 0};

and the polynomial root abscissa α : P1
n(F)→ R, given by

α(p) = max{Re(ζ) : p(ζ) = 0}.

Polynomial max root functions are, in general, non-convex and non-locally-
Lipschitz, as seen by the following example: consider the polynomial family
{pε(z) : pε(z) = zn − ε, ε > 0}. Then ρ(pε) = α(pε) = n

√
ε, so the root radius

and abscissa are non-convex and non-locally-Lipschitz for n > 1. We say a
root ζ of p is active relative to ϕf if

f(ζ) = ϕf (p).

Otherwise ζ is inactive relative to ϕf , which corresponds to the case where
f(ζ) < ϕf (p).

Let k ∈ {1, . . . , n} be a fixed number of affine constraints on the coefficients
of monic polynomials of degree n. We represent the affine constraints as follows.
Let

AF =

{
zn + an−1z

n−1 + · · ·+ a1z + a0 :
B

(`)
n +

∑n−1
i=0 B

(`)
i ai = 0, for ` = 1, . . . , k,

where ai ∈ F for i = 0, . . . , n− 1.

}
(4)



6 Eaton, Grundel, Gürbüzbalaban, Overton

denote the affine subspace of P1
n(F) satisfying the k constraints. We assume

the k constraints are consistent, so that AF 6= ∅, and that they are linearly
independent, so that the dimension of AF is n− k.

An alternative representation of AF is in the coefficient space Fn as follows.
Let p(z) = zn +an−1z

n−1 + · · ·+a1z+a0. Then p ∈ AF if and only if Ba = b,
where a = (a0, . . . , an−1)T ,

B =


B

(1)
0 B

(1)
1 · · · B(1)

n−1
B

(2)
0 B

(2)
1 · · · B(2)

n−1
...

...
. . .

...

B
(k)
0 B

(k)
1 · · · B(k)

n−1

 , and b =


−B(1)

n

−B(2)
n

...

−B(k)
n

 . (5)

Then dim(AF) = n− k requires that rank(B) = k. Let A ⊂ Fn denote the set
of feasible coefficients:

A = {a : Ba− b = 0}. (6)

We use both representations of the feasible set.
We are interested in problems of the form

inf
p∈AF

ϕf (p),

where F is R or C. Our results concern the number of active and inactive roots
of optimal solutions. They depend on the fundamental perturbation result
developed in Section 3.2 below.

3.1 Preliminary result for linear transformations

Lemma 31 (Linear transformation rank lemma) Let k, n ∈ N and r ∈
N ∪ {0} with r ≤ k < n. Let F : Fk → Fn and G : Fn → Fk be linear trans-
formations with rank(F ) = rank(G) = k. Then dim(range(F ) ∩ null(G)) = r
if and only if rank(G ◦ F ) = k − r.

Corollary 32 Let k, n ∈ N and r ∈ N∪ {0} with r ≤ k < n. Let F : Fk → Fn
and G : Fn → Fk be linear transformations with rank(F ) = rank(G) = k. Let
AF ⊂ Fn be an affine space that is a translate of range(F ) by a fixed vector
and let AG ⊂ Fn be an affine space that is a translate of null(G) by the same
vector. Then

dim(AF ∩AG) = r,

if and only if

rank(G ◦ F ) = k − r,

where the dimension of an affine set A ⊂ Fn is taken to be dim(A− {a}) for
any a ∈ A.
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3.2 Results for inactive root perturbations

In this section we establish a lemma for inactive root perturbations that is
utilized by the main result of this paper. First we lay the groundwork with
the necessary definitions. Let f : C → R be a continuous function, and let
ϕf : P1

n(F) → R be its associated max root function, as defined in (3). Let
AF ⊂ P1

n(F) be as defined in (4), so that dim(AF) = n− k, where the number
of constraints k satisfies 1 ≤ k < n. Note that the other cases k = n or k > n
are trivial since the feasible set reduces to a singleton or to the empty set.

