PERFORMANCE OPTIMIZATION OF SYMMETRIC FACTORIZATION
ALGORITHMS

SILVIO TARCA

CONTENTS

Appendix A. Source Code Listings 2
A.1. timing.c – timing functions 2
A.2. matcom.c – common matrix operations 4
A.3. lufact.c – Gaussian elimination (LU factorization) 13
A.4. cholfact.c – Cholesky factorization 31
A.5. ldltfact.c – symmetric indefinite factorization 49
A.6. modchol.c – modified Cholesky algorithms 88
A.7. matmult.c – matrix multiplication 106
A.8. matmultp.c – parallel matrix multiplication 118
A.9. mfactime.c – timing harness for matrix factorization 126
A.10. mmultime.c – timing harness for matrix multiplication 156
A.11. mmultmp.c – timing harness for parallel matrix multiplication 164
A.12. mfactest.c – testing harness for matrix factorization 170
A.13. mmultest.c – testing harness for matrix multiplication 203
A.14. mmultstp.c – testing harness for parallel matrix multiplication 213

Appendix B. Header Files 219
B.1. lapack.h – LAPACK and BLAS routines 219
B.2. timing.h – timing functions 222
B.3. matcom.h – common matrix operations 223
B.4. lufact.h – Gaussian elimination (LU factorization) 225
B.5. cholfact.h – Cholesky factorization 226
B.6. ldltfact.h – symmetric indefinite factorization 227
B.7. modchol.h – modified Cholesky algorithms 228
B.8. matmult.h – matrix multiplication 229
B.9. matmultp.h – parallel matrix multiplication 230

Appendix C. Makefiles 232
C.1. Makefile – serial programs 232
C.2. Makefile – parallel programs 234

Date: August 31, 2010.
/* Functions that interface with the C time.h library, and perform date/time manipulations. */

#include <time.h>

#include "timing.h"

#if defined(CLOCK_HIGHRES)
#define CLOCK CLOCK_HIGHRES
#elif defined(CLOCK_REALTIME)
#define CLOCK CLOCK_REALTIME
#else
#error No suitable clock found. Check docs for clock_gettime.
#endif

/* Converts the clock resolution stored in the timespec structure into a long double (seconds). */
long double timespec_to_ldbl(struct timespec ts)
{
 return ts.tv_sec + 1.0E-9 * ts.tv_nsec;
}

/* Calculates the difference between start and end times, measured in seconds. */
long double timespec_diff(struct timespec sta, struct timespec end)
{
 long double delta;

 delta = (end.tv_nsec - (double)sta.tv_nsec) * 1.0E-9;
 delta += end.tv_sec - (double)sta.tv_sec;

 return delta;
}

/* Gets resolution for the defined CLOCK. The clock resolution, which is stored in the timespec structure, is converted to a long double (seconds) before it is returned by the function. */
long double timer_resolution(void)
{
 struct timespec ts;
clock_getres(CLOCK, &ts);

return timespec_to_db1(ts);
}

/
* Gets time for the defined CLOCK.
*
void get_time(struct timespec *ts)
{
clock_gettime(CLOCK, ts);
}
A.2. matcom.c – common matrix operations.

```c
#include "matcom.h"

/*
 * Generates a random m-by-n matrix with leading dimension m. The uniform
 * randomly generated elements are scaled by factor alpha.
 */
void create_random_matrix( double alpha, int m, int n, double *E )
{
    const int ldim = m;
    for ( int j = 0; j < n; j++ ) {
        for ( int i = 0; i < m; i++ ) {
            E[j*ldim + i] = alpha * drand48() - (0.50 * alpha);
        }
    }
}

/*
 * Generates a random n-by-n unit lower triangular matrix with leading dimension
 * n. Matrix elements are stored in column-major order. The uniform randomly
 * generated elements are scaled by factor alpha.
 */
void create_random_unit_lower( double alpha, int n, double *E )
{
    const int ldim = n;
    for ( int j = 0; j < n; j++ ) {
        double *E_j = E + j*ldim;
        memset( E_j, 0, (j-1)*sizeof(double) );
        *(E_j + j) = 1.0;
        for ( int i = j+1; i < n; i++ ) {
            *(E_j + i) = alpha * drand48() - (0.50 * alpha);
        }
    }
}

/*
 * Generates a random n-by-n lower triangular matrix with leading dimension n.
 * Matrix elements are stored in column-major order. The uniform randomly
 * generated elements are scaled by factor alpha.
 */
```
void create_random_lower(double alpha, int n, double *E)
{
 const int ldim = n;

 for (int j = 0; j < n; j++) {
 double *E_j = E + j*ldim;
 memset(E_j, 0, (j-1)*sizeof(double));
 for (int i = j; i < n; i++) {
 *(E_j + i) = alpha * drand48() - (0.50 * alpha);
 }
 }
}

/*
 * Generates a random n–by–n upper triangular matrix with leading dimension n.
 * Matrix elements are stored in column–major order. The uniform randomly
 * generated elements are scaled by factor alpha.
 */
void create_random_upper(double alpha, int n, double *E)
{
 const int ldim = n;

 for (int j = 0; j < n; j++) {
 double *E_j = E + j*ldim;
 for (int i = 0; i <= j; i++) {
 *(E_j + i) = alpha * drand48() - (0.50 * alpha);
 }
 memset(E_j+j+1, 0, (n-j-1)*sizeof(double));
 }
}

/*
 * Generates a random n–by–n nonsingular (invertible) matrix with leading
 * dimension n. Matrix elements are stored in column–major order. A
 * nonsingular matrix has a unique LU factorization, where L is a unit lower
 * triangular matrix and U is an upper triangular matrix. The uniform randomly
 * generated elements are scaled by factor alpha.
 */
void create_random_nonsingular(double alpha, int n, double *E)
{
 const int ldim = n;
 double *L, *U;

 L = (double *) malloc(n*n*sizeof(double));
 U = (double *) malloc(n*n*sizeof(double));

 create_random_unit_lower(alpha, n, L);
 create_random_upper(alpha, n, U);
// Compute E = L*U
clear_matrix(n, n, E);
multiply_matrix(n, n, n, ldim, L, ldim, U, ldim, E);

free(L);
free(U);
}

/*
* Generates a random n-by-n symmetric positive definite (SPD) matrix with
* leading dimension n. Matrix elements are stored in column-major order.
* x'Ex = x'(M'M)x = (Mx)'(Mx) = ||Mx||^2 >= 0
* The uniform randomly generated elements are scaled by factor alpha.
*/
void create_random_spd(double alpha, int n, double *E)
{
 const int ldim = n;
double *M, *T;

 M = (double *) malloc(n*n*sizeof(double));
 T = (double *) malloc(n*n*sizeof(double));

 create_random_matrix(alpha, n, n, M);
 transpose_matrix(n, n, M, T);
 // Compute E = M'M = T*M
 clear_matrix(n, n, E);
 multiply_matrix(n, n, n, ldim, T, ldim, M, ldim, E);

 free(M);
 free(T);
}

/*
* Generates a random n-by-n symmetric matrix with leading dimension n. Matrix
* elements are stored in column-major order. The uniform randomly generated
* elements are scaled by factor alpha.
*/
void create_random_symmetric(double alpha, int n, double *E)
{
 const int ldim = n;

 // Generate random lower triangular matrix
 for (int j = 0; j < n; j++) {
 for (int i = j; i < n; i++) {
 E[j*ldim + i] = alpha * drand48();
 }
 }
 // Transpose element below the diagonal to create symmetric matrix
 for (int j = 0; j < n; j++) {
 for (int i = j+1; i < n; i++) {
\[(E + j + i\cdot ldim) = *(E + i + j\cdot ldim)\]

```
*/
* Sets elements of m-by-n matrix with leading dimension m to zero.
*/
void clear_matrix( int m, int n, double *E )
{
    const int ldim = m;
    for ( int j = 0; j < n; j++ ) {
        memset( E + j*ldim, 0, m*sizeof(double) );
    }
}

*/
* Copies the elements of an m-by-n matrix E to matrix F. For both matrices
* the leading dimension is m, and elements are stored in column-major order.
*/
void copy_matrix( int m, int n, const double *E, double *F )
{
    const int ldim = m;
    for ( int j = 0; j < n; j++ ) {
        const double *E_j = E + j*ldim;
        double *F_j = F + j*ldim;
        memcpy( F_j, E_j, m*sizeof(double) );
    }
}

*/
* Transposes the elements of an m-by-n matrix E and stores them in matrix F.
* The leading dimension of matrix E is m, while that of matrix F is n. Both
* matrices are stored in column-major order.
*/
void transpose_matrix( int m, int n, const double *E, double *F )
{
    const int ldimE = m;
    const int ldimF = n;
    for ( int j = 0; j < n; j++ ) {
        for ( int i = 0; i < m; i++ ) {
            *(F + j + i*ldimF) = *(E + i + j*ldimE);
        }
    }
}
/*
 * Copies elements of an m-by-n matrix E to mm-by-nn matrix F with leading
 * dimensions ldimE and ldimF, respectively. Elements of matrix E are stored in
 * column-major order. Array F stores bdim-by-bdim matrix blocks contiguously,
 * and within each block stores elements in column-major order. Also, elements
 * of fringe blocks that do not belong to m-by-n matrix E are set to zero in
 * array F. (Note that contiguous blocks of matrix F are stored in column-major
 * order.)
 */

void form_contig_blocks ( int m, int n, int ldimE, const double *E,
                        int mm, int nn, int bdim, int ldimF, double *F )
{
    for ( int j = 0; j < nn; j += bdim ) {
        int s = ( j + bdim > n ) ? (n - j ) : bdim;
        int q = ( j + bdim > nn ) ? (nn - j ) : bdim;
        for ( int i = 0; i < mm; i += bdim ) {
            int r = ( i + bdim > m ) ? (m - i ) : bdim;
            int p = ( i + bdim > mm ) ? (mm - i ) : bdim;
            // Clear fringe blocks by setting elements to zero
            if ( s != q || r != p ) {
                double *Fij = F + j*ldimF + i*q;
                memset ( Fij , 0 , p*q*sizeof(double) ) ;
            }
        }
    }
}

/*
 * Copies elements of an m-by-n matrix E to mm-by-nn matrix F with leading
 * dimensions ldimE and ldimF, respectively. Elements of matrix E are stored in
 * column-major order. First, matrix E is copied to a temporary array, where
 * bdim-by-bdim blocks are stored contiguously. Then, these contiguous blocks
 * are copied to array F, such that kdim-by-kdim sub-blocks of each block are
 * stored contiguously. That is, matrix F employs recursive contiguous block
 * storage. (Note that contiguous blocks of matrix F are stored in column-
 * major order, and contiguous sub-blocks within each block are stored in
 * column-major order.)
 */

void form_recur_blocks ( int m, int n, int ldimE, const double *E,
                        int mm, int nn, int kdim, int bdim, int ldimF, double *F )
{
    double *W;
}
W = (double *) malloc( mm*nn*sizeof(double) );
// Form contiguous matrix blocks
form_contig_blocks( m, n, ldimE, E, mm, nn, bdim, ldimF, W );

// Within each matrix block, form contiguous matrix sub-blocks
for ( int j = 0; j < nn; j += bdim ) {
    int s = (j + bdim > n) ? (n - j) : bdim;
    int q = (j + bdim > nn) ? (nn - j) : bdim;
    for ( int i = 0; i < mm; i += bdim ) {
        int r = (i + bdim > m) ? (m - i) : bdim;
        int p = (i + bdim > mm) ? (mm - i) : bdim;
        double *Wij = W + j*ldimF + i*q;
        double *Fij = F + j*ldimF + i*q;
        form_contig_blocks( r, s, p, Wij, p, q, kdim, p, Fij );
    }
}
free( W );

/**
 * Copies elements of an mm-by-nn matrix E to m-by-n matrix F with leading
 * dimensions ldimE and ldimF, respectively. Array E stores bdim-by-bdim matrix
 * blocks contiguously, and within each block stores elements in column-major
 * order. As matrix E is copied to array F, elements are unpacked and stored
 * in conventional column-major order.
 */
void unpack_contig_blocks( int mm, int nn, int bdim, int ldimE,
const double *E, int m, int n, int ldimF, double *F ) {
    for ( int j = 0; j < nn; j += bdim ) {
        int s = (j + bdim > n) ? (n - j) : bdim;
        int q = (j + bdim > nn) ? (nn - j) : bdim;
        for ( int i = 0; i < mm; i += bdim ) {
            int r = (i + bdim > m) ? (m - i) : bdim;
            int p = (i + bdim > mm) ? (mm - i) : bdim;
            for ( int k = 0; k < s; k++ ) {
                const double *Eij = E + j*ldimE + i*q + k*p;
                double *Fij = F + j*ldimF + i + k*ldimF;
                memcpy( Fij, Eij, r*sizeof(double) );
            }
        }
    }
}

/**
 * Copies elements of an mm-by-nn matrix E to m-by-n matrix F with leading
 * dimensions ldimE and ldimF, respectively. Array E employs recursive
 * contiguous block storage, i.e., matrix blocks of size bdim-by-bdim are stored
 * contiguously, and within each block, sub-blocks of size kdim-by-kdim are
 * stored contiguously. First, matrix E is copied to a temporary array, where

elements of each bdim-by-bdim block are unpacked and stored in column-major order. Then the temporary array is copied to matrix F where the elements of matrix E are unpacked and stored in conventional column-major order.

```c
void unpack_recur_blocks(int mm, int nn, int kdim, int bdim, int ldimE,
const double *E, int m, int n, int ldimF, double *F)
{

double *W;

W = (double *) malloc(mm*nn*sizeof(double));
// Within each matrix block, unpack contiguous sub-blocks
for (int j = 0; j < nn; j += bdim) {
 int s = (j + bdim > n) ? (n - j) : bdim;
 int q = (j + bdim > nn) ? (nn - j) : bdim;
 for (int i = 0; i < m; i += bdim) {
 int r = (i + bdim > m) ? (m - i) : bdim;
 int p = (i + bdim > mm) ? (mm - i) : bdim;
 const double *Eij = E + j*ldimE + i*q;
 double *Wij = W + j*ldimE + i*q;
 unpack_contig_blocks(p, q, kdim, p, Eij, r, s, p, Wij);
 }
}

// Unpack contiguous matrix blocks
unpack_contig_blocks(mm, nn, bdim, ldimE, W, m, n, ldimF, F);
free(W);
}

/*
* Computes the relative and absolute errors in a matrix computation using the
* Frobenius norm ||F - E||, where F is the result of the floating point matrix
* computation and E is the exact solution. Both matrices are stored in
* column-major order with leading dimension m.
*/
void error_matrix_comp_frob(double *eps, double *err, int m, int n,
const double *E, const double *F)
{
int ldim = m;

double ssq_delta = 0.0;
double ssq_eij = 0.0;

for (int j = 0; j < n; j++) {
 const double *E_j = E + j*ldim;
 const double *F_j = F + j*ldim;
 for (int i = 0; i < m; i++) {
 double delta = *(E_j + i) - *(F_j + i);
 ssq_delta += delta * delta;
 ssq_eij += *(E_j + i) * *(E_j + i);
 }
}
```
PERFORMANCE OPTIMIZATION OF SYMMETRIC FACTORIZATION ALGORITHMS

```c
*err = sqrt(ssq_delta);
*eps = *err / sqrt(ssq_eij);
}

/* Computes the relative and absolute errors in a matrix computation using the
* l1-norm ||F - E||, where F is the result of the floating point matrix
* computation and E is the exact solution. Both matrices are stored in
* column-major order with leading dimension m.
*/
void error_matrix_comp_l1(double *eps, double *err, int m, int n,
const double *E, const double *F)
{
 int ldim = m;
 double sum_abs_delta = 0.0;
 double sum_abs_eij = 0.0;

 *err = 0.0;
 *eps = 0.0;

 for (int j = 0; j < n; j++) {
 const double *E_j = E + j*ldim;
 const double *F_j = F + j*ldim;
 for (int i = 0; i < m; i++) {
 double delta = *(E_j + i) - *(F_j + i);
 sum_abs_delta += fabs(delta);
 sum_abs_eij += fabs(*E_j + i);
 }
 if (sum_abs_delta > *err) {
 *err = sum_abs_delta;
 *eps = *err / sum_abs_eij;
 }
 }
}

/* Performs matrix multiplication and addition, C = C + A*B, using the SAXPY
* operation -- jki indexing. The inner-most loop adds a scalar multiple of
* column vector x to column vector y. A (m-by-p), B (p-by-n) and C (m-by-n)
* are rectangular matrices stored in column-major order with leading dimensions
* ldimA, ldimB and ldimC, respectively.
*/
void multiply_matrix(int m, int n, int p, int ldimA, const double *A,
int ldimB, const double *B, int ldimC, double *C)
{
 for (int j = 0; j < n; j++) {
 const double *B_j = B + j*ldimB;
 double *C_j = C + j*ldimC;
 for (int k = 0; k < p; k++) {
 const double *A_k = A + k*ldimA;
 // Points to element A(0,k)
 }
 }
}
```
double bkj = *(B + k);  // Element B(k,j)
for ( int i = 0; i < m; i++ ) {
    *(C + i) += *(A + k) * bkj;
}  // C(i,j) += A(i,k) * B(k,j)
A.3. lufact.c – Gaussian elimination (LU factorization).

/ *
 * Algorithms implementing unblocked and blocked LU factorization (Gaussian
 * elimination) of nonsingular matrices representing linear systems. Unblocked
 * algorithms include the outer product method and SAXPY operation, while
 * blocked algorithms include simple blocking and recursive contiguous blocking.
 * LU factorization algorithms are implemented with and without partial
 * pivoting. (If a nonsingular matrix exhibits certain properties, such a
 * diagonal dominance, then Gaussian elimination without pivoting is numerically
 * stable.) Also, a function wrapper facilitates calling LAPACK Gaussian
 * elimination routine DGTRF.
 */
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
#include "lufact.h"
#include "lapack.h"
#include "matcom.h"

static void eval_pivot_gauss( int n, int k, const double *vec,
    int *piv, int *ord );
static void tri_solve_l1xb( int m, int n, int ldim, double *L, double *B );
static void tri_solve_l1xb_pivot( int m, int n, int ldim,
    int *piv, double *L, double *B );
static void tri_solve_l1xb_kernel( const double *L, double *B );
static void tri_solve_l1xb_blk_ker( int m, int n, int ldimL, const double *L,
    int ldimB, double *B );
static void tri_solve_xub_kernel( const double *U, double *B );
static void tri_solve_xub_blk_ker( int m, int n, int ldimU, const double *U,
    int ldimB, double *B );
static void reduce_matrix( int m, int n, int p, int ldim,
    const double *L, const double *U, double *A );
static void reduce_mat_blk( int m, int n, int p, int ldim, int bdim,
    const double *L, const double *U, double *A );
static void reduce_kernel( const double *L, const double *U, double *A );
static void reduce_blk_ker( int m, int n, int p, int ldimL, const double *L,
    int ldimU, const double *U, int ldimA, double *A );
static void lu_kernel( const int n, double *A );
static void lu_blk_ker( int n, int ldim, double *A );
static void lu_factor( int m, int n, int ldim, double *A );
static void lu_pivot( char pivot, int m, int n, int ldim,
    int *piv, int *ord, double *A );

/ ******************************************************************************/
/*
 * Determines optimal block dimension for the local environment given a routine
 * and matrix leading dimension. The function returns the block dimension

* chosen by the LAPACK LU factorization routine, or a block dimension for
* testing (debugging). If the leading dimension is less than the optimal block
* dimension, the block dimension is set to the leading dimension, and the
* matrix computation becomes an unblocked algorithm.
 */
int get_block_dim_lu( int ldim )
{
    const int optm_bdim = 1;
    const int no_dim = -1;
    const char *parm_str = " ";
    const char *func_name = "DGETRF";

    int bdim;

    #if defined(DEBUG)
    bdim = BDIM;
    #else
    bdim = ilaenv( &optm_bdim, func_name, parm_str,
                   &ldim, &ldim, &no_dim, &no_dim );
    #endif
    if ( bdim <= 1 || bdim > ldim ) {
        bdim = ldim;
    }
    return bdim;
}

/*
 * Performs partial pivot selection on an n-by-1 vector representing elements
 * of a column of an n-by-n matrix. The maximum magnitude element is chosen as
 * the pivot. A single pivot adjusted by row offset k, and its order (=1)
 * are stored in vectors piv[] and ord[], respectively. piv[k] specifies the
 * row permutation applied to row k when performing Gaussian elimination.
 */
void eval_pivot_gauss( int n, int k, const double *vec, int *piv, int *ord )
{
    int p = k;
    double lambda = -1.0;

    for ( int i = 0; i < n; i++ ) {
        double x = fabs( vec[i] );
        if ( x > lambda ) {
            lambda = x;
            p = i + k;
        }
    }
    piv[k] = p;
    ord[k] = 1;
}

/
* Uses forward substitution to solve the triangular system of linear equations
* \( L\times X = B \), where \( L \) is an \( m \times m \) unit lower triangular matrix, and \( X \) and \( B \) are
* \( m \times n \) matrices. Matrices \( L, X \) and \( B \) are stored in column-major order with
* leading dimension \( ldim \). The solution \( X \) overwrites matrix \( B \).

```c
void tri_solve_l1xb(int m, int n, int ld, double *L, double *B)
{
 for (int k = 0; k < n; k++)
 {
 double *B_k = B + k*ld;
 for (int j = 0; j < m-1; j++)
 {
 double bjk = *(L + j) * *(B + k) + *(L + j + 1) * *(B + k + 1);
 }
 }
}
```

/*
* Uses forward substitution to solve the triangular system of linear equations
* \( L\times X = B \), where \( L \) is an \( m \times m \) unit lower triangular matrix, and \( X \) and \( B \) are
* \( m \times n \) matrices. The permutation matrix encoded in the pivot vector \( piv[] \)
* is first applied to matrix \( B \) before solving for \( X \). Matrices \( L, X \) and \( B \) are
* stored in column-major order with leading dimension \( ldim \). The solution \( X \)
* overwrites matrix \( B \).
*/

```c
void tri_solve_l1xb_pivot(int m, int n, int ld, int *piv, double *L, double *B)
{
 for (int k = 0; k < n; k++)
 {
 double *B_k = B + k*ld;
 // Apply permutation matrix to column \(k \) of matrix \(B \)
 for (int i = 0; i < m; i++)
 {
 double bik = *(B_k + i);
 *(B_k + i) = *(B_k + piv[i]);
 *(B_k + piv[i]) = bik;
 }
 }
}
```

/*
* Uses forward substitution to solve the triangular system of linear equations
L \times X = B$, where $L$, $X$ and $B$ are contiguous $K\text{DIM}$-$by$-$K\text{DIM}$ matrix sub-blocks and $L$ is unit lower triangular. Looping is controlled by a symbolic constant $(K\text{DIM})$, which is evaluated during compilation. The solution $X$ overwrites $B$.

```c
void tri_solve_l1xb_kernel(const double *L, double *B)
{
 for (int j = 0; j < K\text{DIM}; j++)
 double *B_j = B + j*K\text{DIM};
 for (int k = 0; k < K\text{DIM}-1; k++)
 double b_{kj} = *(B_j + k);
 const double *L_{k} = L + k*K\text{DIM};
 for (int i = k+1; i < K\text{DIM}; i++)
 *(B_j + i) -= *(L_{k} + i) * b_{kj};
}
```

```c
/*
 * Uses forward substitution to solve the triangular system of linear equations
 * $L \times X = B$, where L is an m-by-m unit lower triangular matrix block, and X and B
 * are m-by-n matrix blocks. Matrix blocks L and B are stored contiguously
 * with leading dimensions $l\text{dimL}$ and $l\text{dimB}$, respectively. Within blocks of
 * L and B, sub-blocks of size $K\text{DIM}$-by-$K\text{DIM}$ are stored contiguously. Suppose that
 * L is decomposed into sub-blocks $[L_{00}, L_{10}, L_{11}]$. Then
 * $L_{00} \times X_{00} = B_{00}$; $L_{00} \times X_{01} = B_{01}$; $L_{10} \times X_{00} + L_{11} \times X_{10} = B_{10}$ \rightarrow $L_{11} \times X_{10} = B_{10} - L_{10} \times X_{00}$; and
 * $L_{10} \times X_{01} + L_{11} \times X_{11} = B_{11}$ \rightarrow $L_{11} \times X_{11} = B_{11} - L_{10} \times X_{01}$.
 */
void tri_solve_l1xb_blk_ker(int m, int n, int l\text{dimL}, const double *L,
int l\text{dimB}, double *B)
{
 for (int j = 0; j < n; j += K\text{DIM})
 double *B_j = B + j*l\text{dimB};
 for (int i = 0; i < m; i += K\text{DIM})
 const double *L_i = L + i*K\text{DIM};
 const double *L_{i} = L_i + i*l\text{dimL};
 double *B_{ij} = B_j + i*K\text{DIM};
 for (int k = 0; k < i; k += K\text{DIM})
 const double *L_{i} = L_{i} + k*l\text{dimL};
 double *B_kj = B_j + k*K\text{DIM};
 reduce_kernel(L_{i}, B_kj, B_{ij});
 tri_solve_l1xb_kernel(L_{i}, B_{ij});
}
```
USES forward substitution to solve the triangular system of linear equations
X*U = B, where X, U and B are contiguous KDIM-by-KDIM matrix sub-blocks and
U is upper triangular. Looping is controlled by a symbolic constant (KDIM),
which is evaluated during compilation. The solution X overwrites B.

void tri_solve_xub_ker( const double *U, double *B )
{
    for ( int k = 0; k < KDIM; k++ )
    {
        double ukk = *(U + k + k*KDIM);
        double *Bk = B + k*KDIM;
        for ( int i = 0; i < KDIM; i++ )
            *(Bk + i) /= ukk;
    }
    for ( int j = k+1; j < KDIM; j++ )
    {
        double ukj = *(U + k + j*KDIM);
        double *Bj = B + j*KDIM;
        for ( int i = 0; i < KDIM; i++ )
            *(Bj + i) -= *(Bk + i) * ukj;
    }
}

void tri_solve_xub_blk_ker( int m, int n, int ldimU, const double *U,
                            int ldimB, double *B )
{
    for ( int j = 0; j < n; j += KDIM )
    {
        const double *Uj = U + j*ldimU;
        const double *Ujj = Uj + j*KDIM;
        double *Bj = B + j*ldimB;
        for ( int k = 0; k < j; k += KDIM )
        {
            const double *Uk = Uj + k*KDIM;
            double *Bk = B + k*ldimB;
            for ( int i = 0; i < m; i += KDIM )
            {
                double *Bik = Bk + i*KDIM;
                double *Bij = Bj + i*KDIM;
            }
        }
    }
}
Matrix factorization reduces trailing sub-matrix $A$ by computing $A = A - LU$, where $A$ is an $m$-by-$n$ sub-matrix, $L$ is an $m$-by-$p$ block of a unit lower triangular matrix, and $U$ is a $p$-by-$n$ block of an upper triangular matrix. Matrices $A$, $L$ and $U$ are stored in column-major order with leading dimension $ldim$. The trailing sub-matrix update is an implementation of the SAXPY operation.

```c
void reduce_matrix(int m, int n, int p, int ldim, const double *L, const double *U, double *A)
{
 for (int j = 0; j < n; j++) {
 const double *U_j = U + j*ldim; // Points to element U(0,j)
 double *A_j = A + j*ldim; // Points to element A(0,j)
 for (int k = 0; k < p; k++) {
 const double *L_k = L + k*ldim; // Points to element L(0,k)
 double ukj = *(U_j + k); // Element U(k,j)
 for (int i = 0; i < m; i++) {
 *(A_j + i) -= *(L_k + i) * ukj; // A(i,j) -= L(i,k) * U(k,j)
 }
 }
 }
}
```

Matrix factorization reduces trailing sub-matrix $A$ by computing $A = A - LU$, where $A$ is an $m$-by-$n$ sub-matrix, $L$ is an $m$-by-$p$ column block of a unit lower triangular matrix, and $U$ is a $p$-by-$n$ row block of an upper triangular matrix. Matrices $A$, $L$ and $U$ are stored in column-major order with leading dimension $ldim$. Blocking is used to optimize memory access for the trailing sub-matrix reduction, and $bdim$ is the blocking parameter.

```c
void reduce_mat_blk(int m, int n, int p, int ldim, int bdim, const double *L, const double *U, double *A)
{
 for (int j = 0; j < n; j += bdim) {
 // Determine number of columns in (i,j)th block of A
 const int s = (j + bdim > n) ? (n - j) : bdim;
 for (int i = 0; i < m; i += KDIM) {
 double *Bj = B + i*KDIM;
 tri_solve_sub_kernel(Ujj, Bij);
 }
 }
}
```
for ( int k = 0; k < p; k += bdim ) {
    // Determine number of columns of Lik and rows of Ukj
    const int t = (k + bdim > p) ? (p - k) : bdim;
    // Set pointer to block matrix Ukj
    const double *Ukj = U + k + j*ldim;

    for ( int i = 0; i < m; i += bdim ) {
        // Determine number of rows in (i,j)th block of A
        const int r = (i + bdim > m) ? (m - i) : bdim;
        // Set pointers to block matrices Lik and Aij
        const double *Lik = L + i + k*ldim;
        double *Aij = A + i + j*ldim;
        // Reduce trailing block matrix
        reduce_matrix( r, s, t, ldim, Lik, Ukj, Aij );
    }
}

/*
 * Matrix factorization reduces the trailing sub-matrix by computing A = A - L*U,
 * where A, L and U are contiguous KDIM-by-KDIM sub-blocks of the trailing
 * sub-matrix, a unit lower triangular matrix and an upper triangular matrix,
 * respectively. Looping is controlled by a symbolic constant (KDIM), which is
 * evaluated during compilation. The trailing sub-matrix update is an
 * implementation of the SAXPY operation.
 */
void reduce_kernel( const double *L, const double *U, double *A )
{
    for ( int j = 0; j < KDIM; j++ ) {
        const double *U_j = U + j*KDIM; // Points to element U(0,j)
        double *A_j = A + j*KDIM; // Points to element A(0,j)
        for ( int k = 0; k < KDIM; k++ ) {
            const double *L_k = L + k*KDIM; // Points to element L(0,k)
            double ukj = *(U_j + k); // Element U(k,j)
            for ( int i = 0; i < KDIM; i++ ) {
                *(A_j + i) -= *(L_k + i) * ukj; // A(i,j) -= L(i,k) * U(k,j)
            }
        }
    }
}

/*
 * Matrix factorization reduces the trailing sub-matrix by computing A = A - L*U,
 * where A is an m-by-n block of the trailing sub-matrix, L is an m-by-p block
 * of a unit lower triangular matrix and U is a p-by-n block of an upper
 * triangular matrix. Matrix blocks A, L and U are stored contiguously with
 * leading dimension ldimA, ldimL and ldimU, respectively. Within blocks of
 * A, L and U, sub-blocks of size KDIM*KDIM are stored contiguously.
 */
void reduce_blk_ker(int m, int n, int p, int ldimL, const double *L, int ldimU, const double *U, int ldimA, double *A)
{
    for (int j = 0; j < n; j += KDIM) {
        for (int k = 0; k < p; k += KDIM) {
            // Set pointer to sub-block Ukj
            const double *Ukj = U + k*KDIM + j*ldimU;
            for (int i = 0; i < m; i += KDIM) {
                // Set pointers to sub-blocks Lik and Aij
                const double *Lik = L + i*KDIM + k*ldimL;
                double *Aij = A + i*KDIM + j*ldimA;
                // Perform matrix reduction on sub-blocks
                reduce_kernel(Lik, Ukj, Aij);
            }
        }
    }
}

/*
 * Factorizes an n-by-n matrix sub-block A into a unit lower triangular sub-
 * block L and an upper triangular sub-block U, such that A = L*U. KDIM-by-KDIM
 * matrix sub-block A is stored contiguously. The LU factorization algorithm is
 * an implementation of the SAXPY operation. Looping is controlled by a
 * symbolic constant (KDIM), which is evaluated during compilation. The factors
 * L and U overwrite A.
 */
void lu_kernel(const int n, double *A)
{
    for (int j = 0; j < n; j++) {
        // Perform cumulative trailing sub-matrix updates on elements of
        // column j above the diagonal
        double *A_j = A + j*KDIM;
        for (int k = 0; k < j; k++) {
            double *A_k = A + k*KDIM;
            double akj = *(A_j + k);
            for (int i = k+1; i < j; i++) {
                *(A_j+i) -= *(A_k+i) * akj;
            }
        }
        // Perform cumulative trailing sub-matrix updates on diagonal element
        // and elements below the diagonal of column j
        for (int k = 0; k < j; k++) {
            double *A_k = A + k*KDIM;
            double akj = *(A_j + k);
            for (int i = j; i < KDIM; i++) {
                *(A_j+i) -= *(A_k+i) * akj;
            }
        }
    }
}
 Divide elements in column j below the diagonal by the diagonal element

```c
double ajj = *(A + j + j);
for (int i = j + 1; i < KDIM; i++) {
 *(A + j + i) /= ajj;
}
```

*/

* Factorizes an n-by-n matrix block A into a unit lower triangular block L and an upper triangular block U, such that A = L*U. Matrix block A is stored contiguously with leading dimension ldim, and within the matrix block, sub-blocks of size KDIM*KDIM are stored contiguously.*

```c
void lu_blk_ker(int n, int ldim, double *A)
{
 for (int j = 0; j < n; j += KDIM) {
 const int s = (j + KDIM > n) ? (n - j) : KDIM;
 double *A_j = A + j * ldim;
 const double *U_j = A_j;

 // Solve for L*X = A using forward substitution, and perform cumulative trailing sub-matrix updates on matrix sub-blocks above the diagonal
 for (int k = 0; k < j; k += KDIM) {
 const double *L_k = A + k * ldim;
 const double *Lkk = L_k + k * KDIM;
 const double *Ukj = U_j + k * KDIM;
 double *Akj = A_j + k * KDIM;
 tri_solve_l1xb_kernel(Lkk, Akj);
 for (int i = k + KDIM; i < j; i += KDIM) {
 const double *Lik = L_k + i * KDIM;
 double *Aij = A_j + i * KDIM;
 reduce_kernel(Lik, Ukj, Aij);
 }
 }

 // Perform cumulative trailing sub-matrix updates on diagonal sub-block and sub-blocks below the diagonal
 for (int k = 0; k < j; k += KDIM) {
 const double *L_k = A + k * ldim;
 const double *Ukj = U_j + k * KDIM;
 for (int i = j; i < n; i += KDIM) {
 const double *Lik = L_k + i * KDIM;
 double *Aij = A_j + i * KDIM;
 reduce_kernel(Lik, Ukj, Aij);
 }
 }

 // Factorize diagonal sub-block, and solve X*U = A using forward
```
/ substitution on sub-blocks below the diagonal

// double *Ajj = A.j + j*KDIM;
const double *Ujj = Ajj;
lu_kernel( s, Ajj );

for ( int i = j+KDIM; i < n; i += KDIM ) {
    double *Aij = A.j + i*KDIM;
    tri_solve_sub_kernel( Ujj, Aij );
}
}


/*
 * Implements a rectangular version of SAXPY operation (jki indexing) for
 * Gaussian elimination. Nonsingular m-by-n matrix A with leading dimension
 * ldim is factored into a unit lower triangular matrix L and upper triangular
 * matrix U, such that A = L*U. It is assumed that properties of matrix A,
 * e.g., diagonally dominant, obviate the need for pivoting. Elements of L are
 * stored in A(k+1:n-1,k), while elements of U are stored in A(0:k,k), assuming
 * base 0 indexing. The inner-most loop subtracts a scalar multiple of a vector
 * from another vector.
*/

void lu_factor( const int m, const int n, int ldim, double *A )
{
    for ( int j= 0; j < n; j++ ) {

        // Perform cumulative trailing sub-matrix updates on elements of
        // column j above the diagonal
        double *A.j = A + j*ldim;
        for ( int k = 0; k < j; k++ ) {
            double *A_k = A + k*ldim;
            double akj = *(A.j + k);
            for ( int i = k+1; i < j; i++ ) {
                *(A.j+i) -= *(A_k+i) * akj;
            }
        }

        // Perform cumulative trailing sub-matrix updates on diagonal element
        // and elements below the diagonal of column j
        for ( int k = 0; k < j; k++ ) {
            double *A_k = A + k*ldim;
            double akj = *(A.j + k);
            for ( int i = j; i < m; i++ ) {
                *(A.j+i) -= *(A_k+i) * akj;
            }
        }

        // Divide elements in column j below the diagonal by the diagonal element
        double a(jj = *(A.j + j);
        for ( int i = j+1; i < m; i++ ) {
            *(A.j+i) /= a;jj;
        }
    }
}
PERFORMANCE OPTIMIZATION OF SYMMETRIC FACTORIZATION ALGORITHMS

Implements a rectangular version of the saxpy operation (jki indexing) for
Guassian elimination with partial pivoting. Nonsingular m-by-n matrix A
with leading dimension ldim is factored into a unit lower triangular matrix L
and upper triangular matrix U. Row permuted matrix A^ = P*A = L*U.
Permutation matrix P is encoded in vectors piv[] and ord[], such that
row k is interchanged with row piv[k], and ord[k] = 1 is the diagonal block
order. Elements of L are stored in A(k+1:n-1,k), while elements of U are
stored in A(0:k,k), assuming base 0 indexing. The inner-most loop subtracts
a scalar multiple of a vector from another vector.

*/

void lu_pivot(char pivot, int m, int n, int ldim,
    int *piv, int *ord, double *A)
{
    for (int j = 0; j < n; j++) {
        // Apply permutation matrix encoded in pivot vector to column j
        double *Aj = A + j*ldim;
        double *Ajj = Aj + j;
        for (int k = 0; k < j; k++) {
            double akj = *(Aj + k);
            *(Aj + k) = *(Aj + piv[k]);
            *(Aj + piv[k]) = akj;
        }
        // Perform cumulative trailing sub-matrix updates on elements of
        // column j above the diagonal
        for (int k = 0; k < j; k++) {
            double *Ak = A + k*ldim;
            double akj = *(Ak + k);
            for (int i = k+1; i < j; i++) {
                *(Aj+i) -= *(Ak+i) * akj;
            }
        }
        // Perform cumulative trailing sub-matrix updates on diagonal element
        // and elements below the diagonal of column j
        for (int k = 0; k < j; k++) {
            double *Ak = A + k*ldim;
            double akj = *(Ak + k);
            for (int i = j; i < m; i++) {
                *(Aj+i) -= *(Ak+i) * akj;
            }
        }
        // Determine pivot for column j and interchange elements in the pivot
        // row from columns 0 to j with elements in row j
        switch (pivot) {
            case 'G':
                eval_pivot_gauss(m-j, j, Ajj, piv, ord);
                break;
        }
    }
}
default:
    eval_pivot_gauss( m-j, j, Ajj, piv, ord );
    break;
}
if ( j != piv[j] ) {
    for ( int k = 0; k <= j; k++ ) {
        double ajk = *(A + j + k*ldim);
        *(A + j + k*ldim) = *(A + piv[j] + k*ldim);
        *(A + piv[j] + k*ldim) = ajk;
    }
    // Divide elements in column j below the diagonal by the diagonal element
    double ajj = *Ajj;
    for ( int i = j+1; i < m; i++ ) {
        *(A+j+i) /= ajj;
    }
}

/***********************************************************/

/*
 * If a nonsingular matrix exhibits certain properties, such a diagonal
 * dominance, then Gaussian elimination without pivoting is numerically stable.
 */

/*
 * Implements the outer product method (kji indexing) to factorize nonsingular
 * n-by-n matrix A into a unit lower triangular matrix L and upper triangular
 * matrix U, such that A = L*U. Elements of L are stored in A(k+1:n-1,k), while
 * elements of U are stored in A(0:k,k), assuming base 0 indexing. Each pass
 * through the k-loop performs an outer product operation.
 */
void lu_outer_product( int n, double *A )
{
    const int ldim = n;
    for ( int k = 0; k < n-1; k++ ) {
        // Divide elements of column k below the diagonal by the diagonal element
        double *A_k = A + k*ldim;
        double akk = *(A_k + k);
        for ( int i = k+1; i < n; i++ ) {
            *(A_k + i) /= akk;
        }
        // Update trailing sub-matrix by subtracting the outer product
        for ( int j = k+1; j < n; j++ ) {
            double *A_j = A + j*ldim;
            double akj = *(A_j + k);
            for ( int i = k+1; i < n; i++ ) {
PERFORMANCE OPTIMIZATION OF SYMMETRIC FACTORIZATION ALGORITHMS

\[
(A_{j+i}) = (A_{k+i}) \cdot akj;
\]

/* Implements the SAXPY operation using jki indexing to factorize nonsingular
*n-by-n matrix A into a unit lower triangular matrix L and upper triangular
*matrix U, such that \(A = L \cdot U\). Elements of L are stored in \(A(k+1:n-1,k)\), while
*elements of U are stored in \(A(0:k,k)\), assuming base 0 indexing. The inner-
*most loop subtracts a scalar multiple of a vector from another vector.
*/
void lu_saxpy( int n, double *A )
{
    const int ldim = n;
    lu_factor(n, n, ldim, A);
}

/* Implements simple blocking to factorize nonsingular n-by-n matrix A into
*a unit lower triangular matrix L and an upper triangular matrix U, such that
*A = L \cdot U. Suppose A is decomposed into blocks \([A_{00}, A_{01}; A_{10}, A_{11}]\),
*where \(A_{00}\) is an \(r\)-by-\(r\) matrix block. First, a rectangular unblocked version
*of the SAXPY operation for LU factorization computes \([L_{00}; L_{10}]\) and \(U_{00}\).
*Given that \(A_{01} = L_{00} \cdot U_{01}\), we can solve for \(U_{01}\) using forward
*substitution. Then the trailing sub-matrix is updated.
*A_{11} = A_{11} - L_{10} \cdot U_{01}. This procedure is repeated iteratively on the
*trailing sub-matrix until the last diagonal block (dimension \(<= r\) is reached.
*Simple blocking is also used to optimize memory access when updating the
*trailing sub-matrix.
*/
void lu_block( int n, double *A )
{
    const int ldim = n;
    const int bdim = get_block_dim_lu( ldim );

    int r, t;
    double *Ajj, *L, *U;

    Ajj = A;
    r = (bdim > n) ? n : bdim;
    lu_factor(n, r, ldim, Ajj);

    t = n - bdim;
    for ( int j = bdim; j < n; j += bdim, t -= bdim )
    {
        U = Ajj + bdim*ldim;
        tri_solve_l1xb( bdim, t, ldim, Ajj, U );
        L = Ajj + bdim;
    }
\[
A_{jj} = A + j \cdot \text{ldim} + j;
\]

reduce_mat_blk( t, t, bdim, ldim, ldim, L, U, A_{jj} );

\[
r = (t < \text{bdim}) \ ? \ t : \text{bdim};
\]

lu_factor( t, r, ldim, A_{jj} );

/*
* Implements recursive contiguous blocking to factorize nonsingular \( n \times n \) matrix \( A \) into a unit lower triangular matrix \( L \) and an upper triangular matrix \( U \), such that \( A = L \cdot U \). Matrix \( A \), which is stored in column-major order, is first copied to array \( AA \), which stores recursive contiguous blocks. That is, matrix blocks are stored contiguously, and within each block, sub-blocks of size \( \text{KDIM} \times \text{KDIM} \) are stored contiguously. Gaussian elimination yields factors \( L \) and \( U \) stored in recursive contiguous blocks in array \( AA \), which is then copied to array \( A \), where matrix elements are stored in conventional column-major order.
*/

void lu_recur_block( int n, double *A )
{
    const int nn = (n / KDIM) * KDIM + ((n % KDIM) ? KDIM : 0);
    const int ldim = nn;
    const int bdim = get_block_dim_lu( ldim );

    double *AA = (double *) malloc( ldim*ldim*sizeof(double) );
    form_recur_blocks( n, n, n, A, nn, nn, KDIM, bdim, ldim, AA );

    for ( int j = 0; j < nn; j += bdim ) {
        int s = (j + bdim > n) ? (n - j) : bdim;
        int q = (j + bdim > nn) ? (nn - j) : bdim;
        double *A_j = AA + j*ldim;
        const double *U_j = A_j;

        // Solve for \( L \cdot X = A \) using forward substitution, and perform cumulative trailing sub-matrix updates on matrix blocks above the diagonal
        for ( int k = 0; k < j; k += bdim ) {
            const double *L_k = AA + k*ldim;
            const double *L_kk = L_k + k*bdim;
            const double *U_kj = U_j + k*q;
            double *A_kj = A_j + k*bdim;
            rsolve_l1xb_blk( k, s, bdim, n, L_kk, bdim, A_kj);
            for ( int i = k+bdim; i < j; i += bdim ) {
                int r = (i + bdim > n) ? (n - i) : bdim;
                int p = (i + bdim > nn) ? (nn - i) : bdim;
                const double *Lik = L_k + i*bdim;
                double *Aij = A_j + i*bdim;
                reduce_blk_ker( r, s, bdim, p, Lik, bdim, U_kj, p, Aij );
            }
        }
    }
}
// Perform cumulative trailing sub-matrix updates on diagonal block
// and matrix blocks below the diagonal
for ( int k = 0; k < j; k += bdim ) {
    const double *Lk = AA + k*ldim;
    const double *Ukj = U + k*q;
    for ( int i = j; i < nn; i += bdim ) {
        int r = (i + bdim > n) ? (n - i) : bdim;
        int p = (i + bdim > nn) ? (nn - i) : bdim;
        const double *Lik = Lk + i*bdim;
        double *Aij = A + i*bdim;
        reduce_blk_ker(r, s, bdim, p, Lik, bdim, Ukj, p, Aij);
    }
}

// Factorize diagonal block, and solve X*U = A using forward
// substitution on blocks below the diagonal
double *Ajj = A + j*q;
const double *Ujj = Ajj;
lu_blk_ker(s, q, Ajj);
for ( int i = j+BDIM; i < nn; i += bdim ) {
    int r = (i + bdim > n) ? (n - i) : bdim;
    int p = (i + bdim > nn) ? (nn - i) : bdim;
    double *Aij = A + i*bdim;
    tri_solve_xub_blk_ker(r, bdim, bdim, Ujj, p, Aij);
}

unpack_recur_blocks( nn, nn, KDIM, bdim, ldim, AA, n, n, n, A );
free( AA );

/***************************************************************************/
/*
* In general, Gaussian elimination requires pivoting to ensure numerical
* stability. We implement partial pivoting to compute the LU factorization of
* row permuted matrix PA = LU, where the permutation matrix is encoded in a
* pivot vector. The factorization overwrites matrix A with unit lower
* triangular matrix L and upper triangular matrix U. Although, one only needs
* the pivot vector and the unit lower and upper triangular factors to solve the
* the corresponding linear system, the function prototypes have additional
* arguments to be consistent with matrix factorizations that implement a
* variety of more complicated pivoting strategies. This enables the use of
* function pointers to invoke matrix factorizations, which specify a pivoting
* strategy in the argument list and return all necessary information to solve
* the corresponding linear system.
*/
/*
*/
Employs the outer product method (\(k_{ji}\) indexing) with partial pivoting to
factorize nonsingular \(n\)-by-\(n\) matrix \(A\) into a unit lower triangular matrix \(L\)
and upper triangular matrix \(U\). Row permuted matrix \(A^* = P*A = L*U\).
Permutation matrix \(P\) is encoded in vectors \(\text{piv}[]\) and \(\text{ord}[]\), such that row \(k\)
is interchanged with row \(\text{piv}[k]\) and \(\text{ord}[k] = 1\) is the diagonal block order.
Elements of \(L\) are stored in \(A(k+1:n-1,k)\), while elements of \(U\) are stored in
\(A(0:k,k)\), assuming base 0 indexing. Each pass through the \(k\)-loop performs
an outer product operation.