Let p∗ ∈ AF where

p∗(z) = zn + a∗n−1z
n−1 + · · ·+ a∗0 (7)

with function value
γ∗ := ϕf (p∗). (8)

Since p∗ ∈ AF, we have Ba∗ = b, where B and b are defined in (5). Suppose
further that p∗ has

nI ≥ k
inactive roots and

nA := n− nI (9)

active roots. Factor p∗ according to root activity as

p∗(z) = qA(z)qI(z), (10)

where qA(z) is a polynomial of degree nA whose roots are all active, and qI(z)
is a polynomial of degree nI ≥ k whose roots are all inactive. Express qI(z)
by

qI(z) = znI + qnI−1z
nI−1 + · · ·+ q0. (11)

Let ∆ ∈ Fk, with components indexed from 0 to k − 1, and make linear
perturbations to the k lowest order coefficients of qI as follows:

qI∆(z) = znI +qnI−1z
nI−1+· · ·+qkzk+(qk−1+∆k−1)zk−1+· · ·+(q0+∆0), (12)

if nI > k and

qI∆(z) = zk + (qk−1 +∆k−1)zk−1 + · · ·+ (q0 +∆0), (13)

if nI = k. Multiplying qI∆(z) by qA(z) yields linear perturbations of the coef-
ficients of p∗(z):

p∆(z) = qA(z)qI∆(z) = zn + an−1(∆)zn−1 + · · ·+ a0(∆). (14)

We can therefore express the inactive-root coefficient perturbation map CI :
Fk → Fn by

CI(∆) = a∗ +M∆, (15)

so that each coefficient is perturbed as

ai(∆) = a∗i + (M∆)i,
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for i = 0, . . . , n − 1, where M ∈ Fn×k (whose rows and columns are indexed
from 0 to n− 1 and 0 to k− 1, respectively), and CI(0) = (a∗0, a

∗
1, . . . , a

∗
n−1)T

are the coefficients of p∗(z) as in (7). Since f is continuous, small perturbations
of qI do not affect the active part, that is,

ϕf (p∗) = ϕf (p∆)

for small ∆. Let H ⊂ Fn denote the image of CI , that is,

H := {a∗ +Mv : v ∈ Fk}, (16)

which is an affine subspace of Fn of dimension less than or equal k.

Lemma 33 (Inactive perturbation, I) Let f and ϕf be as in (3), with f
continuous. Let p∗ ∈ AF, and let γ∗, q

I , qI∆, CI , and H be as in (7)–(16).
Then

rank(M) = k, (17)

so that

dim(H) = k.

Proof Note that we consider dimension over F. Let ∆ ∈ Fk be fixed. Straight-
forward computations show that for M ∈ Fn×k, given in (15),

M∆ = 0 ⇐⇒ M∆+ a∗ = a∗

⇐⇒ p∆ = p∗

⇐⇒ qI∆(z)− qI(z) = 0 ∀z
⇐⇒ ∆k−1z

k−1 + · · ·+∆0 = 0 ∀z
⇐⇒ ∆ = 0,

which implies that dim null(M) = 0, that is, rank(M) = k, which establishes
(17).

Corollary 34 (Inactive perturbation, II) Let f and ϕf be as in (3), with
f : C → R continuous. Let p∗ ∈ AF, and let γ∗, q

I , qI∆, CI , and H be as in
(7)−(16). Then

dim(A ∩H) = r ⇐⇒ rank(BM) = k − r,

where B and A are given in (5) and (6), and where dim(A ∩ H) means the
dimension of the subspace A∩H−{a∗} where a∗ = (a∗0, a

∗
1, . . . , a

∗
n−1)T is given

in (7) and 0 ≤ r ≤ k.

Proof This follows from Corollary 32 and Lemma 33.

Our primary interest in Corollary 34 is in the cases r = 0 and r = k, which
will be used to prove the results in the following section.
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Fig. 1 An illustration of the boundary of the Schur stable set SR,ρ
σ for n = 3 and σ = 1/2,

identifying P1
3 (R) with R3.

4 Optimizing the Root Radius

We now confine our attention to the root radius, one of the most important
polynomial max root functions, which arises, for example, in the analysis of
stability of discrete-time dynamical systems. The root radius ρ : Pn(F) → R
is defined by

ρ(p) = max{|ζ| : p(ζ) = 0}.

Consider the problem

inf
p∈AF

ρ(p), (18)

where AF ⊂ P1
n(F) is defined in (4). Define the closed σ-Schur stable set in

P1
n(F) by

SF,ρ
σ = {p ∈ P1

n(F) : ρ(p) ≤ σ},

and denote its boundary by

bdry(SF,ρ
σ ) = {p ∈ P1

n(F) : ρ(p) = σ}.

Note that SF,ρ
σ is compact for all σ ∈ R and that it is nonempty if and only if

σ ≥ 0. It is known that the boundary of the Schur stable set consists of ruled
surfaces [11],[13, Section 4.1.3], as illustrated by Figure 1 for the case F = R,
n = 3 and σ = 1/2. (A similar illustration appears in [13] for σ = 1.)
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Theorem 41 (Root radius over real and complex coefficients) Let n ∈
N and k ∈ {1, . . . , n}. Consider the root radius minimization problem (18) with
the feasible set AF (defined in (4)), where F is R or C and k is the number of
consistent, linearly independent affine constraints, so that dim(AF) = n − k.
Then there exists an optimal solution with at least n − k + 1 active roots, or
equivalently, with at most k − 1 inactive roots.

Proof The hypothesis thatAF is nonempty implies a feasible polynomial exists.
By the compactness of SF,ρ

σ for each σ ∈ R and the continuity of ρ, an optimal
solution exists. Let p∗ = zn+a∗n−1z

n−1+ · · ·+a∗0 be an optimizer with optimal
value γ∗. Since p∗ ∈ AF, we have Ba∗ = b. Note that p∗ has at least one active
root and at most n− 1 inactive roots. In the case where k = n, we have that
AF = {p∗} and there is nothing more to show. So suppose k < n.

If ρ(p∗) = 0, then p∗ = zn, which implies that every root is active, estab-
lishing the result in this case. Suppose, therefore, that ρ(p∗) > 0 and that there
are nI ≥ k inactive roots and nA = n− nI active roots (as in (9)). Factor p∗
according to root activity as in (10): p∗(z) = qA(z)qI(z), and express qI(z) as
in (11) by qI(z) = znI + qnI−1z

nI−1 + · · ·+ q0. In the real case, where F = R,
express the active part in terms of its real roots and complex conjugate pairs
by

qA(z) =

n1∏
i=1

(z − hi)
n2∏

i=n1+1

(z2 − 2diz + γ2∗),

where

hi ∈ R, |hi| = γ∗ for i = 1, . . . n1, and di ∈ R, |di| < γ∗ for i = n1 + 1, . . . , n2;
(19)

note that n1 and n2 satisfy nA = n1 + 2(n2 − n1). In the complex case, where
F = C, express the active part in terms of its linear factors by

qA(z) =

n2∏
i=1

(z − hi)

where

hi ∈ C, |hi| = γ∗ for i = 1, . . . n2, (20)

where we define n2 := nA for notational consistency. Consider affine pertur-
bations ∆ ∈ Fk of the coefficients of qI(z) as defined in (12) or (13). As in
(14), multiplying qI∆(z) by qA(z) yields p∆(z)—a family of polynomials whose
coefficients are affine perturbations of those of p∗(z) that influence only the
inactive roots when ∆ is small. We utilize the inactive-root coefficient pertur-
bation map CI : Fk → Fn as given in (15), where CI(∆) = a∗ + M∆ and
ai(∆) = a∗i + (M∆)i, so that CI(0) = (a∗0, a

∗
1, . . . , a

∗
n−1)T are the coefficients

of p∗(z) as defined in (7). Let H ⊂ Fn be the image of CI as defined in (16).
By Corollary 34,

dim(A ∩H) = 0 ⇐⇒ rank(BM) = k. (21)
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In the real case, where F = R, consider perturbations ∆̃ ∈ Rn2 of the active
part

qA
∆̃

(z) :=

n1∏
i=1

(z − hi(1 + ∆̃i))

n2∏
i=n1+1

(z2 − 2diz + γ2∗(1 + ∆̃i)),

where hi and di are given in (19). In the complex case, where F = C, consider

perturbations ∆̃ ∈ Cn2 of the active part

qA
∆̃

(z) :=

n2∏
i=1

(z − hi(1 + ∆̃i))

where hi is given in (20).1

Let

p∆̃,∆(z) = qA
∆̃

(z)qI∆(z) = zn + an−1(∆̃,∆)zn−1 + · · ·+ a0(∆̃,∆),

the perturbation of p∗ obtained by perturbing both qI(z) and the active part
qA(z). Define the expanded perturbed coefficient map C : Fn2 × Fk → Fn by

C(∆̃,∆) =
(
a0(∆̃,∆), . . . , an−1(∆̃,∆)

)T
,

where each perturbed coefficient ai(∆̃,∆) is multilinear in the components of

∆̃ and ∆. Note that C(0, ∆) = CI(∆) = a∗ + M∆, where a∗ is given in (7),
and CI and M are given in (15). Also note that C(0, 0) = a∗. Define the maps
L : Fn2 × Fk → Fk and LI : Fk → Fk by

L(∆̃,∆) = BC(∆̃,∆)− b and LI(∆) = BCI(∆)− b.