```c
void lu_pivot_outer_product(char pivot, int n, int *piv, int *ord, double *A)
{
 const int ldim = n;
 for (int k = 0; k < n-1; k++) {
 double *A_k = A + k*ldim;
 double *Akk = A_k + k;
 // Determine pivot for column \(k\) and interchange elements in the pivot
 // row with elements in row \(k\)
 switch (pivot) {
 case 'G':
 eval_pivot_gauss(n-k, k, Akk, piv, ord);
 break;
 default:
 eval_pivot_gauss(n-k, k, Akk, piv, ord);
 break;
 }
 if (k != piv[k]) {
 for (int j = 0; j < n; j++) {
 double akj = *(A + k + j*ldim);
 *(A + k + j*ldim) = *(A + piv[k] + j*ldim);
 *(A + piv[k] + j*ldim) = akj;
 }
 }
 // Divide elements of column \(k\) below the diagonal by the diagonal element
 double akk = *Akk;
 for (int i = k+1; i < n; i++) {
 *(A_k + i) /= akk;
 }
 // Update trailing sub-matrix by subtracting the outer product
 for (int j = k+1; j < n; j++) {
 double *A_j = A + j*ldim;
 double akj = *(A_j + k);
 for (int i = k+1; i < n; i++) {
 *(A_j+i) -= *(A_k+i) * akj;
 }
 }
 }
 piv[n-1] = n-1;
}
```
/* Employs the SAXPY operation (jki indexing) with partial pivoting to factorize nonsingular n-by-n matrix A into a unit lower triangular matrix L and upper triangular matrix U. Row permuted matrix $A^* = P*A = L*U$. Permutation matrix $P$ is encoded in vectors piv[] and ord[], such that row k is interchanged with row piv[k] and ord[k] = 1 is the diagonal block order. Elements of L are stored in $A(k+1:n-1,k)$, while elements of U are stored in $A(0:k,k)$, assuming base 0 indexing. The inner-most loop subtracts a scalar multiple of vector from another vector.
*/

void lu_pivot_saxpy(char pivot, int n, int *piv, int *ord, double *A)
{
    const int ldim = n;

    lu_pivot(pivot, n, n, ldim, piv, ord, A);
}

/*
* Implements simple blocking with partial pivoting to factorize nonsingular n-by-n matrix A into a unit lower triangular matrix L and an upper triangular matrix U. Row permuted matrix $A^* = P*A = L*U$. Permutation matrix $P$ is encoded in vectors piv[] and ord[], such that row k is interchanged with row piv[k], and ord[k] = 1 is the diagonal block order. Suppose A is decomposed into blocks $[A_{00}, A_{01}; A_{10}, A_{11}]$, where $A_{00}$ is an r-by-r matrix block. First, a rectangular version of the SAXPY operation for LU factorization with partial pivoting computes $P*[A_{00}; A_{10}] = [L_{00}; L_{10}]*U_{00}$. Let $[A_{01}^*; A_{11}^*] = P*[A_{01}; A_{11}]$. Given that $A_{01}^* = L_{00}*U_{01}$, solve for $U_{01}$. Then the trailing sub-matrix is updated, $A_{11}^* = A_{11}^* - L_{10}*U_{01}$. This procedure is repeated iteratively on the trailing sub-matrix until the last diagonal block (dimension <= r) is reached. Simple blocking is also used to optimize memory access when updating the trailing sub-matrix.
*/

void lu_pivot_block(char pivot, int n, int *piv, int *ord, double *A)
{
    const int ldim = n;
    const int bdim = get_block_dim_lu(ldim);

    int d, j, r, t;
    double *Aj, *L, *U;

    j = 0;
    Aj = A;
    r = (bdim > n) ? n : bdim;

    // Perform rectangular factorization on first column block $A(0:n-1,0:r)$
    lu_pivot(pivot, n, r, ldim, &piv[j], &ord[j], Aj);

    d = 0;
    j = bdim;
t = n - bdim;
for ( ; j < n; j += bdim, d += bdim, t -= bdim ) {
    U = Ajj + bdim*ldim;
    // Solve for U(j-BDIM:j,j:n-1) where
    tri_solve_l1xib_pivot( bdim, t, ldim, &piv[d], Ajj, U );

    // Adjust pivot vector of previous block for diagonal offset
    for ( int i = d; i < j; i++ ) {
        piv[i] += d;
    }
    L = Ajj + bdim;
    Ajj = A + j + j*ldim;
    // Reduce trailing sub-matrix
    // P * A(j:n-1,j:n-1) = L(j:n-1,j-BDIM:j-1) * U(j-BDIM:j-1,j:n-1)
    reduce_mat_blk( t, t, bdim, ldim, bdim, L, U, Ajj );
    r = t < bdim ? t : bdim;
    // Perform rectangular factorization on column block A(j:n-1,j:j+r-1)
    lu_pivot( pivot, t, r, ldim, &piv[j], &ord[j], Ajj );

    // Apply permutation matrix for current block, encoded in piv(j:j+r-1),
    // to columns to the left of current block A(:,0:j-1)
    for ( int i = j; i < j+r; i++ ) {
        if ( i != piv[i] + j ) {
            for ( int k = 0; k < j; k++ ) {
                double aik = *(A + i + k*ldim);
                *(A + i + k*ldim) = *(A + piv[i] + j + k*ldim);
                *(A + piv[i] + j + k*ldim) = aik;
            }
        }
    }

    // Adjust pivot vector of last block for diagonal offset
    for ( int i = d; i < n; i++ ) {
        piv[i] += d;
    }
}

// Wrapper for calling LAPACK routine DGETRF which computes an LU factorization
// of a nonsingular matrix using partial pivoting with row interchanges.

void lu_pivot_lapack( char pivot, int n, int *pivot, int *ord, double *A )
{
    const int ldim = n;
    int info = 0;
    dgetrf(&n, &n, A, &ldim, pivot, &info);
}
A.4. cholfact.c – Cholesky factorization.

/ *
* Algorithms implementing unblocked and blocked Cholesky factorization of
* symmetric positive definite matrices representing linear systems. Unblocked
* algorithms include the outer product method and SAXPY operation, while
* blocked algorithms include simple blocking, contiguous blocking and recursive
* contiguous blocking. One implementation of a blocked algorithm uses tuned
* BLAS (Basic Linear Algebra Subroutines). Also, function wrappers facilitate
* calling unblocked and blocked LAPACK Cholesky factorization routines DPOTF2
* and DPOTRF, respectively.
*/

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <string.h>

#include "cholfact.h"
#include "lapack.h"
#include "matcom.h"
#include "timing.h"

static void reduce_sym_matrix( int diag, int m, int n, int p, int ldimL,
   const double *L, int ldimT, const double *T, int ldimA, double *A );
static void reduce_sym_mat_blk( int m, int n, int p, int ldim, int bdim,
   const double *L, const double *T, double *A );
static void reduce_sym_kernel( const int diag,
   const double *L, const double *T, double *A );
static void reduce_sym_blk_ker( int diag, int m, int n, int p, int ldimL,
   const double *L, int ldimT, const double *T, int ldimA, double *A );
static void tri_solve_xltb_matrix( int m, int n, int ldimL, const double *L,
   int ldimB, double *B );
static void tri_solve_xltb_mat_blk( int m, int n, int ldim, int bdim,
   const double *L, double *B );
static void tri_solve_xltb_kernel( const double *L, double *B );
static void tri_solve_xltb_blk_ker( int m, int n, int ldimL, const double *L,
   int ldimB, double *B );
static void chol_kernel( const int n, double *A );
static void chol_blk_ker( int n, int ldim, double *A );
static void chol_factor( int m, int n, int ldim, double *A );

/*******************************************************************************/

/ *
* Determines optimal block dimension for the local environment given a routine
* and matrix leading dimension. The function returns the block dimension
* chosen by the LAPACK Cholesky factorization routine, or a block dimension for
* testing (debugging). If the leading dimension is less than the optimal block
* dimension, the block dimension is set to the leading dimension, and the
* matrix computation becomes an unblocked algorithm.
*/
int get_block_dim_chol ( int ldim )
{
    const int optm_bdim = 1;
    const int no_dim = -1;
    const char *parm_str = "L";
    const char *func_name = "DPOTRF";

    int bdim;

    if defined (DEBUG)
        bdim = BDIM;
    else
        bdim = ilaenv ( &optm_bdim , func_name , parm_str ,
                        &ldim , &no_dim , &no_dim , &no_dim , &no_dim );
    endif
    if ( bdim <= 1 || bdim > ldim ) {
        bdim = ldim;
    }
    return bdim;
}

void reduce_sym_matrix ( int diag , int m , int n , int p , int ldimL ,
                        const double *L , int ldimT , const double *T , int ldimA ,
                        double *A )
{
    for ( int j = 0 ; j < n ; j++ ) {
        const double *Tj = T + j ; // Points to element T(j,0)
        double *A j = A + j * ldimA ; // Points to element A(0,j)
        for ( int k = 0 ; k < p ; k++ ) {
            const double *Lk = L + k * ldimL ; // Points to element L(0,k)
            double tjk = *(Tj + k * ldimT ) ; // Element T(j,k) = T'(k,j)
            for ( int i = diag ? j : 0 ; i < m ; i++ ) {
                *(A j + i ) -= *(Lk + i ) * tjk ;
                // A(i,j) -= L(i,k) * T'(k,j)
            }
        }
    }
}

/*
 * Matrix factorization reduces symmetric trailing sub–matrix A by computing
 * A = A – L*T', where A is an m-by-n sub–matrix, and L and T are m-by-p and
 * n-by-p blocks, respectively, of a lower triangular matrix. A, L, and T are
 * stored in column–major order with leading dimensions ldimL, ldimT and ldimA,
 * respectively. The trailing sub–matrix update is an implementation of the
 * SAXPY operation. Because of symmetry, the trailing sub–matrix update need
 * only be performed on elements on or below the diagonal.
 */

/*
 * Matrix factorization reduces symmetric trailing sub–matrix A by computing
 * A = A – L*T', where A is an m-by-n sub–matrix, and L and T are m-by-p and

...
* n-by-p column blocks, respectively, of a lower triangular matrix. A, L and T
* are stored in column-major order with leading dimension ldim. Blocking is
* used to optimize memory access for the trailing sub-matrix update, and bdim
* is the blocking parameter. Because of symmetry, the trailing sub-matrix
* update need only be performed on diagonal blocks and blocks below the
* diagonal.
*/

void reduce_sym_mat_blk( int m, int n, int p, int ldim, int bdim,
const double *L, const double *T, double *A )
{
    for ( int j = 0; j < n; j += bdim ) {
        // Determine number of columns in (i,j)th block of A
        int s = (j + bdim > n) ? (n - j) : bdim;

        for ( int k = 0; k < p; k += bdim ) {
            int diag = 1; // Diagonal block = TRUE
            // Determine number of columns of Lik and Tjk (rows of T'k)
            int t = (k + bdim > p) ? (p - k) : bdim;
            // Set pointer to block matrix Tjk
            const double *Tjk = T + j + k * ldim;

            for ( int i = j; i < m; i += bdim ) {
                // Determine number of rows in (i,j)th block of A
                int r = (i + bdim > m) ? (m - i) : bdim;
                // Set pointers to block matrices Lik and Aij
                const double *Lik = L + i + k * ldim;
                double *Aij = A + i + j * ldim;
                // Reduce trailing block matrix
                reduce_sym_matrix( diag, r, s, t,
                                 ldim, Lik, ldim, Tjk, ldim, Aij );
                diag = 0; // Diagonal block = FALSE
            }
        }
    }
}

/*
Matrix factorization reduces symmetric trailing sub-matrix by computing
* A = A - L*T', where A is a contiguous KDIM-by-KDIM sub-block of the trailing
* sub-matrix, and L and T are contiguous KDIM-by-KDIM sub-blocks of a lower
* triangular matrix. Looping is controlled by a symbolic constant (KDIM), which
* is evaluated during compilation. The trailing sub-matrix update is an
* implementation of the SAXPY operation. Because of symmetry, the trailing
* sub-matrix update need only be performed on elements on and below the diagonal.
*/

void reduce_sym_kernel( const int diag,
                        const double *L, const double *T, double *A )
{
    for ( int j = 0; j < KDIM; j++ ) {
        const double *Tj = T + j; // Points to element T(j,0)
void reduce_sym_blk_ker(int diag, int m, int n, int p, int ldimL, const double *L, int ldimT, const double *T, int ldimA, double *A) {
    for (int j = 0; j < n; j += KDIM) {
        for (int k = 0; k < p; k += KDIM) {
            int diag_blk = diag; // Diagonal block --> diagonal sub-block
            // Set pointer to sub-block Tjk (T’kj)
            const double *Tjk = T + j*KDIM + k*ldimT;

            for (int i = diag_blk ? j : 0; i < m; i += KDIM) {
                // Set pointers to sub-blocks Lik and Aij
                const double *Lik = T + i*KDIM + k*ldimL;
                double *Aij = A + i*KDIM + j*ldimA;
                // Perform matrix reduction on sub-blocks
                reduce_sym_kernel(diag_blk, Lik, Tjk, Aij);
                diag_blk = 0; // Diagonal sub-block = FALSE
            }
        }
    }
}

/*
 * Uses forward substitution to solve the triangular system of linear equations
 * X*L’ = B, where L is an n-by-n lower triangular matrix and L’ its transpose,
 * and X and B are m-by-n matrices. L and B are stored in column-major order
 * with leading dimensions ldimL and ldimB, respectively. The solution X
 * overwrites B.
 */
void tri_solve_xltb_matrix( int m, int n, int ldimL, const double *L, int ldimB, double *B )
{
    for ( int k = 0; k < n; k++ ) {
        double lkk = *(L + k + k*ldimL);
        double *B_k = B + k*ldimB;
        for ( int i = 0; i < m; i++ ) {
            *(B_k + i) /= lkk;
        }
        for ( int j = k+1; j < n; j++ ) {
            double ljk = *(L + j + k*ldimL);  // Element \( L(j,k) = L'(k,j) \)
            double *B_j = B + j*ldimB;
            for ( int i = 0; i < m; i++ ) {
                *(B_j+i) -= *(B_k+i) * ljk;
            }
        }
    }
}

/*/  
* Uses forward substitution to solve the triangular system of linear equations  
* \( X \cdot L' = B \), where \( L \) is an \( n \)-by-n lower triangular matrix and \( L' \) its transpose,  
* and \( X \) and \( B \) are \( m \)-by-n matrices. \( X \), \( L \) and \( B \) are stored in column-major order  
* with leading dimension \( \text{ldim} \). Blocking is used to optimize memory access for  
* the triangular solve operation, and \( \text{bdim} \) is the blocking parameter.  
*/
void tri_solve_xltb_mat_blk( int m, int n, int ldim, int bdim,  
  const double *L, double *B )
{
    for ( int i = 0; i < m; i += bdim ) {
        int r = (i + bdim > m) ? (m - i) : bdim;
        tri_solve_xltb_matrix( r, n, ldim, L, ldim, B+i );
    }
}

/*/  
* Uses forward substitution to solve the triangular system of linear equations  
* \( X \cdot L' = B \), where \( X \), \( L \) and \( B \) are contiguous \( \text{KDIM} \)-by-\( \text{KDIM} \) matrix sub-blocks, and  
* \( L \) is lower triangular and \( L' \) its transpose. Looping is controlled by a  
* symbolic constant (\( \text{KDIM} \)), which is evaluated during compilation. The  
* solution \( X \) overwrites \( B \).  
*/
void tri_solve_xltb_kernel( const double *L, double *B )
{
    for ( int k = 0; k < \( \text{KDIM} \); k++ ) {
        double lkk = *(L + k + k*\( \text{KDIM} \));
        double *B_k = B + k*\( \text{KDIM} \);
        for ( int i = 0; i < \( \text{KDIM} \); i++ ) {
            *(B_k + i) /= lkk;
        }
    }
for ( int j = k+1; j < KDIM; j++) {
    double ljk = *(L + j + k*KDIM); // Element L(j,k) = L'(k,j)
    double *B_j = B + j*KDIM;
    for ( int i = 0; i < KDIM; i++) {
        *(B_j+i) -= *(B_k+i) * ljk;
    }
}
}

// Uses forward substitution to solve the triangular system of linear equations
// X*L' = B, where L is an n-by-n lower triangular matrix block and L' its
// transpose, and X and B are m-by-n matrix blocks. Matrix blocks L and B are
// stored contiguously with leading dimension ldimL and ldimB, respectively.
// Within blocks of L and B, sub-blocks of size KDIM*KDIM are stored
// contiguously. Suppose that L' is decomposed into sub-blocks
// [L_{00}', L_{10}'; 0, L_{11}']. Then X_{00}*L_{00}' = B_{00}; X_{10}*L_{00}' = B_{10};
// X_{00}*L_{10}' + X_{01}*L_{11}' = B_{01} --> X_{01}*L_{11}' = B_{01} - X_{00}*L_{10}'; and
// X_{10}*L_{10}' + X_{11}*L_{11}' = B_{11} --> X_{11}*L_{11}' = B_{11} - X_{10}*L_{10}'.
*/

void tri_solve_xltb_blkker( int m, int n, int ldimL, const double *L, int ldimB, double *B )
{
    for ( int j = 0; j < n; j += KDIM ) {
        const double *Ljj = L + j*ldimL;
        double *B_j = B + j*ldimB;
        for ( int k = 0; k < j; k += KDIM ) {
            const double *Ljk = Lj + k*ldimL;
            double *B.k = B + k*ldimB;
            for ( int i = 0; i < m; i += KDIM ) {
                double *Bik = B_k + i*KDIM;
                double *Bij = B_j + i*KDIM;
                reduce_sym_kernel( 0, Bik, Ljk, Bij );
            }
        }
    }
}

/*
Factorizes an n-by-n symmetric matrix sub-block A into a lower triangular
sub-block L, such that A = L*L’. KDIM-by-KDIM sub-block A is stored
* contiguously. The Cholesky factorization algorithm is an implementation of
* the SAXPY operation. Looping is controlled by a symbolic constant (KDIM),
* which is evaluated during compilation. The factor L overwrites elements of A
* on and below the diagonal.
*/
void chol_kernel(const int n, double *A)
{
  // Divide elements of the first column by square root of element in first row
  double ajj = sqrt(*A);
  for (int i = 0; i < KDIM; i++)
  { (*A + i) /= ajj; }

  for (int j = 1; j < n; j++)
  { // Perform cumulative trailing sub-matrix updates on diagonal element
    // and elements below the diagonal of column j
    double *A_j = A + j*KDIM;
    for (int k = 0; k < j; k++)
    { // Points to L(0,k) = A(0,k)
      double *L_k = A + k*KDIM;
      double ljk = *(L_k + j); // Element L(j,k) = L'(k,j)
      for (int i = j; i < KDIM; i++)
      { (*A_j + i) -= *(L_k + i) * ljk; // A(i,j) -= L(i,k) * L'(k,j) }
    }

    // Divide elements of column j by square root of the diagonal element
    ajj = sqrt(*(*A_j + j));
    for (int i = j; i < KDIM; i++)
    { (*A_j+i) /= ajj; }
  }
}

/*/ FACTORIZES an n-by-n symmetric matrix block A into a lower triangular block L,
* such that A = L*L'. Matrix block A is stored contiguously with leading
* dimension ldim, and within the matrix block, sub-blocks of size KDIM*KDIM are
* stored contiguously. Because of symmetry, the Cholesky factorization need
* only be performed on diagonal sub-blocks and sub-blocks below the diagonal.
*/
void chol_blk_ker(const int n, int ldim, double *A)
{
  const double *L, *T;

  for (int j = 0; j < n; j += KDIM) {
    const int s = (j + KDIM > n) ? (n - j) : KDIM;
    double *A_j = A + j*ldim;
    double *Ajj = A_j + j*KDIM;
    T = A + j*KDIM;
    }
// Perform cumulative trailing sub-matrix updates on diagonal sub-block
// and sub-blocks below the diagonal
for ( int k = 0; k < j; k += KDIM ) {
    int diag = 1; // Diagonal block = TRUE
    L = T;
    for ( int i = j; i < n; i += KDIM ) {
        double *Aij = A + j + i*KDIM;
        reduce_sym_kernel( diag, L, T, Aij );
        L = L + KDIM*KDIM;
        diag = 0; // Diagonal block = FALSE
    }
    T = T + KDIM*ldim;
}

// Factorize diagonal sub-block, and solve X*L' = A using forward
// substitution on sub-blocks below the diagonal
chol_kernel( s, Ajj );
T = Ajj;
for ( int i = j+KDIM; i < n; i += KDIM ) {
    double *Aij = A + i*KDIM;
    tri_solve_xltb_kernel( T, Aij );
}
}

/*
* Implements a rectangular version the SAXPY operation (jki indexing) for
* Cholesky factorization. Symmetric positive definite m-by-n matrix A with
* leading dimension ldim is factored into a lower triangular matrix L, such
* that A = L*L', where L' is the transpose of L. Elements of L are stored in
* A(k:n-1,k), base 0 indexing i.e., on and below the diagonal. The inner-most
* loop subtracts a scalar multiple of a vector from another vector.
*/
void chol_factor( int m, int n, int ldim, double *A )
{
    for ( int j = 0; j < n; j++ ) {
        // Perform cumulative trailing sub-matrix updates on diagonal element
        // and elements below the diagonal of column j
        double *A = A + j*ldim;
        for ( int k = 0; k < j; k++ ) {
            double *L = A + k*ldim;
            double ljk = *(L + j);
            for ( int i = j; i < m; i++ ) {
                *(A + i) -= *(L + i) * ljk; // A(i, j) = A(i, j) - L(i, k) * L'(k, j)
            }
        }

        // Divide elements of column j by square root of the diagonal element
        double ajj = sqrt( *(A + j) );
    }
}
for ( int i = j; i < m; i++ ) {
    *(A+j+i) /= ajj;
}

/******************
/*
* Implements the outer product method (kji indexing) to factorize symmetric
* positive definite n-by-n matrix A into a lower triangular matrix L, such that
* A = L*L', where L' is the transpose of L. Symmetric positive definite
* matrices have weighty diagonals, which precludes the need for pivoting.
* Elements of L are stored in A(k:n−1,k), base 0 indexing i.e., on and below
* the diagonal. Each pass through the k-loop performs an outer product
* operation.
*/
void chol_outer_product( int n, double *A )
{
    const int ldim = n;

    for ( int k = 0; k < n; k++ ) {
        // Divide elements of column k on and below the diagonal by the
        // square root of the diagonal element
        double *A_k = A + k*ldim;
        double akk = sqrt( *(A_k + k) );
        *(A_k + k) = akk;
        for ( int i = k+1; i < n; i++ ) {
            *(A_k + i) /= akk;
        }
        // Update trailing submatrix by subtracting the outer product
        for ( int j = k+1; j < n; j++ ) {
            double *A_j = A + j*ldim;
            double ajk = *(A_k + j);
            for ( int i = j; i < n; i++ ) {
                *(A_j+i) -= *(A_k+i) * ajk;
            }
        }
    }
}

/******************
/*
* Implements the SAXPY operation (jki indexing) to factorize symmetric positive
* definite n-by-n matrix A into a lower triangular matrix L, such that A = L*L',
* where L' is the transpose of L. Symmetric positive definite matrices have
* weighty diagonals, which precludes the need for pivoting. Elements of L are
* stored in A(k:n−1,k), base 0 indexing i.e., on and below the diagonal. The
* inner-most loop subtracts a scalar multiple of a vector from another vector.
*/
void chol_saxpy ( int n, double *A )
{
    const int ldim = n;
    chol_factor ( n, n, ldim, A );
}

/*
 * Implements simple blocking to factorize symmetric positive definite n-by-n
 * matrix A into a lower triangular matrix L, such that A = L*L', where L' is the
 * transpose of L. Suppose A is decomposed into blocks [A_{00}, A_{01}; A_{10}, A_{11}],
 * where A_{00} is an r-by-r block matrix. First, an implementation of the SAXPY
 * operation computes the Cholesky factorization of r-by-r diagonal block,
 * A_{00} = L_{00}*L_{00}'. Then, solve for L_{10} in the triangular system of linear
 * equations L_{00} * L_{10}' = A_{10}', and update the trailing sub-matrix,
 * A_{11} = A_{11} - L_{10} * L_{10}'. This procedure is repeated iteratively on the
 * trailing sub-matrix until the last diagonal block (dimension less than or
 * equal to r) is reached. Simple blocking is also used to optimize memory
 * access when updating the trailing sub-matrix.
 */
void chol_block ( int n, double *A )
{
    const int ldim = n;
    const int bdim = get_block_dim_chol ( ldim );
    int r, t;
    double *Ajj, *L;

#if defined(CHOLFACT) && defined(PROFILE)
    struct timespec sta_chol, sta_factor, sta_tri_solve, sta_reduce,
        end_chol, end_factor, end_tri_solve, end_reduce;
    double tm_chol = 0.0;
    double tm_factor = 0.0;
    double tm_tri_solve = 0.0;
    double tm_reduce = 0.0;
    get_time( &sta_chol );
#endif

    Ajj = A;
    r = (bdim > n) ? n : bdim;
#if defined(CHOLFACT) && defined(PROFILE)
    get_time( &sta_factor );
#endif
    chol_factor ( r, r, ldim, Ajj );
#if defined(CHOLFACT) && defined(PROFILE)
    get_time( &end_factor );
    tm_factor += timespec_diff( sta_factor, end_factor );
#endif
for ( int j = bdim; j < n; j += bdim ) {
    t = n - j;
    L = Ajj + bdim;
    #if defined(CHOLFACT) && defined(PROFILE)
    get_time( &sta_tri_solve );
    #endif
    tri_solve_xltb_mat_blk( t, r, ldim, bdim, Ajj, L );
    #if defined(CHOLFACT) && defined(PROFILE)
    get_time( &end_tri_solve );
    tm_tri_solve += timespec_diff( sta_tri_solve, end_tri_solve );
    #endif
    Ajj = A + j*ldim + j;
    #if defined(CHOLFACT) && defined(PROFILE)
    get_time( &sta_reduce );
    #endif
    reduce_sym_mat_blk( t, t, bdim, ldim, bdim, L, L, Ajj );
    #if defined(CHOLFACT) && defined(PROFILE)
    get_time( &end_reduce );
    tm_reduce += timespec_diff( sta_reduce, end_reduce );
    #endif
    r = (j + bdim > n) ? t : bdim;
    #if defined(CHOLFACT) && defined(PROFILE)
    get_time( &sta_factor );
    #endif
    chol_factor( r, r, ldim, Ajj );
    #if defined(CHOLFACT) && defined(PROFILE)
    get_time( &end_factor );
    tm_factor += timespec_diff( sta_factor, end_factor );
    #endif
}
#if defined(CHOLFACT) && defined(PROFILE)
get_time( &end_chol );
#endif
#fprintf( stdout, "%.3f	%.3f		%.3f		%.3f		%.1f		%.1f		%.1f
",
    tm_chol, tm_factor, tm_tri_solve, tm_reduce,
    tm_factor/tm_chol*100, tm_tri_solve/tm_chol*100, tm_reduce/tm_chol*100 );
#endif
*/

* Implements simple blocking to factorize symmetric positive definite n-by-n
  matrix A into a lower triangular matrix L, such that A = L*L', where L' is the
  transpose of L. Suppose A is decomposed into blocks [A_00, A_01; A_10, A_11],
  where A_00 is an r-by-r block matrix. First, a rectangular version of the
  SAXPY operation computes the Cholesky factorization of n-by-r column block
  [A_00; A_10] = [L_00; L10]*L_00 '. Then, update the trailing sub-matrix,
  A_11 = A_11 - L_10 * L_10 '. This procedure is repeated iteratively on the
  trailing sub-matrix until the last diagonal block (dimension less than or
  equal to r) is reached. Simple blocking is also used to optimize memory
* access when updating the trailing sub-matrix.
*/

void chol_rect_block( int n, double *A )
{
    const int ldim = n;
    const int bdim = get_block_dim_chol( ldim );
    int r, t;
    double *Ajj, *L;

    Ajj = A;
    r = (bdim > n) ? n : bdim;
    chol_factor( n, r, ldim, Ajj );

    for( int j = bdim; j < n; j += bdim )
    {
        t = n - j;
        L = Ajj + bdim;
        Ajj = A + j*ldim + j;
        reduce_sym_mat_blk( t, t, bdim, ldim, bdim, L, L, Ajj );
        r = (j + bdim > n) ? t : bdim;
        chol_factor( t, r, ldim, Ajj );
    }
}

/*
 * Implements contiguous blocking to factorize symmetric positive definite
 * n-by-n matrix A into a lower triangular matrix L such that A = L*L', where
 * L' is the transpose of L. Matrix A, which is stored in column-major order
 * is first copied to array AA, which stores contiguous blocks. Cholesky
 * factorization yields lower triangular matrix L stored in contiguous blocks
 * in array AA, which is then copied to array A, where matrix elements are
 * stored in conventional column-major order.
 */

void chol_contig_block( int n, double *A )
{
    const int ldim = n;
    const int bdim = get_block_dim_chol( ldim );

    AA = (double *) malloc( ldim*ldim*sizeof(double) );
    form_contig_blocks( n, n, ldim, A, n, n, bdim, ldim, AA );
    for( int j = 0; j < n; j += bdim )
    {
        int s = (j + bdim > n) ? (n - j) : bdim;
        double *A_j = AA + j*ldim;
        double *Ajj = A_j + j*s;
        T = AA + j*bdim;

        // Perform cumulative trailing sub-matrix updates on diagonal block
        // and matrix blocks below the diagonal
for ( int k = 0; k < j; k += bdim ) {
    int diag = 1; // Diagonal block = TRUE
    L = T;
    for ( int i = j; i < n; i += bdim ) {
        int r = (i + bdim > n) ? (n - i) : bdim;
        double *Aij = A + i * s;
        reduce_sym_matrix( diag, r, s, bdim, r, L, s, T, r, Aij );
        L = L + bdim * bdim;
        diag = 0; // Diagonal block = FALSE
    }
    T = T + bdim * ldim;
}

// Factorize diagonal block, and solve X*L' = A using forward
// substitution on blocks below the diagonal
chol_factor( s, s, s, s, Ajj );
T = Ajj;
for ( int i = j + bdim; i < n; i += bdim ) {
    int r = (i + bdim > n) ? (n - i) : bdim;
    double *Aij = A + i * bdim;
    tri_solve_xltb_matrix( r, bdim, bdim, T, r, Aij );
}
unpack_contig_blocks( n, n, bdim, ldim, AA, n, n, ldim, A );
free( AA );

void chol_recur_block( int n, double *A ) {
    const int nn = (n / KDIM) * KDIM + ((n % KDIM) ? KDIM : 0);
    const int ldim = nn;
    int bdim, bdim_low, bdim_high;
    bdim = get_block_dim_chol( ldim );
    bdim_low = (bdim / KDIM) * KDIM;
    bdim_high = (bdim / KDIM) * KDIM + ((bdim % KDIM) ? KDIM : 0);
```
if (bdim_low == 0) {
 bdim = bdim_high;
} else {
 if ((bdim - bdim_low) > (bdim_high - bdim)) {
 bdim = bdim_high;
 } else {
 bdim = bdim_low;
 }
}

AA = (double *) malloc(ldim*ldim*sizeof(double));
form_recur_blocks(n, n, n, A, nn, nn, KDIM, bdim, ldim, AA);
for (int j = 0; j < nn; j += bdim) {
 int s = (j + bdim > n) ? (n - j) : bdim;
 int q = (j + bdim > nn) ? (nn - j) : bdim;
 double *A_j = AA + j*ldim;
 double *Ajj = A_j + j*q;
 T = AA + j*bdim;

 // Perform cumulative trailing sub-matrix updates on diagonal block
 // and matrix blocks below the diagonal
 for (int k = 0; k < j; k += bdim) {
 int diag = 1; // Diagonal block = TRUE
 L = T;

 for (int i = j; i < nn; i += bdim) {
 int r = (i + bdim > n) ? (n - i) : bdim;
 int p = (i + bdim > nn) ? (nn - i) : bdim;
 double *Aij = A_j + i*q;
 reduce_sym_blk_ker(diag, r, s, bdim, p, L, q, T, p, Aij);
 L = L + bdim*bdim;
 diag = 0; // Diagonal block = FALSE
 }
 T = T + bdim*ldim;
 }

 // Factorize diagonal block, and solve X*L' = A using forward
 // substitution on blocks below the diagonal
 chol_blk_ker(s, q, Ajj);
 T = Ajj;
 for (int i = j+bdim; i < nn; i += bdim) {
 int r = (i + bdim > n) ? (n - i) : bdim;
 int p = (i + bdim > nn) ? (nn - i) : bdim;
 double *Aij = A_j + i*bdim;
 tri_solve_xltb_blk_ker(r, bdim, bdim, T, p, Aij);
 }
}
unpack_recur_blocks(nn, nn, KDIM, bdim, ldim, AA, n, n, n, A);
free(AA);
```

/ * Implements simple blocking to factorize symmetric positive definite n-by-n * matrix A into a lower triangular matrix L, such that A = L*L', where L' is the * transpose of L. Suppose A is decomposed into blocks [A_00, A_01; A_10, A_11], * where A_00 is an r-by-r block matrix. First, an implementation of the SAXPY * operation computes the Cholesky factorization of r-by-r diagonal block, * A_00 = L_00*L_00'. BLAS routine DTRSM solves for L_10 in the triangular * system of linear equations L_00 * L_10' = A_10'. Then, BLAS routine DSYRK is * invoked to reduce the trailing sub-matrix, A_11 = A_11 - L_10*L_10'. This * procedure is repeated iteratively on the trailing sub-matrix until the last * diagonal block (dimension less than or equal to r) is reached.

/*

void chol_block_blas ( int n, double *A )
{
    const char lower = 'L';
    const char trans = 'T';
    const char no_trans = 'N';
    const char rhs = 'R';
    const char not_unit = 'N';
    const int ldim = n;
    const int bdim = get_block_dim_chol ( ldim );
    const double one = -1.0;
    const double one = 1.0;

    int r, t;
    double *Ajj, *L;

    #if defined(CHOLFACT) && defined(PROFILE)
    struct timespec sta_chol, sta_factor, sta_tri_solve, sta_reduce,
       end_chol, end_factor, end_tri_solve, end_reduce;
    double tm_chol = 0.0;
    double tm_factor = 0.0;
    double tm_tri_solve = 0.0;
    double tm_reduce = 0.0;

    get_time( &sta_chol );
    #endif

    Ajj = A;
    r = (bdim > n)? n : bdim;
    #if defined(CHOLFACT) && defined(PROFILE)
    get_time( &sta_factor );
    #endif
    chol_factor ( r, r, ldim, Ajj );
    #if defined(CHOLFACT) && defined(PROFILE)
    get_time( &end_factor );
    tm_factor += timespec_diff( sta_factor, end_factor );
    #endif
for ( int j = bdim; j < n; j += bdim ) {
    t = n - j;
    L = Ajj + bdim;
    #if defined(CHOLFACT) && defined(PROFILE)
        get_time( &sta_tri_solve );
    #endif
    dtrsm_.( &rhs, &lower, &trans, &not_unit, &t, &bdim,
             &one, Ajj, &ldim, L, &ldim );
    #if defined(CHOLFACT) && defined(PROFILE)
        get_time( &end_tri_solve );
        tm_tri_solve += timespec_diff( sta_tri_solve, end_tri_solve );
    #endif
    Ajj = A + j*ldim + j;
    #if defined(CHOLFACT) && defined(PROFILE)
        get_time( &sta_reduce );
    #endif
    dsyrk_( &lower, &no_trans, &t, &bdim, &one, L, &ldim,
            &one, Ajj, &ldim );
    #if defined(CHOLFACT) && defined(PROFILE)
        get_time( &end_reduce );
        tm_reduce += timespec_diff( sta_reduce, end_reduce );
    #endif
    r = ( j + bdim > n) ? t : bdim;
    #if defined(CHOLFACT) && defined(PROFILE)
        get_time( &sta_factor );
    #endif
    chol_factor( r, r, ldim, Ajj );
    #if defined(CHOLFACT) && defined(PROFILE)
        get_time( &end_factor );
        tm_factor += timespec_diff( sta_factor, end_factor );
    #endif
}

#if defined(CHOLFACT) && defined(PROFILE)
    get_time( &end_chol );
    tm_chol += timespec_diff( sta_chol, end_chol );
    fprintf( stdout, "%.3f	%.3f	%.3f	%.3f	%.3f	%.3f	%.3f
", tm_chol, tm_factor, tm_tri_solve, tm_reduce, tm_factor/tm_chol*100, tm_tri_solve/tm_chol*100, tm_reduce/tm_chol*100 );
#endif

/*
 * Implements contiguous blocking to factorize symmetric positive definite
 * n-by-n matrix A into a lower triangular matrix L such that A = L*L', where
 * L' is the transpose of L. Matrix A, which is stored in column-major order
 * is first copied to array AA, which stores contiguous blocks. Cholesky
 * factorization yields lower triangular matrix L stored in contiguous blocks
 * in array AA, which is then copied to array A, where matrix elements are
 * stored in conventional column-major order. LAPACK unblocked routine DPOTF2
 */
computes the Cholesky factorization of a diagonal block; BLAS routine DTRSM
solves for blocks of the lower triangular matrix; and BLAS routines DSYRK
and DGERM update the trailing sub-matrix.

void chol_contig_block_blas(int n, double *A)
{
    const char lower = 'L';
    const char trans = 'T';
    const char no_trans = 'N';
    const char rhs = 'R';
    const char not_unit = 'N';
    const int ldim = n;
    const int bdim = get_block_dim_chol(ldim);
    const double one = -1.0;
    const double one = 1.0;

    int info = 0;

    AA = (double *) malloc(ldim*ldim*sizeof(double));
    form_contig_blocks(n, n, ldim, A, n, n, bdim, ldim, AA);

    for (int j = 0; j < n; j += bdim) {
        int s = (j + bdim > n) ? (n - j) : bdim;
        double *Aj = AA + j*ldim;
        double *Ajj = Aj + j*s;
        T = AA + j*bdim;

        // Perform cumulative trailing sub-matrix updates on diagonal block
        // and matrix blocks below the diagonal
        for (int k = 0; k < j; k += bdim) {
            int diag = 1;  // Diagonal block = TRUE
            L = T;

            for (int i = j; i < n; i += bdim) {
                int r = (i + bdim > n) ? (n - i) : bdim;
                double *Aij = Aj + i*s;
                if (diag == 0) {
                    dgemm(&no_trans, &trans, &r, &s, &bdim, &one, L, &r,
                          T, &s, &one, Aij, &r);
                } else {
                    dsyrk(&lower, &no_trans, &s, &bdim, &one, L, &r,
                          &one, Aij, &r);
                }
                L = L + bdim*bdim;
                diag = 0;  // Diagonal block = FALSE
            }
            T = T + bdim*ldim;
        }
    }
}
// Factorize diagonal block, and solve $X^*L' = A$ using forward substitution on blocks below the diagonal
dpotf2_( &lower, &s, Ajj, &s, &info );
T = Ajj;
for ( int i = j+bdim; i < n; i += bdim ) {
    int r = (i + bdim > n) ? (n - i) : bdim;
    double *Aij = A[j + i*bdim];
    dtrsm_( &rhs, &lower, &trans, &not_unit, &r, &bdim, &one, T, &bdim, Aij, &r );
}
unpack_contig_blocks( n, n, bdim, ldim, AA, n, n, ldim, A );
free( AA );

/*
 * Wrapper for calling LAPACK routine DPOTF2 which computes the Cholesky factorization of a real symmetric positive definite matrix. DPOTF2 is LAPACK's unblocked version of Cholesky factorization.
*/
void chol_lapack_unblocked( int n, double *A )
{
    const char lower = 'L';
    const int ldim = n;
    int info = 0;

dpotf2_( &lower, &n, A, &ldim, &info );
}

/*
 * Wrapper for calling LAPACK routine DPOTRF, which computes the Cholesky factorization of a real symmetric positive definite matrix.
*/
void chol_lapack( int n, double *A )
{
    const char lower = 'L';
    const int ldim = n;
    int info = 0;

dpotrf_( &lower, &n, A, &ldim, &info );
}
A.5. ldltfact.c – symmetric indefinite factorization.

/*
 * Algorithms implementing unblocked and blocked symmetric indefinite
 * factorization of matrices representing linear systems. Unblocked algorithms
 * include the outer product method and SAXPY operation, while blocked
 * algorithms include simple blocking and an implementation that uses tuned
 * BLAS (Basic Linear Algebra Subroutines). Also, function wrappers facilitate
 * calling unblocked and blocked LAPACK symmetric indefinite factorization
 * routines DSYTF2 and DSYTRF, respectively.
 */

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <float.h>

#include "ldltfact.h"
#include "lapack.h"
#include "matcom.h"
#include "timing.h"

static void eval_pivot bk( int n, int d, int ldim, const double *A,
    int *piv, int *ord );
static void eval_pivot bbk( int n, int d, int ldim, const double *A,
    int *piv, int *ord );
static void eval_pivot bp( int n, int d, int ldim, const double *A,
    int *piv, int *ord );
static void eval_pivot_reduce bk( int n, int d, int ldim, const double *L,
    const double *D, const double *A, double *Q, int *piv, int *ord );
static void eval_pivot_reduce bbk( int n, int d, int ldim, const double *L,
    const double *D, const double *A, double *Q, int *piv, int *ord );
static void eval_pivot_blas bk( int n, int d, int ldim, const double *L,
    const double *M, const double *A, double *Q, int *piv, int *ord );
static void eval_pivot_blas bbk( int n, int d, int ldim, const double *L,
    const double *M, const double *A, double *Q, int *piv, int *ord );
static void pivot_sym_reduce( int n, int k, int r, double *vec, int ldim,
    double *A );
static void pivot_sym_blas( int n, int k, int r, int ldim, double *W,
    double *A );
static void reduce_ldl_vector( int m, int n, int r, int *ord, int ldim,
    const double *L, const double *D, double *vec );
static void reduce_ldl_matrix( int m, int n, int p, int diag, const int *ord,
    int ldim, const double *L, const double *D, const double *M,
    const double *T, double *A );
static void reduce_ldl_matrix_blas( int m, int n, int p, int diag,
    const int *ord, int ldim, const double *L, const double *D, const double *M,
    const double *T, double *A );
static void ldl_factor( char pivot, int m, int n, int *piv, int *ord,
    int ldim, double *A, double *W );
static void ldl_factor_blas(char pivot, int m, int *n, int *piv, int *ord, int ldim, double *A, double *W);
static void ldl_block_rook_pivot(int blas, char pivot, int n, int *piv, int *ord, int ldim, double *A);
static void ldl_block_comp_pivot(int blas, char pivot, int n, int *piv, int *ord, int ldim, double *A);

// Parameter for bounding element growth in trailing sub-matrix
static const double alpha = (1.0 + sqrt(17.0)) / 8.0;

#if defined(LDLTFACT) && defined(PROFILE)
    static int xtra_work = 0;
    static double tm_ldlt = 0.0;
    static double tm_factor = 0.0;
    static double tm_pivot = 0.0;
    static double tm_reduce = 0.0;
    static double tm_fact_piv = 0.0;
    static double tm_red_vec = 0.0;
#endif

/****************************

/*
 * Determines optimal block dimension for the local environment given a routine
 * and matrix leading dimension. The function returns different block
 * dimensions for simple blocking, blocking using BLAS, and the LAPACK symmetric
 * indefinite factorization routine. Also, it facilitates the use of a
 * different block dimension for testing (debugging). If the leading dimension
 * is less than the optimal block dimension, the block dimension is set to the
 * leading dimension, and the matrix computation becomes an unblocked algorithm.
 */
int get_block_dim_ldlt(int lapack, int blas, int ldim)
{
    const int optm_bdim = 1;
    const int no_dim = -1;
    const char *parm_str = "L";
    const char *func_name = "DSYTRF";

    int bdim;

#if defined(DEBUG)
    bdim = BDIM;
#else
    if (lapack) {
        bdim = ilaenv_( &optm_bdim, func_name, parm_str, &ldim, &no_dim, &no_dim, &no_dim);
    } else {
        if (blas) {
            bdim = 64;
        } else {
            
```
bdim = 128;