Then LI(0) = BCI(0)− b = Ba∗ − b = 0. Note that

DLI (0) = BM, (22)

the real or complex2 derivative of LI evaluated at 0. The proof proceeds by
making a rank argument about this derivative. The component ∆ does not
affect the value of ρ(p∆̃,∆) provided ∆ and ∆̃ are small, since ∆ corresponds
to perturbations of the inactive part only as the roots are continuous in the
coefficients and the complex modulus function is continuous. Suppose that
dim(A ∩ H) = 0 (in which case A ∩ H = {a∗}). By (21), rank(BM) = k.
This implies rank(DLI (0)) = k. By the implicit function theorem3 there exists

(∆̃,∆) ∈ Fn2 × Fk near the origin satisfying L(∆̃,∆) = 0, so that p∆̃,∆ is

feasible. Furthermore, in the real case, we can choose ∆̃i < 0 for all i ∈
1 It is worth noting that in this proof, we perturb the roots of the active part, as opposed

to the coefficients of the active part, as was done in [1, Theorem 1].
2 The components of LI are affine with respect to each complex variable and therefore

their derivatives satisfy the Cauchy-Riemann equations.
3 For a complex version see [12, Theorem 7.6].
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{1, 2, . . . , n2}, so that the perturbed factors (z − hi(1 + ∆̃i)) for i = 1, . . . , n1,
yield roots of modulus strictly less than γ∗, as do the roots corresponding to
the perturbed conjugate pairs (z2− 2diz+ γ2∗(1 + ∆̃i)), for i = n1 + 1, . . . , n2;

in the complex case, we can choose ∆̃i to be real and strictly negative for i ∈
{1, 2, . . . , n2}, so that the perturbed factors (z − hi(1 + ∆̃i)) for i = 1, . . . , n2,
yield roots of modulus strictly less than γ∗. Therefore ρ(p∆̃,∆) < γ∗, which

contradicts the optimality of p∗. Hence dim(A∩H) ≥ 1. So there exists v 6= 0
such that a∗ + Mv ∈ A ∩ H. In fact, a∗ + M(tv) ∈ A ∩ H for all t ∈ R, i.e.
CI(tv) ∈ A ∩H. Furthermore, for |t| near 0, CI(tv) ∈ A ∩H ∩ bdry(SF,ρ

γ∗ ).
Consider the one-parameter polynomial family

rt(z) := qA(z)qI∆(z) with ∆ = tv, t ∈ R.

By construction, rt is feasible for all t since its coefficients lie in A. Let
f(t) = ρ(qI∆), the root radius of the perturbed inactive part. Then f is clearly
continuous and f(0) < γ∗. The lower level sets of ρ are bounded, and so f
is unbounded as |t| → ∞. By continuity of f , there exists t∗ ∈ R such that
f(t∗) = γ∗. This implies that the perturbed polynomial qI∆∗

, where ∆∗ = t∗v,
has at least one active root so the polynomial

pnew(z) = qA(z)qI∆∗
(z)

has at least nA+1 active roots, i.e., at least one more active root than p∗, while
having the same root radius as p∗. Let s denote the increase in the number
of active roots. Then s ≥ 1, and the number of inactive roots of pnew equals
nI − s. If nI − s ≥ k, we can apply the same procedure to the polynomial pnew
which is re-factored to reflect the change in activity as

pnew = qAnewq
I
new

with deg(qAnew) = nA+s and deg(qInew) = n−(nA+s). This process is repeated
as many times as necessary and must terminate with an optimal polynomial
with at most k − 1 inactive roots. This completes the proof.

Remark 42 (local optimality) Although our primary interest is in globally
optimal polynomials, the activity result of Theorem 41 holds for locally optimal
polynomials as well.

Remark 43 If dim null(DLI (0)) = k where DLI is given in (22), then apply-
ing Corollary 34 with r = k leads to H ⊆ A, so that any perturbation ∆ ∈ Fk
is feasible, where A and H are defined in (6) and (16), respectively. Thus, in
this case, there exists an optimizer such that all roots are active.

Remark 44 Though we perturbed a particular subset of k coefficients of qI ,
we could have perturbed any k of the coefficients. We chose to perturb the first
k for notational ease. In the complex case, another approach is to factor the
inactive part into two monic polynomials—one with degree k and the other
one with degree nI − k—and perturb the coefficients of the polynomial with
degree k.
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5 Examples from Feedback Control

Let a ∈ P1
da

(R) and b ∈ Pdb(R) be given, with da > db. In control one refers to
the rational function b/a as a plant or open loop system that is strictly proper
as da > db. In feedback control design, one wishes to construct another rational
function y/x, called a controller, so that the closed loop system, modeled by
the rational function q/p ≡ bx/(ax+by) [4,13,19] has desired properties, most
notably with poles, that is roots of p = ax+by, in the relevant stability region.
Let x ∈ P1

dx
(R) and y ∈ Pdy (R) with y/x proper, that is dx ≥ dy, and write

a(z) = zda + ada−1z
da−1 + · · ·+ a0, b(z) = bdbz

db + bdb−1z
db−1 + · · ·+ b0,

x(z) = zdx + xdx−1z
dx−1 + · · ·+ x0, y(z) = ydyz

dy + ydy−1z
dy−1 + · · ·+ y0.

Then ax is the monic polynomial

zdp + (ada−1 + xdx−1)zdp−1 + (ada−2 + ada−1xdx−1 + xdx−2)zdp−2 + · · ·+ a0x0

with degree dp = da + dx, and with coefficients depending affinely on the dx
variables xdx−1, . . . , x0. Clearly, the polynomial p = ax + by also has degree
dp and depends affinely on the dx + dy + 1 variables xdx−1, . . . , x0, ydy , . . . , y0.
Furthermore, it is not hard to show that as long as a and b have no nonconstant
common factors, then the mapping (x, y) 7→ ax + by is one-to-one. It follows
that if we now minimize the root radius of p over these variables, we have an
optimization problem of the form (18), with n = dp and

k = (da + dx)− (dx + dy + 1) = da − dy − 1

affine constraints on the coefficients of p.
We do not have a method to find global minimizers of max root optimiza-

tion problems so we approximated them using a local optimization method,
as was done in [18] for matrix eigenvalue optimization problems. As explained
in [14], the quasi-Newton method known as BFGS, which originated in 1970
to minimize differentiable functions [17], is also extremely effective for finding
local minimizers of nonsmooth functions, particularly in the locally Lipschitz
case, but also including non-Lipschitz functions such as the root radius, al-
though the same accuracy cannot be expected in the latter case. So, to search
for minimizers of ρ(p), where p is given above, we ran BFGS from 1000 ran-
domly generated starting points for each problem instance, with the hope that
for small problem instances, global minima will be found, although as noted
in Remark 42, our result on root activity also applies to local minima. The
experiments were conducted using Matlab [15].

Let a(z) = z5 + z3 − z + 2 and let b(z) = z2 + 1, and let us restrict
attention to the case dx = dy, which we denote by d for brevity. We consider
problem instances with d ranging from 0 to 4. Table 1 shows the corresponding
values for n = dp = da + d = d + 5, the number of variables 2d + 1, the
number of constraints k = (d + 5) − (2d + 1) = 4 − d, the minimum number
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d n #vars #constr min active actual active
(d+ 5) (2d+ 1) (4− d) (min(2d+ 2, n))

0 5 1 4 2 3
1 6 3 3 4 6
2 7 5 2 6 6
3 8 7 1 8 8
4 9 9 0 9 9

Table 1 Experiment with a(z) = z5 + z3 − z + 2 and b(z) = z2 + 1
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Fig. 2 Optimized Roots of Transfer Function Denominator

of active roots of the optimal polynomial4 according to Theorem 41, namely
n− k+ 1 = 2d+ 2, and the actual number of active roots (within a tolerance)
of the polynomial with least root radius found by BFGS. We see that in each
case, the computational results are consistent with the theory.