#endif

if (bdim <= 1 || bdim > ldim) {
 bdim = ldim;
}
return bdim;

/*
 * Counts the number of pivots performed — row and column interchanges —
 * during matrix factorization. piv_ord passed in the argument list determines
 * whether 1-by-1 pivots, 2-by-2 pivots, or both are counted. piv[k] specifies
 * the permutation applied to row/ column k, so if piv[k] != k then a row/
 * column interchange is performed.
*/
int count_pivot(int piv_ord, int n, const int *piv, const int *ord)
{
 int count = 0;

 if (piv_ord == 0) { // Count 1-by-1 and 2-by-2 pivots
 for (int k = 0; k < n; k++) {
 if (k != piv[k]) {
 count++;
 }
 }
 } else if (piv_ord == 1) { // Count 1-by-1 pivots
 for (int k = 0; k < n; k++) {
 if (ord[k] == 1 && piv[k] != k) {
 count++;
 }
 }
 } else {
 for (int k = 0; k < n; k++) {
 if (ord[k] == 2) { // Count 2-by-2 pivots
 count++;
 }
 }
 }
 return count;
}

/*
 * Performs diagonal pivot selection on an n-by-1 vector representing the
 * diagonal elements of an n-by-n matrix. The maximum magnitude diagonal
 * element is chosen as the pivot. A single pivot adjusted by diagonal offset
 * d, and its order (=1) are stored in vectors piv[] and ord[], respectively.
 * piv[k] specifies the permutation applied to row/ column k when performing
 * matrix factorization.
*/
void eval_pivot_diag(int n, int d, const double *diag, int *piv, int *ord)
{
 int p = d;
 double lambda = -1.0;

 for (int i = 0; i < n; i++) {
 double x = fabs(diag[i]);
 if (x > lambda) {
 lambda = x;
 p = i + d;
 }
 }
 piv[d] = p;
 ord[d] = 1;
}

void eval_pivot_bk(int n, int d, int ldim, const double *A, int *piv, int *ord)
{
 int r = 0;
 double lambda = -1.0;
 double sigma = -1.0;
 double a, arr;
 const double *A_r, *Ar;

 // Determine largest magnitude off-diagonal entry in 1st row/ column
 for (int i = 1; i < n; i++) {
 double x = fabs(*(A+i));
 if (x > lambda) {
 lambda = x;
 r = i;
 }
 }

 if (lambda > 0.0) {
 a = fabs(*A);
 if (a >= alpha * lambda) {
// Use 1st row/column as 1-by-1 pivot
piv[d] = d;
ord[d] = 1;
} else {
 A_r = A + r*ldim;
 Ar_r = A + r;
 arr = fabs(*(A_r+r));
 // Determine maximum magnitude off-diagonal entry in row/column r.
 // Because of symmetry only entries on and below the diagonal have
 // been updated, so check entries in row r corresponding to entries
 // above the diagonal in column r and entries below the diagonal
 // in column r
 for (int j = 0; j < r; j++) {
 double x = fabs(*(Ar_r+j*ldim));
 if (x > sigma) {
 sigma = x;
 }
 }
 for (int i = r+1; i < n; i++) {
 double x = fabs(*(A_r+i));
 if (x > sigma) {
 sigma = x;
 }
 }
 if (a * sigma >= alpha * lambda * lambda) {
 // Use 1st row/column as 1-by-1 pivot
 piv[d] = d;
 ord[d] = 1;
 } else if (arr >= alpha * sigma) {
 // Use rth row/column as 1-by-1 pivot
 piv[d] = d + r;
 ord[d] = 1;
 } else {
 // Use 1st and rth rows/columns as 2-by-2 pivot
 piv[d] = d;
 piv[d+1] = d + r;
 ord[d] = 2;
 ord[d+1] = 0;
 }
} else {
 // Use 1st row/column as 1-by-1 pivot
 piv[d] = d;
 ord[d] = 1;
}

/*
 * Performs bounded Bunch-Kaufman (rook) pivot selection on an n-by-n trailing
eval_pivot_bbk(int n, int d, int ldims, const double *A,
 int *piv, int *ord)
{
 const double tol = 100.0*DBL_EPSILON;
 int k = 0;
 int p = 0;
 int r = 0;
 double lambda = -1.0;
 double sigma = -1.0;
 double a, arr, eps;
 const double *A_r, *Ar_r;
 // Determine largest magnitude off-diagonal entry in 1st row/column
 for (int i = 1; i < n; i++) {
 double x = fabs(*(A+i));
 if (x > lambda) {
 lambda = x;
 r = i;
 }
 }
 if (lambda > 0.0) {
 a = fabs(*A);
 if (a >= alpha * lambda) {
 // Use 1st row/column as 1-by-1 pivot
 piv[d] = d;
 ord[d] = 1;
 } else {
 int piv_sict = 0; // Pivot selected = FALSE
 while (piv_sict == 0) { // Until pivot selected perform ...
 A_r = A + r*ldim;
 Ar_r = A + r;
 arr = fabs(*(A_r+r));
 // Determine maximum magnitude off-diagonal entry in row/
 // column r. Because of symmetry only entries on and below the
 // diagonal have been updated, so check entries in row r
 // corresponding to entries above the diagonal in column r and
 // entries below the diagonal in column r
 for (int j = 0; j < r; j++) {
 // ...
 }
 }
 }
 } else {
 // ...
 }
}
```c
double x = fabs(*(Ar+j*ldim));
if (x > sigma) {
    sigma = x;
    p = j;
}
}
for (int i = r+1; i < n; i++) {
    double x = fabs(*(A_r+i));
    if (x > sigma) {
        sigma = x;
        p = i;
    }
}

// Calculate relative difference between lambda and sigma to
// check whether they are equal within rounding error tolerance
eps = fabs(lambda - sigma) / sigma;
if (arr >= alpha * sigma) {
    // Use rth row/ column as 1-by-1 pivot
    piv[d] = d + r;
    ord[d] = 1;
    piv_selct = 1;
} else if (eps < tol) {
    // Use kth and rth rows/ columns as 2-by-2 pivot
    piv[d] = d + k;
    piv[d+1] = d + r;
    ord[d] = 2;
    ord[d+1] = 0;
    piv_selct = 1;
} else {
    // Continue search for pivot
    k = r;
    lambda = sigma;
    r = p;
    sigma = -1.0;
}
}
}
#else
  // Use 1st row/ column as 1-by-1 pivot
  piv[d] = d;
  ord[d] = 1;
#endif

/*
 * Performs Bunch–Parlett (complete) pivot selection on an n-by-n trailing
 * sub-matrix A with diagonal offset d. The Bunch–Parlett algorithm selects a
 * 1-by-1 or 2-by-2 pivot for symmetric indefinite factorization, L*D*L', where
 * D is block diagonal with block order 1 or 2. The selected 1-by-1 or 2-by-2
 */
* pivot and its order are stored in vectors piv[] and ord[], respectively.
* piv[k] (and piv[k+1]) specifies the permutation(s) applied to row(s)/
* column(s) k (and k+1). It is assumed that the matrix factorization is
* implemented using the outer product method, such that trailing sub-matrix A
* has been reduced (updated) prior to pivot selection. Matrix A is stored in
* column-major order with leading dimension ldim.*

```c
void eval_pivot_bp(int n, int d, int ldim, const double *A,
 int *piv, int *ord)
{
 int r = 0;
 int s = 0;
 int t = 0;
 double mu = -1.0;
 double nu = -1.0;
 const double *A_j;

 // Determine largest magnitude diagonal (nu) and off-diagonal (mu) entries
 // of trailing sub-matrix A, and their respective indexes.
 for (int j = 0; j < n; j++) {
 A_j = A + j*ldim;
 double ajj =fabs(*A_j+j);
 if (ajj > nu) {
 nu = ajj;
 t = j;
 }
 }

 for (int i = j+1; i < n; i++) {
 double aij =fabs(*(A_j+i));
 if (aij > nu) {
 mu = aij;
 r = i;
 s = j;
 }
 }

 if (mu > 0.0 || nu > 0.0) {
 if (nu >= alpha * mu) {
 // Use row/ column corresponding to maximum magnitude diagonal entry
 // as 1-x-1 pivot
 piv[d] = d + t;
 ord[d] = 1;
 } else {
 // Use rows/ columns corresponding to maximum magnitude off-diagonal
 // entry as 2-x-2 pivot
 piv[d] = d + s;
 piv[d+1] = d + r;
 ord[d] = 2;
 ord[d+1] = 0;
 }
 }
```
} else {
    // Use 1st row/ column as 1-by-1 pivot
    piv[d] = d;
    ord[d] = 1;
}

/*
* Performs Bunch-Kaufman (partial) pivot selection on an n-by-n trailing
* sub-matrix A with diagonal offset d. The Bunch-Kaufman algorithm selects a
* 1-by-1 or 2-by-2 pivot for symmetric indefinite factorization, L*D*L', where
* D is block diagonal with block order 1 or 2. The selected 1-by-1 or 2-by-2
* pivot and its order are stored in vectors piv[] and ord[], respectively.
* piv[k] (and piv[k+1]) specifies the permutation(s) applied to row(s)/
* column(s) k (and k+1). It is assumed that the symmetric indefinite
* factorization is an implementation of the SAXPY operation, such that trailing
* sub-matrix A has yet to be reduced (updated) when pivot selection is
* performed. Unit lower triangular matrix L and block diagonal matrix D are
* used to reduce the rows/ columns of trailing sub-matrix A, which are
* evaluated during pivot selection. The reduced rows/ columns are stored in
* matrix Q for reuse in the matrix factorization. Matrices A, L and D are
* stored in column-major order with leading dimension ldim.
*/
void eval_pivot_reduce_bk( int n, int d, int ldim, const double *L,
    const double *D, const double *A, double *Q, int *piv, int *ord )
{
    const double *A_r, *Ar_r;

    int r = 0;
    double lambda = -1.0;
    double sigma = -1.0;
    double q, qrr;
    double *Q_r;

    // Copy 1st row/ column of A to Q and perform cumulative trailing
    // sub-matrix reduction on this vector
    for ( int i = 0; i < n; i++ ) {
        *(Q + i) = *(A + i);
    }
    reduce_ldlt_vector( n, d, r, ord, ldim, L, D, Q );

    // Determine largest magnitude off-diagonal entry in reduced 1st row/ column
    for ( int i = 1; i < n; i++ ) {
        double x = fabs( *(Q+i) );
        if ( x > lambda ) {
            lambda = x;
            r = i;
        }
    }
}
if ( lambda > 0.0 ) {
    q = fabs( *Q );
    if ( q >= alpha * lambda ) {
        // Use 1st row/ column as 1-by-1 pivot
        piv[d] = d;
        ord[d] = 1;
    } else {
        A_r = A + r*ldim;
        Ar_ = A + r;
        Q_r = Q + ldim;
        // Determine maximum magnitude off-diagonal entry in reduced row/
        // column r. Because of symmetry only entries on and below the
        // diagonal have been updated/ pivoted, so check entries in row r
        // corresponding to entries above the diagonal in column r and
        // entries below the diagonal in column r
        for ( int j = 0; j < r; j++ ) {
            *(Q_r + j) = *(Ar_ + j*ldim);
        }
        memcpy( Q_r + r, A_r + r, (n-r)*sizeof(double) );
        reduce_ldl_vector( n, d, r, ord, ldim, L, D, Q_r );
        qrr = fabs ( *(Q_r+r) );
        for ( int i = 0; i < n; i++ ) {
            double x = fabs ( *(Q_r+i) );
            if ( x > sigma && i != r ) {
                sigma = x;
            }
        }
        if ( q * sigma >= alpha * lambda * lambda ) {
            // Use 1st row/ column as 1-by-1 pivot
            piv[d] = d;
            ord[d] = 1;
            #if defined(LDLFACT) && defined(PROFILE)
            xtra_work++;
            #endif
        } else if ( qrr >= alpha * sigma ) {
            // Use rth row/ column as 1-by-1 pivot, and copy reduced rth
            // row/ column to 1st column of Q
            piv[d] = d + r;
            ord[d] = 1;
            memcpy( Q, Q_r, n*sizeof(double) );
            #if defined(LDLFACT) && defined(PROFILE)
            xtra_work++;
            #endif
        } else {
            // Use 1st and rth rows/ columns as 2-by-2 pivot
            piv[d] = d;
            piv[d+1] = d + r;
            ord[d] = 2;
        }
    }
}

PERFORMANCE OPTIMIZATION OF SYMMETRIC FACTORIZATION ALGORITHMS

ord[d+1] = 0;

else {
    // Use 1st row/column as 1-by-1 pivot
    piv[d] = d;
    ord[d] = 1;
}

/*
* Performs bounded Bunch-Kaufman (rook) pivot selection on an n-by-n trailing
* sub-matrix A with diagonal offset d. The bounded Bunch-Kaufman algorithm,
* selects a 1-by-1 or 2-by-2 pivot for symmetric indefinite factorization,
* L*D*L', where D is block diagonal with block order 1 or 2. The selected
* 1-by-1 or 2-by-2 pivot and its order are stored in vectors piv[] and ord[].
* respectively. piv[k] (and piv[k+1]) specifies the permutation(s) applied to
* row(s)/column(s) k (and k+1). It is assumed that the symmetric indefinite
* factorization is an implementation of the SAXPY operation, such that trailing
* sub-matrix A has yet to be reduced (updated) when pivot selection is
* performed. Unit lower triangular matrix L and block diagonal matrix D are
* used to reduce the rows/columns of trailing sub-matrix A, which are
* evaluated during pivot selection. The reduced rows/columns are stored in
* matrix Q for reuse in the matrix factorization. Matrices A, L and D are
* stored in column-major order with leading dimension ldim.
*/
void eval_pivot_reduce_bbk( int n, int d, int ldim, const double *L,
                          const double *D, const double *A, double *Q, int *piv, int *ord )
{
    const double tol = 100.0*DBL_EPSILON;
    const double *A_r, *Ar_;

tol = 100.0*DBL_EPSILON;
const double A_r, *Ar_;

    int k = 0;
    int p = 0;
    int r = 0;
    double lambda = -1.0;
    double sigma = -1.0;
    double eps, q, qrr;
    double *Q_r;

    // Copy 1st row/col to Q and perform cumulative trailing
    // sub-matrix reduction on this vector
    for ( int i = 0; i < n; i++ ) {
        *(Q + i) = *(A + i);
    }
    reduce_ldl_vector( n, d, r, ord, ldim, L, D, Q );

    // Determine largest magnitude off-diagonal entry in 1st row/col
    for ( int i = 1; i < n; i++ ) {
        double x = fabs( *(Q+i) );
if ( x > lambda ) {
    lambda = x;
    r = i;
}
}

if ( lambda > 0.0 ) {
    q = fabs( ∗Q );
    if ( q >= alpha * lambda ) {
        // Use 1st row/ column as 1-by-1 pivot
        piv[0] = d;
        ord[0] = 1;
    } else {
        Q, r = Q + ldim;
        int piv_slct = 0; // Pivot selected = FALSE
        while ( piv_slct == 0 ) { // Until pivot selected perform ...
            A, r = A + r * ldim;
            Ar,r = A + r;
            // Determine maximum magnitude off-diagonal entry in reduced
            // row/ column r. Because of symmetry only entries on and below
            // the diagonal have been updated/ pivoted, so check entries in
            // row r corresponding to entries above the diagonal in column r
            // and entries below the diagonal in column r
            for ( int j = 0; j < r; j++ ) {
                ∗( Q,r + j ) = ∗( Ar,r + j * ldim );
            }
            memcpy( Q, Q,r, n * sizeof( double ) );
            reduce_ldl_vector( n, d, r, ord, ldim, L, D, Q,r );
            qrr = fabs( ∗(Q,r+r) );
            for ( int i = 0; i < n; i++ ) {
                double x = fabs( ∗(Q,r+i) );
                if ( x > sigma && i != r ) {
                    sigma = x;
                    p = i;
                }
            }
        }
    }
}

// Calculate relative difference between lambda and sigma to
// check whether they are equal within rounding error tolerance
eps = fabs( lambda - sigma ) / sigma;
if ( qrr >= alpha * sigma ) {
    // Use rth row/ column as 1-by-1 pivot
    piv[0] = d + r;
    ord[0] = 1;
    memcpy( Q, Q,r, n * sizeof( double ) );
    piv_slct = 1;
    #if defined(LDLTFACT) && defined(PROFILE)
    xtra_work++;
    #endif
} else if ( eps < tol ) {
// Use kth and rth rows/ columns as 2-by-2 pivot
piv[d] = d + k;
piv[d+1] = d + r;
ord[d] = 2;
ord[d+1] = 0;
piv_selt = 1;
} else {
    // Continue search for pivot
    k = r;
    lambda = sigma;
    memcpy(Q, Q+r, n*sizeof(double));
    r = p;
    sigma = -1.0;
#if defined(LDLTFACT) && defined(PROFILE)
    xtra_work++;
#endif
} } 
} else {
    // Use 1st row/ column as 1-by-1 pivot
    // Use 1st row/ column as 1-by-1 pivot
    piv[d] = d;
    ord[d] = 1;
} 
} 

/*
* Performs Bunch-Kaufman (partial) pivot selection on an n-by-n trailing
* sub-matrix A with diagonal offset d. The Bunch-Kaufman algorithm selects a
* 1-by-1 or 2-by-2 pivot for symmetric indefinite factorization, L*D*L', where
* D is block diagonal with block order 1 or 2. The selected 1-by-1 or 2-by-2
* pivot and its order are stored in vectors piv[] and ord[], respectively.
* piv[k] (and piv[k+1]) specifies the permutation(s) applied to row(s)/
* column(s) k (and k+1). It is assumed that the symmetric indefinite
* factorization is an implementation of the SAXPY operation, such that trailing
* sub-matrix A has yet to be reduced (updated) when pivot selection is
* performed. BLAS routines are invoked to reduce the rows/ columns of trailing
* sub-matrix A, which are evaluated during pivot selection. The reduced rows/
* columns are stored in matrix Q for reuse in the matrix factorization.
* Matrices A, L and D are stored in column-major order with leading dimension
* ldim.
*/
void eval_pivot_blas_bk( int n, int d, int ldim, const double *L,
                        const double *M, const double *A, double *Q, int *piv, int *ord )
{
    const int    one = 1;
    const double   *A_r, *A_r_;

    int       r, t;
    double    lambda = -1.0;
double sigma = -1.0;
double q, qrr;
double *Q_r;

// Copy 1st row/ column of A to Q and perform cumulative trailing
// sub-matrix reduction on this vector
for ( int i = 0; i < n; i++ ) {
    *(Q + i) = *(A + i);
}
r = 0;
reduce_ldlt_vector_blas( n, d, r, ord, ldim, L, M, Q);

// Determine largest magnitude off-diagonal entry in reduced 1st row/ column
for ( int i = 1; i < n; i++ ) {  
    double x = fabs( *(Q+i) );
    if ( x > lambda ) {
        lambda = x;
        r = i;
    }
}
if ( lambda > 0.0 ) {
    q = fabs( *Q );
    if ( q >= alpha * lambda ) {
        // Use 1st row/ column as 1-by-1 pivot
        piv[d] = d;
        ord[d] = 1;
    } else {
        A_r = A + r*ldim;
        Ar_ = A + r;
        Q_r = Q + ldim;
        // Determine maximum magnitude off-diagonal entry in reduced row/ column r.
        // Because of symmetry only entries on and below the diagonal have been updated/ pivoted, so check entries in row r
        // corresponding to entries above the diagonal in column r and entries below the diagonal in column r
        const double *Arr = A_r + r;
        double *Qrr = Q_r + r;
        t = n - r;
        dcopy_( &r, Ar_, &ldim, Q_r, &one );
        dcopy_( &t, Arr, &one, Qrr, &one );
        reduce_ldlt_vector_blas( n, d, r, ord, ldim, L, M, Q_r );
        qrr = fabs( *(Q_r+r) );
        // Determine largest magnitude off-diagonal entry in reduced rth row/ column
    }
    for ( int i = 0; i < n; i++ ) {
        double x = fabs( *(Q_r+i) );
        if ( x > sigma && i != r ) {
            sigma = x;
        }
    }
}
if ( q * sigma >= alpha * lambda * lambda ) {
    // Use 1st row/ column as 1-by-1 pivot
    piv[d] = d;
    ord[d] = 1;
    #if defined(LDLTFACT) && defined(PROFILE)
    xtra_work++;
    #endif
}
else if ( qrr >= alpha * sigma ) {
    // Use rth row/ column as 1-by-1 pivot, and copy reduced rth
    // row/ column to 1st column of Q
    piv[d] = d + r;
    ord[d] = 1;
    dcopy_( &n, Q_r, &one, Q, &one );
    #if defined(LDLTFACT) && defined(PROFILE)
    xtra_work++;
    #endif
} else {
    // Use 1st and rth rows/ columns as 2-by-2 pivot
    piv[d] = d;
    piv[d+1] = d + r;
    ord[d] = 2;
    ord[d+1] = 0;
}
}
else {
    // Use 1st row/ column as 1-by-1 pivot
    piv[d] = d;
    ord[d] = 1;
}
/*
* Performs bounded Bunch-Kaufman (rook) pivot selection on an n-by-n trailing
* sub–matrix A with diagonal offset d. The bounded Bunch-Kaufman algorithm
* selects a 1-by-1 or 2-by-2 pivot for symmetric indefinite factorization,
* L*D*L', where D is block diagonal with block order 1 or 2. The selected
* 1-by-1 or 2-by-2 pivot and its order are stored in vectors piv[] and ord[],
* respectively. piv[k] (and piv[k+1]) specifies the permutation(s) applied to
* row(s)/ column(s) k (and k+1). It is assumed that the symmetric indefinite
* factorization is implemented using the SAXPY method, such that trailing
* sub–matrix A has yet to be reduced (updated) when pivot selection is
* performed. BLAS routines are invoked to reduce the rows/ columns of trailing
* sub–matrix A, which are evaluated during pivot selection. The reduced rows/
* columns are stored in matrix Q for reuse in the matrix factorization.
* Matrices A, L and D are stored in column–major order with leading dimension
* ldim.
*/
void eval_pivot_blas_bbk( int n, int d, int ldim, const double *L, const double *M, const double *A, double *Q, int *piv, int *ord )
{
    const int one = 1;
    const double tol = 100.0*DBL_EPSILON;
    const double *Ar, *Arr;

    int k, p, r, t;
    double lambda = -1.0;
    double sigma = -1.0;
    double eps, q, qrr;
    double *Qr;

    // Copy 1st row/ column of A to Q and perform cumulative trailing
    // sub-matrix reduction on this vector
    for ( int i = 0; i < n; i++ ) {
        *(Q + i) = *(A + i);
    }
    r = 0;
    reduce_ldlt_vector_blas( n, d, r, ord, ldim, L, M, Q );

    // Determine largest magnitude off-diagonal entry in 1st row/ column
    for ( int i = 1; i < n; i++ ) {
        double x = fabs( *(Q+i) );
        if ( x > lambda ) {
            lambda = x;
            r = i;
        }
    }

    k = 0;
    p = 0;
    if ( lambda > 0.0 ) {
        q = fabs( *Q );
        if ( q >= alpha * lambda ) {
            // Use 1st row/ column as 1-by-1 pivot
            piv[d] = d;
            ord[d] = 1;
        } else {
            Q_r = Q + ldim;
            int piv_slect = 0; // Pivot selected = FALSE
            while ( piv_slect == 0 ) { // Until pivot selected perform ...
                A_r = A + r*ldim;
                Ar_r = A_r + r;
                // Determine maximum magnitude off-diagonal entry in reduced
                // row/ column r. Because of symmetry only entries on and below
                // the diagonal have been updated/ pivoted, so check entries in
                // row r corresponding to entries above the diagonal in column r
                // and entries below the diagonal in column r
                const double *Arr = A_r + r;
            }
        }
    }
}


double *Qrr = Q_r + r;
t = n - r;
dcopy_( &r, Ar, &ldim, Q_r, &one );
dcopy_( &t, Arr, &one, Qrr, &one );
reduce_ldl_vector_blas( n, d, r, ord, ldim, L, M, Q_r );
qrr = fabs( *(Q_r+r) );
for ( int i = 0; i < n; i++ ) {
    double x = fabs( *(Q_r+i) );
    if ( x > sigma && i != r ) {
        sigma = x;
        p = i;
    }
}

// Calculate relative difference between lambda and sigma to check whether they are equal within rounding error tolerance
eps = fabs( lambda - sigma ) / sigma;
if ( qrr >= alpha * sigma ) {
    // Use rth row/column as 1-by-1 pivot
    piv[d] = d + r;
    ord[d] = 1;
    dcopy_( &n, Q_r, &one, Q, &one );
    piv_slct = 1;
#if defined(LDLFACT) && defined(PROFILE)
xtra_work++;
#endif
} else if ( eps < tol ) {
    // Use kth and rth rows/columns as 2-by-2 pivot
    piv[d] = d + k;
    piv[d+1] = d + r;
    ord[d] = 2;
    ord[d+1] = 0;
    piv_slct = 1;
} else {
    // Continue search for pivot
    k = r;
    lambda = sigma;
    dcopy_( &n, Q_r, &one, Q, &one );
    r = p;
    sigma = -1.0;
#if defined(LDLFACT) && defined(PROFILE)
xtra_work++;
#endif
} else {
    // Use 1st row/column as 1-by-1 pivot
    piv[d] = d;
    ord[d] = 1;
}
Performing pivoting of an $n$-by-$n$ symmetric matrix $A$ stored in column-major order with leading dimension $ldim$. To preserve the symmetry of matrix $A$ both row and column $k$ are interchanged with row and column $r$. $A' = PAP'$, where $P$ is the permutation matrix and $P'$ its transpose, is called a symmetric permutation of $A$. Because of symmetry only elements on and below the diagonal need be interchanged.

```c
void pivot_sym(int n, int k, int r, int ldim, double *A)
{
 double *A_k = A + k*ldim;
 double *A_r = A + r*ldim;
 double *Ak_ = A + k;
 double *Ar_ = A + r;

 // Interchange elements $A(k,0:k-1)$ with $A(r,0:k-1)$
 // i.e., elements of rows k and r to the left of column k
 for (int j = 0; j < k; j++) {
 double akj = *(Ak_ + j*ldim);
 *(Ak_ + j*ldim) = *(Ar_ + j*ldim);
 *(Ar_ + j*ldim) = akj;
 }

 // Interchange diagonal elements of rows/columns k and r
 double akk = *(A_k + k);
 *(A_k + k) = *(A_r + r);
 *(A_r + r) = akk;

 // Interchange elements $A(k+1:r-1,k)$ with $A(r,k+1:r-1)$
 for (int i = k+1; i < r; i++) {
 double aik = *(A_k + i);
 *(A_k + i) = *(Ar_ + i*ldim);
 *(Ar_ + i*ldim) = aik;
 }

 // Interchange elements $A(r+1:n-1,k)$ with $A(r+1:n-1,r)$
 // i.e., elements of columns k and r below row r
 for (int i = r+1; i < n; i++) {
 double aik = *(A_k + i);
 *(A_k + i) = *(A_r + i);
 *(A_r + i) = aik;
 }
}
```

Performing pivoting of an $n$-by-$n$ symmetric matrix $A$ stored in column-major order with leading dimension $ldim$. To preserve the symmetry of matrix $A$ both row and column $k$ are interchanged with row and column $r$. $A' = PAP'$, where $P$ is the permutation matrix and $P'$ its transpose, is called a symmetric permutation of $A$. Because of symmetry only elements on and below the diagonal need be interchanged.
row and column \( k \) are interchanged with row and column \( r \). \( A^* = P A P' \), where \( P \) is the permutation matrix and \( P' \) its transpose, is called a symmetric permutation of \( A \). The pivoting algorithm populates column \( k \) on and below the diagonal of matrix \( A \) with row/column \( r \) of the associated reduced trailing sub-matrix stored in vector \( \text{vec}[] \). Because of symmetry only elements on and below the diagonal need be interchanged.

```c
void pivot_sym_reduce(int n, int k, int r, double *vec, int ldim, double *A)
{
 double *A_k = A + k*ldim;
 double *A_r = A + r*ldim;
 double *A_k_ = A + k;
 double *A_r_ = A + r;

 if (k != r) {
 // Interchange elements \(A(k,0:k-1) \) with \(A(r,0:k-1) \)
 // i.e., elements of rows \(k \) and \(r \) to the left of column \(k \)
 for (int j = 0; j < k; j++) {
 double akj = *(A_k_ + j*ldim);
 *(A_k_ + j*ldim) = *(A_r_ + j*ldim);
 *(A_r_ + j*ldim) = akj;
 }

 // Interchange reduced diagonal elements \(\text{vec}[k] \) and \(\text{vec}[r] \), and
 // overwrite diagonal element \(A(r,r) \) with \(A(k,k) \)
 double vk = vec[k];
 vec[k] = vec[r];
 vec[r] = vk;
 *(A_r + r) = *(A_k + k);

 // Replace elements \(A(r,k+1:r-1) \) with \(A(k+1:r-1,k) \)
 for (int i = k+1; i < r; i++) {
 *(A_r_ + i*ldim) = *(A_k + i);
 }

 // Replace elements \(A(r+1:n-1,r) \) with \(A(r+1:n-1,k) \)
 // i.e., elements below row \(r \)
 memcpy(A_r+r+1, A_k+r+1, (n-r-1)*sizeof(double));
 }

 // Replace elements \(A(k:n-1,k) \) with reduced vector \(\text{vec}[k:n-1] \)
 memcpy(A_k + k, &vec[k], (n-k)*sizeof(double));
}
```

* Performs pivoting of an \( n \times n \) symmetric matrix \( A \), and working array \( W \), which stores trailing sub-matrix updates applied to columns of \( A \). Arrays \( A \) and \( W \) are stored in column-major order with leading dimension \( ldim \). To preserve the symmetry of matrix \( A \) both row and column \( k \) are interchanged with row and column \( r \). \( A^* = P A P' \), where \( P \) is the permutation matrix and \( P' \) its transpose.
transpose, is called a symmetric permutation of $A$. BLAS routines are invoked to perform copy and swap operations that constitute symmetric pivoting. Because of symmetry only elements on and below the diagonal need be interchanged.

```c
void pivot_sym_blas(int n, int k, int r, int ldim, double *W, double *A)
{
 const int one = 1;

 int t;
 double *Ak = A + k*ldim;
 double *Ar = A + r*ldim;
 double *Wk = W + k*ldim;
 double *Ak_ = A + k;
 double *Ar_ = A + r;
 double *Wk_ = W + k;
 double *Wr_ = W + r;

 if (k != r)
 {
 // Interchange elements $A(k,0:k-1)$ with $A(r,0:k-1)$ and $W(k,0:k-1)$ with $W(r,0:k-1)$, i.e., elements of rows k and r to the left of column k
 dswap_(&k, Ak_, &ldim, Ar_, &ldim);
 dswap_(&k, Wk_, &ldim, Wr_, &ldim);

 // Interchange reduced diagonal elements $W(k,k)$ and $W(r,k)$, and overwrite diagonal element $A(r,r)$ with $A(k,k)$
 double wkk = *(Wk + k);
 *(Wk + k) = *(Wk + r);
 *(Wk + r) = wkk;
 *(Ar + r) = *(Ak + k);

 // Replace elements $A(r,k+1:r-1,k)$ with $A(k+1:r-1,k)$
 double *Arl = Ar_ + k*ldim + ldim;
 double *Alk = Ak_ + k + 1;
 t = r - k - 1;
 dcopy_(&t, Alk, &one, Arl, &ldim);

 // Replace elements $A(r+1:n-1,r)$ with $A(r+1:n-1,k)$
 // i.e., elements below row r
 double *Asr = Ar_ + r + 1;
 double *Ask = Ak_ + r + 1;
 t = n - r - 1;
 dcopy_(&t, Ask, &one, Asr, &one);
 }
}
```

/* Performs cumulative trailing sub-matrix updates (reduction) on row/ column $r$ of a symmetric indefinite matrix, which is stored in vector vec[] during the factorization procedure. Suppose that $P*A*P^T = [A_{00}^*, A_{01}^*; A_{10}^*, A_{11}^*]$
Then the trailing sub-matrix $A_{11} = L_{11} + L_{11}'$, where vec[] is row/ column r of $A_{11}$.

L is a pointer to m-by-n block $L_{10}$ of a unit lower triangular matrix, and D is a pointer to n-by-n block $D_{00}$ of a block diagonal matrix with block order 1 or 2 defined in ord[]. Matrices L and D are stored in column-major order with leading dimension ldim.

```c
void reduce_ldl_tvector(int m, int n, int r, int *ord, int ldim,
 const double *L, const double *D, double *vec)
{
 #if defined(LDLFACT) && defined(PROFILE)
 struct timespec start_vec, end_vec;
 get_time(&start_vec, end_vec);
 #endif

 const double *Lr = L + r; // Points to element L'(0, r)
 for (int k = 0; k < n;) {
 const double *L_k = L + k*ldim; // Points to element L(0, k)
 if (ord[k] == 1) { // 1-by-1 pivot
 double dkk = *(D + k + k*ldim); // Element D(k, k)
 double lrk = *(Lr + k*ldim); // Element L'(k, r) = L(r, k)
 for (int i = 0; i < m; i++) {
 vec[i] -= *(L_k + i) * dkk * lrk;
 }
 k++;
 } else { // 2-by-2 pivot
 double d00 = *(D + k + k*ldim); // Element D(k, k)
 double d10 = *(D + k + 1 + k*ldim); // Element D(k+1, k) = D(k, k+1)
 double d11 = *(D + k + 1 + k*ldim + ldim); // Element D(k+1, k+1)
 double lr0 = *(Lr + k*ldim); // Element L'(k, r) = L(r, k)
 double lr1 = *(Lr + k*ldim + ldim); // Element L'(k+1, r) = L(r, k+1)
 for (int i = 0; i < m; i++) {
 vec[i] -= *(L_k + i) * (d00*lr0 + d10*lr1) +
 *(L_k + i + ldim) * (d10*lr0 + d11*lr1);
 }
 k += 2;
 }
 }
 #if defined(LDLFACT) && defined(PROFILE)
 get_time(&end_vec);
 tm_red_vec += timespec_diff(start_vec, end_vec);
 #endif
}
```

* Performs cumulative trailing sub-matrix updates (reduction) on row/ column r.
of a symmetric indefinite matrix, which is stored in vector vec[] during the
factorization procedure. Suppose that \( P^*A^*P' = [A_{00}, A_{01}^*; A_{10}^*, A_{11}^*] \)
\( = [L_{00}, 0; L_{10}, L_{11}] \ast [D_{00}, 0; 0; D_{11}] \ast [L_{00}', L_{10}'; 0, L_{11}'] \).
Then the trailing sub-matrix \( A_{11}^\ast = L_{11} \ast D_{11} \ast L_{11}' \)
\( = A_{11} - L_{10} \ast D_{00} \ast L_{10}' \), where vec[] is row/ column r of \( A_{11}^\ast \).
\( L \) is a pointer to m-by-n block \( L_{10} \) of a unit lower triangular matrix, and
\( M \) is a pointer to m-by-n working array that stores the product \( L_{10} \ast D_{00} \).
Matrices \( L \) and \( M \) are stored in column-major order with leading dimension ldim.
BLAS routine DGMEMV performs the matrix-vector multiplication operation that
constitutes the trailing sub-matrix update of column r.

```c
void reduce_ldlt_vector_blas(int m, int n, int r, int *ord, int ldim,
const double *L, const double *M, double *vec)
{
#if defined(LDLTFACT) && defined(PROFILE)
 timespec sta_red_vec, end_red_vec;
 get_time(&sta_red_vec);
#endif
 const char no_trans = 'N';
 const int incx = ldim;
 const int incy = 1;
 const double _one = -1.0;
 const double one = 1.0;

 const double *Lr_ = L + r; // Points to element \(L(r,0) = L'(0,r) \)
 dgemv(&no_trans, &m, &n, &_one, M, &ldim, Lr_, &incx, &one, vec, &incy);
#if defined(LDLTFACT) && defined(PROFILE)
 get_time(&end_red_vec);
 tm_red_vec += timespec_diff(sta_red_vec, end_red_vec);
#endif
}
```

Matrix factorization reduces trailing sub-matrix \( A \) by computing
\( A = A - L \ast D \ast T' \), where \( A \) is an m-by-n sub-matrix, \( L \) and \( T \) are m-by-p and
n-by-p blocks of unit lower triangular matrices, and \( D \) is a p-by-p block of a
block diagonal matrix with block order 1 or 2 — vector ord[\( k \)] specifies the
diagonal block order. \( A, L, D \) and \( T \) are stored in column-major order with
leading dimension ldim. The trailing sub-matrix update is an implementation
of the SAXPY operation. Because of symmetry, the trailing sub-matrix update
need only be performed on elements on or below the diagonal.

```c
void reduce_ldlt_matrix(int m, int n, int p, int diag, const int *ord,
int ldim, const double *L, const double *D, const double *M,
const double *T, double *A)
{
```
for ( int j = 0; j < n; j++ ) {
    const double *Tj = T + j;  // Points to element T'(0,j)
    double *A_j = A + j*ldim;  // Points to element A(0,j)
    for ( int k = 0; k < p; ) {
        const double *L_k = L + k*ldim;  // Points to element L(0,k)

        if ( ord[k] == 1 ) {  // 1-by-1 pivot
            double dkk = *(D + k + k*ldim);  // Element D(k,k)
            double tkj = *(Tj + k*ldim);  // Element T'(k,j) = T(j,k)
            for (int i = diag ? j : 0; i < m; i++) {
                *(A_j + i) -= *(L_k + i) * dkk * tkj;
            }
            k++;
        } else {  // 2-by-2 pivot
            double d00 = *(D + k + k*ldim);  // Element D(k,k)
            double d10 = *(D + k + 1 + k*ldim);  // Element D(k+1,k) = D(k,k+1)
            double d11 = *(D + k + 1 + k*ldim + ldim);  // Element D(k+1,k+1)
            double tj0 = *(Tj + k*ldim);  // Element T'(k,j) = T(j,k)
            double tj1 = *(Tj + k*ldim + ldim); // Element T'(k+1,j) = T(j,k+1)
            for (int i = diag ? j : 0; i < m; i++) {
                *(A_j + i) -= *(L_k + i) * (d00*tj0 + d10*tj1) +
                        *(L_k + i + ldim) * (d10*tj0 + d11*tj1);
            }
            k += 2;
        }
    }
}

/*
 * Matrix factorization reduces trailing sub-matrix A by computing
 * A = A - L*D*T', where A is an m-by-n sub-matrix, L and T are m-by-p and
 * n-by-p blocks of unit lower triangular matrices, and D is a p-by-p block of a
 * block diagonal matrix with block order 1 or 2 — vector ord[k] specifies the
 * diagonal block order. Matrix M stores the product L*D. A, M and T are
 * stored in column-major order with leading dimension ldim. BLAS routines
 * DGEMM and DGERM perform the trailing sub-matrix update, which need only be
 * applied to elements on or below the diagonal because of symmetry.
 */
void reduce_ldlt_matrix_blas( int m, int n, int p, int diag, const int *ord,
                          int ldim, const double *L, const double *D, const double *M,
                          const double *T, double *A )
{
    const char trans = 'T';
    const char no_trans = 'N';
    const int inx = ldim;
    const int iny = 1;
    const double _one = -1.0;
    const double one = 1.0;
// Compute \( A = A - L*D*T' = A - M*T' \)
if ( diag ) {
    // diagonal block, \( m = n \)
    for ( int j = 0; j < n; j++ ) {
        int r = n - j;
        const double *Mj = M + j;
        const double *Tj = T + j;
        double *Ajj = A + j + j * ldim;
        dgemv( &no_trans, &r, &p, &one, Mj, &ldim, Tj, &incx,
               &one, Ajj, &incy );
    }
} else {
    // rectangular block
    dgemm( &no_trans, &trans, &m, &n, &p, &one, M, &ldim, T, &ldim,
           &one, A, &ldim );
}

/\* Matrix factorization reduces trailing sub-matrix \( A \) by computing
\* \( A = A - L*D*L' \), where \( A \) is an \( m \times m \) sub-matrix,
\* \( L \) is an \( m \times n \) column block
\* of a unit lower triangular matrix and \( D \) is an \( n \times n \) block of a block
\* diagonal matrix with block order 1 or 2 — vector \( ord[k] \) specifies the
\* diagonal block order. For the implementation that uses the BLAS library,
\* matrix \( M \) stores the product \( L*D \). Matrices \( A, L, D, M \) and \( T \) are stored in
\* column-major order with leading dimension \( ldim \). Blocking is used to optimize
\* memory access for the trailing sub-matrix update, and \( bdim \) is the blocking
\* parameter. Because of symmetry, the trailing sub-matrix update need only be
\* performed on diagonal blocks and blocks below the diagonal.
*/
void reduce_ldlt_mat_blk( int blas, int m, int n, const int *ord, int bdim,
                         int ldim, const double *L, const double *D, const double *M, double *A )
{
    void (*reduce_matrix)( int m, int n, int p, int diag, const int *ord,
                           int ldim, const double *L, const double *D, const double *M,
                           const double *T, double *A );

    if ( blas ) {
        reduce_matrix = reduce_ldlt_matrix_blas;
    } else {
        reduce_matrix = reduce_ldlt_matrix;
    }

    for ( int j = 0; j < m; j += bdim ) {
        // Determine number of columns in \((i,j)\)th block of \( A \)
        const int s = (j + bdim > m) ? (m - j) : bdim;

        for ( int k = 0; k < n; k += bdim ) {
            int diag = 1;  // Diagonal block = TRUE
            // Determine number of columns of \( L_{ik} \), rows of \( L_k' \),
            // and dimension of square matrix block \( D_{kk} \)
            const int t = (k + bdim > n) ? (n - k) : bdim;
        }
// Set pointer to matrix blocks Dkk and L'kj. Pointer to L'kj also
// points to Ljk — referred to as Tjk to differentiate from Lik
const double *Dkk = D + k + k*ldim;
const double *Tjk = L + j + k*ldim;

for ( int i = j; i < m; i += bdim ) {
    // Determine number of rows in (i,j)th block of A
    const int r = (i + bdim > m) ? (m - i) : bdim;
    // Set pointers to block matrices Lik, Mik = Lik*Dkk, and Aij
    const double *Mik = M + i + k*ldim;
    const double *Lik = L + i + k*ldim;
    double *Aij = A + i + j*ldim;
    // Reduce trailing block matrix
    reduce_matrix( r, s, t, diag, &ord[k],
                   ldim, Lik, Dkk, Mik, Tjk, Aij );
    diag = 0;   // Diagonal block = FALSE
}

/*
 * Implements a rectangular version of the SAXPY operation (jki indexing) for
 * symmetric indefinite factorization. Symmetric indefinite m-by-n matrix A
 * with leading dimension ldim is factored into a unit lower triangular matrix L
 * and block diagonal matrix D with block order 1 or 2. Symmetrically permuted
 * matrix A' = P*A*P' = L*D*L', where P is the permutation matrix, and L' and P'
 * are the transpose of L and P, respectively. Permutation matrix P is encoded
 * in vectors piv[] and ord[], such that row/column k is interchanged with
 * row/column piv[k], and ord[k] specifies the diagonal block order. Entries
 * of L and D are stored on and below the diagonal of matrix A, i.e., L and D
 * overwrite A.
 */
void ldlt_factor( char pivot, int m, int *n, int *piv, int *ord, int ldim,
                  double *A, double *W )
{
    #if defined(LDLTFACT) && defined(PROFILE)
    struct timespec sta_fact_piv, end_fact_piv;
    #endif

    int j = 0;
    double *D = A;

    for ( ; j < *n; ) {
        double *L = A + j;
        double *A_j = A + j*ldim;
        double *Ajj = A_j + j;
        // Evaluate pivot using to method specified in argument list
        #if defined(LDLTFACT) && defined(PROFILE)
        get_time( &sta_fact_piv );
        #endif
        // ...
    }
}
switch ( pivot )
{
  case 'B':
    eval_pivot_reduce_bbk( m-j, j, ldim, L, D, Ajj, W+j, piv, ord );
    break;
  case 'K':
    eval_pivot_reduce_bbk( m-j, j, ldim, L, D, Ajj, W+j, piv, ord );
    break;
  default:
    eval_pivot_reduce_bbk( m-j, j, ldim, L, D, Ajj, W+j, piv, ord );
    break;
}

#define defined(X) && defined(Y)

#endif

get_time( &end_fact_piv );
tm_fact_piv += timespec_diff( sta_fact_piv, end_fact_piv );

// Perform symmetric pivoting using reduced trailing sub-matrix row(s)/
// column(s) returned by pivot selection algorithm, and compute column(s)
// of unit lower triangular matrix L — because of symmetry need only
// update elements on and below the diagonal. Details of these
// computations differ depending on whether the diagonal block (pivot)
// is 1-by-1 or 2-by-2
if ( ord[j] == 1 ) // 1-x-1 pivot

#define defined(X) && defined(Y)

get_time( &sta_fact_piv );

pivot_sym_reduce( m, j, piv[j], W, ldim, A );

get_time( &end_fact_piv );
tm_fact_piv += timespec_diff( sta_fact_piv, end_fact_piv );

#define defined(X) && defined(Y)

get_time( &sta_fact_piv );

double ajj = *Ajj;
for ( int i = j+1; i < m; i++ ) {
  *(A_j + i) /= ajj;
}
j++;

#else // 2-x-2 pivot, ord[k] == 2

#define defined(X) && defined(Y)

get_time( &sta_fact_piv );

pivot_sym_reduce( m, j, piv[j], W, ldim, A );

get_time( &end_fact_piv );
tm_fact_piv += timespec_diff( sta_fact_piv, end_fact_piv );

#define defined(X) && defined(Y)

get_time( &end_fact_piv );
tm_fact_piv += timespec_diff( sta_fact_piv, end_fact_piv );
#endif

// Let $A(k:n-1,k:k+1) = [D, C'; C, A'] = \begin{bmatrix} 1, & 0; \end{bmatrix} [D, 0; 0, A^* - C*inv(D)*C'] * [1, 0; C*inv(D), 1]$

// First solve for $(n-k-2)$-by-2 unit lower triangular block, then reduce trailing sub-matrix by computing $A^* - C*inv(D)*C'$. Once computed, $L$ and $D$ overwrite $A$

double d00 = *(A+j);
    // Element $D(j,j)$
double d10 = *(A+j+1);
    // Element $D(j+1,j) = D(j,j+1)$
double d11 = *(A+j+1+ldim);
    // Element $D(j+1,j+1)$
double denom = d00 * d11 - d10 * d10;

for (int i = j + 2; i < m; i++) {
    double aij = *(A+j+i);
    double aik = *(A-j+i+ldim);
    *(A+j+i) = (aij * d11 - aik * d10) / denom;
    *(A+j+i+ldim) = (aik * d00 - aij * d10) / denom;
}

j += 2;
}

*n = j;

/*
* Implements a rectangular version of the SAXPY operation (jki indexing) for symmetric indefinite factorization. Symmetric indefinite $m$-by-$n$ matrix $A$
* with leading dimension $ldim$ is factored into a unit lower triangular matrix $L$
* and block diagonal matrix $D$ with block order 1 or 2. Symmetrically permuted $matrix A^* = P*A*P^T = L*D*L^T$, where $P$ is the permutation matrix, and $L'$ and $P'$
* are the transpose of $L$ and $P$, respectively. Permutation matrix $P$ is encoded
* in vectors piv[] and ord[], such that row/ column $k$ is interchanged with $row/ column piv[k]$, and ord[k] specifies the diagonal block order. To the
* extent possible, this implementation of the SAXPY operation uses the BLAS
* library to perform matrix operations. Entries of $L$ and $D$ are stored on and below the diagonal of matrix $A$, i.e., $L$ and $D$ overwrite $A$.
*/
void ldlt_factor_blas(char pivot, int m, int *n, int *piv, int *ord, int ldim,
    double *A, double *W)
{
    #if defined(LDLTFACT) && defined(PROFILE)
        struct timespec sta_fact_piv, end_fact_piv;
    #endif

    int j = 0;

    for ( ; j < *n; ) {
        double *L = A + j;
            // $A$ stores unit lower triangular matrix $L$
        double *M = W + j;
            // $W$ stores $L*D$
        double *Wj = W + j*ldim;
        double *Wjj = Wj + j;
        
...
double *A_j = A + j*loldim;
double *Ajj = A_j + j;

// Evaluate pivot using to method specified in argument list
#if defined(LDLTFACT) && defined(PROFILE)
    get_time( &sta_fact.piv );
#endif
switch ( pivot ) {
    case 'B':
        eval_pivot_blas_bbk( m-j, j, ldim, L, M, Ajj, Wjj, piv, ord );
        break;
    case 'K':
        eval_pivot_blas_bbk( m-j, j, ldim, L, M, Ajj, Wjj, piv, ord );
        break;
    default:
        eval_pivot_blas_bbk( m-j, j, ldim, L, M, Ajj, Wjj, piv, ord );
        break;
}
#if defined(LDLTFACT) && defined(PROFILE)
    get_time( &end_fact.piv );
#endif
// Perform symmetric pivoting using reduced trailing sub-matrix row(s)/
// column(s) returned by pivot selection algorithm, and compute column(s)
// of unit lower triangular matrix L — because of symmetry need only
// update elements on and below the diagonal. Details of these
// computations differ depending on whether the diagonal block (pivot)
// is 1-by-1 or 2-by-2
#if defined(LDLTFACT) && defined(PROFILE)
    get_time( &sta_fact.piv );
#endif
pivot_sym_blas( m, j, piv[j], ldim, W, A );
#if defined(LDLTFACT) && defined(PROFILE)
    get_time( &end_fact.piv );
#endif
tm_fact_piv += timespec_diff( sta_fact_piv, end_fact_piv );
#if defined(LDLTFACT) && defined(PROFILE)
    get_time( &sta_fact.piv );
#endif
    double ajj = *Wjj;
    *Ajj = ajj;
    for ( int i = j+1; i < m; i++ ) {
        *(A_j + i) = *(W_j + i) / ajj;
    }
j++;
} else {
#if defined(LDLTFACT) && defined(PROFILE)
    get_time( &sta_fact.piv );
#endif
    // Apply first of two pivots to matrix A using first column of W
    pivot_sym_blas( m, j, piv[j], ldim, W, A );
// Apply first of two pivots to second column of W
*(W[j] + ldim + piv[j]) = *(W[j] + ldim + j);

// Apply second of two pivots to matrix A using second column of W
pivot_sym_blas( m, j+1, piv[j+1], ldim, W, A);

#endif

// Solve for L(j+2:n-1,j:j+1) * D(j:j+1,j:j+1) = A(j+2:n-1,j:j+1)
// where columns of updated trailing sub-matrix A and diagonal block
// are stored in W. Once computed, L and D overwrite A
double d00 = *(Wjj);
// Element D(j,j)
double d10 = *(Wjj + 1);
// Element D(j+1,j) = D(j,j+1)
double d11 = *(Wjj + 1 + ldim);
// Element D(j+1,j+1)
double denom = d00 * d11 - d10 * d10;

*Ajj = d00;
*(Ajj + 1) = d10;
*(Ajj + 1 + ldim) = d11;
for ( int i = j+2; i < m; i++ ) {
    *(A[i+j]) = (*(W[j+i]) * d11 - *(W[j+i+ldim]) * d10) / denom;
    *(A[i+j+i+ldim]) = (*(W[j+i+1+ldim]) * d00 - *(W[j+i]) * d10) / denom;
}
j += 2;
}

*/

* Implements simple blocking with partial or rook pivoting to factorize
* symmetric indefinite n-by-n matrix A (with leading dimension ldim) into a unit
* lower triangular matrix L and block diagonal matrix D with block order 1 or 2.
* Symmetrically permuted matrix A^ = P * A * P' = L * D * L', where P is the
* permutation matrix, and L' and P' are the transpose of L and P, respectively.
* Permutation matrix P is encoded in vectors pivot[] and ord[], such that row/
* column k is interchanged with row/ column pivot[k], and ord[k] specifies the
* diagonal block order. Suppose that A is decomposed into blocks
* [A_{00}, A_{01}; A_{10}, A_{11}], where A_{00} is an r-by-r block matrix. First, a
* rectangular version of the SAXPY operation for symmetric indefinite
* factorization computes
* P * [A_{00}, A_{01}; A_{10}, A_{11}] * P' = [A_{00}', A_{01}'; A_{10}', A_{11}']
* = [L_{00}, 0; L_{10}, L_{11}] * [D_{00}, 0; 0; D_{11}] * [L_{00}', L_{10}'; 0, L_{11}']
* = [L_{00}*D_{00}*L_{00}', (L_{10}*D_{00}*L_{10}')',
*   L_{10}*D_{00}*L_{00}', L_{10}*D_{00}*L_{10}'+ L_{11}*D_{11}*L_{11}'].
* This computation yields the LDL' factorization for the first n-by-r column
* block of A. Then the trailing submatrix is updated to give
* A_{11}' = L_{11} * D_{11} * L_{11}' = A_{11}' - L_{10} * D_{00} * L_{10}'.
* This procedure is repeated iteratively on the trailing sub-matrix until the
* last diagonal block (dimension <= r) is reached. Simple blocking is also
* used to optimize memory access when updating the trailing sub-matrix.
/**
 * void ldlt_block_rook_pivot ( int blas, char pivot, int n, int *piv, int *ord,
 *     int ldim, double *A )
 * {
 *     const int lapack = 0;
 *     const int bdim = get_block_dim_ldlt ( lapack, blas, ldim );
 *     int d, j, r, t;
 *     void (*ldlt)( char pivot, int m, int *n, int *piv, int *ord, int ldim,
 *                     double *A, double *W );
 *
 * #if defined(LDLTFACT) && defined(PROFILE)
 *     struct timespec sta_ldlt, sta_factor, sta_pivot, sta_reduce,
 *                     end_ldlt, end_factor, end_pivot, end_reduce;
 *     xtra_work = 0;
 *     tm_ldlt = 0.0;
 *     tm_factor = 0.0;
 *     tm_pivot = 0.0;
 *     tm_reduce = 0.0;
 *     tm_fact_piv = 0.0;
 *     tm_red_vec = 0.0;
 *     get_time(&sta_ldlt);
 * #endif
 *
 *     if ( blas ) {
 *         ldlt = ldlt_factor_blas;
 *         W = (double *) malloc( ldim*(bdim+1)*sizeof(double) );
 *     } else {
 *         ldlt = ldlt_factor;
 *         W = (double *) malloc( ldim*2*sizeof(double) );
 *     }
 *
 *     j = 0;
 *     r = (bdim > n) ? n : bdim;
 *     // Perform rectangular factorization on first column block A(0:n-1,0:r)
 * #if defined(LDLTFACT) && defined(PROFILE)
 *     get_time( &sta_factor );
 * #endif
 *     ldlt( pivot, n, &r, &piv[j], &ord[j], ldim, A, W );
 * #if defined(LDLTFACT) && defined(PROFILE)
 *     get_time( &end_factor );
 *     tm_factor += timespec_diff( sta_factor, end_factor );
 * #endif
 *
 *     d = 0;
 *     j = r;
 *     t = n - r;
 *     Ajj = A;
 * }
for ( ; j < n; j += r, t -= r ) {
    // Adjust pivot vector of previous block for diagonal offset
    for (int i = d; i < j; i++) {
        piv[i] += d;
    }
    L = Ajj + r;
    D = Ajj;
    Ajj = A + j + j*ldim;
    // Reduce trailing sub-matrix, P * A(:,j:n-1) * P'
    #if defined(LDLTFACT) && defined(PROFILE)
        get_time( &start_reduce );
    #endif
    reduce_ldlt_mat_blk( blas, t, r, &ord[d], r, ldim, L, D, W+j, Ajj );
    #if defined(LDLTFACT) && defined(PROFILE)
        get_time( &end_reduce );
        tm_reduce += timespec_diff( start_reduce, end_reduce );
    #endif
    d += r;
    r = t < bdim ? t : bdim;
    // Perform rectangular factorization on column block A(:,j:j+r-1)
    #if defined(LDLTFACT) && defined(PROFILE)
        get_time( &start_factor );
    #endif
    ldlt( pivot, t, &r, &piv[j], &ord[j], ldim, Ajj, W+j );
    #if defined(LDLTFACT) && defined(PROFILE)
        get_time( &end_factor );
        tm_factor += timespec_diff( start_factor, end_factor );
    #endif
    // Apply permutation matrix for current block, encoded in piv(:,j:r-1),
    // to columns to the left of current block A(:,0:j-1)
    #if defined(LDLTFACT) && defined(PROFILE)
        get_time( &start_pivot );
    #endif
    for (int i = j; i < j+r; i++) {
        if ( i != piv[i] + j ) {
            if ( blas ) {
                double *Ai_ = A + i;
                double *Ar_ = A + piv[i] + j;
                dswap( &k, Ai_, &ldim, Ar_, &ldim );
            } else {
                for (int k = 0; k < j; k++) {
                    double aik = *(A + i + k*ldim);
                    *(A + i + k*ldim) = *(A + piv[i] + j + k*ldim);
                    *(A + piv[i] + j + k*ldim) = aik;
                }
            }
        }
    }
    #if defined(LDLTFACT) && defined(PROFILE)
get_time( &end.pivot );
tm.pivot += timespec_diff( sta.pivot , end.pivot );
#endif

// Adjust pivot vector of last block for diagonal offset
#if defined(LDLTFACT) && defined(PROFILE)
get_time( &sta.pivot );
#endif

for( int i = d; i < n; i++ ) {
piv[i] += d;
}

#if defined(LDLTFACT) && defined(PROFILE)
get_time( &end.ldlt );
tm.ldlt += timespec_diff( sta.ldlt , end.ldlt );
#endif

int num.piv = count.pivot( 0, n, piv, ord );
double frac_fact = num.piv / (double) (num.piv + xtra.work);
tm.pivot = tm.pivot + tm_fact.piv - frac_fact * tm.red_vec;
tm.factor = tm.factor - tm_fact.piv + frac_fact * tm_red_vec;
printf( stdout , "%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\n",
     tm.ldlt , tm_factor , tm.pivot , tm_reduce ,
     tm.factor/tm.ldlt*100 , tm.pivot/tm.ldlt*100 , tm_reduce/tm.ldlt*100 );
#endif

/*
 * Implements simple blocking with complete pivoting to factorize symmetric
 * indefinite n-by-n matrix A (with leading dimension ldim) into a unit lower
 * triangular matrix L and block diagonal matrix D with block order 1 or 2.
 * Symmetrically permuted matrix A' = P*A*P' = L*D*L', where P is the
 * permutation matrix, and L' and P' are the transpose of L and P, respectively.
 * Permutation matrix P is encoded in vectors piv[] and ord[], such that row/
 * column k is interchanged with row/ column piv[k], and ord[k] specifies the
 * diagonal block order. Each pass through the k-loop selects a 1-by-1 or
 * 2-by-2 pivot, computes column(s) of the unit lower triangular matrix below
 * the pivot, and performs an outer product operation to reduce the trailing
 * sub-matrix. In order to implement complete pivoting the entire trailing
 * sub-matrix must be updated prior to each pivot selection, i.e., prior to each
 * pass through the k-loop. Hence, the blocking procedure is applied to the
 * trailing sub-matrix reduction alone.
*/
void ldlt_block_comp_pivot( int blas , char pivot , int n , int *piv , int *ord ,
        int ldim , double *A )
{
const int lapack = 0;
const int bdim = get_block_dim_ldlt( lapack, blas, ldim);


W = (double *) malloc( ldim*2*sizeof(double) );
A_k = A;
Akk = A;
for ( int k = 0; k < n-1; ) {
    // Evaluate pivot using to method specified in argument list
    switch ( pivot ) {
    case 'P':
        eval_pivot_bp( n-k, k, ldim, Akk, piv, ord );
        break;
    default:
        eval_pivot_bp( n-k, k, ldim, Akk, piv, ord );
        break;
    }

    // Perform symmetric pivoting, compute column(s) of unit lower
    // triangular matrix L, and update trailing sub-matrix — because of
    // symmetry need only update elements on and below the diagonal.
    // Details of these computations differ depending on whether the
    // diagonal block (pivot) is 1-by-1 or 2-by-2
    if ( ord[k] == 1 ) { // 1-x-1 pivot
        if ( k != piv[k] ) {
            pivot_sym( n, k, piv[k], ldim, A );
        }
        // Store A(k+1:n-1,k), a column vector of LD, in working array W
        memcpy( W+k+1, Akk+1, (n-k-1)*sizeof(double) );
        double akk = *Akk;
        for ( int i = 1; i < n-k; i++ ) {
            *(Akk + i) /= akk;
        }
    } else { // 2-x-2 pivot, ord[k] == 2
        if ( k != piv[k] ) {
            pivot_sym( n, k, piv[k], ldim, A );
        }
        if ( k+1 != piv[k+1] ) {
            pivot_sym( n, k+1, piv[k+1], ldim, A );
        }
        // Store A(k+2:n-1,k:k+1), a column block of LD, in working array W
        memcpy( W+k+2, Akk+2, (n-k-2)*sizeof(double) );
        memcpy( W+k+2+ldim, Akk+2+ldim, (n-k-2)*sizeof(double) );
        // Solve for L(k+2:n-1,k:k+1) * D(k:k+1,k:k+1) = A(k+2:n-1,k:k+1)
        // Once computed, L and D overwrite A
        double d00 = *Akk; // Element D(k,k)
        double d10 = *(Akk + 1); // Element D(k+1,k) = D(k,k+1)
        double d11 = *(Akk + 1 + ldim); // Element D(k+1,k+1)
double denom = d00 * d11 - d10 * d10;
for ( int i = k+2; i < n; i++ ) {
  *(A_k+i) = ( *(W+i) * d11 - *(W+i+ldim) * d10 ) / denom;
  *(A_k+i+ldim) = ( *(W+i+ldim) * d00 - *(W+i) * d10 ) / denom;
}
}

L = Akk + ord[k];
D = Akk;
M = W + k + ord[k];
A_k = A_k + ord[k]*ldim;
Akk = A_k + k + ord[k];
// Reduce trailing sub-matrix, \( P \cdot A(\k + \text{ord}[\k]:n-1,\k+\text{ord}[\k]:n-1) \cdot P' \)
// \( L(\k + \text{ord}[\k]:n-1,\k+\text{ord}[\k]) \cdot D(\k+\text{ord}[\k],\k+\text{ord}[\k]) \)
// \( L'(\k+\text{ord}[\k]:n-1) \)
reduce_ldlt_mat_blk( blas, n-k-ord[k], ord[k], kord[k], bdim, ldim, L, D, M, Akk );
k += ord[k];
}

if ( ord[n-2] != 2 ) { // Last pivot is 1-by-1
  piv[n-1] = n-1;
  ord[n-1] = 1;
}
free( W );
}

/**********************************************************/

/*
* Implements the outer product method (kji indexing) to factorize symmetric
* indefinite n-by-n matrix \( A \) into a unit lower triangular matrix \( L \) and block
* diagonal matrix \( D \) with block order 1 or 2. Symmetrically permuted matrix
* \( A^* = P \cdot A \cdot P' = L \cdot D \cdot L' \), where \( P \) is the permutation matrix, and \( L' \) and \( P' \) are
* the transpose of \( L \) and \( P \), respectively. The permutation matrix \( P \) is encoded
* in vectors \( \text{piv}[] \) and \( \text{ord}[] \), such that row/ column \( k \) is interchanged with
* row/ column \( \text{piv}[k] \), and \( \text{ord}[k] \) specifies the diagonal block order. Entries
* of \( L \) and \( D \) are stored on and below the diagonal of matrix \( A \), i.e., \( L \) and \( D \)
* overwrite \( A \). Each pass through the \( k \)-loop performs an outer product
* operation.
*/
void ldlt_outer_product( char pivot , int n , int *piv , int *ord , double *A ) {
  const int ldim = n;

double *W;

W = (double *) malloc( ldim*2*sizeof(double) );

for ( int k = 0; k < n-1; ) {
  double *A_k = A + k*ldim;

**Performance Optimization of Symmetric Factorization Algorithms**

```c
double *Akk = A_k + k;
// Evaluate pivot using to method specified in argument list
switch (pivot) {
 case 'B':
 eval_pivot_bbk(n-k, k, ldim, Akk, piv, ord);
 break;
 case 'K':
 eval_pivot_bk(n-k, k, ldim, Akk, piv, ord);
 break;
 case 'P':
 eval_pivot_bp(n-k, k, ldim, Akk, piv, ord);
 break;
 default:
 eval_pivot_bbk(n-k, k, ldim, Akk, piv, ord);
 break;
}
// Perform symmetric pivoting, compute column(s) of unit lower
// triangular matrix L, and update trailing sub-matrix — because of
// symmetry need only update elements on and below the diagonal.
// Details of these computations differ depending on whether the
// diagonal block (pivot) is 1-by-1 or 2-by-2
if (ord[k] == 1) {
 // 1-x-1 pivot
 if (k != piv[k]) {
 pivot_sym(n, k, piv[k], ldim, A);
 }
 double akk = *Akk;
 for (int i = k+1; i < n; i++) {
 *(A_k+i) /= akk;
 }
 for (int j = k+1; j < n; j++) {
 double *A_j = A + j*ldim;
 double ajk = *(A_k+j);
 for (int i = j; i < n; i++) {
 *(A_j+i) -= *(A_k+i) * ajk * a kk;
 }
 }
 k++;
} else {
 // 2-x-2 pivot, ord[k] == 2
 if (k != piv[k]) {
 pivot_sym(n, k, piv[k], ldim, A);
 }
 if (k+1 != piv[k+1]) {
 pivot_sym(n, k+1, piv[k+1], ldim, A);
 }
 // Let A(k:n-1,k:k+1) = [D, C'; C, A'] =
 // [I, 0; C*inv(D), I] * [D, 0; 0, A' - C*inv(D)*C'] * [I, 0; C*inv(D), I]
 // where D is 2-by-2 symmetric diagonal block and inv(D) its inverse.
 // First solve for (n-k-2)-by-2 unit lower triangular block, then
```
// reduce trailing sub-matrix by computing \( A' = C \times \text{inv}(D) \times C' \). Once computed, \( L \) and \( D \) overwrite \( A \). Store \( A(k+2:n-1,k:k+1) \) in \( W \)
mempcpy( W+k+2, Akk+2, (n−k−2)\times\text{sizeof(double)});
mempcy( W+k+2+ldim, Akk+2+ldim, (n−k−2)\times\text{sizeof(double)});
// Solve for \( L(k+2:n-1,k:k+1) \times D(k:k+1,k:k+1) = A(k+2:n-1,k:k+1) \)
// Once computed, \( L \) and \( D \) overwrite \( A \)

double d00 = *Akk; // Element \( D(k,k) \)
double d10 = *(Akk + 1); // Element \( D(k+1,k) = D(k,k+1) \)
double d11 = *(Akk + 1 + ldim); // Element \( D(k+1,k+1) \)
double denom = d00 \times d11 - d10 \times d10;
for( int i = k+2; i < n; i++ )
{ *(A+i) = ((W+i) \times d11 - (W+i+ldim) \times d10) / denom;
  *(A+i+ldim) = ((W+i+ldim) \times d00 - (W+i) \times d10) / denom;
}
// Reduce trailing sub-matrix, \( A(k+2:n-1,k+2,n-1) = \)
// \( A(k+2:n-1,k+2,n-1) - L(k+2:n-1,k:k+1) \times W(k+2:n-1,k:k+1)' \)
double *L;
double wjk;
for( int j = k+2; j < n; j++ )
{ double *A_j = A + j*ldim;
  L = A + k*ldim;
  wjk = *(W+j);
  for( int i = j; i < n; i++ )
  { *(A_j + i) = *(L + i) \times wjk;
  }
  L = A + k*ldim + ldim;
  wjk = *(W+j+ldim);
  for( int i = j; i < n; i++ )
  { *(A_j + i) = *(L + i) \times wjk;
  }
}
k += 2;
}

if ( ord[n-2] != 2 )
{                           // Last pivot is 1-by-1
  piv[n-1] = n-1;
  ord[n-1] = 1;
}
free( W );

/*
* Implements the SAXPY operation (jki indexing) to factorize symmetric
* indefinite n-by-n matrix \( A \) into a unit lower triangular matrix \( L \) and block diagonal matrix \( D \) with block order 1 or 2. Symmetrically permuted matrix \( A^* = P \times A \times P' = L \times D \times L' \), where \( P \) is the permutation matrix, and \( L' \) and \( P' \) are the transpose of \( L \) and \( P \), respectively. Permutation matrix \( P \) is encoded in
* vectors \( \text{piv}[] \) and \( \text{ord}[] \), such that row/ column \( k \) is interchanged with row/ column \( \text{piv}[k] \), and \( \text{ord}[k] \) specifies the diagonal block order. Entries of \( L \) and \( D \) are stored on and below the diagonal of matrix \( A \), i.e., \( L \) and \( D \)
PERFORMANCE OPTIMIZATION OF SYMMETRIC FACTORIZATION ALGORITHMS

**overwrite A.**

```c
/*
void ldlt_saxpy (char pivot, int n, int *piv, int *ord, double *A)
{
 const int ldim = n;
 double *W;
 W = (double *) malloc(ldim*2*sizeof(double));
 ldlt_factor(pivot, n, &n, piv, ord, ldim, A, W);
 free(W);
}

/*
* Implements simple blocking to factorize symmetric indefinite n-by-n matrix A
* into a unit lower triangular matrix L and block diagonal matrix D with block
* order 1 or 2. Symmetrically permuted matrix A' = P*A*P' = L*D*L', where P
* is the permutation matrix, and L' and P' are the transpose of L and P;
* respectively. Permutation matrix P is encoded in vectors piv[] and ord[],
* such that row/ column k is interchanged with row/ column piv[k], and ord[k]
* specifies the diagonal block order. In the case where a partial or rook
* pivoting strategy is specified the blocked algorithm employs the SAXPY
* operation to perform symmetric indefinite factorization -- cumulative
* trailing sub-matrix updates are applied to candidate pivot row(s)/ column(s)
* as the factorization proceeds. When a complete pivoting strategy is
* specified the entire trailing sub-matrix must be updated prior to each pivot
* selection, so the blocked algorithm employs the outer product method.
*/
void ldlt_block (char pivot, int n, int *piv, int *ord, double *A)
{
 const int ldim = n;
 const int blas = 0;

 // Choose blocked algorithm based on pivot strategy
 switch (pivot) {
 case 'B':
 ldlt_block_rook_pivot(blas, pivot, n, piv, ord, ldim, A);
 break;
 case 'K':
 ldlt_block_rook_pivot(blas, pivot, n, piv, ord, ldim, A);
 break;
 case 'P':
 ldlt_block_comp_pivot(blas, pivot, n, piv, ord, ldim, A);
 break;
 default:
 ldlt_block_rook_pivot(blas, pivot, n, piv, ord, ldim, A);
 break;
 }

 free(W);
}
```
void ldlt_block bais ( char pivot , int n , int *piv , int *ord , double *A )
{
    const int blas = 1;
    const int ldim = n;

    // Choose blocked algorithm based on pivot strategy
    switch ( pivot )
    {
    case 'B':
        ldlt_block_rook_pivot( blas , pivot , n , piv , ord , ldim , A );
        break;
    case 'K':
        ldlt_block_rook_pivot( blas , pivot , n , piv , ord , ldim , A );
        break;
    case 'P':
        ldlt_block_comp_pivot( blas , pivot , n , piv , ord , ldim , A );
        break;
    default:
        ldlt_block_rook_pivot( blas , pivot , n , piv , ord , ldim , A );
        break;
    }
}

void ldlt_lapack_unblocked ( char pivot , int n , int *piv , int *ord , double *A )
{
    const char lower = 'L';
    const int ldim = n;

    // Choose blocked algorithm based on pivot strategy
    switch ( pivot )
    {
    case 'B':
        ldlt_block_rook_pivot( lower , pivot , n , piv , ord , ldim , A );
        break;
    case 'K':
        ldlt_block_rook_pivot( lower , pivot , n , piv , ord , ldim , A );
        break;
    case 'P':
        ldlt_block_comp_pivot( lower , pivot , n , piv , ord , ldim , A );
        break;
    default:
        ldlt_block_rook_pivot( lower , pivot , n , piv , ord , ldim , A );
        break;
    }
}
int info = 0;

dsytf2_(&lower, &n, A, &ldim, piv, &info);
}

/*
 * Wrapper for calling LAPACK routine DSYTRF which computes the factorization
 * of a real symmetric indefinite matrix.
 */
void ldl_t_lapack( char pivot, int n, int *piv, int *ord, double *A )
{
    const char lower = 'L';
    const int lapack = 1;
    const int blas = 0;
    const int ldim = n;
    const int bdim = get_block_dim_ldl( lapack, blas, ldim );

    int lwork = ldim*bdim;
    int info = 0;
    double *work;

    work = (double *) malloc( lwork*sizeof(double) );
    dsytrf_(&lower, &n, A, &ldim, piv, work, &lwork, &info );
    free( work );
}
A.6. modchol.c – modified Cholesky algorithms.

/*
 * Gill–Murray–Wright and Cheng–Higham modified Cholesky algorithms. Unblocked
 * versions of these algorithms include the outer product method and SAXPY
 * operation, while blocked versions include simple blocking and an
 * implementation that uses tuned BLAS (Basic Linear Algebra Subroutines).
 */

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <float.h>
#include "modchol.h"
#include "ldltfact.h"
#include "lapack.h"
#include "matcom.h"
#include "timing.h"

static double calc_beta_sqr_gmw( int n, int ldim, const double *A);
static double calc_delta_ch( int n, int ldim, const double *A);
static void pivot_sym_blas( int n, int k, int r, int ldim, double *W,
double *A);
static double modify_pivot_gmw( double delta, double beta_sqr, int n,
double *A);
static void ldlt_spectral_decomp( int ldim, const double *A, double *U,
double *lambda);
static double modify_blk_diag( int type, double delta, int n, const int *ord,
int ldim, double *A);
static void chol_gmw_factor( char pivot, double delta, double beta_sqr,
int m, int n, int *piv, int *ord, double *diag, int ldim, double *A,
double *W);
static void chol_gmw_factor_blas( char pivot, double delta, double beta_sqr,
int m, int n, int *piv, int *ord, double *diag, int ldim, double *A,
double *W);
static void chol_gmw_block_handler( int blas, char pivot, double delta,
double beta_sqr, int n, int *piv, int *ord, int ldim, double *A);

#if defined(MODCHOL) && defined(PROFILE)
    static double tm_mod_chol = 0.0;
    static double tm_mod_fact = 0.0;
#endif

/*
 * Computes and returns a parameter, beta_sqr, that bounds the magnitude of the
 * off–diagonal elements in the unit lower triangular matrix produced by
 * symmetric indefinite factorization, P*A*P' = L*D*L'. The function value is
 * used in the modified Cholesky algorithm proposed by Gill, Murray and Wright
 * to determine the perturbation applied to symmetric indefinite n-by-n matrix A
 */

* to make it positive definite.
 */

double calc_beta_sqr_gmw( int n, int ldim, const double *A )
{
  double mu = -1.0;
  double nu = -1.0;
  double beta_sqr;

  for ( int j = 0; j < n; j++ ) {
    const double *A_j = A + j*ldim;
    // Maximum magnitude of diagonal elements
    double ajj = fabs( *(A_j+j) );
    if ( ajj > nu ) {
      nu = ajj;
    }
    // Maximum magnitude of off-diagonal elements --- exploit symmetry
    for ( int i = j+1; i < n; i++ ) {
      double aij = fabs( *(A_j+i) );
      if ( aij > mu ) {
        mu = aij;
      }
    }
  }

  beta_sqr = mu / sqrt( n*n - 1 );
  if ( nu > beta_sqr ) {
    beta_sqr = nu;
  }
  if ( DBL_EPSILON > beta_sqr ) {
    beta_sqr = DBL_EPSILON;
  }

  return beta_sqr;
}

/*
 * Computes and returns a preset modification tolerance, delta, which is used to
 * determine the perturbation applied to symmetric indefinite n-by-n matrix A
 * to make it positive definite. The function value is used in the modified
 * Cholesky algorithm proposed by Cheng and Higham.
 */

double calc_delta_ch( int n, int ldim, const double *A )
{
  double delta = sqrt( DBL_EPSILON / 2.0 );
  double sigma = -1.0;

  // Compute sigma = infinity norm of symmetric matrix A
  // = maximum absolute row sum = maximum absolute column sum
  for ( int j = 0; j < n; j++ ) {
    double sum = 0.0;
const double *A_j = A + j*ldim;
for ( int i = 0; i < n; i++ ) {
    sum += fabs( *(A_j+i) );
}
if ( sum > sigma ) {
    sigma = sum;
}
}
delta *= sigma;

return delta;
}

*/
void pivot_sym_blas( int n, int k, int r, int ldim, double *W, double *A )
{
    const int one = 1;

    int t;
    double *A_k = A + k*ldim;
    double *A_r = A + r*ldim;
    double *Ak_ = A + k;
    double *Ar_ = A + r;
    double *Wk_ = W + k;
    double *Wr_ = W + r;

    if ( k != r ) {
        // Interchange elements A(k,0:k-1) with A(r,0:k-1) and W(k,0:k-1) with
        // W(r,0:k-1), i.e., elements of rows k and r to the left of column k
        dswap_( &k, Ak_, &ldim, Ar_, &ldim );
        dswap_( &k, Wk_, &ldim, Wr_, &ldim );

        // Interchange diagonal elements of rows/ columns k and r
        double akk = *(A_k + k);
        *(A_k + k) = *(A_r + r);
        *(A_r + r) = akk;

        // Interchange elements A(k+1:r-1,k) with A(r,k+1:r-1)
        double *Arl = Ar_ + k*ldim + ldim;
        double *Alk = A_k + k + 1;
        t = r - k - 1;
dswap( &t, Alk, &one, Arl, &ldim );

// Interchange elements A(r+1:n-1,k) with A(r+1:n-1,r)
// i.e., elements of columns k and r below row r
double *Asr = A + r + 1;
double *Ask = A + k + r + 1;
t = n - r - 1;
dswap( &t, Ask, &one, Asr, &one );

/*
* Modifies the selected pivot -- element vec[0] equal to akk, the kth diagonal
* element of some matrix A -- such that matrix (A + dA) is sufficiently
* positive definite and reasonably well-conditioned. The Gill–Murray–Wright
* algorithm performs a Type-I modification,
* akk = max(|akk|, delta, c^2/beta^2), where c^2 is the square of the
* infinity norm of vec[1:n-1] = A(k+1:k+n-1,k).
*/
double modify_pivot_gmw( double delta, double beta_sqr, int n, double *vec )
{
    #ifdef defined(MODCHOL) && defined(PROFILE)
    struct timespec sta_mod_fact, end_mod_fact;
    get_time( &sta_mod_fact );
    #endif
    double c_sqr = -1.0;
    double akk = fabs( vec[0] );
    for ( int i = 1; i < n; i++ ) {
        double x = vec[i] * vec[i];
        if ( x > c_sqr ) {
            c_sqr = x;
        }
    }
    if ( (c_sqr / beta_sqr) > akk ) {
        akk = c_sqr / beta_sqr;
    }
    if ( delta > akk ) {
        akk = delta;
    }
    #ifdef defined(MODCHOL) && defined(PROFILE)
    get_time( &end_mod_fact );
    tm_mod_fact += timespec_diff( sta_mod_fact, end_mod_fact );
    #endif
    return akk;
}

/* Computes the spectral decomposition of 2-by-2 symmetric matrix A,
* A = U * [lambda[0], 0; 0, lambda[1]] * U', where lambda[0] and lambda[1]
* are eigenvalues of \( A \), and eigenvectors belonging to \( \lambda[0] \) and \( \lambda[1] \) * form the columns of orthogonal matrix \( U \).

```cpp
void ldlt_spectral_decomp(int ldim, const double *A, double *U, double *lambda)
{
 // Trace of symmetric 2-by-2 matrix A
 double trA = *A + (*A + 1 + ldim);
 // Determinant of symmetric 2-by-2 matrix A
 double detA = *A * (*A + 1 + ldim) - (*A + 1) * (*A + 1);
 // The characteristic polynomial of 2-by-2 matrix A is:
 // \(p(t) = t^2 - trA \cdot t + detA \)
 // Calculate roots of the characteristic polynomial, i.e., eigenvalues.
 // Note that if \(A \) is a real symmetric 2-by-2 matrix, with non-zero
 // off-diagonal entries, then \(A \) has two distinct real eigenvalues
 lambda[0] = (trA + sqrt(trA * trA - 4.0 * detA)) / 2.0;
 lambda[1] = (trA - sqrt(trA * trA - 4.0 * detA)) / 2.0;

 if (lambda[0] == lambda[1]) {
 // \(A \) is 2-by-2 diagonal matrix with one distinct diagonal element.
 // Single distinct eigenvalue is equal to diagonal element,
 // and \(U \) is the identity matrix
 U[0] = 1;
 U[1] = 0;
 U[2] = 0;
 U[3] = 1;
 } else {
 // Compute eigenvectors belonging to distinct real eigenvalues.
 // \(y = ax \rightarrow u = alpha \cdot (1; a) \), alpha any real number
 double a = -(*A - lambda[0]) / (*A + 1);
 double norm_u = sqrt(1.0 + a * a);
 U[0] = 1 / norm_u;
 U[1] = a / norm_u;
 // \(y = bx \rightarrow v = beta \cdot (1; b) \), beta any real number
 double b = -(*A - lambda[1]) / (*A + 1);
 double norm_v = sqrt(1.0 + b * b);
 U[2] = 1 / norm_v;
 U[3] = b / norm_v;
 }
}
```

/*
 * Modifies the diagonal block matrix computed by symmetric indefinite
 * factorization, \( P \cdot A \cdot P' = L \cdot D \cdot L' \), where \( A \) is an \( n \)-by-\( n \) symmetric matrix, \( P \) is a
 * permutation matrix, \( L \) is unit lower triangular and \( D \) is block diagonal with
 * block order 1 or 2. Block diagonal matrix \( D \) is modified to make matrix
 * \( (A + dA) \) positive definite. Each 1-by-1 diagonal block is modified so that
 * either \( dk = \max\{ \delta, |dk| \} \) (Type-I modification) or \( dk = \max\{ \delta, dk \} \)
 * (Type-II modification), where \( dk \) is the kth diagonal element and \( \delta \) is a
 * preset modification tolerance. The modification type is specified in the
 * argument list. For each 2-by-2 diagonal block, first compute its spectral
 */
* decomposition, $D = U \ast [\lambda_0, 0; 0, \lambda_1] \ast U'$, where $\lambda_0$ and $\lambda_1$ are eigenvalues of $D$ and $U$ is orthogonal. Then apply Type-I or Type-II modification to the eigenvalues and calculate the modified block diagonal $D$.