For each value of d, Figure 5 shows the actual roots of the computed optimal
polynomial p̃ together with the associated circle of radius ρ(p̃). We see that
for d = 0, there are two inactive roots, and for d = 2, there is one inactive
root; otherwise all roots are active within a small tolerance. Note that for each

4 Assuming that it is unique. The instance with d = 4 reported in the last row of the
table has no constraints, so the optimal root radius is zero; hence in this case the minimal
number of active roots is n = 9.
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d > 0, some of the optimal roots are coincident, but the number varies, and
when d = 0, all five optimal roots are distinct. In the case d = 3, with just one
constraint, the optimal root radius found by BFGS agrees well with the known
globally optimal value obtained using the algorithm described in [1]. In this
case, all the computed roots are clustered near one real number, although one
cannot expect them to be exactly coincident, as they are in theory, given the
known sensitivity of multiple roots (in this case with multiplicity 8) to small
numerical errors. In the case d = 4, when there are no constraints, the optimal
polynomial is z9 with all roots at zero, but again, but we cannot expect to be
able to compute this very accurately.

Finally, note from Figure 5 that when d is increased, the optimal root
radius decreases. This must always be the case, as a simple argument shows.
Suppose x, y are optimal for a given degree d. If we now increase d by one,
then the polynomial z(a(z)x(z) + b(z)y(z)) has the same roots as the previous
optimal polynomial a(z)x(z)+b(z)y(z) along with one additional root at zero.
So, it has the same radius, and since z(x(z)) is monic, optimizing over x(z)
and y(z) with increased degree can only reduce the radius further, not increase
it.

6 Concluding Remarks

In this paper, we have presented a remarkable structural property of solutions
of polynomial root radius optimization problems subject to affine constraints.
An equally important polynomial max root function is the root abscissa, de-
fined as the maximum of the real parts of the roots; this arises in stability
analysis of continuous-time dynamical systems. Optimization of the root ab-
scissa of a polynomial subject to affine constraints is a more difficult problem
to analyze because, in the case of real coefficients, the infimal abscissa value
may not be attained by any optimal polynomial. It was shown in [1] that in
the single-constraint case, the infimal value may be approximated arbitrar-
ily accurately by a sequence of polynomials with one set of coincident real
roots converging to the optimal value and another set of coincident real roots
diverging to −∞. Because of the difficulties presented by this issue, we did
not consider the polynomial root abscissa in this paper, but leave analysis of
this function to future work. More generally, it would be interesting to try to
extend our results to all polynomial max root functions.

Another natural idea is to consider extensions from polynomial roots to
matrix eigenvalues, but this seems difficult. As with polynomial max root
functions, a lot is known about variational analysis of spectral max functions
such as the spectral radius and spectral abscissa [8,6]. However, simple ex-
amples indicate that results analogous to Theorem 41 do not hold for affine
matrix families. The reason for this is that although the eigenvalues of a ma-
trix are the roots of its characteristic polynomial, a matrix family depending
affinely on a set of parameters does not correspond to an affine characteristic
polynomial family, except in special cases such as a companion matrix family.
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For example, let

A0 =

[
0.5 0
0 −1

]
and A1 =

[
−1 −2
−0.5 1

]
.

The unique global minimizer of of the spectral radius of A0 + λA1 over λ ∈ R
has just one active eigenvalue, so even the simplest case described in Section 2
does not extend from polynomial roots to matrix eigenvalues.

The most important question for future work is whether our results could
lead to an efficient algorithm for global minimization of polynomial max root
functions subject to affine constraints. In the case of a single constraint, the
results in [1] guarantee that a minimizer of the form (z − γ)n (in the complex
case) or (z − γ)m(z + γ)n−m (in the real case) exists, and combining this
knowledge with the given constraint leads immediately to efficient computation
of γ (and m, in the real case). However, when there is more than one constraint,
we have no such formula for an optimal solution. Indeed, it is quite possible
that global polynomial max root optimization with more than one constraint
is hard in a theoretical sense, as is known to be the case for a number of related
problems in control [2,3].

Appendix

A.1 Proof of Lemma 31

Proof The proof has two parts: the case where r = 0 and r > 0.