```c
void modify_blk_diag(int type, double delta, int n, const int *ord, int ldim, double *A)
{
 double U[2*2];
 double lambda[2*1];

 for (int k = 0; k < n;) {
 double *Akk = A + k + k*ldim;
 if (ord[k] == 1) { // 1-by-1 pivot
 if (type == 1) { // Type-I modification
 *Akk = fabs(*Akk);
 }
 if (delta > *Akk) {
 *Akk = delta;
 }
 k++;
 } else { // 2-by-2 pivot
 ldlt_spectral_decomp(ldim, Akk, U, lambda);
 if (type == 1) { // Type-I modification
 lambda[0] = fabs(lambda[0]);
 lambda[1] = fabs(lambda[1]);
 }
 if (delta > lambda[0] || delta > lambda[1]) {
 for (int i = 0; i < 2; i++) {
 if (delta > lambda[i]) {
 lambda[i] = delta;
 }
 }
 // $D' = U \ast [\lambda_0^*, 0; 0, \lambda_1^*] \ast U'$
 }
 k += 2;
 }
 }
}
```

/*
* Implements a rectangular version of the SAXPY operation (jki indexing) for
* the modified Cholesky algorithm proposed by Gill, Murray and Wright. If the
* n-by-n symmetric principal minor of A is not positive definite, it is
* perturbed such that (A + dA) is sufficiently positive definite and reasonably
*/
well-conditioned while preserving as much as possible the information contained in the Hessian. Factorization yields \( P(A+dA)P' = LLD' \), where \( L \) is unit lower triangular and \( D \) is diagonal. The permutation matrix \( P \) is encoded in vectors \( \text{piv}[] \) and \( \text{ord}[] \), which contain the pivot index and its order (\( = 1 \)). The pivoting strategy is passed in the argument list. The Gill–Murray–Wright algorithm modifies diagonal matrix \( D \), computed by symmetric indefinite factorization, as the decomposition proceeds to make matrix \((A + dA)\) positive definite. Factors \( L \) and \( D \) overwrite matrix \( A \) on and below the diagonal.

```c
void chol_gmw_factor(char pivot , double delta , double beta_sqr , int m , int n ,
 int *piv , int *ord , double *diag , int ldim , double *A , double *W)
{
 for (int j = 0 ; j < n ; j++)
 {
 double *Aj = A + j *ldim;
 double *Ajj = Aj + j;

 // Determine pivot using method specified in the argument list
 switch (pivot)
 {
 case 'D':
 eval_pivot_diag(m-j , j , &diag[j] , piv , ord);
 break;
 default:
 eval_pivot_diag(m-j , j , &diag[j] , piv , ord);
 break;
 }

 // Perform symmetric pivoting
 if (j != piv[j])
 {
 pivot_sym(m , j , piv[j] , ldim , A);
 double dj = diag[j];
 diag[j] = diag[piv[j]];
 diag[piv[j]] = dj;
 }

 // Perform cumulative trailing sub-matrix updates on diagonal element
 // and elements below the diagonal of column j
 *Ajj = diag[j];
 for (int k = 0 ; k < j ; k++)
 {
 const double *Ak = A + k *ldim;
 double akk = *(Ak + k);
 double ajk = *(Ak + j);
 for (int i = j+1 ; i < m ; i++)
 {
 *(Aj + i) -= *(Ak + i) * ajk * akk;
 }
 }

 // Modify diagonal element (pivot) so that matrix \((A + dA)\) is
 // sufficiently positive definite and reasonably well-conditioned
 double ajj = modify_pivot_gmw(delta , beta_sqr , m-j , Ajj);
 *Ajj = ajj;

 // Divide elements of column k of matrix A below the diagonal by the
```
// diagonal element, and perform trailing sub-matrix update on the
// vector diagonal elements used in pivot selection
for ( int i = j+1; i < m; i++ ) {
    *(A+j + i) /= ajj;
    diag[i] -= *(A+j + i) * ajj * *(A+j + i);
}

/* Implements a rectangular version of the SAXPY operation (jki indexing) for
* the modified Cholesky algorithm proposed by Gill, Murray and Wright. If the
* n-by-n symmetric principal minor of A is not positive definite, it is
* perturbed such that (A + dA) is sufficiently positive definite and reasonably
* well-conditioned while preserving as much as possible the information
* contained in the Hessian. Factorization yields P*(A+dA)*P′ = L*D*L′, where
* L is unit lower triangular and D is diagonal. The permutation matrix P is
* encoded in vectors piv[] and ord[], which contain the pivot index and its
* order (=1). The pivoting strategy is passed in the argument list. The
* Gill–Murray–Wright algorithm modifies diagonal matrix D, computed by
* symmetric indefinite factorization, as the decomposition proceeds to make
* matrix (A + dA) positive definite. To the extent possible, this
* implementation of the SAXPY operation uses the BLAS library to perform
* matrix operations. Factors L and D overwrite matrix A on and below the
* diagonal. */
void chol_gmw_factor_blas( char pivot, double delta, double beta_sqr,
    int m, int n, int *piv, int *ord, double *diag, int ldim, double *A,
    double *W )
{
    for ( int j = 0; j < n; j++ ) {
        double *L = A + j;
        double *M = W + j;
        double *Wj = W + j*ldim;
        double *Aj = A + j*ldim;
        double *Ajj = A + j + j;

        // Determine pivot using method specified in the argument list
        switch ( pivot ) {
            case 'D':
                eval_pivot_diag( m-j, j, &diag[j], piv, ord );
                break;
            default:
                eval_pivot_diag( m-j, j, &diag[j], piv, ord );
                break;
        }

        // Perform symmetric pivoting
        if ( j != piv[j] ) {
            pivot_sym_blas( m, j, piv[j], ldim, W, A );
            double dj = diag[j];
        }
    }
}
\[
\text{diag}[j] = \text{diag}[\text{piv}[j]];
\]
\[
\text{diag}[\text{piv}[j]] = d_j;
\]

// Perform cumulative trailing sub-matrix updates on diagonal element
// and elements below the diagonal of column \( j \)
// \( A = ML' \)

\[
\text{Ajj} = \text{diag}[j];
\]
reduce_ldlt_vector_blas( m-j-1, j, 0, ord, ldim, L, M+1, Ajj+1 );

// Modify diagonal element (pivot) so that matrix \((A + \delta A)\) is
// sufficiently positive definite and reasonably well-conditioned

\[
double \text{ajj} = \text{modify_pivot_gmw}( \delta, \beta^\text{sqr}, m-j, \text{Ajj} );
\]
\[
*\text{Ajj} = \text{ajj};
\]

// Elements of column \( k \) of matrix \( A \) on and below the diagonal are equal
// to elements of column \( k \) of \( L \times D \). Store column \( k \) of \( L \times D \) in \( W \) before
// solving for \( L \) by dividing column \( k \) of \( L \times D \) by diagonal element \( d_{kk} \).
// Then perform trailing sub-matrix updates on the vector of diagonal
// elements used in pivot selection

for ( int i = j+1; i < m; i++) {
*(W_j + i) = *(A_j + i);
*(A_j + i) /= \text{ajj};
\[
\text{diag}[i] -= *(A_j + i) * \text{ajj} * *(A_j + i);
\]
}

/*
* Implements the modified Cholesky algorithm proposed by Gill, Murray and
* Wright using simple blocking to optimize memory access. If \( n \)-by-\( n \) symmetric
* matrix \( A \) with leading dimension \( ldim \) is not positive definite, it is
* perturbed such that \((A + \delta A)\) is sufficiently positive definite and reasonably
* well-conditioned while preserving as much as possible the information
* contained in the Hessian. Factorization yields \( P^\text{t}(A + \delta A)P' = L \times D \times L' \), where \( L \)
* is unit lower triangular and \( D \) is diagonal. The permutation matrix \( P \) is
* encoded in vectors \( \text{piv}[] \) and \( \text{ord}[] \), which contain the pivot and its order.
* The pivoting strategy is passed in the argument list. The Gill–Murray–Wright
* algorithm modifies diagonal matrix \( D \), computed by symmetric indefinite
* factorization, as the decomposition proceeds to make matrix \((A + \delta A)\) positive
* definite. The blocked algorithm handler determines which implementation of
* \text{SAXPY} operation — native or using \text{BLAS} — to invoke to factor a column block
* of matrix \( A \). Factors \( L \) and \( D \) overwrite matrix \( A \) on and below the diagonal.
*/

void chol_gmw_block_handler( int blas, char pivot, double delta, double beta_sqr,
int n, int *piv, int *ord, int ldim, double *A )
{
const int lapack = 0;
const int bdim = get_block_dim_ldlt( lapack, blas, ldim );

int d, j, r, t;

```c
void (*chol_gmw)(char pivot, double delta, double beta_sqr,
 int m, int n, int *piv, int *ord, double *diag, int ldim,
 double *M, double *A);

if (blas) {
 chol_gmw = chol_gmw_factor_blas;
 W = (double *) malloc(ldim*bdim*sizeof(double));
} else {
 chol_gmw = chol_gmw_factor;
 W = (double *) malloc(ldim*2*sizeof(double));
}

// For efficient memory access during pivot selection, copy diagonal
// elements of matrix A into vector diag[]
diag = (double *) malloc(ldim*sizeof(double));
for (int k = 0; k < n; k++) {
 diag[k] = *(A + k + k*ldim);
}

j = 0;
r = (bdim > n) ? n : bdim;
// Perform rectangular factorization on first column block A(0:n-1,0:r)
chol_gmw(pivot, delta, beta_sqr, n, r, &piv[j], &ord[j], &diag[j],
 ldim, A, W);

d = 0;
j = bdim;
t = n - bdim;
Ajj = A;
for (; j < n; j += bdim, d += bdim, t -= bdim) {

 // Adjust pivot vector of previous block for diagonal offset
 for (int i = d; i < j; i++) {
 piv[i] += d;
 }

 L = Ajj + bdim;
 D = Ajj;
 Ajj = A + j + j*ldim;
 // Reduce trailing sub-matrix, P * A(j:n-1,j:n-1) * P' =
 reduce_ldlt_mat_blk(blas, t, r, &ord[d], bdim, ldim, L, D, W+j, Ajj);

 r = t < bdim ? t : bdim;
 // Perform rectangular factorization on column block A(j:n-1,j:j+r-1)
 chol_gmw(pivot, delta, beta_sqr, t, r, &piv[j], &ord[j], &diag[j],
 ldim, Ajj, W+j);

 // Apply permutation matrix for current block, encoded in piv(j:j+r-1),
 // to columns to the left of current block A(:,0:j-1)
 for (int i = j; i < j+r; i++) {
```

if ( i != piv[i] + j ) {
    if ( blas ) {
        double *Ai_ = A + i;
        double *Ar_ = A + piv[i] + j;
        dswap( &j, Ai_, &ldim, Ar_, &ldim );
    } else {
        for ( int k = 0; k < j; k++ ) {
            double aik = *(A + i + k*ldim);
            *(A + i + k*ldim) = *(A + piv[i] + j + k*ldim);
            *(A + piv[i] + j + k*ldim) = aik;
        }
    }
}

// Adjust pivot vector of last block for diagonal offset
for ( int i = d; i < n; i++ ) {
    piv[i] += d;
}
free( diag );
free( W );

/**
 * Implements the modified Cholesky algorithm proposed by Gill, Murray and
 * Wright using the outer product method (kji indexing). If n-by-n symmetric
 * matrix A is not positive definite, it is perturbed such that (A + dA) is
 * sufficiently positive definite and reasonably well-conditioned while
 * preserving as much as possible the information contained in the Hessian.
 * Factorization yields P*(A+dA)*P' = L*P*D*L', where L is unit lower triangular
 * and D is diagonal. The permutation matrix P is encoded in vectors piv[] and
 * ord[], which contain the pivot and its order (=1). The pivoting strategy is
 * passed in the argument list. The Gill–Murray–Wright algorithm modifies
 * diagonal matrix D, computed by symmetric indefinite factorization, as the
 * proceeds to make matrix (A + dA) positive definite. Factors L and D
 * overwrite matrix A on and below the diagonal.
 */
void chol_gmw_outer_product( char pivot, int n, int *piv, int *ord, double *A ) {
    const int ldim = n;

    double *diag;
    double delta = DBL_EPSILON;
    double beta_sqr = calc_beta_sqr_gmw( n, ldim, A );

    diag = (double *) malloc( ldim*sizeof(double) );

    for ( int k = 0; k < n; k++ ) {
double *A_k = A + k*ldim;
double *Akk = A_k + k;
// For efficient memory access during pivot selection, copy diagonal
// elements of trailing sub-matrix A into vector diag[]
for ( int j = k; j < n; j++ ) {
    diag[j] = *(A + j + j*ldim);
}
// Determine pivot using method specified in the argument list
switch ( pivot ) {
    case 'D':
        eval_pivot_diag( n-k, k , &diag[k], piv, ord );
        break;
    default:
        eval_pivot_diag( n-k, k , &diag[k], piv, ord );
        break;
}
// Perform symmetric pivoting
if ( k != piv[k] ) {
    pivot_sym( n, k, piv[k], ldim, A );
}
// Modify diagonal element (pivot) so that matrix (A + dA) is
// sufficiently positive definite and reasonably well-conditioned
double akk = modify_pivot_gmw( delta, beta_sqr, n-k, Akk );
*Akk = akk;
// Divide elements of column k below the diagonal by the diagonal element
for ( int i = k+1; i < n; i++ ) {
    *(A_k + i) /= akk;
}
// Update trailing sub-matrix by subtracting the outer product.
// Because of symmetry need only update elements on and below diagonal
for ( int j = k+1; j < n; j++ ) {
    double *A_j = A + j*ldim;
    double ajk = *(A_k + j);
    for ( int i = j; i < n; i++ ) {
        *(A_j+i) -= *(A_k+i) * ajk * akk;
    }
}

/*
 * Implements the modified Cholesky algorithm proposed by Gill, Murray and
 * Wright using the SAXPY operation ( jki indexing). If n-by-n symmetric
 * matrix A is not positive definite, it is perturbed such that (A + dA) is
 * sufficiently positive definite and reasonably well-conditioned while
 * preserving as much as possible the information contained in the Hessian.
 * Factorization yields P*(A+dA)*P' = L*D*L', where L is unit lower triangular
 * and D is diagonal. The permutation matrix P is encoded in vectors piv[] and
 */
ord[], which contain the pivot and its order (=1). The pivoting strategy is passed in the argument list. The Gill–Murray–Wright algorithm modifies diagonal matrix D, computed by symmetric indefinite factorization, as the proceeds to make matrix (A + dA) positive definite. Factors L and D overwrite matrix A on and below the diagonal.

```
void chol_gmw_saxpy(const char pivot, const int n, int *piv, int *ord, double *A){
 const int ldim = n;
 double *W, *diag;
 double delta = DBL_EPSILON;
 double beta_sqr = calc_beta_sqr_gmw(n, ldim, A);

 W = (double *) malloc(sizeof(double));
 // For efficient memory access during pivot selection, copy diagonal elements of matrix A into vector diag[]
 diag = (double *) malloc(ldim*sizeof(double));
 for (int k = 0; k < n; k++) {
 diag[k] = *(A + k + k*ldim);
 }

 chol_gmw_factor(pivot, delta, beta_sqr, n, n, piv, ord, diag, ldim, A, W);

 free(diag);
 free(W);
}
```

```
/*
 * Implements simple blocking for the modified Cholesky algorithm proposed by Gill, Murray and Wright. A is an n-by-n symmetric, possibly indefinite, matrix.
 */
void chol_gmw_block(char pivot, int n, int *piv, int *ord, double *A){
 const int ldim = n;
 const int blas = 0;
 #if defined(MODCHOL) && defined(PROFILE)
 struct timespec sta_mod_chol, sta_mod_fact, end_mod_chol, end_mod_fact;

 tm_mod_chol = 0.0;
 tm_mod_fact = 0.0;
 get_time(&sta_mod_chol);
 get_time(&sta_mod_fact);
 #endif
 double delta = DBL_EPSILON;
 double beta_sqr = calc_beta_sqr_gmw(n, ldim, A);
 #if defined(MODCHOL) && defined(PROFILE)
PERFORMANCE OPTIMIZATION OF SYMMETRIC FACTORIZATION ALGORITHMS

```c
get_time( &end_mod_fact );
tm_mod_fact += timespec.diff( sta_mod_fact, end_mod_fact );
#endif

chol_gmw.block_handler( blas, pivot, delta, beta_sqr, n, piv, ord, ldim, A );

#if defined(MODCHOL) && defined(PROFILE)
get_time( &end_mod_chol );
tm_mod_chol += timespec.diff( sta_mod_chol, end_mod_chol );
fprintf( stdout, "%.4f\t%.4f\t%.2f\n", tm_mod_chol, tm_mod_fact,
tm_mod_fact/tm_mod_chol*100 );
#endif

/*
 * Implements simple blocking using the BLAS library for the modified Cholesky
 * algorithm proposed by Gill, Murray and Wright. A is an n-by-n symmetric,
 * possibly indefinite, matrix.
 *
 * chol_gmw.block_blas( char pivot, int n, int *piv, int *ord, double *A )
 *{
 *    const int ldim = n;
 *    const int blas = 1;
 *    #if defined(MODCHOL) && defined(PROFILE)
 *        struct timespec sta_mod_chol, sta_mod_fact, end_mod_chol, end_mod_fact;
 *        tm_mod_chol = 0.0;
 *        tm_mod_fact = 0.0;
 *        get_time( &sta_mod_chol );
 *        get_time( &sta_mod_fact );
 *    #endif
 *    double delta = DBL_EPSILON;
 *    double beta_sqr = calc_beta_sqr_gmw( n, ldim, A );
 *    #if defined(MODCHOL) && defined(PROFILE)
 *        get_time( &end_mod_fact );
 *        tm_mod_fact += timespec.diff( sta_mod_fact, end_mod_fact );
 *    #endif
 *
 *    chol_gmw.block_handler( blas, pivot, delta, beta_sqr, n, piv, ord, ldim, A );
 *    #if defined(MODCHOL) && defined(PROFILE)
 *        get_time( &end_mod_chol );
 *        tm_mod_chol += timespec.diff( sta_mod_chol, end_mod_chol );
 *        fprintf( stdout, "%.4f\t%.4f\t%.2f\n", tm_mod_chol, tm_mod_fact,
 *                  tm_mod_fact/tm_mod_chol*100 );
 *    #endif
 *}
*/
```
Implements the modified Cholesky algorithm proposed by Cheng and Higham using the outer product method (kji indexing). If n-by-n symmetric matrix A is not positive definite, it is perturbed such that \((A + dA)\) is sufficiently positive definite and reasonably well-conditioned while preserving as much as possible the information contained in the Hessian. Factorization yields \(P*(A+dA)*P' = L*D*L'\), where \(L\) is unit lower triangular and \(D\) is block diagonal with block order 1 or 2. The permutation matrix \(P\) is encoded in vectors \(piv[]\) and \(ord[]\), which contain the pivot and its order. The pivoting strategy (Bunch-Kaufman, bounded Bunch-Kaufman or Bunch-Parlett) is passed in the argument list. Once the symmetric indefinite factorization has been computed for matrix \(A\), block diagonal matrix \(D\) is modified to make matrix \((A + dA)\) positive definite. The Cheng-Higham algorithm performs a Type-II modification of the block diagonal matrix. Factors \(L\) and \(D\) overwrite matrix \(A\) on and below the diagonal.

```c
void chol_ch_outer_product( const char pivot, const int n, int *piv, int *ord, double *A )
{
    const int ldim = n;
    const int type = 2;

    double delta = calc_delta_ch( n, ldim, A );

    ldlt_outer_product( pivot, n, piv, ord, A );
    modify_blk_diag( type, delta, n, ord, ldim, A );
}
```

Implements the modified Cholesky algorithm proposed by Cheng and Higham using the SAXPY operation (jki indexing). If n-by-n symmetric matrix A is not positive definite, it is perturbed such that \((A + dA)\) is sufficiently positive definite and reasonably well-conditioned while preserving as much as possible the information contained in the Hessian. Factorization yields \(P*(A+dA)*P' = L*D*L'\), where \(L\) is unit lower triangular and \(D\) is block diagonal with block order 1 or 2. The permutation matrix \(P\) is encoded in vectors \(piv[]\) and \(ord[]\), which contain the pivot and its order. The pivoting strategy (Bunch-Kaufman, bounded Bunch-Kaufman or Bunch-Parlett) is passed in the argument list. Once the symmetric indefinite factorization has been computed for matrix \(A\), block diagonal matrix \(D\) is modified to make matrix \((A + dA)\) positive definite. The Cheng-Higham algorithm performs a Type-II modification of the block diagonal matrix. Factors \(L\) and \(D\) overwrite matrix \(A\) on and below the diagonal.

```c
void chol_ch_saxpy( const char pivot, const int n, int *piv, int *ord, double *A )
{
    const int ldim = n;
    const int type = 2;
```
double delta = calc_delta_ch(n, ldim, A);

ldlt_saxpy(pivot, n, piv, ord, A);
modify_blk_diag(type, delta, n, ord, ldim, A);
}

/*
 * Implements the modified Cholesky algorithm proposed by Cheng and Higham using
 * simple blocking to optimize memory access. If n-by-n symmetric matrix A
 * is not positive definite, it is perturbed such that (A + dA) is sufficiently
 * positive definite and reasonably well-conditioned while preserving as much as
 * possible the information contained in the Hessian. Factorization yields
 * P*(A+dA)*P' = L*D*L', where L is unit lower triangular and D is block
 * diagonal with block order 1 or 2. The permutation matrix P is encoded in
 * vectors piv[] and ord[], which contain the pivot and its order. The pivoting
 * strategy (Bunch–Kaufman, bounded Bunch–Kaufman or Bunch–Parlett) is passed in
 * the argument list. Once the symmetric indefinite factorization has been
 * computed for matrix A, block diagonal matrix D is modified to make matrix
 * (A + dA) positive definite. The Cheng–Higham algorithm performs a Type-II
 * modification of the block diagonal matrix. Factors L and D overwrite matrix
 * A on and below the diagonal.
 */
void chol_ch_block(const char pivot, const int n, int *piv, int *ord,
 double *A)
{
 const int ldim = n;
 const int type = 2;
#if defined(MODCHOL) && defined(PROFILE)
 struct timespec sta_mod_chol, sta_mod_fact, end_mod_chol, end_mod_fact;
 tm_mod_chol = 0.0;
 tm_mod_fact = 0.0;
 get_time(&sta_mod_chol);
 get_time(&sta_mod_fact);
#endif
double delta = calc_delta_ch(n, ldim, A);
#if defined(MODCHOL) && defined(PROFILE)
 get_time(&end_mod_fact);
 tm_mod_fact += timespec_diff(sta_mod_fact, end_mod_fact);
#endif

 ldlt_block(pivot, n, piv, ord, A);
#if defined(MODCHOL) && defined(PROFILE)
 get_time(&sta_mod_fact);
#endif
 modify_blk_diag(type, delta, n, ord, ldim, A);
#if defined(MODCHOL) && defined(PROFILE)
 get_time(&end_mod_fact);
 tm_mod_fact += timespec_diff(sta_mod_fact, end_mod_fact);
#endif
```c
get_time( &end_mod_chol );
tm_mod_chol += timespec_diff( sta_mod_chol, end_mod_chol );
fprintf( stdout, "%4f\t%4f\t%4f\n", tm_mod_chol, tm_mod_fact, tm_mod_fact/tm_mod_chol*100 );
#endif
}
/*
 * Implements simple blocking using BLAS for the modified Cholesky algorithm
 * proposed by Cheng and Higham. If n-by-n symmetric matrix A is not positive
 * definite, it is perturbed such that (A + dA) is sufficiently positive
 * definite and reasonably well-conditioned while preserving as much as possible
 * the information contained in the Hessian. Factorization yields
 * P*(A+dA)*P' = L*D*L', where L is unit lower triangular and D is block
 * diagonal with block order 1 or 2. The permutation matrix P is encoded in
 * vectors piv[] and ord[], which contain the pivot and its order. The pivoting
 * strategy (Bunch-Kaufman, bounded Bunch-Kaufman or Bunch-Parlett) is passed in
 * the argument list. Once the symmetric indefinite factorization has been
 * computed for matrix A, block diagonal matrix D is modified to make matrix
 * (A + dA) positive definite. The Cheng-Higham algorithm performs a Type-II
 * modification of the block diagonal matrix. Factors L and D overwrite matrix
 * A on and below the diagonal.
*/
void chol_ch_block_blas( const char pivot, const int n, int *piv, int *ord,
                          double *A )
{
    const int ldim = n;
    const int type = 2;
    #if defined(MODCHOL) && defined(PROFILE)
        struct timespec sta_mod_chol, sta_mod_fact, end_mod_chol, end_mod_fact;
        tm_mod_chol = 0.0;
        tm_mod_fact = 0.0;
        get_time( &sta_mod_chol );
        get_time( &sta_mod_fact );
    #endif
    double delta = calc_delta_ch( n, ldim, A );
    #if defined(MODCHOL) && defined(PROFILE)
        get_time( &end_mod_fact );
        tm_mod_fact += timespec_diff( sta_mod_fact, end_mod_fact );
    #endif
    ldlt_block_blas( pivot, n, piv, ord, A );
    #if defined(MODCHOL) && defined(PROFILE)
        get_time( &sta_mod_fact );
    #endif
    modify_blk_diag( type, delta, n, ord, ldim, A );
    #if defined(MODCHOL) && defined(PROFILE)
```
get_time(&end_mod_fact);
tm_mod_fact += timespec.diff(sta_mod_fact, end_mod_fact);

get_time(&end_mod_chol);
tm_mod_chol += timespec.diff(sta_mod_chol, end_mod_chol);
fprintf(stdout, "%.4f\t%.4f\t%.2f\n", tm_mod_chol, tm_mod_fact, tm_mod_fact/tm_mod_chol*100);
#endif
}
A.7. matmult.c – matrix multiplication.

/*
* Algorithms implementing unblocked and blocked matrix multiplication
* (and addition), \(C = C + A \cdot B \). Unblocked algorithms include: dot (inner)
* product method, SAXPY operation, loop unrolling and software pipelining.
* Blocked algorithms include: simple blocking, contiguous blocking, and
* recursive contiguous blocking. Also, a function wrapper facilitates calling
* BLAS matrix multiplication routine \DGEMM\.
*/

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <string.h>

#include "matmult.h"
#include "lapack.h"
#include "matcom.h"

static void multiply_kernel(const double *A, const double *B, double *C);
static void multiply_rect_kernel(int m, int n, int p,
 const double *A, const double *B, double *C);
static void multiply_blk_kernel(int m, int n, int p, int ldimA, const double *A,
 int ldimB, const double *B, int ldimC, double *C);
static void multiply_rect_blk_kernel(int m, int n, int p, int ldimA, const double *A,
 int ldimB, const double *B, int ldimC, double *C);

/*********************
/ *
* Determines optimal block dimension for the local environment given the matrix
* leading dimension. Also, it facilitates the use of a different block
* dimension for testing (debugging). If the leading dimension is less than the
* optimal block dimension, the block dimension is set to the leading dimension,
* and the matrix computation becomes an unblocked algorithm.
*/
int get_block_dim_mmult(int ldim)
{
 int bdim;

 #if defined(DEBUG)
 bdim = BDIM;
 #else
 bdim = BDIM;
 #endif
 if (bdim <= 1 || bdim > ldim) {
 bdim = ldim;
 }
 return bdim;
}
/*
 * Performs matrix multiplication and addition, C = C + A*B, using the SAXPY
 * operation — jki indexing. A, B and C are contiguous KDIM-by-KDIM sub-blocks
 * stored in column-major order. Looping is controlled by a symbolic constant
 * (KDIM), which is evaluated during compilation.
 */

void multiply_kernel(const double *A, const double *B, double *C)
{
 for (int j = 0; j < KDIM; j++) {
 const double *B_j = B + j*KDIM; // Points to element B(0,j)
 double *C_j = C + j*KDIM; // Points to element C(0,j)
 for (int k = 0; k < KDIM; k++) {
 const double *A_k = A + k*KDIM; // Points to element A(0,k)
 double bkj = *(B_j + k); // Element B(k,j)
 for (int i = 0; i < KDIM; i++) {
 *(C_j + i) += *(A_k + i) * bkj; // C(i,j) += A(i,k) * B(k,j)
 }
 }
 }
}

/*
 * Performs matrix multiplication and addition, C = C + A*B, using the SAXPY
 * operation — jki indexing. A (m-by-p), B (p-by-n) and C (m-by-n) are
 * rectangular contiguous sub-blocks stored in column-major order with leading
 * dimension KDIM. Looping is controlled by variables, which are evaluated at
 * run time.
 */

void multiply_rect_kernel(int m, int n, int p,
 const double *A, const double *B, double *C)
{
 for (int j = 0; j < n; j++) {
 const double *B_j = B + j*KDIM; // Points to element B(0,j)
 double *C_j = C + j*KDIM; // Points to element C(0,j)
 for (int k = 0; k < p; k++) {
 const double *A_k = A + k*KDIM; // Points to element A(0,k)
 double bkj = *(B_j + k); // Element B(k,j)
 for (int i = 0; i < m; i++) {
 *(C_j + i) += *(A_k + i) * bkj; // C(i,j) += A(i,k) * B(k,j)
 }
 }
 }
}

/*
 * Performs (block) matrix multiplication and addition, C = C + A*B, using the
 * SAXPY operation — jki indexing. A (m-by-p), B (p-by-n) and C (m-by-n) are
 * contiguous matrix blocks with leading dimensions ldimA, ldimB and ldimC,
 * respectively. Within blocks of A, B and C, sub-blocks of size KDIM*KDIM are
 */
* stored contiguously. Matrix multiplication and addition is ultimately
* performed on KDIM-by-KDIM sub-blocks with looping controlled by a symbolic
* constant.
*/
void multiply_blk_ker(int m, int n, int p, int ldimA, const double *A,
 int ldimB, const double *B, int ldimC, double *C)
{
 for (int j = 0; j < n; j += KDIM)
 {
 for (int k = 0; k < p; k += KDIM)
 {
 // Set pointer to kernel (sub-block) Bkj
 const double *Bkj = B + k*KDIM + j*ldimB;

 for (int i = 0; i < m; i += KDIM)
 {
 // Set pointers to kernels (sub-blocks) Aik and Cij
 const double *Aik = A + i*KDIM + k*ldimA;
 double *Cij = C + i*KDIM + j*ldimC;
 // Perform matrix multiplication on kernels (sub-blocks)
 multiply_kernel(Aik, Bkj, Cij);
 }
 }
 }
}

/*
* Performs (block) matrix multiplication and addition, C = C + A*B, using the
* SAXPY operation — jki indexing. A (m-by-p), B (p-by-n) and C (m-by-n) are
* contiguous matrix blocks with leading dimensions ldimA, ldimB and ldimC,
* respectively. Within blocks of A, B and C, sub-blocks of size KDIM*KDIM are
* stored contiguously. Matrix multiplication and addition is ultimately
* performed on r-by-s, r-by-t and t-by-s sub-blocks with looping controlled
* by variables.
*/
void multiply_rect_blk_ker(int m, int n, int p, int ldimA, const double *A,
 int ldimB, const double *B, int ldimC, double *C)
{
 for (int j = 0; j < n; j += KDIM)
 {
 // Determine number of columns in (i,j)th sub-block of C
 const int s = (j + KDIM > n) ? (n - j) : KDIM;

 for (int k = 0; k < p; k += KDIM)
 {
 // Determine number of columns of Aik and rows of Bkj
 const int t = (k + KDIM > p) ? (p - k) : KDIM;
 // Set pointer to kernel (sub-block) Bkj
 const double *Bkj = B + k*KDIM + j*ldimB;

 for (int i = 0; i < m; i += KDIM)
 {
 // Determine number of rows in (i,j)th sub-block of C
 const int r = (i + KDIM > m) ? (m - i) : KDIM;
 // Set pointers to kernels (sub-blocks) Aik and Cij
const double *Aik = A + i*KDIM + k*ldimA;
double *Cij = C + i*KDIM + j*ldimC;

// Perform matrix multiplication on kernels (sub-blocks)
multiply_rect_kernel(r, s, t, Aik, Bkj, Cij);
}
}

/**
 * Performs matrix multiplication and addition, C = C + A*B, using the dot
 * (inner) product method -- ijk indexing. For each element C(i,j), the
 * inner-most loop computes the dot product of row i of A with column j of B,
 * and adds the result to C(i,j). A, B and C are n-by-n matrices stored in
 * column-major order with leading dimension n.
 */
void mmult_dot_product(int n, const double *A, const double *B, double *C)
{
 const int ldim = n;

 for (int i = 0; i < n; i++) {
 const double *Ai = A + i; // Points to element A(i,0)
 for (int j = 0; j < n; j++) {
 const double *Bj = B + j*ldim; // Points to element B(0,j)
 double cij = *(C + j*ldim + i); // Element C(i,j)
 for (int k = 0; k < n; k++) {
 cij += *(Ai + k*ldim) * *(Bj + k); // C(i,j) += A(i,k) * B(k,j)
 }
 *(C + j*ldim + i) = cij;
 }
 }
}

/**
 * Performs matrix multiplication and addition, C = C + A*B, using the SAXPY
 * operation -- jki indexing. The inner-most loop adds a scalar multiple of a
 * column to another column. A, B and C are n-by-n matrices stored in
 * column-major order with leading dimension n.
 */
void mmult_saxpy(int n, const double *A, const double *B, double *C)
{
 const int ldim = n;

 multiply_matrix(n, n, n, ldim, A, ldim, B, ldim, C);
}

/**
 * Performs matrix multiplication and addition, C = C + A*B, using the dot

(inner) product method — ijk indexing. Optimizes floating point operations by unrolling the inner-most loop to a depth of 8. A, B and C are n-by-n matrices stored in column-major order with leading dimension n.

```c
void mmult_unroll( int n, const double *A, const double *B, double *C )
{
    const int ldim = n;

    for ( int i = 0; i < n; i++ ) {
        const double *Ai = A + i; // Points to element A(i,0)
        for ( int j = 0; j < n; j++ ) {
            const double *Bj = B + j*ldim; // Points to element B(0,j)
            double cij = *(C + j*ldim + i),
                c0 = 0, c1 = 0, c2 = 0, c3 = 0,
                c4 = 0, c5 = 0, c6 = 0, c7 = 0;
            int k = 0;
            for ( ; k < n-7; k += 8 ) {
                c0 += *(Ai + (k+0)*ldim) * *(Bj + (k+0));
                c1 += *(Ai + (k+1)*ldim) * *(Bj + (k+1));
                c2 += *(Ai + (k+2)*ldim) * *(Bj + (k+2));
                c3 += *(Ai + (k+3)*ldim) * *(Bj + (k+3));
                c4 += *(Ai + (k+4)*ldim) * *(Bj + (k+4));
                c5 += *(Ai + (k+5)*ldim) * *(Bj + (k+5));
                c6 += *(Ai + (k+6)*ldim) * *(Bj + (k+6));
                c7 += *(Ai + (k+7)*ldim) * *(Bj + (k+7));
            }
            cij += c0 + c1 + c2 + c3 + c4 + c5 + c6 + c7;
            // Finish up dot product computation for cases where matrix
            // dimension $n$ is not a multiple of the depth of loop unrolling
            for ( ; k < n; k++ ) {
                cij += *(Ai + k*ldim) * *(Bj + k);
            }
            *(C + j*ldim + i) = cij; // Element C(i,j)
        }
    }
}
```

/*
* Performs matrix multiplication and addition, $C = C + A*B$, using the SAXPY operation — jki indexing. Optimizes floating point operations through software pipelining with the inner-most loop unrolled to a depth of 8. A, B and C are n-by-n matrices stored in column-major order with leading dimension n.
*/

```c
void mmult_pipeline( int n, const double *A, const double *B, double *C )
{
    const int ldim = n;

    for ( int j = 0; j < n; j++ ) {
        const double *Bj = B + j*ldim; // Points to element B(0,j)
```
double *C_j = C + j*ldim; // Points to element C(0,j)

for (int k = 0; k < n; k++) {
 const double *A_k = A + k*ldim; // Points to element A(0,k)

 double bkj,
 a0, a1, a2, a3, a4, a5, a6, a7, c0, c1, c2, c3, c4, c5, c6, c7;

 int i = 0;
 bkj = *(B_j + k); // Element B(k, j)
 if (n > 7+8) { // Proceed with software pipelining
 a0 = *(A_k + 0);
 a1 = *(A_k + 1);
 a2 = *(A_k + 2);
 a3 = *(A_k + 3);
 a4 = *(A_k + 4);
 a5 = *(A_k + 5);
 a6 = *(A_k + 6);
 a7 = *(A_k + 7);
 c0 = *(C_j + 0) + a0 * bkj;
 c1 = *(C_j + 1) + a1 * bkj;
 c2 = *(C_j + 2) + a2 * bkj;
 c3 = *(C_j + 3) + a3 * bkj;
 c4 = *(C_j + 4);
 c5 = *(C_j + 5);
 c6 = *(C_j + 6);
 c7 = *(C_j + 7);

 for (; i < n-7-8; i += 8) {
 *(C_j + i + 0) = c0;
 a4 *= bkj;
 a0 = *(A_k + i + 8);
 c4 += a4;
 c0 = *(C_j + i + 8);

 *(C_j + i + 1) = c1;
 a5 *= bkj;
 a1 = *(A_k + i + 9);
 c5 += a5;
 c1 = *(C_j + i + 9);

 *(C_j + i + 2) = c2;
 a6 *= bkj;
 a2 = *(A_k + i + 10);
 c6 += a6;
 c2 = *(C_j + i + 10);

 *(C_j + i + 3) = c3;
 a7 *= bkj;
 a3 = *(A_k + i + 11);
 c7 += a7;
 c3 = *(C_j + i + 11);
*(C._j + i + 4) = c4;
a0 += *bkj;
a4 = *(A._k + i + 12);
c0 += a0;
c4 = *(C._j + i + 12);

*(C._j + i + 5) = c5;
a1 += *bkj;
a5 = *(A._k + i + 13);
c1 += a1;
c5 = *(C._j + i + 13);

*(C._j + i + 6) = c6;
a2 += *bkj;
a6 = *(A._k + i + 14);
c2 += a2;
c6 = *(C._j + i + 14);

*(C._j + i + 7) = c7;
a3 += *bkj;
a7 = *(A._k + i + 15);
c3 += a3;
c7 = *(C._j + i + 15);
}\n
// Finish up combined scalar multiplication and vector addition for
// cases where matrix dimension n is not a multiple of the depth of
// loop unrolling
for(; i < n; i++) {
 *(C._j + i) += *(A._k + i) * *bkj;
}

*/

* Performs matrix multiplication and addition, C = C + A*B, using simple
 * blocking to optimize memory access. The underlying unblocked matrix
 * multiplication algorithm is the SAXPY operation. A, B and C are n–by–n
 * matrices stored in column–major order with leading dimension n.
/**
 * mmult_block(int n, const double *A, const double *B, double *C)
 *
 * Determines the number of columns in the (i,j)th block of C.
 * s = (j + bdim > n) ? (n - j) : bdim;
 *
 * Determines the number of columns of Aik and rows of Bkj.
 * t = (k + bdim > n) ? (n - k) : bdim;
 *
 * Determines the number of rows in the (i,j)th block of C.
 * r = (i + bdim > n) ? (n - i) : bdim;
 *
 * Sets pointers to block matrices Aik and Cij.
 * const double *Aik = A + i + k*ldim;
 * double *Cij = C + i + j*ldim;
 *
 * Performs matrix multiplication and addition, C = C + A*B, using contiguous
 * blocking to optimize memory access. The underlying unblocked matrix
 * multiplication algorithm is the SAXPY operation. A, B and C are n-by-n
 * matrices stored in column-major order with leading dimension n. A, B, and C
 * are first copied to arrays AA, BB and CC, respectively, where bdim-by-bdim
 * matrix blocks are stored contiguously, and within each block, elements are
 * stored in column-major order. Matrix multiplication and addition on
 * contiguous blocks yields CC = CC + AA*BB, and the result is copied from array
 * CC to C, where matrix elements are stored in conventional column-major order.
 */

void mmult_contig_block(int n, const double *A, const double *B, double *C)
{
 const int ldim = n;
 const int bdim = get_block_dim_mmult(ldim);

 double *AA, *BB, *CC;

 AA = (double *) malloc(ldim*ldim*sizeof(double));
 BB = (double *) malloc(ldim*ldim*sizeof(double));
 CC = (double *) malloc(ldim*ldim*sizeof(double));

 for (int j = 0; j < n; j += bdim) {
 // Determine number of columns in (i,j)th block of C
 int s = (j + bdim > n) ? (n - j) : bdim;
 for (int k = 0; k < n; k += bdim) {
 // Determine number of columns of Aik and rows of Bkj
 int t = (k + bdim > n) ? (n - k) : bdim;
 // Set pointer to block matrix Bkj
 const double *Bkj = B + k + j*ldim;

 for (int i = 0; i < n; i += bdim) {
 // Determine number of rows in (i,j)th block of C
 int r = (i + bdim > n) ? (n - i) : bdim;
 // Set pointers to block matrices Aik and Cij
 const double *Aik = A + i + k*ldim;
 double *Cij = C + i + j*ldim;

 // Perform multiplication on block matrices
 multiply_matrix(r, s, t, ldim, Aik, ldim, Bkj, ldim, Cij);
 }
 }
 }
}
*/
form_contig_blocks(n, n, ldim, A, n, n, bdim, ldim, AA);
form_contig_blocks(n, n, ldim, B, n, n, bdim, ldim, BB);
form_contig_blocks(n, n, ldim, C, n, n, bdim, ldim, CC);

for (int j = 0; j < n; j += bdim) {
 // Determine number of columns in (i,j)th block of CC
 int s = (j + bdim > n) ? (n - j) : bdim;

 for (int k = 0; k < n; k += bdim) {
 // Determine number of columns of AAik and rows of BBkj
 int t = (k + bdim > n) ? (n - k) : bdim;
 // Set pointer to block matrix BBkj
 double *BBkj = BB + k * s + j * ldim;

 for (int i = 0; i < n; i += bdim) {
 // Determine number of rows in (i,j)th block of CC
 int r = (i + bdim > n) ? (n - i) : bdim;
 // Set pointers to block matrices AAik and CCij
 double *AAik = AA + i * t + k * ldim;
 double *CCij = CC + i * s + j * ldim;
 // Perform multiplication on block matrices
 multiply_matrix(r, s, t, r, AAik, t, BBkj, r, CCij);
 }
 }
}

// Extract matrix C from contiguous blocks
unpack_contig_blocks(n, n, bdim, ldim, CC, n, n, ldim, C);
free(AA);
free(BB);
free(CC);

/**
 * Performs matrix multiplication and addition, C = C + A*B, using recursive
 * contiguous blocking to optimize memory access. The underlying unblocked
 * matrix multiplication algorithm is the SAXPY operation. A, B and C are
 * n-by-n matrices stored in column-major order with leading dimension n.
 * A, B and C are first copied to arrays AA, BB and CC, respectively, where
 * sub-blocks of size KDIM*KDIM are stored contiguously, and within each block,
 * sub-blocks of size KDIM*KDIM are stored contiguously. Matrix multiplication
 * and addition on recursive contiguous blocks yields CC = CC + AA*BB, and the
 * result is copied from array CC to C, where matrix elements are stored in
 * conventional column-major order. Ultimately, a symbolic constant (KDIM)
 * controls looping in the matrix multiplication kernel.
 */
void mmult_recur_block(int n, const double *A, const double *B, double *C) {
 const int nn = (n / KDIM) * KDIM + ((n % KDIM) ? KDIM : 0);
 const int ldim = nn;
 const int bdim = get_block_dim_mmult(ldim);
double *AA, *BB, *CC;

AA = (double *) malloc(ldim*ldim*sizeof(double));
BB = (double *) malloc(ldim*ldim*sizeof(double));
CC = (double *) malloc(ldim*ldim*sizeof(double));
form_recur_blocks(n, n, n, A, nn, nn, KDIM, bdim, ldim, AA);
form_recur_blocks(n, n, n, B, nn, nn, KDIM, bdim, ldim, BB);
form_recur_blocks(n, n, n, C, nn, nn, KDIM, bdim, ldim, CC);

for (int j = 0; j < nn; j += bdim) {
 // Determine number of columns in (i, j)th block of CC
 int s = (j + bdim > n) ? (n - j) : bdim;
 int v = (j + bdim > nn) ? (nn - j) : bdim;

 for (int k = 0; k < nn; k += bdim) {
 // Determine number of columns of AAik and rows of BBkj
 int t = (k + bdim > n) ? (n - k) : bdim;
 int w = (k + bdim > nn) ? (nn - k) : bdim;
 // Set pointer to block matrix BBkj
 double *BBkj = BB + k*v + j*ldim;

 for (int i = 0; i < nn; i += bdim) {
 // Determine number of rows in (i, j)th block of CC
 int r = (i + bdim > n) ? (n - i) : bdim;
 int u = (i + bdim > nn) ? (nn - i) : bdim;
 // Set pointers to block matrices AAik and CCij
 double *AAik = AA + i*w + k*ldim;
 double *CCij = CC + i*v + j*ldim;
 // Perform multiplication on recursive block matrices
 multiply_blk_ker(r, s, t, u, AAik, BBkj, w, CCij);
 }
 }
}

// Extract matrix C from recursive contiguous blocks
unpack_recur_blocks(nn, nn, KDIM, bdim, ldim, CC, n, n, n, C);
free(AA);
free(BB);
free(CC);

/*
 * Performs matrix multiplication and addition, C = C + A*B, using recursive
 * contiguous blocking to optimize memory access. The underlying unblocked
 * matrix multiplication algorithm is the SAXPY operation. A, B and C are
 * n-by-n matrices stored in column-major order with leading dimension n.
 * A, B and C are first copied to arrays AA, BB and CC, respectively, where
 * bdim-by-bdim matrix blocks are stored contiguously, and within each block,
 * sub-blocks of size KDIM*KDIM are stored contiguously. Matrix multiplication
 * and addition on recursive contiguous blocks yields CC = CC + AA*BB, and the
 */
result is copied from array CC to C, where matrix elements are stored in
conventional column-major order. Ultimately, variables control looping in
the matrix multiplication kernel.
*/

void mmult_rect_recur_block(int n, const double *A, const double *B, double *C)
{
 const int nn = (n / KDIM) * KDIM + ((n % KDIM) ? KDIM : 0);
 const int ld = nn;
 const int bdim = get_block_dim_mmult(ldim);

 double *AA, *BB, *CC;

 AA = (double *) malloc(ld*ld*sizeof(double));
 BB = (double *) malloc(ld*ld*sizeof(double));
 CC = (double *) malloc(ld*ld*sizeof(double));
 form_recur_blocks(n, n, A, nn, nn, KDIM, bdim, ldim, AA);
 form_recur_blocks(n, n, B, nn, nn, KDIM, bdim, ldim, BB);
 form_recur_blocks(n, n, C, nn, nn, KDIM, bdim, ldim, CC);

 for (int j = 0; j < nn; j += bdim) {
 // Determine number of columns in (i,j)th block of CC
 int s = (j + bdim > n) ? (n - j) : bdim;
 int v = (j + bdim > nn) ? (nn - j) : bdim;

 for (int k = 0; k < nn; k += bdim) {
 // Determine number of columns of AAIk and rows of BBkj
 int t = (k + bdim > n) ? (n - k) : bdim;
 int w = (k + bdim > nn) ? (nn - k) : bdim;
 // Set pointer to block matrix BBkj
 double *BBkj = BB + k*v + j*ld;

 for (int i = 0; i < nn; i += bdim) {
 // Determine number of rows in (i,j)th block of CC
 int r = (i + bdim > n) ? (n - i) : bdim;
 int u = (i + bdim > nn) ? (nn - i) : bdim;
 // Set pointers to block matrices AAIk and CCij
 double *AAik = AA + i*w + k*ld;
 double *CCij = CC + i*v + j*ld;
 // Perform multiplication on recursive block matrices
 multiply_rect_bblk_ker(r, s, t, u, AAik, w, BBkj, u, CCij);
 }
 }
 }
}

// Extract matrix C from recursive contiguous blocks
unpack_recur_blocks(nn, nn, KDIM, bdim, ldim, CC, n, n, C);
free(AA);
free(BB);
free(CC);

/ * Wrapper for calling BLAS routine DGEMM, which performs matrix multiplication. */

void mmult_blas(int n, const double *A, const double *B, double *C)
{
 const char no_trans = 'N';
 const double one = 1.0;

 dgemm(&no_trans, &no_trans, &n, &n, &n, &one, A, &n, B, &n, &one, C, &n);
}
A.8. matmultp.c – parallel matrix multiplication.

```c
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <mpi.h>
#include "matmultp.h"

static void form_contig_blocks( int m, int n, int ldimE, const double *E, 
    int mm, int nn, int bdim, int ldimF, double *F );
static void unpack_contig_blocks( int mm, int nn, int bdim, int ldimE, 
    const double *E, int m, int n, int ldimF, double *F );

static MPI_Datatype contig;
static double *AA, *BB, *CC;
static double *X, *Y, *Z;

/***************************************************************************/
/* Copy elements of an m-by-n matrix E to mm-by-nn matrix F. Leading dimension */
/* ldimE is the number of rows of E, while ldimF is the number of columns of F. */
/* Elements of E are stored in column-major order. Array F stores bdim-by-bdim */
/* matrix blocks contiguously, with blocks stored in row-major order and */
/* elements of blocks stored in column-major order. */
/***************************************************************************/
void form_contig_blocks( int m, int n, int ldimE, const double *E, 
    int mm, int nn, int bdim, int ldimF, double *F )
{
    for ( int i = 0; i < mm; i += bdim ) {
        int r = (i + bdim > m) ? (m - i) : bdim;
        int p = (i + bdim > mm) ? (mm - i) : bdim;
        for ( int j = 0; j < nn; j += bdim ) {
            int s = (j + bdim > n) ? (n - j) : bdim;
            int q = (j + bdim > nn) ? (nn - j) : bdim;
            // Clear fringe blocks by setting elements to zero
            if ( s != q || r != p ) {
                double *Fij = F + i*ldimF + j*p;
                memset( Fij, 0, p*q*sizeof(double) );
            }
        }
        for ( int k = 0; k < s; k++ ) {
```
```c
const double *Eij = E + j*ldimE + i + k*ldimE;
double *Fij = F + i*ldimF + j*p + k*p;
memcpy( Fij, Eij, r*sizeof(double) );
```
/∗
* Sets elements of m-by-n matrix with leading dimension m to zero.
*/
void clear_matrix(int m, int n, double *E)
{
 const int ldim = m;
 for (int j = 0; j < n; j++) {
 memset(E + j*ldim, 0, m*sizeof(double));
 }
}

/*
* Copies the elements of an m-by-n matrix E to matrix F. For both matrices
* the leading dimension is m, and elements are stored in column-major order.
*/
void copy_matrix(int m, int n, const double *E, double *F)
{
 const int ldim = m;
 for (int j = 0; j < n; j++) {
 const double *E_j = E + j*ldim;
 double *F_j = F + j*ldim;
 memcpy(F_j, E_j, m*sizeof(double));
 }
}

/*
* Establish the Cartesian (square grid) topology that facilitates collective
* communication between processes. It is assumed that the number of
* processes is a perfect square, so that the row dimension equals the column
* dimension of the grid.
*/
void setup_mpi_grid(struct mpi_grid *grid)
{
 int dims, reord, world_rank;
 int dim[2],
 wrap[2],
 coords[2],
 free_coords[2];

 MPI_Comm_size(MPI_COMM_WORLD, &(grid->p));
 MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);

 dims = 2; // Number of grid dimensions
 grid->q = (int) sqrt(grid->p); // Assume p is a perfect square
 dim[0] = grid->q; // Number of row blocks
 dim[1] = grid->q; // Number of column blocks
 wrap[0] = 0;
wrap[1] = 1; // Wrap around or circular shift for columns
reord = 1; // Permit reordering of processes

// Create communicator with Cartesian topology
MPI_Cart_create(MPI_COMM_WORLD, dims, dim, wrap, reord, &(grid->comm));
// Get process rank in Cartesian communicator
MPI_Comm_rank(grid->comm, &(grid->rank));
// Get process coordinates in Cartesian communicator
MPI_Cart_coords(grid->comm, grid->rank, dims, coords);
grid->row = coords[0];
grid->col = coords[1];

// Setup row communicators
free_coords[0] = 0; // Fix row coordinates
free_coords[1] = 1; // Vary column coordinates
MPI_Cart_sub(grid->comm, free_coords, &(grid->row_comm));

// Setup column communicators
free_coords[0] = 1; // Vary row coordinates
free_coords[1] = 0; // Fix column coordinates
MPI_Cart_sub(grid->comm, free_coords, &(grid->col_comm));

/*
 * The full matrices stored on the root processor are partitioned into square blocks corresponding to the processes in the Cartesian grid. The root processor sends (scatters) the blocks to their respective processors where (block) matrix multiplication is performed.
*/
void scatter_blocks(int bdim, int n,
 const double *A, const double *B, double *C, struct mpi_grid *grid)
{
 const int nn = bdim * grid->q;
 const int ldim = nn;
 const long blk_sz = bdim * bdim;

 // On root processor copy matrix blocks into array so that elements are stored contiguously to facilitate collective communication
 if (grid->rank == 0) {
 AA = (double *) malloc(grid->p*blk_sz*sizeof(double));
 form_contig_blocks(n, n, A, nn, nn, bdim, ldim, AA);
 BB = (double *) malloc(grid->p*blk_sz*sizeof(double));
 form_contig_blocks(n, n, B, nn, nn, bdim, ldim, BB);
 CC = (double *) malloc(grid->p*blk_sz*sizeof(double));
 form_contig_blocks(n, n, C, nn, nn, bdim, ldim, CC);
 }

 // Allocate memory for matrix blocks on processors
 X = (double *) malloc(blk_sz*sizeof(double));
 Y = (double *) malloc(blk_sz*sizeof(double));
 Z = (double *) malloc(blk_sz*sizeof(double));
// Distribute matrix blocks across processors in communicator
MPI_Scatter(AA, bdim, contig, X, bdim, contig, 0, grid->comm);
MPI_Scatter(BB, bdim, contig, Y, bdim, contig, 0, grid->comm);
MPI_Scatter(CC, bdim, contig, Z, bdim, contig, 0, grid->comm);
}
/*
* Once the processes have completed (block) matrix multiplication, the root
* processor receives (gathers) the resulting block matrices from their
* respective processors within the Cartesian grid, and assembles the blocks
* into matrix C, which is the result of the matrix multiplication operation
* \(C = C + A \times B \).
*/
void gather_blocks(int bdim, int n, double *C, struct mpi_grid *grid)
{
 const int nn = bdim * grid->q;
 const int ldim = nn;

 // Collect matrix blocks from processors in communicator
 MPI_Gather(Z, bdim, contig, CC, bdim, contig, 0, grid->comm);
 free(X);
 free(Y);
 free(Z);

 // On root processor copy contiguous matrix blocks into array where elements
 // are stored in column-major order
 if (grid->rank == 0) {
 unpack_contig_blocks(nn, nn, bdim, ldim, CC, n, n, n, C);
 free(AA);
 free(BB);
 free(CC);
 }
}
/*
* Performs matrix multiplication and addition, \(C = C + A \times B \), using the SAXPY
* operation — jki indexing. The inner-most loop adds a scalar multiple of
* column vector \(x \) to column vector \(y \). A \((m-\times-p)\), B \((p-\times-n)\) and C \((m-\times-n)\)
* are rectangular matrices stored in column-major order with leading dimensions
* \(\text{ldimA}, \text{ldimB} \) and \(\text{ldimC} \), respectively.
*/
void multiply_matrix(int m, int n, int p, int ldimA, const double *A,
 int ldimB, const double *B, int ldimC, double *C)
{
 for (int j = 0; j < n; j++) {
 const double *B_j = B + j*ldimB; // Points to element B(0,j)
 double *C_j = C + j*ldimC; // Points to element C(0,j)
 for (int k = 0; k < p; k++) {
 const double *A_k = A + k*ldimA; // Points to element A(0,k)
double bkJ = *(B[j + k]); // Element B(k, j)
for (int i = 0; i < m; i++) {
 *(C[j + i]) += *(A[k + i]) * bkJ; // C(i, j) += A(i, k) * B(k, j)
}

void blocked_matrix_multiply (int m, int n, int p, int ldimA, const double *A, int ldimB, const double *B, int ldimC, double *C)
{
 const int bdim = BDIM;

 for (int j = 0; j < n; j += bdim) {
 // Determine number of columns in (i,j)th block of C
 int s = (j + bdim > n) ? (n - j) : bdim;

 for (int k = 0; k < p; k += bdim) {
 // Determine number of columns of Aik and rows of Bkj
 int t = (k + bdim > p) ? (p - k) : bdim;
 // Set pointers to block matrices Aik and Cij
 const double *Aik = A + i + k * ldimA;
 double *Cij = C + i + j * ldimC;
 // Perform multiplication on block matrices
 multiply_matrix(r, s, t, ldimA, Aik, ldimB, Bkj, ldimC, Cij);
 }
 }
}

void serial_matrix_multiply (int n, const double *A, const double *B, double *C)
{
const int ldim = n;

blocked_matrix_multiply(n, n, n, ldim, A, ldim, B, ldim, C);
}

/*
 * Implements the memory efficient Fox algorithm for parallel matrix
 * multiplication. The number of stages is equal to the square root of the
 * number of processes i.e., the number of row/ column blocks. For each stage
 * a block matrix Aik is broadcast across processes in each row communicator,
 * block matrix multiplication, Cij = Cij + Aik*Bkj, is performed, and block
 * matrices Bkj are rolled between processes within each column communicator.
 */

void fox_matrix_multiply(const int n,
 double *A, double *B, double *C, struct mpi_grid *grid)
{
 const int ldim = n;
 const long blk_sz = n * n;

 int src, dest;
 double *T;
 MPI_Status stat;

 // Allocate memory for temporary matrix block
 T = (double *) malloc(blk_sz*sizeof(double));

 // Determine row index of source processor from which block matrix is
 // received, and row index of destination processor to which block matrix
 // is sent, for next block matrix multiplication operation
 src = (grid->row + 1) % grid->q;
 dest = (grid->row + grid->q - 1) % grid->q;

 // Number of stages = number row blocks = number of column blocks.
 // For each stage broadcast block matrix Aik across processors in row
 // communicator, perform block matrix multiplication, Cij = Cij + Aik*Bkj,
 // and then roll block matrices Bkj between processors within column
 // communicator.
 for (int stage = 0; stage < grid->q; stage++) {
 int bcast_root = (grid->row + stage) % grid->q;
 if (bcast_root == grid->col) {
 MPI_Bcast(A, n, contig, bcast_root, grid->row_comm);
 blocked_matrix_multiply(n, n, n, ldim, A, ldim, B, ldim, C);
 } else {
 MPI_Bcast(T, n, contig, bcast_root, grid->row_comm);
 blocked_matrix_multiply(n, n, n, ldim, T, ldim, B, ldim, C);
 }
 MPI_Sendrecv_replace(B, n, contig, dest, 0, src, 0,
 grid->col_comm, &stat);
 }
}
/ * Perform matrix multiplication (and addition), $C = C + AB$, using parallel * programming with MPI. First, matrices on the root processor are partitioned * into blocks and sent to processes in the Cartesian grid topology. Then, the * Fox algorithm performs (block) matrix multiplication. Finally, the root * processor receives the resulting block matrices from the processes and * assembles the resulting matrix C. */

void parallel_matrix_multiply(int n,
const double *A, const double *B, double *C, struct mpi_grid *grid)
{
 const int bdim = (n / grid->q) + ((n % grid->q ? 1 : 0));
 // Dimension of matrix blocks
 // Create and commit MPI derived datatype constructor
 MPI_Type_contiguous(bdim, MPI_DOUBLE, &contig);
 MPI_Type_commit(&contig);
 scatter_blocks(bdim, n, A, B, C, grid);
 fox_matrix_multiply(bdim, X, Y, Z, grid);
 gather_blocks(bdim, n, C, grid);
}
A.9. mfactime.c – timing harness for matrix factorization.

/*
 * Timing harness for measuring the performance of basic and "optimized"
 * algorithms implementing matrix factorizations on square matrices over a range
 * of dimensions. Matrix factorizations include LU (Gaussian elimination),
 * standard Cholesky, symmetric indefinite (LDL'), and modified Cholesky
 * (Gill–Murray–Wright and Cheng–Higham algorithms). Performance data are
 * written to an output file destination.
 */

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include "lufact.h"
#include "cholfact.h"
#include "ldltfact.h"
#include "modchol.h"
#include "matcom.h"
#include "timing.h"

#if !defined(PROC)
 #define PROC "unknown"
#endif
#if !defined(CORES)
 #define CORES "unknown"
#endif
#if !defined(CLKSPEED)
 #define CLKSPEED "unknown"
#endif
#if !defined(CACHE)
 #define CACHE "unknown"
#endif
#if !defined(COMPILED)
 #define COMPILER "unknown"
#endif
#if !defined(LANGUAGE)
 #define LANGUAGE "default"
#endif
#if !defined(OPTM)
 #define OPTM "default"
#endif
#if !defined(DATADIR)
 #define DATADIR "." // Current directory ./
#endif

#if defined(DEBUG)
 #define MIN_ITER 4 // Minimum number of iterations of algorithm
 #define MIN_SECS 1.0 // Minimum elapsed time for execution of algorithm
 // Define sizes (dimensions) of square matrices used to measure performance
#endif
const int mat_size[] = { 65, 130, 195, 254 };
#else
define MIN_ITER 8
define MIN_SECS 2.0
const int mat_size[] = { 65, 130, 195, 254, 258, 321, 387, 450, 508, 516,
579, 642, 707, 764, 772, 833, 899, 963, 1021, 1027, 1155, 1278, 1282,
1411, 1532, 1540, 1666, 1789, 1795, 1921, 2046, 2050 };
#endif
#define SIZES (sizeof(mat_size) / sizeof(int))

static void read_matrix(const char * file, int m, int n, double * A);
static void write_data_file(const char * file, const char * hdr_text,
const int rows, const int cols, const double * data);
static double time_mfact(void (* mfact)(int n, double * A), int n, double * A);
static double time_mfact_pivot(void (* mfact_piv)(char pivot, int n, int * piv,
int *ord, double * A), char pivot, int n, int * piv, int *ord, double * A);
static void time_lu(void);
static void time_lu_pivot(void);
static void time_chol(void);
static void profile_chol(void);
static void time_ldlt(void);
static void time_ldlt_indef(void);
static void profile_ldlt(void);
static void time_chol_gmw(void);
static void time_chol_ch(void);
static void time_mod_chol_indef(void);
static void profile_mod_chol(void);

static char * file_path;

int main()
{
 // Specify file path for output data files
 file_path = (char *) calloc(strlen(DATADIR) + 2, sizeof(char));
 strcpy(file_path, DATADIR);
 strcat(file_path, "/*/*");
#if defined(LUFACT)
 time_lu();
#endif
#if defined(LUPIVOT)
 time_lu_pivot();
#endif
#if defined(CHOLFACT)
#if defined(PROFILE)
 profile_chol();
#else
 time_chol();
#endif

#endif
#endif

#if defined(LDLTFACT)
#if defined(PROFILE)
 profile_ldlt();
#else
 time_ldlt();
 time_ldlt_indef();
#endif
#endif

#if defined(MODCHOL)
#if defined(PROFILE)
 profile_mod_chol();
#else
 time_chol_gmw();
 time_chol_ch();
 time_mod_chol_indef();
#endif
#endif

 return 0;
}

/**

/* Reads matrix data in specified file into array A passed in argument list.
 * Matrix A is stored in column-major order.
 */
void read_matrix(const char *file, int m, int n, double *A)
{
 const int ldim = m;

 FILE *fp;

 if ((fp = fopen(file, "r")) == NULL) {
 fprintf(stderr, "Error opening file %s.", file);
 exit(-1);
 }
 // Read matrix data from file
 for (int i = 0; i < m; i++) {
 for (int j = 0; j < n; j++) {
 fscanf(fp, "%lg", (A + i + j*ldim));
 }
 }
 fclose(fp);
}
PERFORMANCE OPTIMIZATION OF SYMMETRIC FACTORIZATION ALGORITHMS

/*
 * Writes header text and experimental data to the file specified in the
 * argument list. Experimental data is enumerated in a matrix stored in
 * column-major order.
 */

void write_data_file(const char *file, const char *hdr_text, int rows, int cols, const double *data)
{
 FILE *fp;

 if ((fp = fopen(file, "w")) == NULL) {
 fprintf(stderr, "Error opening file %s.", file);
 exit(-1);
 }

 // Write header text
 fprintf(fp, "Processor:\t%s\n", PROC);
 fprintf(fp, "Cores:\t%s\n", CORES);
 fprintf(fp, "Clock speed:\t%s\n", CLKSPED);
 fprintf(fp, "Cache:\t%s\n", CACHE);
 fprintf(fp, "\n");
 fprintf(fp, "C compiler:\t%s\n", COMPILER);
 fprintf(fp, "C language standard:\t%s\n", LANGUAGE);
 fprintf(fp, "Optimization level and options:\t%s\n", OPTM);
 fprintf(fp, "Clock resolution:\t%Lg\n", timer_resolution());

 // Write experimental data
 for (int i = 0; i < rows; i++) {
 for (int j = 0; j < cols; j++) {
 fprintf(fp, "%g\t", *(data+j*rows+i));
 }
 }

 fclose(fp);
}

/*
 * Measures the average time (number of seconds) to factor an n-by-n matrix.
 * Assumes that pivoting is not required to ensure numerical stability of the
 * factorization procedure. Matrix factorization is performed iteratively for
 * at least the minimum number of iterations, and until the minimum time
 * (in seconds) has elapsed.
 */

double time_mfact(void (*mfact)(int n, double *A), int n, double *A)
{
 struct timespec sta, end;
 long int num_iter = MIN_ITER;
 double secs = -1.0;
 double *M;
// Save copy of matrix A before performing matrix factorization
M = (double *) malloc(n*n*sizeof(double));
copy_matrix(n, n, A, M);

while (secs < MIN_SECS) {
 get_time(&sta);
 for (int i = 0; i < num_iter; i++) {
 mfact(n, A);
 copy_matrix(n, n, M, A); // Reset matrix A to initial value
 }
 get_time(&end);
 secs = timespec_diff(sta, end);
 num_iter *= 2;
}
free(M);

// On exiting the while loop, the number of iterations (num_iter) has been
// doubled in the event that secs < MIN_SECS, so num_iter must be halved
return secs / (num_iter/2.0);

/*
 * Measures the average time (number of seconds) to factor an n-by-n matrix.
 * Assumes that pivoting is required to ensure numerical stability of the
 * factorization procedure. Matrix factorization is performed iteratively for
 * at least the minimum number of iterations, and until the minimum time
 * (in seconds) has elapsed.
 */
double time_mfact_pivot(void (*mfact_piv)(char pivot, int n, int *piv,
 int *ord, double *A), char pivot, int n, int *piv, int *ord, double *A)
{
 struct timespec sta, end;
 long int num_iter = MIN_ITER;
 double secs = -1.0;
 double *M;

 // Save copy of matrix A before performing matrix factorization
 M = (double *) malloc(n*n*sizeof(double));
copy_matrix(n, n, A, M);

 while (secs < MIN_SECS) {
 get_time(&sta);
 for (int i = 0; i < num_iter; i++) {
 mfact_piv(pivot, n, piv, ord, A);
 copy_matrix(n, n, M, A); // Reset matrix A to initial value
 }
 get_time(&end);
 secs = timespec_diff(sta, end);
 num_iter *= 2;
 }
free(M);

// On exiting the while loop, the number of iterations (num_iter) has been
// doubled in the event that secs < MIN_SECS, so num_iter must be halved
return secs / (num_iter/2.0);
}

/*
* Measures the performance (Mflops/sec) of basic and optimized algorithms
* implementing LU factorization on nonsingular matrices over a range of
* dimensions. The algorithms employ performance optimization techniques
* including loop reordering and blocking. It is assumed that LU factorization
* is performed on matrices with properties — for example, diagonally dominant
* (alpha = 1.0) — that do not require pivoting.
*/

void time_lu(void)
{
#define FIELDS 6 // Number of output data fields
 const char *data_file_name = "lu.dat";
 const char *hdr_text =
 "# N: Matrix dimension, N-by-N\n"
 "# BDIM: Block dimension for blocked algorithms\n"
 "# Mflop/sec for Gaussian elimination (LU factorization) algorithms\n"
 "# OUTPROD: Outer product method, kji indexing\n"
 "# SAXPY: SAXPY operation, jki indexing\n"
 "# BLKSIMP: Simple blocking\n"
 "# BLKRCR: Recursive contiguous blocking\n"
 "# \n"
 "# NBDIM\tOUTPROD\tSAXPY\tBLKSIMP\tBLKRCR\n"
 const int col_n = 0,
 col_bdim = 1,
 col_outprod = 2,
 col_saxpy = 3,
 col_blksimp = 4,
 col_blkrcr = 5;
 const double alpha = 1.0; // Scaling factor for random matrix

 char *data_file;
 int n, bdim;
 double mflops;
 double perf_data[FIELDS*SIZES];
 double *A;
 void (*mfact)(int n, double *A);

 // Concatenate file path and name
 data_file = (char *) calloc(strlen(file_path) + strlen(data_file_name) + 1,
 sizeof(char));
 strcpy(data_file, file_path);
 strcat(data_file, data_file_name);
for (int i = 0; i < SIZES; i++) {
 n = mat_size[i];
 bdim = get_block_dim Lu(n);
 printf(stdout, "n = %d, bdim = %d\n", n, bdim);
 // LU factorization takes (2/3)*n^3 floating point operations
 mflops = 1.0e-06 * (2.0/3.0) * n * n * n;
 // Create random n-by-n nonsingular matrix that is diagonally dominant
 A = (double *) malloc(n*n*sizeof(double));
 create_random_nonsingular(alpha, n, A);

 // Performance data is stored in perf_data[] array in column-major order
 perf_data[i+col_n*SIZES] = (double) n;
 perf_data[i+col_bdim*SIZES] = (double) bdim;
 printf("lu_outer_product\n");
 // Measure performance of LU factorization algorithms:
 // Outer product method (kji indexing)
 mfact = lu_outer_product;
 perf_data[i+col_outprod*SIZES] = mflops / time_mfact(mfact, n, A);
 printf("lu_saxpy\n");
 // SAXPY operation (jki indexing)
 mfact = lu_saxpy;
 perf_data[i+col_saxpy*SIZES] = mflops / time_mfact(mfact, n, A);
 printf("lu_block\n");
 // Simple blocking
 mfact = lu_block;
 perf_data[i+col_blksimp*SIZES] = mflops / time_mfact(mfact, n, A);
 printf("lu_recur_block\n");
 // Recursive contiguous blocking
 mfact = lu_recur_block;
 perf_data[i+col_blkrct*SIZES] = mflops / time_mfact(mfact, n, A);
 free(A);
}
write_data_file(data_file, hdr_text, SIZES, FIELDS, perf_data);

#undef FIELDS
}

/*
 * Measures the performance (Mflops/sec) of basic and optimized algorithms
 * implementing LU factorization with partial pivoting on nonsingular matrices
 * over a range of dimensions. The algorithms employ performance optimization
 * techniques including loop reordering, blocking and the use of the LAPACK
 * library.
 */
void time_lu_pivot(void)
{
 #define FIELDS 6 // Number of output data fields
 const char *data_file_name = "lu_pivot.dat";
 const char *hdr_text =
"# N: Matrix dimension, N-by-N"
"# BDIM: Block dimension for blocked algorithms"
"# Mflop/sec for LU factorization with partial pivoting algorithms"
"# OUTPROD: Outer product method, kji indexing"
"# SAXPY: SAXPY operation, jki indexing"
"# BLOCK: Simple blocking"
"# LAPACK: LAPACK routine DGETRF"
"# \n"
"# N\tBDIM\tOUTPROD\tSAXPY\tBLOCK\tLAPACK"

const int column = 0,
 col_bdim = 1,
 col_outprod = 2,
 col_saxpy = 3,
 col_block = 4,
 col_lapack = 5;

const double alpha = 10.0; // Scaling factor for random matrix

char *data_file;
int n, bdim;
int *piv, *ord;
double mflops;
double perf_data[FIELDS*SIZES];
double *A;

void (*mfact_piv)(char pivot, int n, int *piv, int *ord, double *A);

// Concatenate file path and name
data_file = (char *) calloc(strlen(file_path) + strlen(data_file_name) + 1,
 sizeof(char));
strcpy(data_file, file_path);
strcat(data_file, data_file_name);

for (int i = 0; i < SIZES; i++) {
 n = mat_size[i];
 bdim = get_block_dimLu(n);
 fprintf(stdout, "%d, %d\n", n, bdim);
 // LU factorization takes (2/3)*n^3 floating point operations
 mflops = 1.0e-06 * (2.0/3.0) * n * n * n;
 // Create random n-by-n nonsingular matrix that is diagonally dominant
 A = (double *) malloc(n*n*sizeof(double));
 create_random_nonsingular(alpha, n, A);
 // Declare pivot and pivot order vectors
 piv = (int *) malloc(n*sizeof(int));
 ord = (int *) malloc(n*sizeof(int));

 // Performance data is stored in perf_data[] array in column-major order
 perf_data[i+col_n*SIZES] = (double) n;
 perf_data[i+col_bdim*SIZES] = (double) bdim;
 printf("lu_pivot_outer_product\n");
 // Measure performance of LU factorization with partial pivoting algorithms:
 // Outer product method (kji indexing)
mfact_piv = lu_pivot_outer_product;
perf_data[i+col_outprod*SIZES] =
mflops / time_mfact_pivot(mfact_piv, 'G', n, piv, ord, A);
printf("lu_pivot_saxpy\n");
// SAXPY operation (jki indexing)

mfact_piv = lu_pivot_saxpy;
perf_data[i+col_saxpy*SIZES] =
mflops / time_mfact_pivot(mfact_piv, 'G', n, piv, ord, A);
printf("lu_pivot_block\n");
// Simple blocking

mfact_piv = lu_pivot_block;
perf_data[i+col_block*SIZES] =
mflops / time_mfact_pivot(mfact_piv, 'G', n, piv, ord, A);
printf("lu_pivot_lapack\n");
// LAPACK routine DGETRF

mfact_piv = lu_pivot_lapack;
perf_data[i+col_lapack*SIZES] =
mflops / time_mfact_pivot(mfact_piv, 'G', n, piv, ord, A);

free(A);
free(piv);
free(ord);
}
write_data_file(data_file, hdr_text, SIZES, FIELDS, perf_data);

#undef FIELDS
}

/* Measures the performance (Mflops/sec) of basic and optimized algorithms
* implementing Cholesky factorization on symmetric positive definite matrices
* over a range of dimensions. The algorithms employ performance optimization
* techniques including loop reordering, blocking and the use of BLAS and
* LAPACK libraries.
*/

void time_chol(void)
{
#define FIELDS 12
 // Number of output data fields
 const char *data_file_name = "chol.dat";
 const char *hdr_text =
 "# N: Matrix dimension, N-by-N\n"
 "# BDIM: Block dimension for blocked algorithms\n"
 "# MFlop/sec for Cholesky factorization algorithms\n"
 "# OUTPROD: Outer product method, kji indexing\n"
 "# SAXPY: SAXPY operation, jki indexing\n"
 "# LAPUNBK: LAPACK routine DPOTF2, unblocked version\n"
 "# BLKSIMP: Simple blocking\n"
 "# BLKRECT: Simple blocking, rectangular version of Cholesky factorization\n"
 "# BLKCTG: Contiguous blocking\n"
 "# BLKRCR: Recursive contiguous blocking\n"
const int col_n = 0,
 col_bdim = 1,
 col_outprod = 2,
 col_saxpy = 3,
 col_lapunbk = 4,
 col_blksimp = 5,
 col_blkrect = 6,
 col_blkctg = 7,
 col_blkrct = 8,
 col_blas = 9,
 col_ctgblas = 10,
 col_lapack = 11;

const double alpha = 1.0; // Scaling factor for random matrix

char *data_file;
int n, bdim;
double mflops;
double perf_data[FIELDS*SIZES];
double *A;
void (*mfact)(int n, double *A);

// Concatenate file path and name
data_file = (char *) calloc(strlen(file_path) + strlen(data_file_name) + 1,
 sizeof(char));
strcpy(data_file, file_path);
strcat(data_file, data_file_name);

for (int i = 0; i < SIZES; i++) {
 n = mat_size[i];
bdim = get_block_dim_chol(n);
 fprintf(stdout, "%d, bdim = %d
", n, bdim);
 // Cholesky factorization takes (1/3)*n^3 floating point operations
 mflops = (1.0e-06 / 3.0) * n * n * n;
 // Create random n-by-n symmetric positive definite matrix
 A = (double *) malloc(n*n*sizeof(double));
 create_random_spd(alpha, n, A);

 // Performance data is stored in perf_data[] array in column-major order
 perf_data[i+col_n*SIZES] = (double) n;
 perf_data[i+col_bdim*SIZES] = (double) bdim;

 // Measure performance of standard Cholesky algorithms:
 printf("chol_outer_product\n");
 // Outer product method (kji indexing)
mfact = chol_outer_product;
perf_data[i+col_outprod*SIZES] = mflops / time_mfact(mfact, n, A);
printf("chol_saxpy\n"); // SAXPY operation (jki indexing)
mfact = chol_saxpy;
perf_data[i+col_saxpy*SIZES] = mflops / time_mfact(mfact, n, A);
printf("chol_lapack_unblocked\n"); // LAPACK routine DPOTF2, unblocked version
mfact = chol_lapack_unblocked;
perf_data[i+col_lapunbk*SIZES] = mflops / time_mfact(mfact, n, A);
printf("chol_block\n"); // Simple blocking
mfact = chol_block;
perf_data[i+col_blksimp*SIZES] = mflops / time_mfact(mfact, n, A);
printf("chol_rect_block\n"); // Simple blocking, rectangular version of Cholesky factorization
mfact = chol_rect_block;
perf_data[i+col_blkrect*SIZES] = mflops / time_mfact(mfact, n, A);
printf("chol_contig_block\n"); // Contiguous blocking
mfact = chol_contig_block;
perf_data[i+col_blkctg*SIZES] = mflops / time_mfact(mfact, n, A);
printf("chol_recur_block\n"); // Recursive contiguous blocking
mfact = chol_recur_block;
perf_data[i+col_blkrecr*SIZES] = mflops / time_mfact(mfact, n, A);
printf("chol_block_blas\n"); // Simple blocking using the BLAS library
mfact = chol_block_blas;
perf_data[i+col_blas*SIZES] = mflops / time_mfact(mfact, n, A);
printf("chol_contig_block_blas\n"); // Contiguous blocking using the BLAS library
mfact = chol_contig_block_blas;
perf_data[i+col_ctgblas*SIZES] = mflops / time_mfact(mfact, n, A);
printf("chol_lapack\n"); // LAPACK routine DPOTRF
mfact = chol_lapack;
perf_data[i+col_lapack*SIZES] = mflops / time_mfact(mfact, n, A);
free(A);
}
write_data_file(data_file, hdr_text, SIZES, FIELDS, perf_data);
#endif FIELDS
/*
 * Profiles blocked algorithms implementing Cholesky factorization on symmetric positive definite matrices. Profile data estimate the time and proportion of time spent factoring diagonal blocks, solving for lower triangular column...*/
PERFORMANCE OPTIMIZATION OF SYMMETRIC FACTORIZATION ALGORITHMS

* blocks and updating the trailing sub-matrix.
*

```c
void profile_chol( void )
{
    const int n = 2000;
    const char *mat_file_name = "mat_2000_spd.dat";

    char *mat_file;
    double *A, *W;

    A = (double *) malloc( n*n*sizeof(double) );
    W = (double *) malloc( n*n*sizeof(double) );

    // Concatenate file path and name
    mat_file = (char *) calloc( strlen(file_path) + strlen(mat_file_name) + 1,
                                sizeof(char) );
    strcpy(mat_file, file_path);
    strcat(mat_file, mat_file_name);

    read_matrix( mat_file, n, n, A );
    copy_matrix( n, n, A, W );

    fprintf( stdout, "Profile of Cholesky factorization (seconds)\n" );
    fprintf( stdout, "Simple blocking\n" );
    fprintf( stdout, "%d-by-%d symmetric positive definite matrix\n", n, n );
    fprintf( stdout, "tm_chol\ttm_factor\ttm_tri_solve\tttm_reduce\n" );
    fprintf( stdout, "pct_factor\tpct_tri_solve\tpct_reduce\n" );
    for ( int i = 0; i < MIN_ITER; i++ ) {
        chol_block( n, A );
        copy_matrix( n, n, W, A );
    }

    fprintf( stdout, "Profile of Cholesky factorization (seconds)\n" );
    fprintf( stdout, "Blocked algorithm using BLAS\n" );
    fprintf( stdout, "%d-by-%d symmetric positive definite matrix\n", n, n );
    fprintf( stdout, "tm_chol\ttm_factor\tttm_tri_solve\tttm_reduce\n" );
    fprintf( stdout, "pct_factor\tpct_tri_solve\tpct_reduce\n" );
    for ( int i = 0; i < MIN_ITER; i++ ) {
        chol_block_blas( n, A );
        copy_matrix( n, n, W, A );
    }
}
```

*/

* Measures the performance (Mflops/sec) of basic and optimized algorithms
* implementing symmetric indefinite factorization (LDL') on matrices over a
* range of dimensions. Our implementation of symmetric indefinite
* factorization uses Bunch–Kaufman (partial), bounded Bunch–Kaufman (rook) or
* Bunch–Parlett (complete) pivoting. The algorithms employ performance
* optimization techniques including loop reordering, blocking and the use of
/* BLAS and LAPACK libraries. */

void time_ldlt(void)
{
 #define FIELDS 20 // Number of output data fields
 const char *data_file_name = "ldlt.dat";
 const char *hdr_text =
"# N: Matrix dimension, N-by-N\n" "# BDIM: Block dimension for simple blocking algorithm\n" "# BDIMBLA: Block dimension for blocked algorithm using BLAS\n" "# BDIMLAP: Block dimension for LAPACK routine DSYTRF\n" "# NUMPIVK: Pivot count, Bunch-Kaufman pivoting\n" "# NUMPIVB: Pivot count, bounded Bunch-Kaufman pivoting\n" "# NUMPIVP: Pivot count, Bunch-Parlett pivoting\n" "# MFlop/sec for symmetric indefinite factorization algorithms\n" "# OUTPRDK: Outer product method, Bunch-Kaufman pivoting\n" "# SAXPYK: SAXPY operation, Bunch-Kaufman pivoting\n" "# LAPUNBK: LAPACK routine DSYTF2, unblocked version\n" "# BLOCKK: Simple blocking, Bunch-Kaufman pivoting\n" "# BLASK: Simple blocking, Bunch-Kaufman pivoting, BLAS routines\n" "# LAPACK: LAPACK routine DSYTRF, Bunch-Kaufman pivoting\n" "# OUTPRDB: Outer product method, bounded Bunch-Kaufman pivoting\n" "# SAXPYB: SAXPY operation, bounded Bunch-Kaufman pivoting\n" "# BLOCKB: Simple blocking, bounded Bunch-Kaufman pivoting\n" "# BLASB: Simple blocking, bounded Bunch-Kaufman pivoting, BLAS routines\n" "# OUTPRDP: Outer product method, Bunch-Parlett pivoting\n" "# BLOCKP: Simple blocking, Bunch-Parlett pivoting\n" "# BLASP: Simple blocking, Bunch-Parlett pivoting, BLAS routines\n" "# N\n" "# BDIM\tBDIMBLA\tBDIMLAP\tNUMPIVK\tNUMPIVB\tNUMPIVP\tOUTPRDK\tSAXPYK\tLAPUNBK\n" "# BLOCKK\tBLASK\tLAPACK\tOUTPRDB\tSAXPYB\tBLOCKB\tBLASB\tOUTPRDP\tBLOCKP\tBLASP\n"
 const int
 col_n = 0,
 col_bdim = 1,
 col_bdimbla = 2,
 col_bdimlap = 3,
 col_num pivk = 4,
 col_num pivb = 5,
 col_num pivp = 6,
 col_outprdk = 7,
 col_saxpyk = 8,
 col_lapunbk = 9,
 col_blockk = 10,
 col_blask = 11,
 col_lapack = 12,
 col_outprdb = 13,
 col_saxpyb = 14,
 col_blockb = 15,
 col_blasb = 16,
 col_outprdp = 17,
 col_blockp = 18,
const double alpha = 10.0; // Scaling factor for random matrix

col_blasp = 19;

char *data_file;
int n, bdim, bdim_blas, bdim_lapack;
int *piv, *ord;
double mflops;
double perf_data[FIELDS+SIZES];
double *A;

void (*mfact_piv)(char pivot, int n, int *piv, int *ord, double *A);

// Concatenate file path and name
data_file = (char *) calloc(strlen(file_path) + strlen(data_file_name) + 1, sizeof(char));
strcpy(data_file, file_path);
strcat(data_file, data_file_name);

for (int i = 0; i < SIZES; i++) {
 n = mat_size[i];
 bdim = get_block_dim_ldlt(0, 0, n);
 bdim_blas = get_block_dim_ldlt(0, 1, n);
 bdim_lapack = get_block_dim_ldlt(1, 0, n);
 printf(stdout, "n = %d\n", n);
 // (1/3) n^3 floating point operations is a lower bound on symmetric
 // indefinite factorization
 mflops = 1.0e-06 * (1.0/3.0) * n * n * n;
 // Create random n-by-n symmetric matrix
 A = (double *) malloc(n*n*sizeof(double));
 create_random_symmetric(alpha, n, A);
 // Declare pivot and pivot order vectors
 piv = (int *) malloc(n*sizeof(int));
 ord = (int *) malloc(n*sizeof(int));