Suppose dim(range(F )∩null(G)) = r = 0. Let {v1, . . . , vk} ⊂ Fn be a basis for range(F ).
Then rank(G ◦ F ) = dim(span{G(v1), . . . , G(vk)}) ≤ k. Suppose rank(G ◦ F ) < k. Then
there exist c1, . . . , ck ∈ F with

k∑
i=1

|ci| > 0 (23)

such that
∑k
i=1 ciG(vi) = 0, which implies that G(

∑k
i=1 civi) = 0 by the linearity of

G, which implies that
∑k
i=1 civi ∈ null(G). But range(F ) ∩ null(G) = {0}, which implies∑k

i=1 |ci| = 0 since {v1, . . . , vk} ⊂ Fn is a linearly independent set, which contradicts (23).
Therefore rank(G ◦ F ) = k.

Next suppose rank(G ◦ F ) = k. Let m = dim(range(F ) ∩ null(G)). Note that m ≤ k. If
m ≥ 1, there exists a basis {u1, . . . , um} ⊂ Fn of range(F )∩ null(G). Let {v1, . . . , vk−m} ⊂
Fn be either the empty set or a linearly independent set such that {u1, . . . , um, v1, . . . , vk−m}
is a basis for range(F ). Then, since G(u1) = · · · = G(um) = 0,

k = rank(G ◦ F ) = dim(span{G(u1), . . . , G(um), G(v1), . . . , G(vk−m)}) ≤ k −m,

which implies that m ≤ 0. Therefore m = 0, and so dim(range(F ) ∩ null(G)) = 0.

Next, suppose dim(range(F ) ∩ null(G)) = r ≥ 1. Note that r ≤ k. Let u1, . . . , ur ∈ Fn
be a basis for range(F ) ∩ null(G) and let {v1, . . . , vk−r} ⊂ Fn be either the empty set or
linearly independent such that {u1, . . . , ur, v1, . . . , vk−r} is a basis for range(F ). Then, since
G(u1) = · · · = G(ur) = 0,

rank(G ◦ F ) = dim(span{G(u1), . . . , G(ur), G(v1), . . . , G(vk−r)}) ≤ k − r.
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Suppose rank(G ◦ F ) < k − r. Then there exist c1, . . . , ck−r ∈ F with

k−r∑
i=1

|ci| > 0 (24)

such that
∑k−r
i=1 ciG(vi) = 0, which implies that G(

∑k−r
i=1 civi) = 0 by the linearity of G,

which implies that
∑k−r
i=1 civi ∈ range(F ) ∩ null(G). This further implies that

∑k−r
i=1 civi ∈

span{u1, . . . , ur}, which can only occur if
∑k−r
i=1 |ci| = 0 since {u1, . . . , ur, v1, . . . , vk−r} ⊂

Fn is a linearly independent set, which contradicts (24). Therefore rank(G ◦ F ) = k − r.
Next suppose rank(G ◦ F ) = k − r for some r ∈ {1, 2, . . . , k}. Let m = dim(range(F ) ∩

null(G)). If m ≥ 1, there exists a basis u1, . . . , um ∈ Fn for range(F ) ∩ null(G). Let
{v1, . . . , vk−m} ⊂ Fn be either the empty set or a linearly independent set such that
{u1, . . . , um, v1, . . . , vk−m} is a basis for range(F ) which is of dimension k by the assump-
tion. Then, since G(u1) = · · · = G(um) = 0,

k − r = rank(G ◦ F ) = dim(span{G(u1), . . . , G(um), G(v1), . . . , G(vk−m)}) ≤ k −m,

which implies thatm ≤ r. Supposem < r. Since rank(G◦F ) = k−r, {G(v1), . . . , G(vk−m)} ⊂
Fk is a linearly dependent set. So there exists c1, . . . , ck−m ∈ F with

k−m∑
i=1

|ci| > 0 (25)

such that
∑k−m
i=1 ciG(vi) = 0, which implies that G(

∑k−m
i=1 civi) = 0 by the linearity of

G. This implies that
∑k−m
i=1 civi ∈ range(F ) ∩ null(G) = span{u1, . . . , um}, which can only

occur if
∑k−m
i=1 |ci| = 0 since {u1, . . . , ur, v1, . . . , vk−m} ⊂ Fn is a linearly independent set,

which contradicts (25). Therefore m = r, that is, dim(range(F ) ∩ null(G)) = r.
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