 // Performance data is stored in perf_data[] array in column-major order
 perf_data[i+col_n*SIZES] = (double) n;
 perf_data[i+col_bdim*SIZES] = (double) bdim;
 perf_data[i+col_bdimbla*SIZES] = (double) bdim_blas;
 perf_data[i+col_bdimlap*SIZES] = (double) bdim_lapack;

 // Measure performance of LDL' algorithms
 printf("ldlt_outer_product(Bunch-Kaufman)\n");
 // Outer product method (kji indexing), Bunch-Kaufman pivoting
 mfact_piv = ldlt_outer_product;
 perf_data[i+col_outprdk*SIZES] =
 mflops / time_mfact_pivot(mfact_piv, 'K', n, piv, ord, A);

 printf("ldlt_saxpy(Bunch-Kaufman)\n");
 // SAXPY operation (jki indexing), Bunch-Kaufman pivoting
 mfact_piv = ldlt_saxpy;
 perf_data[i+col_saxpyk*SIZES] =
 mflops / time_mfact_pivot(mfact_piv, 'K', n, piv, ord, A);
}
mflops / time_mfact_pivot(mfact_piv, 'K', n, piv, ord, A);

printf("ldlt_lapack_unblocked(Bunch-Kaufman)\n");
// LAPACK routine DSYTF2, unblocked version
mfact_piv = ldlt_lapack_unblocked;
perf_data[i+col_lapunbk*SIZES] =
 mflops / time_mfact_pivot(mfact_piv, 'K', n, piv, ord, A);

printf("ldlt_block(Bunch-Kaufman)\n");
// Simple blocking, Bunch-Kaufman pivoting
mfact_piv = ldlt_block;
perf_data[i+col_blockk*SIZES] =
 mflops / time_mfact_pivot(mfact_piv, 'K', n, piv, ord, A);

printf("ldlt_block_blas(Bunch-Kaufman)\n");
// Simple blocking, Bunch-Kaufman pivoting, BLAS routines
mfact_piv = ldlt_block_blas;
perf_data[i+col_blask*SIZES] =
 mflops / time_mfact_pivot(mfact_piv, 'K', n, piv, ord, A);
// Pivot count, Bunch-Kaufman
perf_data[i+col_numpivk*SIZES] = (double) count_pivot(0, n, piv, ord);

printf("ldlt_lapack\n");
// LAPACK routine DSYTRF, Bunch-Kaufman pivoting
mfact_piv = ldlt_lapack;
perf_data[i+col_lapack*SIZES] =
 mflops / time_mfact_pivot(mfact_piv, 'K', n, piv, ord, A);

printf("ldlt_outer_product(bounded Bunch-Kaufman)\n");
// Outer product method (kji indexing), bounded Bunch-Kaufman pivoting
mfact_piv = ldlt_outer_product;
perf_data[i+col_outprdb*SIZES] =
 mflops / time_mfact_pivot(mfact_piv, 'B', n, piv, ord, A);

printf("ldlt_saxpy(bounded Bunch-Kaufman)\n");
// SAXPY operation (jki indexing), bounded Bunch-Kaufman pivoting
mfact_piv = ldlt_saxpy;
perf_data[i+col_saxpyb*SIZES] =
 mflops / time_mfact_pivot(mfact_piv, 'B', n, piv, ord, A);

printf("ldlt_block(bounded Bunch-Kaufman)\n");
// Simple blocking, bounded Bunch-Kaufman pivoting
mfact_piv = ldlt_block;
perf_data[i+col_blockb*SIZES] =
 mflops / time_mfact_pivot(mfact_piv, 'B', n, piv, ord, A);

printf("ldlt_block_blas(bounded Bunch-Kaufman)\n");
// Simple blocking, bounded Bunch-Kaufman pivoting, BLAS routines
mfact_piv = ldlt_block_blas;
perf_data[i+col_blasb*SIZES] =
 mflops / time_mfact_pivot(mfact_piv, 'B', n, piv, ord, A);
mflops / time_mfact_pivot(mfact_piv, 'B', n, piv, ord, A);
// Pivot count, bounded Bunch–Kaufman
perf_data[i+col_numpivb*SIZES] = (double) count_pivot(0, n, piv, ord);

printf("ldlt_outer_product(Bunch-Parlett)\n");
// Outer product method (kji indexing), Bunch–Parlett pivoting
mfact_piv = ldlt_outer_product;
perf_data[i+col_outprdp*SIZES] =
 mflops / time_mfact_pivot(mfact_piv, 'P', n, piv, ord, A);

printf("ldlt_block(Bunch-Parlett)\n");
// Simple blocking, Bunch–Parlett pivoting
mfact_piv = ldlt_block;
perf_data[i+col_blockp*SIZES] =
 mflops / time_mfact_pivot(mfact_piv, 'P', n, piv, ord, A);

printf("ldlt_block_blas(Bunch-Parlett)\n");
// Simple blocking, Bunch–Parlett pivoting, BLAS routines
mfact_piv = ldlt_block_blas;
perf_data[i+col_blasp*SIZES] =
 mflops / time_mfact_pivot(mfact_piv, 'P', n, piv, ord, A);
// Pivot count, Bunch–Parlett
perf_data[i+col_numpipv*SIZES] = (double) count_pivot(0, n, piv, ord);

free(A);
free(piv);
free(ord);
}
write_data_file(data_file, hdr_text, SIZES, FIELDS, perf_data);

#endif

/*
* Measures the time taken to perform symmetric indefinite (LDL') factorization
* on matrices of varying degrees of indefiniteness as proxied by the number of
* Bunch–Kaufman pivots. Time measurements are made for blocked algorithms
* employing Bunch–Kaufman (partial), bounded Bunch–Kaufman (rook) or
* Bunch–Parlett (complete) pivoting.
*/
void time_ldlt_indef(void)
{
#if defined(DEBUG)
 #define MATS 4
#else
 #define MATS 14
#endif
#define FIELDS 13 // Number of output data fields
const char *data_file_name = "ldlt_indef.dat";
const char *hdr_text =
"# N: Matrix dimension, N-by-N"
"# BDIM: Block dimension for simple blocking algorithm"
"# BDIMBLA: Block dimension for blocked algorithm using BLAS"
"# BDIMLAP: Block dimension for LAPACK routine DSYTRF"
"# NUMPIVK: Pivot count, Bunch-Kaufman pivoting"
"# NUMPIVB: Pivot count, bounded Bunch-Kaufman pivoting"
"# NUMPIVP: Pivot count, Bunch-Parlett pivoting"
"# BLOCKK: Simple blocking, Bunch-Kaufman pivoting"
"# BLASK: Simple blocking, Bunch-Kaufman pivoting, BLAS routines"
"# LAPACK: LAPACK routine DSYTRF, Bunch-Kaufman pivoting"
"# BLASB: Simple blocking, bounded Bunch-Kaufman pivoting, BLAS routines"
"# BLASP: Simple blocking, Bunch-Parlett pivoting, BLAS routines"
"# LAPCHOL: LAPACK routine DPOTRF, Cholesky factorization"
"#
"# N	BDIM	BDIMBLA	BDIMLAP	NUMPIVK	NUMPIVB	NUMPIVP	BLOCKK	BLASK	LAPACK	BLASB	BLASP	LAPCHOL"

const int col_n = 0,
col_bdim = 1,
col_bdimbla = 2,
col_bdimlap = 3,
col_numpivk = 4,
col_numpivb = 5,
col_numpivp = 6,
col_blockk = 7,
col_blask = 8,
col_lapack = 9,
col_blasp = 10,
col_lapchol = 12;

const int n = 2000; // Matrix dimension
const double alpha = 10.0; // Scaling factor for random matrix

char *data_file, *mat_file;
char *mat_file_name[MATS];
int bdim, bdim_blas, bdim_lapack;
int *piv, *ord;
double mflops;
double time[FIELDS*SIZES];
double *A;

void (*mfact_piv)(char pivot, int n, int *piv, int *ord, double *A);
void (*mfact)(int n, double *A);

// Concatenate output data file path and name
data_file = (char *) calloc(strlen(file_path) + strlen(data_file_name) + 1,
sizeof(char));
strcpy(data_file, file_path);
strcat(data_file, data_file_name);

// Matrices of varying degrees of indefiniteness are stored in files
mat_file_name[0] = "mat_2000_spd.dat";
mat_file_name[3] = "mat_2000_bk98.dat";

#if defined(DEBUG)
mat_file_name[7] = "mat_2000_bk400.dat";
mat_file_name[8] = "mat_2000_bk500.dat";
mat_file_name[9] = "mat_2000_bk597.dat";
mat_file_name[10] = "mat_2000_bk703.dat";
mat_file_name[12] = "mat_2000_bk880.dat";
#endif

bdim = get_block_dim_ldlt(0, 0, n);
bdim_blas = get_block_dim_ldlt(0, 1, n);
bdim_lapack = get_block_dim_ldlt(1, 0, n);

// Declare matrix A, and pivot and pivot order vectors
A = (double*) malloc(n*n*sizeof(double));
piv = (int*) malloc(n*sizeof(int));
ord = (int*) malloc(n*sizeof(int));

for (int i = 0; i < MATS; i++) {
 // Concatenate matrix file path and name
 mat_file = (char*) calloc(strlen(file_path) +
 strlen(mat_file_name[i]) + 1, sizeof(char));
 strcpy(mat_file, file_path);
 strcat(mat_file, mat_file_name[i]);
 // Read n-by-n symmetric matrix from file
 read_matrix(mat_file, n, n, A);
 // Time measurements are stored in time_data[] array in column-major order
 time[i+col*n*MATS] = (double) n;
 time[i+col*bdim*MATS] = (double) bdim;
 time[i+col*bdim_blas*MATS] = (double) bdim_blas;
 time[i+col*bdim_lapack*MATS] = (double) bdim_lapack;

 // Time LDL' factorization
 printf("ldlt_block(Bunch-Kaufman)\n");
 // Simple blocking, Bunch-Kaufman pivoting
 mfact_piv = ldlt_block;
 time[i+col*blockk*MATS] =
 time_mfact_pivot(mfact_piv, 'K', n, piv, ord, A);
 // Pivot count, Bunch-Kaufman
 time[i+col*numpivk*MATS] = (double) count_pivot(0, n, piv, ord);
 printf(stdout, "n = %d, number of (Bunch-Kaufman) pivots = %.0f\n",
 n, time[i+col*numpivk*MATS]);

 printf("ldlt_block_blas(Bunch-Kaufman)\n");
 // Simple blocking, Bunch-Kaufman pivoting, BLAS routines

mfact_piv = ldlt_block_blas;
time[i+col_blask*MATS] =
time_mfact_pivot(mfact_piv, 'K', n, piv, ord, A);

printf("ldlt_lapack\n");
// LAPACK routine DSYTRF, Bunch-Kaufman pivoting
mfact_piv = ldlt_lapack;
time[i+col_lapack*MATS] =
time_mfact_pivot(mfact_piv, 'K', n, piv, ord, A);

printf("ldlt_block(bounded Bunch-Kaufman)\n");
// Simple blocking, bounded Bunch-Kaufman pivoting
mfact_piv = ldlt_block_blas;
time[i+col_blasb*MATS] =
time_mfact_pivot(mfact_piv, 'B', n, piv, ord, A);
// Pivot count, bounded Bunch-Kaufman
time[i+col_numpivb*MATS] = (double) count_pivot(0, n, piv, ord);

printf("ldlt_block(Bunch-Parlett)\n");
// Simple blocking, Bunch-Parlett pivoting
mfact_piv = ldlt_block_blas;
time[i+col_blasp*MATS] =
time_mfact_pivot(mfact_piv, 'P', n, piv, ord, A);
// Pivot count, Bunch-Parlett
time[i+col_numpipv*MATS] = (double) count_pivot(0, n, piv, ord);

if (i == 0) { // Symmetric positive definite
 printf("chol_lapack\n");
 // LAPACK routine DPOTRF
 mfact = chol_lapack;
time[i+col_lapchol*MATS] = time_mfact(mfact, n, A);
} else {
 time[i+col_lapchol*MATS] = -1.0;
}

free(A);
free(piv);
free(ord);
write_data_file(data_file, hdr_text, MATS, FIELDS, time);

#undef FIELDS
#undef MATS
}

/*
 * Profiles blocked algorithms implementing symmetric indefinite factorization
 * (LDL'). Profile data estimate the time and proportion of time spent
 * factoring column blocks, performing symmetric pivoting and updating the
 * trailing sub-matrix.
 */
```c
void profile_ldlt( void )
{
    const int n = 2000;
    const char *mat_file_name = "mat_2000_bk500.dat";

    char *mat_file;
    int num_piv;
    int *piv, *ord;
    double *A, *W;

    A = (double *) malloc( n*n*sizeof(double) );
    W = (double *) malloc( n*n*sizeof(double) );
    piv = (int *) malloc( n*sizeof(int) );
    ord = (int *) malloc( n*sizeof(int) );

    // Concatenate file path and name
    mat_file = (char *) malloc( strlen(file_path) + strlen(mat_file_name) + 1,
                               sizeof(char) );
    strcpy( mat_file, file_path );
    strcat( mat_file, mat_file_name );

    read_matrix( mat_file, n, n, A );
    copy_matrix( n, n, A, W );

    fprintf( stdout, "Profile of symmetric indefinite factorization (seconds)\n" );
    fprintf( stdout, "Simple blocking, Bunch-Kaufman pivoting\n" );
    fprintf( stdout, "%d-by-%d symmetric matrix: %s\n", n, n, mat_file_name );
    fprintf( stdout, " tm_ldlt \ ttm_factor \ ttm_pivot \ ttm_reduce \t"
             " pct_factor \ tpct_pivot \ tpct_reduce \n" );
    for ( int i = 0; i < MIN_ITER; i++ ) {
        ldlt_block( 'K', n, piv, ord, A );
        copy_matrix( n, n, W, A );
    }

    fprintf( stdout, "nProfile of symmetric indefinite factorization (seconds)\n" );
    fprintf( stdout, "Blocked algorithm using BLAS, Bunch-Kaufman pivoting\n" );
    fprintf( stdout, "%d-by-%d symmetric matrix: %s\n", n, n, mat_file_name );
    fprintf( stdout, "tm_ldlt|ttm_factor|ttm_pivot|ttm_reduce|t"
             "pct_factor|tpct_pivot|tpct_reduce|n" );
    for ( int i = 0; i < MIN_ITER; i++ ) {
        ldlt_block_blas( 'K', n, piv, ord, A );
        copy_matrix( n, n, W, A );
    }

    fprintf( stdout, "nProfile of symmetric indefinite factorization (seconds)\n" );
    fprintf( stdout, "Simple blocking, bounded Bunch-Kaufman pivoting\n" );
    fprintf( stdout, "%d-by-%d symmetric matrix: %s\n", n, n, mat_file_name );
    fprintf( stdout, "tm_ldlt|ttm_factor|ttm_pivot|ttm_reduce|t"
             "pct_factor|tpct_pivot|tpct_reduce|n" );
    for ( int i = 0; i < MIN_ITER; i++ ) {
```
ldlt_block('B', n, piv, ord, A);
copy_matrix(n, n, W, A);
}

fprintf(stdout, "Profile of symmetric indefinite factorization (seconds)\n");
fprintf(stdout, "Blocked algorithm using BLAS, bounded Bunch-Kaufman pivoting\n");
fprintf(stdout, "%d-by-%d symmetric matrix: %s\n", n, n, mat_file_name);
fprintf(stdout, "Blocked algorithm using BLAS\n");
for (int i = 0; i < MIN_ITER; i++) {
 ldlt_block_blas('B', n, piv, ord, A);
copy_matrix(n, n, W, A);
}

/∗
 * Measures the performance (Mflops/sec) of basic and optimized algorithms
 * implementing the modified Cholesky factorization proposed by Gill, Murray &
 * Wright (with partial pivoting) on symmetric matrices over a range of
 * dimensions. The algorithms employ performance optimization techniques
 * including loop reordering, blocking and the use of the BLAS library.
 */
void time_chol_gmw(void)
{
#define FIELDS 8 // Number of output data fields
 const char *data_file_name = "chol_gmw.dat";
 const char *hdr_text =
 "# N: Matrix dimension, N-by-N\n"
 "# BDIM: Block dimension for simple blocking algorithm\n"
 "# BDIMBLA: Block dimension for blocked algorithm using BLAS\n"
 "# NUMPIV: Pivot count\n"
 "# OUTPROD: Outer product method, kji indexing\n"
 "# SAXPY: SAXPY operation, jki indexing\n"
 "# BLOCK: Simple blocking\n"
 "# BLAS: Simple blocking, BLAS routines\n"
 "# N\n"
 "# N\tBDIM\tBDIMBLA\tNUMPIV\tOUTPROD\tSAXPY\tBLOCK\tBLAS";
 const int col_n = 0,
 col_bdim = 1,
 col_bdimbla = 2,
 col_num piv = 3,
 col_outprod = 4,
 col_saxpy = 5,
 col_block = 6,
 col_blas = 7;
 const double alpha = 10.0; // Scaling factor for random matrix

 char *data_file;
 int n, bdim, bdim_blas;
int *piv, *ord;
double mflops;
double perf_data[FIELDS*SIZES];
double *A;
void (*mfact_piv)(char *pivot, int n, int *piv, int *ord, double *A);

// Concatenate file path and name
data_file = (char *) calloc(strlen(file.path) + strlen(data_file.name) + 1, sizeof(char));
strcpy(data_file, file.path);
strcat(data_file, data_file.name);
for (int i = 0; i < SIZES; i++) {
 n = mat_size[i];
 bdim = get_block_dim_ldlt(0, 0, n);
 bdim_blas = get_block_dim_ldlt(0, 1, n);
 fprintf(stdout, "n = %d\n", n);
 // (1/3)*n^3 floating point operations is a lower bound on modified Cholesky factorization
 mflops = 1.0e-06 * (1.0/3.0) * n * n * n;
 // Create random n-by-n symmetric matrix
 A = (double *) malloc(n*n*sizeof(double));
 create_random_symmetric(alpha, n, A);
 // Declare pivot and pivot order vectors
 piv = (int *) malloc(n*sizeof(int));
 ord = (int *) malloc(n*sizeof(int));

 // Performance data is stored in perf_data[] array in column-major order
 perf_data[i+col_n*SIZES] = (double) n;
 perf_data[i+col_bdim*SIZES] = (double) bdim;
 perf_data[i+col_bdimbla*SIZES] = (double) bdim_blas;

 // Measure performance of modified Cholesky algorithms
 // Gill, Murray & Wright algorithm with Type-1 modification
 printf("chol_gmw_outer_product\n");
 // Outer product method (kji indexing)
 mfact_piv = chol_gmw_outer_product;
 perf_data[i+col_outprod*SIZES] =
 mflops / time_mfact_pivot(mfact_piv, 'D', n, piv, ord, A);

 printf("chol_gmw_saxpy\n");
 // SAXPY operation (jki indexing), diagonal pivoting
 mfact_piv = chol_gmw_saxpy;
 perf_data[i+col_saxpy*SIZES] =
 mflops / time_mfact_pivot(mfact_piv, 'D', n, piv, ord, A);

 printf("chol_gmw_block\n");
 // Simple blocking, diagonal pivoting
 mfact_piv = chol_gmw_block;
 perf_data[i+col_block*SIZES] =

mflops / time_mfact_pivot(mfact_piv, 'D', n, piv, ord, A);
// Pivot count, diagonal (Gill, Murray & Wright)
perf_data[i+col_numpiv*SIZES] = (double) count_pivot(0, n, piv, ord);

printf("chol_gmw_block_blas\n");
// Simple blocking, diagonal pivoting, BLAS routines
mfact_piv = chol_gmw_block_blas;
perf_data[i+col_blas*SIZES] =
 mflops / time_mfact_pivot(mfact_piv, 'D', n, piv, ord, A);

free(A);
free(piv);
free(ord);
}
write_data_file(data_file, hdr_text, SIZES, FIELDS, perf_data);

#undef FIELDS
}

/*
 * Measures the performance (Mflops/sec) of basic and optimized algorithms
 * implementing the modified Cholesky factorization proposed by Cheng & Higham
 * on symmetric matrices over a range of dimensions. Our implementation of the
 * modified Cholesky factorization proposed by Cheng & Higham uses either
 * Bunch-Kaufman (partial) or bounded Bunch-Kaufman (rook) pivoting. The
 * algorithms employ performance optimization techniques including loop
 * reordering, blocking and the use of the BLAS library.
 */

void time_chol_ch(void)
{
#define FIELDS 9
 // Number of output data fields
 const char *data_file_name = "chol_ch.dat";
 const char *hdr_text =
"# N: Matrix dimension, N-by-N\n"
"# BDIM: Block dimension for simple blocking algorithm\n"
"# BDIMBLA: Block dimension for blocked algorithm using BLAS\n"
"# NUMPIVK: Pivot count, Bunch-Kaufman pivoting\n"
"# NUMPIVB: Pivot count, bounded Bunch-Kaufman pivoting\n"
"# MFlop/sec for modified Cholesky algorithms (Cheng & Higham)\n"
"# BLOCKK: Simple blocking, Bunch-Kaufman pivoting\n"
"# BLASK: Simple blocking, Bunch-Kaufman pivoting, BLAS routines\n"
"# BLOCKB: Simple blocking, bounded Bunch-Kaufman pivoting\n"
"# BLASB: Simple blocking, bounded Bunch-Kaufman pivoting, BLAS routines\n"
"# N, BDIM, BDIMBLA, NUMPIVK, NUMPIVB, BLOCKK, BLASK, BLOCKB, BLASB\n"
 const int col_n = 0,
 col_bdim = 1,
 col_bdimla = 2,
 col_num pivk = 3,
 col_num pivb = 4,
col_blockk = 5,
col_blask = 6,
col_blockb = 7,
col_blasb = 8;
const double alpha = 10.0; // Scaling factor for random matrix

char *data_file;
int n, bdim, bdim_blas;
int *piv, *ord;
double mflops;
double perf_data[FIELDS*SIZES];
double *A;
void (*mfact_piv)(char pivot, int n, int *piv, int *ord, double *A);

// Concatenate file path and name
data_file = (char *) malloc(strlen(file_path) + strlen(data_file_name) + 1,
sizeof(char));
strcpy(data_file, file_path);
strcat(data_file, data_file_name);

for (int i = 0; i < SIZES; i++) {
 n = mat_size[i];
 bdim = get_block_dim_ldlt(0, 0, n);
 bdim_blas = get_block_dim_ldlt(0, 1, n);
 fprintf(stdout, "n = %d\n", n);
 // (1/3)*n^3 floating point operations is a lower bound on modified
 // Cholesky factorization
 mflops = 1.0e-06 * (1.0/3.0) * n * n * n;
 // Create random n-by-n symmetric matrix
 A = (double *) malloc(n*n*sizeof(double));
 create_random_symmetric(alpha, n, A);
 // Declare pivot and pivot order vectors
 piv = (int *) malloc(n*sizeof(int));
 ord = (int *) malloc(n*sizeof(int));

 // Performance data is stored in perf_data[] array in column-major order
 perf_data[i+col_n*SIZES] = (double) n;
 perf_data[i+col_bdim*SIZES] = (double) bdim;
 perf_data[i+col_bdimbla*SIZES] = (double) bdim_blas;

 // Measure performance of modified Cholesky algorithms
 // Cheng & Higham algorithm with Type-II modification
 printf("chol_ch_block(Bunch-Kaufman)\n");
 // Simple blocking, Bunch-Kaufman pivoting
 mfact_piv = chol_ch_block;
 perf_data[i+col_blockk*SIZES] =
 mflops / time_mfact_pivot(mfact_piv, 'K', n, piv, ord, A);
 // Pivot count, Bunch-Kaufman
 perf_data[i+col_numpivk*SIZES] = (double) count_pivot(0, n, piv, ord);
printf("chol_ch_block_blas (Bunch-Kaufman)\n");
// Simple blocking, Bunch-Kaufman pivoting, BLAS routines
mfact_piv = chol_ch_block_blas;
perf_data[i+col_blask*SIZES] =
mflops / time_mfact_pivot(mfact_piv, 'K', n, piv, ord, A);

printf("chol_ch_block(bounded Bunch-Kaufman)\n");
// Simple blocking, Bunch-Kaufman pivoting
mfact_piv = chol_ch_block;
perf_data[i+col_blockb*SIZES] =
mflops / time_mfact_pivot(mfact_piv, 'B', n, piv, ord, A);
// Pivot count, Bunch-Kaufman
perf_data[i+col_numpivb*SIZES] = (double) count_pivot(0, n, piv, ord);

printf("chol_ch_block_blas (bounded Bunch-Kaufman)\n");
// Simple blocking, Bunch-Kaufman pivoting, BLAS routines
mfact_piv = chol_ch_block_blas;
perf_data[i+col_blasb*SIZES] =
mflops / time_mfact_pivot(mfact_piv, 'B', n, piv, ord, A);

free(A);
free(piv);
free(ord);
}
write_data_file(data_file, hdr_text, SIZES, FIELDS, perf_data);
#undef FIELDS
}

/*/ Measures the time taken to perform modified Cholesky factorization
* (Gill–Murray–Wright and Cheng–Higham) on matrices of varying degrees of
* indefiniteness as proxied by the number of Bunch–Kaufman pivots. Time
* measurements are made for blocked algorithms employing partial and rook
* pivoting strategies.
*/
void time_mod_chol_indef(void)
{
#if defined(DEBUG)
#define MATS 4
#else
#define MATS 14
#endif
#define FIELDS 12 // Number of output data fields
const char *data_file_name = "mod_chol_indef.dat";
const char *hdr_text =
"# N: Matrix dimension, N-by-N\n"
"# BDIM: Block dimension for simple blocking algorithm\n"
"# BDIMBLA: Block dimension for blocked algorithm using BLAS\n"
"# NUMPIVK: Pivot count, Bunch-Kaufman pivoting\n"
"# NUMPIVB: Pivot count, bounded Bunch-Kaufman pivoting
" # NUMPIVD: Pivot count, Gill-Murray-Wright diagonal pivoting
" # Time (seconds) taken for modified Cholesky factorization
" # CHBLKK: Cheng-Higham, simple blocking, Bunch-Kaufman pivoting
" # CHBLKB: Cheng-Higham, simple blocking, bounded Bunch-Kaufman pivoting
" # CHBLASK: Cheng-Higham, BLAS routines, Bunch-Kaufman pivoting
" # CHBLASB: Cheng-Higham, BLAS routines, bounded Bunch-Kaufman pivoting
" # GMWBLK: Gill-Murray-Wright, simple blocking, partial pivoting
" # GMWBLAS: Gill-Murray-Wright, BLAS routines, partial pivoting
" #
" # N	BDIM	BDIMBLA
# NUMPIVK	NUMPIVB	NUMPIVD
# CHBLKK	CHBLKB
# CHBLASK	CHBLASB
# GMWBLK	GMWBLAS

const int col = 0,
 col_bdim = 1,
 col_bdimbla = 2,
 col_numpivk = 3,
 col_numpivb = 4,
 col_numpivd = 5,
 col_chblkk = 6,
 col_chblkb = 7,
 col_chblask = 8,
 col_chblasb = 9,
 col_gmwblk = 10,
 col_gmwblas = 11;
const int n = 2000; // Matrix dimension
const double alpha = 10.0; // Scaling factor for random matrix
char *data_file, *mat_file;
char *mat_file_name[MATS];
int bdim, bdim_blas;
int *piv, *ord;
double mflops;
double time[FIELDS*SIZES];
double *A;
void (*mfact_piv)(char pivot, int n, int *piv, int *ord, double *A);
void (*mfact)(int n, double *A);

// Concatenate output data file path and name
data_file = (char *) alloc(strlen(file_path) + strlen(data_file_name) + 1,
 sizeof(char));
strcpy(data_file, file_path);
strcat(data_file, data_file_name);

// Matrices of varying degrees of indefiniteness are stored in files
mat_file_name[0] = "mat_2000_spd.dat";
mat_file_name[3] = "mat_2000_bk98.dat";
#if ! defined(DEBUG)
mat_file_name[7] = "mat_2000_bk400.dat";
mat_file_name[8] = "mat_2000_bk500.dat";
mat_file_name[9] = "mat_2000_bk597.dat";
mat_file_name[10] = "mat_2000_bk703.dat";
mat_file_name[12] = "mat_2000_bk880.dat";
#endif

bdim = get_block_dim_ldlt(0, 0, n);
bdim_blas = get_block_dim_ldlt(0, 1, n);

// Declare matrix A, and pivot and pivot order vectors
A = (double *) malloc(n*n*sizeof(double));
piv = (int *) malloc(n*sizeof(int));
ord = (int *) malloc(n*sizeof(int));

for (int i = 0; i < MATS; i++) {
 // Concatentate matrix file path and name
 mat_file = (char *) calloc(strlen(file_path) + strlen(mat_file_name[i]) + 1, sizeof(char));
 strcpy(mat_file, file_path);
 strcat(mat_file, mat_file_name[i]);
 // Read n-by-n symmetric matrix from file
 read_matrix(mat_file, n, n, A);
 // Time measurements are stored in time_data[] array in column-major order
 time[i+col*n*MATS] = (double)n;
 time[i+col_bdim*MATS] = (double) bdim;
 time[i+col_bdimblas*MATS] = (double) bdim_blas;

 // Time LDL' factorization
 printf("chol_ch_block(Bunch-Kaufman)\n");
 // Cheng-Higham, simple blocking, Bunch-Kaufman pivoting
 mfact_piv = chol_ch_block;
 time[i+col_chblk*MATS] =
 time_mfact_pivot(mfact_piv, 'K', n, piv, ord, A);
 // Pivot count, Bunch-Kaufman
 time[i+col_numpivk*MATS] = (double) count_pivot(0, n, piv, ord);
 printf(stdout, "n = %d, number of (Bunch-Kaufman) pivots = %.0f\n",
 n, time[i+col_numpivk*MATS]);

 printf("chol_ch_block(bounded Bunch-Kaufman)\n");
 // Cheng-Higham, simple blocking, bounded Bunch-Kaufman pivoting
 mfact_piv = chol_ch_block;
 time[i+col_chblkb*MATS] =
 time_mfact_pivot(mfact_piv, 'B', n, piv, ord, A);
 // Pivot count, bounded Bunch-Kaufman
 time[i+col_numpivb*MATS] = (double) count_pivot(0, n, piv, ord);
}

printf("chol_ch_block_blas(Bunch-Kaufman)\n");
// Cheng-Higham, BLAS routines, Bunch-Kaufman pivoting
mfact_piv = chol_ch_block_blas;
time[i+col_chblasb*MATS] =
 time_mfact_pivot(mfact_piv, 'K', n, piv, ord, A);

printf("chol_ch_block_blas(bounded Bunch-Kaufman)\n");
 // Cheng-Higham, BLAS routines, bounded Bunch-Kaufman pivoting
mfact_piv = chol_ch_block_blas;
time[i+col_chblasb*MATS] =
 time_mfact_pivot(mfact_piv, 'B', n, piv, ord, A);

printf("chol_gmw_block\n");
 // Gill-Murray-Wright, simple blocking, partial pivoting
mfact_piv = chol_gmw_block;
time[i+col_gmwblk*MATS] =
 time_mfact_pivot(mfact_piv, 'D', n, piv, ord, A);
 // Pivot count, bounded Bunch-Kaufman
time[i+col_numpivd*MATS] = (double) count_pivot(0, n, piv, ord);

printf("chol_gmw_block_blas\n");
 // Gill-Murray-Wright, BLAS routines, partial pivoting
mfact_piv = chol_gmw_block_blas;
time[i+col_gmwblas*MATS] =
 time_mfact_pivot(mfact_piv, 'D', n, piv, ord, A);
}
free(A);
free(piv);
free(ord);
write_data_file(data_file, hdr_text, MATS, FIELDS, time);

#undef FIELDS
#undef MATS
}

/*
 * Profiles blocked algorithms implementing modified Cholesky factorization
 * (Gill-Murray-Wright and Cheng-Higham) on symmetric matrices. Profile data
 * estimate the time and proportion of time spent modifying the symmetric
 * indefinite factorization.
 */
void profile_mod_chol(void)
{
 const int n = 2000;
 const char *mat_file_name = "mat_2000_bk500.dat";

 char *mat_file;
 int *piv, *ord;
 double *A, *W;

 A = (double *) malloc(n*n*sizeof(double));
 W = (double *) malloc(n*n*sizeof(double));
piv = (int *) malloc(n* sizeof(int));
ord = (int *) malloc(n* sizeof(int));

// Concatenate file path and name
mat_file = (char *) calloc(strlen(file_path) + strlen(mat_file_name) + 1,
sizeof(char));
strcpy(mat_file, file_path);
strcat(mat_file, mat_file_name);

read_matrix(mat_file, n, n, A);
copy_matrix(n, n, W);

for(int i = 0; i < MIN_ITER; i++) {
 chol.gmw_block('K', n, piv, ord, A);
copy_matrix(n, n, W, A);
}

fprintf(stdout, "%nTime profile of modified Cholesky (seconds)\n");
fprintf(stdout, "Gill-Murray-Wright, simple blocking, partial pivoting\n");
fprintf(stdout, "%c-by-%c symmetric matrix: %s\n", n, n, mat_file_name);
fprintf(stdout, "tm_mod_chol\tttm_mod_fact\tpct_mod_fact\n");

for(int i = 0; i < MIN_ITER; i++) {
 chol.gmw_block_blas('K', n, piv, ord, A);
copy_matrix(n, n, W, A);
}

fprintf(stdout, "%nTime profile of modified Cholesky (seconds)\n");
fprintf(stdout, "Gill-Murray-Wright, BLAS routines, partial pivoting\n");
fprintf(stdout, "%c-by-%c symmetric matrix: %s\n", n, n, mat_file_name);
fprintf(stdout, "tm_mod_chol\tttm_mod_fact\tpct_mod_fact\n");

for(int i = 0; i < MIN_ITER; i++) {
 chol.gmw_block('K', n, piv, ord, A);
copy_matrix(n, n, W, A);
}

fprintf(stdout, "%nTime profile of modified Cholesky (seconds)\n");
fprintf(stdout, "Cheng-Higham, simple blocking, Bunch-Kaufman pivoting\n");
fprintf(stdout, "%c-by-%c symmetric matrix: %s\n", n, n, mat_file_name);
fprintf(stdout, "tm_mod_chol\tttm_mod_fact\tpct_mod_fact\n");

for(int i = 0; i < MIN_ITER; i++) {
 chol.ch_block('K', n, piv, ord, A);
copy_matrix(n, n, W, A);
}

fprintf(stdout, "%nTime profile of modified Cholesky (seconds)\n");
fprintf(stdout, "Cheng-Higham, BLAS routines, Bunch-Kaufman pivoting\n");
fprintf(stdout, "%c-by-%c symmetric matrix: %s\n", n, n, mat_file_name);
fprintf(stdout, "tm_mod_chol\tttm_mod_fact\tpct_mod_fact\n");

for(int i = 0; i < MIN_ITER; i++) {
 chol.ch_block_blas('K', n, piv, ord, A);
copy_matrix(n, n, W, A);
}

fprintf(stdout, "%nTime profile of modified Cholesky (seconds)\n");
fprintf(stdout, "Cheng-Higham, simple blocking, bounded Bunch-Kaufman pivoting\n");
fprintf(stdout, "%d-by-%d symmetric matrix: %s\n", n, n, mat_file_name);
fprintf(stdout, "tm_mod_chol\tttm_mod_fact\tpct_mod_fact\n");
for (int i = 0; i < MIN_ITER; i++) {
 chol.ch_block('B', n, piv, ord, A);
 copy_matrix(n, n, W, A);
}
fprintf(stdout, "\nTime profile of modified Cholesky (seconds)\n");
fprintf(stdout, "Cheng-Higham, BLAS routines, bounded Bunch-Kaufman pivoting\n");
fprintf(stdout, "%d-by-%d symmetric matrix: %s\n", n, n, mat_file_name);
fprintf(stdout, "tm_mod_chol\tttm_mod_fact\tpct_mod_fact\n");
for (int i = 0; i < MIN_ITER; i++) {
 chol.ch_block_blas('B', n, piv, ord, A);
 copy_matrix(n, n, W, A);
}
A.10. mmultime.c – timing harness for matrix multiplication.

/*
 * Timing harness for measuring the performance of basic and "optimized"
 * algorithms implementing matrix multiplication (and addition), \(C = C + A*B \),
 * on square matrices over a range of dimensions. Performance of matrix
 * multiplication algorithms is also measured for different compiler
 * optimization levels and options. Performance data are written to an output
 * file destination.
 */

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include "matmult.h"
#include "matcom.h"
#include "timing.h"

#ifndef PROC
#define PROC "unknown"
#endif
#ifndef CORES
#define CORES "unknown"
#endif
#ifndef CLKSPEED
#define CLKSPEED "unknown"
#endif
#ifndef CACHE
#define CACHE "unknown"
#endif
#ifndef COMPILER
#define COMPILER "unknown"
#endif
#ifndef LANGUAGE
#define LANGUAGE "default"
#endif
#ifndef OPTM
#define OPTM "default"
#endif
#ifndef DATADIR
#define DATADIR "." // Current directory ./
#endif

#ifndef DEBUG
#define MIN_ITER 4 // Minimum number of iterations of algorithm
#define MIN_SECS 1.0 // Minimum elapsed time for execution of algorithm
#endif
// Define sizes (dimensions) of square matrices used to measure performance
const int mat_size[] = { 65, 130, 195, 254 };
#else
#define MIN_ITER 8
#define MIN_SECS 2.0
const int mat_size[] = { 65, 130, 195, 254, 258, 321, 387, 450, 508, 516,
 579, 642, 707, 764, 772, 833, 899, 963, 1021, 1027 }
#endif
#define SIZES (sizeof(mat_size) / sizeof(int))

static void write_data_file(const char *file, const char *hdr_text, int rows, int cols, const double *data);
static double time_mmult(void (*mmult)(int n, const double *A, const double *B,
 double *C), int n, const double *A, const double *B, double *C);
static void time_mmult_algo(void);
static void time_compiler_optm(void);
static char *file_path;

int main()
{
 // Specify file path for output data files
 file_path = (char *) malloc(strlen(DATADIR) + 2, sizeof(char));
 strcpy(file_path, DATADIR);
 strcat(file_path, "/*");

 #if defined(MULTALGO)
 time_mmult_algo();
 #endif

 #if defined(CCOPTMDP) || defined(CCOPTMSA)
 time_compiler_optm();
 #endif

 return 0;
}

/**

/* Writes header text and experimental data to the file specified in the * argument list. Experimental data is enumerated in a matrix stored in * column-major order. */
void write_data_file(const char *file, const char *hdr_text, int rows, int cols, const double *data)
{
 FILE *fp;

 if ((fp = fopen(file, "w")) == NULL) {

fprint(stderr, "Error opening file \%s.", file);
exit(-1);

// Write header text
fprintf(fp, "# Processor:\t%s\n", PROC);
fprintf(fp, "# Cores:\t%s\n", CORES);
fprintf(fp, "# Clock speed:\t%s\n", CLKSPEED);
fprintf(fp, "# Cache:\t%s\n", CACHE);
fprintf(fp, "# \n") ;
fprintf(fp, "# C compiler:\t%s\n", COMPILER);
fprintf(fp, "# C language standard:\t%s\n", LANGUAGE);
fprintf(fp, "# Optimization level and options:\t%s\n", OPTM);
fprintf(fp, "# Clock resolution:\t%Lg\n", timer_resolution());
fprintf(fp, "# \n") ;

#if defined(MULTALGO)
 fprintf(fp, "# Sub-block dimension (kernel multiplication):\t%d\n", KDIM);
fprintf(fp, "# Depth of loop unrolling:\t%d\n", UNROLLDEPTH);
fprintf(fp, "# Depth of software pipelining:\t%d\n", PIPEDEPTH);
#else defined(COLOPTMDP)
 fprintf(fp, "# Dot product (ijk indexing) algorithm\n");
#else defined(COLOPTMSA)
 fprintf(fp, "# Scalar alpha x plus y (jki indexing) algorithm\n");
#endif

fprintf(fp, "# \n") ;
fprintf(fp, "%s\n", hdr_text);

// Write experimental data
for (int i = 0; i < rows; i++) {
 for (int j = 0; j < cols; j++) {
 fprintf(fp, "%g\t", *(data+j*rows+i));
 }
 fprintf(fp, "\n");
}
close(fp);

/*
 * Measures the average time (number of seconds) to perform matrix
 * multiplication (and addition), \(C = C + A \times B \), on \(n \times n \) matrices. Matrix
 * multiplication is performed iteratively for at least the minimum number of
 * iterations, and until the minimum time (in seconds) has elapsed.
 */

double time_mmmult(void (*mmult)(int n, const double *A, const double *B, double *C), int n, const double *A, const double *B, double *C)
{

 struct timespec sta, end;
 long int num_iter = MIN_ITER;
 double secs = -1.0;
 double *M;

 // Save copy of matrix C before performing matrix multiplication
M = (double *) malloc(n*n*sizeof(double));
copy_matrix(n, n, C, M);

while (secs < MIN_SECS) {
 get_time(&sta);
 for (int i = 0; i < num_iter; i++) {
 mmult(n, A, B, C);
 copy_matrix(n, n, M, C); // Reset matrix C to initial value
 }
 get_time(&end);
 secs = timespec_diff(sta, end);
 num_iter *= 2;
}
free(M);
// On exiting the while loop, the number of iterations (num_iter) has been
// doubled in the event that secs < MIN_SECS, so num_iter must be halved
return secs / (num_iter/2.0);

/*
 * Measures the performance (Mflops/sec) of unblocked and blocked algorithms
 * performing matrix multiplication (and addition), C = C + A*B, on square
 * matrices over a range of dimensions.
 */
void time_mmult_algo(void)
{
#define FIELDS 11 // Number of output data fields
 const char *data_file_name = "mmult.dat";
 const char *hdr_text =
 "# N: Matrix dimension, n-by-n\n"
 "# BDIM: Block dimension used by blocking algorithms
"
 "# Mflop/sec for matrix multiplication algorithms\n"
 "# DOTPROD: Dot product, ijk indexing\n"
 "# SAXPY: Scalar alpha x plus y, jki indexing\n"
 "# UNROLL: Loop unrolling, dot product\n"
 "# PIPELN: Software pipelining, SAXPY\n"
 "# BLKSIMP: Simple blocking\n"
 "# BLKCTG: Contiguous blocking\n"
 "# BLKRCR: Recursive contiguous blocking\n"
 "# RCRRECT: Recursive contiguous blocking, variable sub-block sizes\n"
 "# BLAS: BLAS routine DGEMM\n"
 "# \n"
 "# N|BDIM|DOTPROD|SAXPY|UNROLL|PIPELN|BLKSIMP|BLKCTG|BLKRCR|RCRRECT|BLAS"
 col_n = 0,
 col_bdim = 1,
 col_dotprod = 2,
 col_saxpy = 3,
 col_unroll = 4,
 col_pipeln = 5,
const double alpha = 10.0; // Scaling factor for random matrix

char *data_file;
int n, bdim;
double mflops;
double perf_data[FIELDS*SIZES];
double *A, *B, *C;
void (*mmult)(int n, const double *A, const double *B, double *C);

// Concatenate file path and name
data_file = (char *) calloc(strlen(file_path) + strlen(data_file_name) + 1, sizeof(char));
strncpy(data_file, file_path);
strcat(data_file, data_file_name);

for (int i = 0; i < SIZES; i++) {
 n = mat_size[i];
 bdim = get_block_dim(mmult(n));
 fprintf(stdout, "%d, bdim = %d\n", n, bdim);
 // Matrix multiplication takes 2*n^3 floating point operations
 mflops = 1.0e-06 * 2.0 * n * n * n;
 // Create random n-by-n matrices
 A = (double *) malloc(n*n*sizeof(double));
 B = (double *) malloc(n*n*sizeof(double));
 C = (double *) malloc(n*n*sizeof(double));
 create_random_matrix(alpha, n, n, A);
 create_random_matrix(alpha, n, n, B);
 create_random_matrix(alpha, n, n, C);

 // Performance data is stored in perf_data[] array in column-major order
 perf_data[i+col_n*SIZES] = (double) n;
 perf_data[i+col_bdim*SIZES] = (double) bdim;
 printf("%mu...\n");
 // Measure performance of matrix multiplication algorithms:
 // Dot product, ijk indexing
 mmult = mmult_dotproduct;
 perf_data[i+col_dotprod*SIZES] = 0.0; // mflops / time_mmult(mmult, n, A, B, C);
 printf("%mu...\n");
 // Scalar alpha x plus y, jki indexing
 mmult = mmult_saxpy;
 perf_data[i+col_saxpy*SIZES] = 0.0; // mflops / time_mmult(mmult, n, A, B, C);
 printf("%mu...\n");
 // Loop unrolling, dot product
 mmult = mmult_unroll;
 perf_data[i+col_unroll*SIZES] = 0.0; // mflops / time_mmult(mmult, n, A, B, C);
printf("mmult_pipeline\n");
 // Software pipelining, SAXPY
 mmult = mmult_pipeline;
 perf_data[i+col_pipeline*SIZES] = 0.0;//mflops / time_mmult(mmult, n, A, B, C);
printf("mmult_block\n");
 // Simple blocking
 mmult = mmult_block;
 perf_data[i+col_block*SIZES] = mflops / time_mmult(mmult, n, A, B, C);
printf("mmult_contig_block\n");
 // Blocking, contiguous block storage
 mmult = mmult_contig_block;
 perf_data[i+col_blkctg*SIZES] = 0.0;//mflops / time_mmult(mmult, n, A, B, C);
printf("mmult_recur_block\n");
 // Blocking, recursive contiguous blocking
 mmult = mmult_recur_block;
 perf_data[i+col_blkrcr*SIZES] = mflops / time_mmult(mmult, n, A, B, C);
printf("mmult_rect_recur_block\n");
 // Blocking, recursive contiguous blocking, variable looping
 mmult = mmult_rect_recur_block;
 perf_data[i+col_rectrcr*SIZES] = 0.0;//mflops / time_mmult(mmult, n, A, B, C);
printf("mmult_blas\n");
 // BLAS routine DGEFM
 mmult = mmult_blas;
 perf_data[i+col_blas*SIZES] = mflops / time_mmult(mmult, n, A, B, C);

free(A);
free(B);
free(C);
}

write_data_file(data_file, hdr_text, SIZES, FIELDS, perf_data);

#undef FIELDS
}

/*
 * Measures the performance (Mflops/sec) of matrix multiplication (and addition),
 * C = C + A*B, on square matrices over a range of dimensions. Performance is
 * measured for different compiler optimization levels and options.
 */
void time_compiler_optm(void){
#define FIELDS 2
 // Number of output data fields
 const char *data_file_suffix = ".dat",
 *delim = " -",
 *hdr_text = "# N: Matrix dimension, N-by-N\n"
 "# PERF: Mflop/sec for matrix multiplication algorithm\n"
 "# \n"
 "# \nPERF";
const int col_n = 0, col_perf = 1;
const double alpha = 10.0; // Scaling factor for random matrix

char *data_file, *optm_lvl, *optm_str, *token;
int n;
double mflops;
double perf_data[FIELDS*SIZES];
double *A, *B, *C;
void (*mmult)(int n, const double *A, const double *B, double *C);

#if defined(CCOPTMDF)
const char *data_file_prefix = "mmult_dot_ccoptm_";
mmult = mmult_dot_product;
#elif defined(CCOPTMASA)
const char *data_file_prefix = "mmult_saxpy_ccoptm_";
mmult = mmult_saxpy;
#else
const char *data_file_prefix = "mmult_saxpy_ccoptm_";
mmult = mmult_saxpy;
#endif

// Format optimization level and options as a string
optm_lvl = (char *) calloc(strlen(OPTM) + 1, sizeof(char));
strcpy(optm_lvl, OPTM);
opm_str = (char *) calloc(strlen(optm_lvl) + 1, sizeof(char));
if ((token = strtok(optm_lvl, delim)) != NULL) {
 strcpy(optm_str, token);
 while ((token = strtok(NULL, delim)) != NULL) {
 strcat(optm_str, token);
 }
}

// Concatenate file path and names
data_file = (char *) calloc(strlen(file_path) + strlen(data_file_prefix) +
 strlen(optm_str) + strlen(data_file_suffix) + 1, sizeof(char));
strcpy(data_file, file_path);
strcat(data_file, data_file_prefix);
strcat(data_file, optm_str);
strcat(data_file, data_file_suffix);

for (int i = 0; i < SIZES; i++) {
 n = mat_size[i];
 fprintf(stdout, "n = %d\n", n);
 // Matrix multiplication takes 2*n^3 floating point operations
 mflops = 1.0e-06 * 2.0 * n * n * n;
 // Create random n-by-n matrices
 A = (double *) malloc(n*n*sizeof(double));
 B = (double *) malloc(n*n*sizeof(double));
 C = (double *) malloc(n*n*sizeof(double));
 create_random_matrix(alpha, n, n, A);
create_random_matrix(alpha, n, n, B);
create_random_matrix(alpha, n, n, C);

// Matrix multiplication takes 2*n^3 floating point operations
mflops = 1.0e-06 * 2.0 * n * n * n;

perf_data[i+col_n*SIZES] = n;
perf_data[i+col_perf*SIZES] = mflops / time_mmult(mmult, n, A, B, C);

free(A);
free(B);
free(C);
}

write_data_file(data_file, hdr_text, SIZES, FIELDS, perf_data);

#undef FIELDS
A.11. mmultmp.c – timing harness for parallel matrix multiplication.

/*
 * Timing harness for measuring the performance of parallel algorithms
 * implementing matrix multiplication (and addition), \(C = C + A \times B \), on square
 * matrices over a range of dimensions. Performance data are written to an
 * output file destination.
 */

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include <mpi.h>

#include "timing.h"
#include "matmultp.h"

#if !defined(PROC)
define PROC "unknown"
#endif
#if !defined(CORES)
define CORES "unknown"
#endif
#if !defined(CLKSPEED)
define CLKSPEED "unknown"
#endif
#if !defined(CACHE)
define CACHE "unknown"
#endif
#if !defined(COMPILED)
define COMPILED "unknown"
#endif
#if !defined(LANGUAGE)
define LANGUAGE "default"
#endif
#if !defined(OPTM)
define OPTM "default"
#endif
#if !defined(DATADIR)
define DATADIR "." "Current directory ./"
#endif

#define MINITER 8 // Minimum number of iterations of algorithm
#define MINSECS 2.0 // Minimum elapsed time for execution of algorithm

static void write_data_file(const char *file, const char *hdr_text,
 int rows, int cols, const double *data, struct mpi_grid *grid);
static void read_data_file(const char *file, int rows, int cols, double *data);
static double time_matmultp(void (*matmultp)(int n, const double *A, const double *B,
 double *C, struct mpi_grid *grid), int n, const double *A, const double *B,
double *C, struct mpi_grid *grid;
static void time_parallel_matrix_multiply(struct mpi_grid *grid);

static char *file_path;
static struct mpi_grid grid;

int main(int argc, char **argv)
{
 const double alpha = 10.0; // Scaling factor for random matrix

 MPI_Init(&argc, &argv); // Establish Cartesian topology for collective communication
 setup_mpi_grid(&grid);

 // Specify file path for input and output data files
 file_path = (char *) calloc(strlen(DATADIR) + 2, sizeof(char));
 strcpy(file_path, DATADIR);
 strcat(file_path, "/");

 time_parallel_matrix_multiply(&grid);

 MPI_Finalize();
 return 0;
}

/*
 * Writes header text and experimental data to the files specified in the
 * argument list. Experimental data is enumerated in a matrix stored in
 * column-major order.
 */

void write_data_file(const char *file, const char *hdr_text, int rows, int cols, const double *data, struct mpi_grid *grid)
{
 FILE *fp;

 if ((fp = fopen(file, "w")) == NULL) {
 fprintf(stderr, "Error opening file %s.", file);
 exit(-1);
 }

 // Write header text
 fprintf(fp,
 "# Processor:\t%s\n", PROC);
 fprintf(fp,
 "# Cores:\t%s\n", CORES);
 fprintf(fp,
 "# Clock speed:\t%s\n", CLKSPEED);
 fprintf(fp,
 "# Cache:\t%s\n", CACHE);
 fprintf(fp,
 "# \n");
 fprintf(fp,
 "# C compiler:\t%s\n", COMPILER);
 fprintf(fp,
 "# C language standard:\t%s\n", LANGUAGE);
 fprintf(fp,
 "# Optimization level and options:\t%s\n", OPTIM);
}
fprintf(fp, "# Clock resolution:	%Lg
", timer_resolution());
fprintf(fp, "# Number of processors:	%d
", grid->p);
fprintf(fp, "# " n ");
fprintf(fp, "%s\n", hdr_text);
// Write experimental data
for (int i = 0; i < rows; i++) {
 for (int j = 0; j < cols; j++) {
 fprintf(fp, "%g	", *(data+j*rows+i));
 }
}
fprintf(fp, "\n");
fclose(fp);
}
/*
 * Reads matrix data in specified file into an array passed in argument list.
 * Data read from the file is stored in the array in column-major order.
 */
void read_data_file(const char *file, int rows, int cols, double *data)
{
 FILE *fp;
 if ((fp = fopen(file, "r")) == NULL) {
 fprintf(stderr, "Error opening file %s.", file);
 exit(-1);
 }
 for (int i = 0; i < rows; i++) {
 for (int j = 0; j < cols; j++) {
 fscanf(fp, "%lg", (data+j*rows+i));
 }
 }
 fclose(fp);
}
/*
 * Measures the average time (number of seconds) to perform parallel matrix
 * multiplication (and addition), C = C + A*B, on n-by-n matrices. Parallel
 * matrix multiplication is performed iteratively for at least the minimum
 * number of iterations, and until the minimum time (in seconds) has elapsed.
 */
double time_matmultp(void (*matmultp)(int n, const double *A, const double *B,
 double *C, struct mpi_grid *grid), int n, const double *A, const double *B,
 double *C, struct mpi_grid *grid)
{
 struct timespec sta, end;
 long int num_iter = MIN_ITER;
 double secs = -1.0;
 double *M;

 // Save copy of matrix C before performing matrix multiplication
if (grid->rank == 0) {
 M = (double *) malloc(n*n*sizeof(double));
 copy_matrix(n, n, C, M);
}

while (secs < MIN_SECS) {
 get_time(&sta);
 for (int i = 0; i < num_iter; i++) {
 parallel_matrix_multiply(n, A, B, C, grid);
 }
 get_time(&end);
 secs = timespec_diff(sta, end);
 num_iter *= 2;
 if (grid->rank == 0) {
 copy_matrix(n, n, M, C); // Reset matrix C to initial value
 }
}
if (grid->rank == 0) {
 free(M);
}
// On exiting the while loop, the number of iterations (num_iter) has been doubled in the event that secs < MIN_SECS, so num_iter must be halved
return secs / (num_iter/2.0);

/*
 * Measures the performance of parallel matrix multiplication (and addition),
 * C = C + A*B, on square matrices over a range of dimensions.
 */
void time_parallel_matrix_multiply(struct mpi_grid *grid)
{
#define IN_FIELDS 11 // Number of input data fields
#define OUT_FIELDS 5 // Number of output data fields
 const char *out_file_prefix = "mmult_",
 *out_file_ext = ".dat",
 *in_file_name = "mmult.dat";

 const char *hdr_text =
" # N: Matrix dimension, n-by-n\n"
" # SERIAL: Mflop/sec for serial matrix multiplication, simple blocking\n"
" # PARA: Mflop/sec for parallel matrix multiplication, simple blocking\n"
" # SPEEDUP: Speed-up\n"
" # EFFNCY: Efficiency\n"
" \n"
" # N\tSERIAL\tPARA\tSPEEDUP\tEFFNCY"
 const int col_n = 0,
 col_serial = 1,
 col_para = 2,
 col_speedup = 3,
 col_effncy = 4,
 col_in_serial = COLINSER;
const double alpha = 10.0; // Scaling factor for random matrix

char procs[4];
char *out_data_file, *in_data_file;
int n;
double mflops, mflop_sec;
double perf_data[OUT_FIELDS*SIZES],
 perf_serial[IN_FIELDS*SIZES];
double *A, *B, *C;

void (*matmultp)(int n, const double *A, const double *B, double *C,
 struct mpi_grid *grid);

// Concatenate file path and names
sprintf(procs, "np%d", grid->p);
out_data_file = (char *) calloc(strlen(file_path) + strlen(out_file_prefix) +
 strlen(procs) + strlen(out_file_ext) + 1, sizeof(char));
strcpy(out_data_file, file_path);
strcat(out_data_file, out_file_prefix);
strcat(out_data_file, procs);
strcat(out_data_file, out_file_ext);
in_data_file = (char *) calloc(strlen(file_path) +
 strlen(in_file_name) + 1, sizeof(char));
strcpy(in_data_file, file_path);
strcat(in_data_file, in_file_name);

// Read input data file (performance of serial matrix multiplication)
read_data_file(in_data_file, SIZES, IN_FIELDS, perf_serial);

for (int i = 0; i < SIZES; i++) {
 n = perf_serial[i+col*n*SIZES];
 // Matrix multiplication takes 2*n^3 floating point operations
 mflops = 1.0e-06 * 2.0 * n * n * n;
 if (grid->rank == 0) {
 fprintf(stdout, "n = %d\n", n);
 // Allocate memory for matrices
 A = (double *) malloc(n*n*sizeof(double));
 B = (double *) malloc(n*n*sizeof(double));
 C = (double *) malloc(n*n*sizeof(double));
 // Create random matrices A, B and C
 create_random_matrix(alpha, n, n, A);
 create_random_matrix(alpha, n, n, B);
 create_random_matrix(alpha, n, n, C);
 }
}

matmultp = parallel_matrix_multiply;
mflop_sec = mflops / time_matmultp(matmultp, n, A, B, C, grid);
if (grid->rank == 0) {
 perf_data[i+col_n*SIZES] = perf_serial[i+col_n*SIZES];
 perf_data[i+col_serial*SIZES] = perf_serial[i+col_in_serial*SIZES];
 perf_data[i+col_para*SIZES] = mflop_sec;
 perf_data[i+col_speedup*SIZES] =
 mflop_sec / perf_data[i+col_serial*SIZES];
```
# undef FIELDS
}

if ( grid->rank == 0 ) {
    write_data_file( out_data_file, hdr_text,
                    SIZES, OUT_FIELDS, perf_data, grid );
}

if ( grid->rank == 0 ) {
    free( A );
    free( B );
    free( C );
}

perf_data[i+col_effncy*SIZES] =
perf_data[i+col_speedup*SIZES] / grid->p;
```

A.12. mfactest.c – testing harness for matrix factorization.

/*
 * Testing harness for unblocked and blocked algorithms implementing the
 * factorization of matrices representing linear systems. Matrix factorizations
 * include LU (Gaussian elimination), standard Cholesky, symmetric indefinite
 * (LDL'), and modified Cholesky (Gill–Murray–Wright and Cheng–Higham
 * algorithms). The number of tests and error count are accumulated through a
 * single execution of the mfactest program, and all test results are written to
 * an output file destination (terminal).
 */

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <float.h>

#include "lufact.h"
#include "cholfact.h"
#include "ldltfact.h"
#include "modchol.h"
#include "matcom.h"
#include "lapack.h"

static void test_assert(double eps, double tol, const char *test_name);
static void test_lu_outer_product(void);
static void test_lu_saxpy(void);
static void test_lu_block(void);
static void test_lurecur_block(void);
static void test_lu_pivot_outer_product(void);
static void test_lu_pivot_saxpy(void);
static void test_lu_pivot_block(void);
static void test_lu_pivot_lapack(void);
static void test_chol_outer_product(void);
static void test_chol_saxpy(void);
static void test_chol_block(void);
static void test_chol_rect_block(void);
static void test_chol_contig_block(void);
static void test_chol_recur_block(void);
static void test_chol_block_blas(void);
static void test_chol_contig_block_blas(void);
static void test_chol_lapack(void);
static void test_ldlt_outer_product(void);
static void test_ldlt_saxpy(void);
static void test_ldlt_block(void);
static void test_ldlt_block_blas(void);
static void test_ldlt_lapack(void);
static void test_chol_gmw_outer_product(void);
static void test_chol_gmw_saxpy(void);
static void test_chol_gmw_block(void);
static void test_chol_gmw_block_blas(void);
static void test_chol_ch_outer_product(void);
static void test_chol_ch_saxpy(void);
static void test_chol_ch_block(void);
static void test_chol_ch_block_blas(void);
static void print_matrix(int m, int n, int ldim, const double *E);

static int tests = 0, // Test count
tests = 0; // Error count
static FILE *fp;

int main()
{
 fp = stdout;

 // Test LU factorization
#if defined(LUFACT)
test_lu_outer_product();
test_lu_saxpy();
test_lu_block();
test_lu_recur_block();
#endif

 // Test LU factorization with partial pivoting
#if defined(LUPIVOT)
test_lu_pivot_outer_product();
test_lu_pivot_saxpy();
test_lu_pivot_block();
test_lu_pivot_lapack();
#endif

 // Test Cholesky factorization
#if defined(CHOLFACT)
test_chol_outer_product();
test_chol_saxpy();
test_chol_block();
test_chol_rect_block();
test_chol_contig_block();
test_chol_recur_block();
test_chol_block_blas();
test_chol_contig_block_blas();
test_chol_lapack();
#endif

 // Test LDL’ factorization
#if defined(LDLTFACT)
test_ldlt_outer_product();
test_ldlt_saxpy();
test_ldlt_block();
test_ldlt_block_blas();
test_ldlt_lapack();
#endif

// Test modified Cholesky factorization
#if defined(MODCHOL)
test_chol_gmw_outer_product();
test_chol_gmw_saxpy();
test_chol_gmw_block();
test_chol_gmw_block_blas();
test_chol_ch_outer_product();
test_chol_ch_saxpy();
test_chol_ch_block();
test_chol_ch_block_blas();
#endif

if (errs == 0) {
 fprintf(fp, "Passed all %d tests.\n", tests);
} else {
 fprintf(fp, "Total of %d error(s) encountered in %d tests.\n",
 errs, tests);
}
return 0;
}

/*
 * Verifies that test results are accurate within specified tolerance, and
 * prints message indicating whether the routine passed or failed the test.
 */
void test_assert(double eps, double tol, char *test_name)
{
 tests++;
 if (eps <= tol) {
 fprintf(fp, "PASSED: %s\n(eps=%e <= tol=%e)\n", test_name, eps, tol);
 } else {
 errs++;
 fprintf(fp, "FAILED: %s\n(eps=%e > tol=%e)\n", test_name, eps, tol);
 }
}

***/

/*
 * Checks whether the outer product method (kji indexing) for LU factorization
 * is performed correctly on nonsingular n-by-n matrices. Matrix A represents
 * an n-by-n linear system and matrix LU stores the correct unit lower and upper
 * triangular factors. Randomly generated nonsingular matrices are diagonally
 * dominant, so pivoting in not required.
 */
void test_lu_outer_product(void)
{
const double tol = 1e−12; // Error tolerance

char test_name[80];

int n;
double eps, err;
double A[] = { 2, 0.5, 0.25, 0.25, 4.0625, 2.03125, 0.5, 0.25, 3.125 },
 LUA[] = { 2, 0.25, 0.125, 0.25, 4, 0.5, 0.5, 0.125, 3 },
 B[] = { 6, 18, 12, 24, 1, 7, 26, 12, 3, 11, 23, 41, 2, 6, 5, 16 },
 LUB[] = { 6, 3, 2, 4, 1, 4, 6, 2, 3, 2, 5, 5, 2, 0, 1, 3 },

double C[] = { 3, 6, 3, 15, 9, 0, 3, 9, 15, 15, 2, 5, 5, 12, 10, 1, 4, 11, 14, 15, 1, 7, 18, 25, 29, 13, 19, 32, 31, 32, 2, 9, 18, 26, 29, 13, 19, 35, 38, 36, 4, 11, 15, 39, 33, 29, 33, 46, 65, 49, 2, 4, 7, 40, 23, 46, 51, 36, 64, 25, 4, 10, 11, 31, 23, 15, 28, 50, 69, 37, 1, 4, 11, 29, 23, 19, 29, 38, 52, 29, 3, 7, 10, 38, 28, 28, 37, 46, 72, 51, 5, 14, 19, 45, 39, 26, 44, 68, 99, 82 },
 LUC[] = { 3, 2, 1, 5, 3, 0, 1, 3, 5, 5, 1, 5, 2, 5, 3, 4, 4, 2, 3, 1, 2, 5, 1, 1, 0, 4, 3, 2, 5, 0, 4, 3, 2, 3, 3, 2, 2, 3, 4, 4, 2, 0, 5, 5, 2, 2, 5, 2, 3, 1, 4, 2, 1, 2, 0, 1, 5, 4, 5, 1, 1, 2, 4, 0, 0, 1, 3, 3, 3, 2, 3, 1, 4, 1, 3, 1, 2, 3, 2, 3, 5, 4, 2, 2, 2, 2, 3, 3, 4, 4 };
error_matrix_comp_frob(&eps, &err, n, n, LUC, C);
test_assert(eps, tol, test_name);
}

/*
 * Checks whether an implementation of the SAXPY operation (jki indexing) for
 * LU factorization is performed correctly on an n-by-n nonsingular matrix.
 * The result is verified against that produced by the outer product method.
 * Randomly generated nonsingular matrices are diagonally dominant, so pivoting
 * in not required.
 */
void test_lu_saxpy(void)
{
 const int n = 12; // n-by-n matrix A
 const double tol = 1e-12, // Error tolerance
 alpha = 1.0; // Scaling factor for random matrix
 char *test_name[80];
 double *A, *LU;
 sprintf(test_name,"LU factorization, SAXPY, %dx%d matrix",n,n);
 A = (double *) malloc(n*n*sizeof(double));
 LU = (double *) malloc(n*n*sizeof(double));
 create_random_nonsingular(alpha, n, A);
 copy_matrix(n, n, A, LU);

 // Perform LU factorization and compare result with outer product solution
 lu_saxpy(n, A);
 lu_outer_product(n, LU);
 error_matrix_comp_frob(&eps, &err, n, n, LUC, C);
 test_assert(eps, tol, test_name);
 free(A);
 free(LU);
}

/*
 * Checks whether simple blocking for LU factorization is performed correctly
 * on n-by-n nonsingular matrices. The results are verified against those
 * produced by the outer product method. Randomly generated nonsingular matrices
 * are diagonally dominant, so pivoting in not required.
 */
void test_lu_block(void)
{
 const int mat_size[] = { 12, 64, 82 };

 #define SIZES(sizeof(mat_size) / sizeof(int))
 const double tol = 1e-12, // Error tolerance
 alpha = 1.0; // Scaling factor for random matrix
 char *test_name[SIZES];
double eps , err;
double *A, *LU;

// Define test names
test_name[0] = "LU factorization, simple blocking --\n" "matrix dimension less than block dimension";
test_name[1] = "LU factorization, simple blocking --\n" "matrix dimension a multiple of block dimension";
test_name[2] = "LU factorization, simple blocking --\n" "matrix dimension not a multiple of block dimension";

for (int i = 0 ; i < SIZES ; i++) {
 int n = mat_size[i];
 A = (double *) malloc(n*n*sizeof(double));
 LU = (double *) malloc(n*n*sizeof(double));
 create_random_nonsingular(alpha, n, A);
 copy_matrix(A, LU);
 // Perform LU factorization, compare result with outer product solution
 lu_block(n, A);
 lu_outer_product(n, LU);
 error_matrix_comp_frob(&eps, &err, n, n, LU, A);
 test_assert(eps, tol, test_name[i]);
 free(A);
 free(LU);
}

/*
 * Checks whether recursive contiguous blocking for LU factorization is
 * performed correctly on n-by-n nonsingular matrices. The results are verified
 * against those produced by the outer product method. Randomly generated
 * nonsingular matrices are diagonally dominant, so pivoting is not required.
 */
void test_lu_recur_block(void) {
 const int mat_size[] = { 22, 96, 111 };
 #define SIZES (sizeof(mat_size) / sizeof(int))
 const double tol = 1e-12; // Error tolerance
 alpha = 1.0; // Scaling factor for random matrix
 char *test_name[SIZES];
 double eps, err;
 double *A, *LU;

 // Define test names
 test_name[0] = "LU factorization, recursive contiguous blocking --\n" "matrix dimension less than block dimension";
 test_name[1] = "LU factorization, recursive contiguous blocking --\n" "matrix dimension a multiple of block dimension";
test_name[2] = "LU factorization, recursive contiguous blocking --\n" "matrix dimension not a multiple of block dimension";

for (int i = 0; i < SIZES; i++) {
 int n = mat_size[i];
 A = (double *) malloc(n*n*sizeof(double));
 LU = (double *) malloc(n*n*sizeof(double));
 create_random_nonsingular(alpha, n, A);
 copy_matrix(n, n, A, LU);
 // Perform LU factorization, compare result with outer product solution
 lu_recur_block(n, A);
 lu_outer_product(n, LU);
 error_matrix_comp_frob(&eps, &err, n, n, LU, A);
 test_assert(eps, tol, test_name[i]);
 free(A);
 free(LU);
}

#undef SIZES

//**

/*
* Checks whether the outer product method (kji indexing) for LU factorization
* with partial pivoting is performed correctly on n-by-n nonsingular matrices.
* Matrix A represents an n-by-n linear system and matrix LU stores the correct
* unit lower and upper triangular factors.
*/
void test_lu_pivot_outer_product(void)
{
 const double tol = 1e-12; // Error tolerance

 char test_name[80];
 int n;
 int *piv, *ord;
 double eps, err;

double A[] = { 3, 2, 6, 17, 4, 18, 10, -2, -12 },
 LUA[] = { 6, 0.5, 1/3.0, 18, 8, -0.25, -12, 16, 6 },
 B[] = { 6, 18, 12, 24, 1, 7, 26, 12,
 3, 11, 23, 41, 2, 6, 5, 16 },
 LUB[] = { 24, 0.50, 0.75, 0.25, 12, 20, -0.10, -0.10,
 41, 2.50, -19.50, 14/39.0, 16, -3, -6.30, -1/26.0 };

 n = 3;
 sprintf(test_name,
"LU factorization with partial pivoting, outer product, %dx%d matrix", n, n);
 piv = (int *) malloc(n*sizeof(int));
 ord = (int *) malloc(n*sizeof(int));
 // Perform LU factorization and compare result with correct answer
 lu_pivot_outer_product('G', n, piv, ord, A);
}
PERFORMANCE OPTIMIZATION OF SYMMETRIC FACTORIZATION ALGORITHMS

```c
error_matrix_comp_frob( &eps, &err, n, n, LUA, A );
test_assert( eps, tol, test_name );
free( piv );
free( ord );

n = 4;
sprintf( test_name, "LU factorization with partial pivoting, outer product, %dx%d matrix", n, n );
piv = (int *) malloc( n*sizeof(int) );
ord = (int *) malloc( n*sizeof(int) );
// Perform LU factorization and compare result with correct answer
lu_pivot_outer_product( 'G', n, piv, ord, B );
error_matrix_comp_frob( &eps, &err, n, n, LUB, B );
test_assert( eps, tol, test_name );
free( piv );
free( ord );
}

/* Checks whether an implementation of the SAXPY operation (jki indexing)
  for LU factorization with partial pivoting is performed correctly on n-by-n
  nonsingular matrices. The result is verified against that produced by the
  outer product method. */
void test_lu_pivot_saxpy( void )
{
    const int n = 14; // n-by-n matrix A
    const double tol = 1e-12, // Error tolerance
                  alpha = 10.0; // Scaling factor for random matrix

    char test_name[80];
    int *piv, *ord;
    double eps, err;
    double *A, *LU;

    sprintf( test_name, "LU factorization with partial pivoting, AXPY, %dx%d matrix", n, n );
    A = (double *) malloc( n*n*sizeof(double) );
    LU = (double *) malloc( n*n*sizeof(double) );
    piv = (int *) malloc( n*sizeof(int) );
    ord = (int *) malloc( n*sizeof(int) );
    create_random_nonsingular( alpha, n, A );
    copy_matrix( n, n, A, LU );

    // Perform LU factorization and compare result with outer product solution
    lu_pivot_saxpy( 'G', n, piv, ord, A );
    lu_pivot_outer_product( 'G', n, piv, ord, LU );
    error_matrix_comp_frob( &eps, &err, n, n, LUB, B );
test_assert( eps, tol, test_name );
free( A );
```

Checks whether simple blocking for LU factorization with partial pivoting is performed correctly on n-by-n nonsingular matrices. The results are verified against those produced by the outer product method.

```c
void test_lu_pivot_block( void )
{
    const int mat_size[] = { 14, 48, 82 };
    #define SIZES (sizeof(mat_size) / sizeof(int))
    const double tol = 1e-12;   // Error tolerance
    alpha = 10.0;               // Scaling factor for random matrix

    int *piv, *ord;
    char *test_name[SIZES];
    double eps, err;
    double *A, *LU;

    // Define test names
    test_name[0] = "LU factorization with partial pivoting, simple blocking --\n    \n    matrix dimension less than block dimension";
    test_name[1] = "LU factorization with partial pivoting, simple blocking --\n    \n    matrix dimension a multiple of block dimension";
    test_name[2] = "LU factorization with partial pivoting, simple blocking --\n    \n    matrix dimension not a multiple of block dimension";

    for ( int i = 0; i < SIZES; i++ ) {
        const int n = mat_size[i];
        A = (double *) malloc( n*n*sizeof(double) );
        LU = (double *) malloc( n*n*sizeof(double) );
        piv = (int *) malloc( n*sizeof(int) );
        ord = (int *) malloc( n*sizeof(int) );
        create_random_nonsingular( alpha, n, A );
        copy_matrix( n, n, A, LU );

        // Perform LU factorization, compare result with outer product solution
        lu_pivot_block( 'G', n, piv, ord, A );
        lu_pivotOuter_product( 'G', n, piv, ord, LU );
        error_matrixComp_frob( &eps, &err, n, n, LU, A );
        testAssert( eps, tol, test_name[i] );
        free( A );
        free( LU );
        free( piv );
        free( ord );
    }
}
#undef SIZES
```
Checks whether the wrapper function properly invokes LAPACK routine DGETRF, which computes an LU factorization of a nonsingular matrix using partial pivoting with row interchanges.

```c
void test_lu_pivot_lapack( void )
{
    const int n = 42; // n-by-n matrix A
    const double tol = 1e-12, // Error tolerance
                   alpha = 10.0; // Scaling factor for random matrix
    char test_name[80];
    int *piv, *ord;
    double eps, err, normA, normLU;
    double *A, *LU;

    sprintf( test_name, "LU factorization, LAPACK routine DGETRF, %dx%d matrix", n, n );
    A = (double *) malloc( n*n*sizeof(double) );
    LU = (double *) malloc( n*n*sizeof(double) );
    piv = (int *) malloc( n*sizeof(int) );
    ord = (int *) malloc( n*sizeof(int) );
    create_random_nonsingular( alpha, n, A );
    copy_matrix( n, n, A, LU );

    // Perform LU factorization and compare result with outer product solution
    lu_pivot_lapack( 'G', n, piv, ord, A );
    lu_pivot_outer_product( 'G', n, piv, ord, LU );
    // The factorization produced by LAPACK routine DGETRF takes the form
    // A = P*L*U, whereas the factorization produced by lu_pivot_outer_product() 
    // takes the form P*A = L*U. Therefore, verify that DGETRF is invoked 
    // correctly by comparing the norms of factors (matrices) computed by DGETRF 
    // and lu_pivot_outer_product().
    normA = 0.0;
    normLU = 0.0;
    for ( int j = 0; j < n; j++ ) {
        for ( int i = 0; i < n; i++ ) {
            double aij = fabs( *(A + i + j*n) );
            double lij = fabs( *(LU + i + j*n) );
            normA += aij;
            normLU += lij;
        }
    }
    err = abs( normA - normLU );
    eps = err / normA;
    test_assert( eps, tol, test_name );
    free( A );
    free( LU );
}
```
void test_chol_outer_product(void) {
 const double tol = 1e-12; // Error tolerance

 char* test_name = "Cholesky factorization, outer product, %dx%d matrix";
 int n;
 double eps, err;
 double A[] = { 4, -2, -6, -2, 10, 9, -6, 9, 14 },
 LA[] = { 2, -1, -3, -2, 3, 2, -6, 9, 1 },
 B[] = { 16, 8, 12, 8, 8, 29, 11, 24,
 12, 11, 46, 22, 8, 24, 22, 33 },
 LB[] = { 4, 2, 3, 2, 8, 5, 1, 4,
 12, 11, 6, 2, 8, 24, 22, 3 },
 double C[] = { 25, 10, 15, 0, 20, 10, 25, 5,
 10, 8, 14, 8, 14, 4, 18, 12,
 15, 14, 29, 24, 30, 8, 33, 29,
 0, 8, 24, 33, 28, 6, 23, 33,
 20, 14, 30, 28, 66, 23, 47, 44,
 10, 4, 8, 6, 23, 19, 32, 19,
 25, 18, 33, 23, 47, 32, 92, 54,
 5, 12, 29, 33, 44, 19, 54, 62 },
 LC[] = { 5, 2, 3, 0, 4, 2, 5, 1,
 10, 2, 4, 4, 3, 0, 4, 5,
 15, 14, 2, 4, 3, 1, 1, 3,
 0, 8, 24, 1, 4, 2, 3, 1,
 20, 14, 30, 28, 4, 1, 0, 3,
 10, 4, 8, 6, 23, 3, 5, 3,
 25, 18, 33, 23, 47, 32, 4, 2,
 5, 12, 29, 33, 44, 19, 54, 2 };

 n = 3;
 sprintf(test_name, "Cholesky factorization, outer product, %dx%d matrix", n, n);
 // Perform Cholesky factorization and compare result with correct answer
 chol_outer_product(n, A);
 error_matrix_comp_frob(&eps, &err, n, n, LA, A);
 test_assert(eps, tol, test_name);
}
n = 4;
sprintf(test_name,
 "Cholesky factorization, outer product, %dx%d matrix", n, n);
// Perform Cholesky factorization and compare result with correct answer
chol_outer_product(n, B);
error_matrix_comp_frob(&eps, &err, n, n, LB, B);
test_assert(eps, tol, test_name);

n = 8;
sprintf(test_name,
 "Cholesky factorization, outer product, %dx%d matrix", n, n);
// Perform Cholesky factorization and compare result with correct answer
chol_outer_product(n, C);
error_matrix_comp_frob(&eps, &err, n, n, LC, C);
test_assert(eps, tol, test_name);
}

/*
 * Checks whether an implementation of the SAXPY operation (jki indexing) for
 * Cholesky factorization is performed correctly on an n-by-n symmetric positive
 * definite matrix A. The result is verified against that produced by the
 * outer product method.
 *
 * void test_chol_saxpy(void)
 *
 const double tol = 1e-12, // Error tolerance
 alpha = 1.0; // Scaling factor for random matrix
 const int n = 21; // n-by-n matrix A
 char test_name[80];
 double eps, err;
 double *A, *L;

 sprintf(test_name, "Cholesky factorization, SAXPY, %dx%d matrix", n, n);
 A = (double *) malloc(n*n*sizeof(double));
 L = (double *) malloc(n*n*sizeof(double));
 create_random_spd(alpha, n, A);
 copy_matrix(n, n, A, L);

 // Perform Cholesky factorization, compare result with outer product solution
 chol_saxpy(n, A);
 chol_outer_product(n, L);
 error_matrix_comp_frob(&eps, &err, n, n, L, A);
 test_assert(eps, tol, test_name);
 free(A);
 free(L);
 *
 * Checks whether simple blocking for Cholesky factorization is performed
 * correctly on n-by-n symmetric positive definite matrices. The results are
 */
* verified against those produced by the outer product method.
*/

void test_chol_block(void)
{
 const int mat_size[] = { 11, 48, 77 };
#define SIZES (sizeof(mat_size) / sizeof(int))
 const double tol = 1e-12, // Error tolerance
 alpha = 1.0; // Scaling factor for random matrix
 char *test_name[SIZES];
double eps, err;
double *A, *L;

 // Define test names
 test_name[0] = "Cholesky factorization, simple blocking --\n" "matrix dimension less than block dimension";
 test_name[1] = "Cholesky factorization, simple blocking --\n" "matrix dimension a multiple of block dimension";
 test_name[2] = "Cholesky factorization, simple blocking --\n" "matrix dimension not a multiple of block dimension";

 for (int i = 0; i < SIZES; i++) {
 int n = mat_size[i];
 A = (double *) malloc(n*n*sizeof(double));
 L = (double *) malloc(n*n*sizeof(double));
 create_random_spd(alpha, n, A);
 copy_matrix(n, n, A, L);
 // Perform Cholesky factorization, compare result with outer product solution
 chol_block(n, A);
 chol OUTER_product(n, L);
 error_matrix_comp_frob(&eps, &err, n, n, L, A);
 test_assert(eps, tol, test_name[i]);
 free(A);
 free(L);
 }
#undef SIZES
}

/*
 * Checks whether an implementation of simple blocking using a rectangular
 * version of the SAXPY operation for Cholesky factorization is performed
 * correctly on n-by-n symmetric positive definite matrices. The results are
 * verified against those produced by the outer product method.
 */
void test_chol_rect_block(void)
{
 const int mat_size[] = { 12, 48, 82 };
#define SIZES (sizeof(mat_size) / sizeof(int))
 const double tol = 1e-12, // Error tolerance
 alpha = 1.0; // Scaling factor for random matrix

// Define test names

test_name[0] = "Cholesky factorization, simple blocking, rectangular --\n" "matrix dimension less than block dimension";
test_name[1] = "Cholesky factorization, simple blocking, rectangular --\n" "matrix dimension a multiple of block dimension";
test_name[2] = "Cholesky factorization, simple blocking, rectangular --\n" "matrix dimension not a multiple of block dimension";

for (int i = 0; i < SIZES; i++) {
 int n = mat_size[i];
 A = (double *) malloc(n*n*sizeof(double));
 L = (double *) malloc(n*n*sizeof(double));
 create_random_spd(alpha, n, A);
 copy_matrix(n, n, A, L);
 // Perform Cholesky factorization, compare result with outer product solution
 chol_rect_block(n, A);
 chol_outer_product(n, L);
 error_matrix_comp_frob(&eps, &err, n, n, L, A);
 test_assert(eps, tol, test_name[i]);
 free(A);
 free(L);
}

void test_chol_contig_block(void)
{
 const int mat_size[] = { 12, 96, 123 };
 const double tol = 1e-12; // Error tolerance
 alpha = 1.0; // Scaling factor for random matrix

 // Define test names

test_name[0] = "Cholesky factorization, contiguous blocking --\n" "matrix dimension less than block dimension";
test_name[1] = "Cholesky factorization, contiguous blocking --\n" "matrix dimension a multiple of block dimension";

char *test_name[SIZES];
double eps, err;
double *A, *L;
"matrix dimension a multiple of block dimension";
test_name[2] = "Cholesky factorization, contiguous blocking --
"matrix dimension not a multiple of block dimension";

for (int i = 0; i < SIZES; i++) {
 int n = mat_size[i];
 A = (double *) malloc(n*n*sizeof(double));
 L = (double *) malloc(n*n*sizeof(double));
 create_random_spd(alpha, n, A);
 copy_matrix(n, n, A, L);
 // Perform Cholesky factorization, compare result with outer product solution
 chol_contig_block(n, A);
 chol_outer_product(n, L);
 error_matrix_comp_frob(&eps, &err, n, n, L, A);
 test_assert(eps, tol, test_name[i]);
 free(A);
 free(L);
}

#undef SIZES
}

/*
 * Checks whether recursive contiguous blocking for Cholesky factorization is
 * performed correctly on n-by-n symmetric positive definite matrices. The
 * results are verified against those produced by the outer product method.
 */
void test_chol_recur_block(void)
{
 const int mat_size[] = { 18, 96, 107 };
 #define SIZES (sizeof(mat_size) / sizeof(int))
 const double tol = 1e-12, // Error tolerance
 alpha = 1.0; // Scaling factor for random matrix

 char *test_name[SIZES];
 double eps, err;
 double *A, *L;

 // Define test names
 test_name[0] = "Cholesky factorization, recursive contiguous blocking --
"matrix dimension less than block dimension";
 test_name[1] = "Cholesky factorization, recursive contiguous blocking --
"matrix dimension a multiple of block dimension";
 test_name[2] = "Cholesky factorization, recursive contiguous blocking --
"matrix dimension not a multiple of block dimension";

 for (int i = 0; i < SIZES; i++) {
 int n = mat_size[i];
 A = (double *) malloc(n*n*sizeof(double));
 L = (double *) malloc(n*n*sizeof(double));
 create_random_spd(alpha, n, A);
 }
copy_matrix(n, n, A, L);
 // Perform Cholesky factorization, compare result with outer product solution
chol_recur_block(n, A);
chol_outer_product(n, L);
error_matrix_comp_frob(&eps, &err, n, n, L, A);
test_assert(eps, tol, test_name[i]);
free(A);
free(L);
}
#endif

/*
 * Checks whether an implementation of simple blocking using the BLAS library
 * for Cholesky factorization is performed correctly on n-by-n symmetric
 * positive definite matrices. The results are verified against those produced
 * by the outer product method.
 */
void test_chol_block_blas(void)
{
 const int mat_size[] = { 12, 64, 82 };
#define SIZES (sizeof(mat_size) / sizeof(int))
 const double tol = 1e-12, // Error tolerance
 alpha = 1.0; // Scaling factor for random matrix

 char *test_name[SIZES];
 double eps , err;
 double *A, *L;

 // Define test names
 test_name[0] = "Cholesky, simple blocking using the BLAS library --\n";
 "matrix dimension less than block dimension";
 test_name[1] = "Cholesky, simple blocking using the BLAS library --\n";
 "matrix dimension a multiple of block dimension";
 test_name[2] = "Cholesky, simple blocking using the BLAS library --\n";
 "matrix dimension not a multiple of block dimension";

 for (int i = 0; i < SIZES; i++) {
 int n = mat_size[i];
 A = (double *) malloc(n*n*sizeof(double));
 L = (double *) malloc(n*n*sizeof(double));
 create_random_spd(alpha , n, A);
 copy_matrix(n, n, A, L);
 // Perform Cholesky factorization, compare result with outer product solution
 chol_block_blas(n, A);
 chol_outer_product(n, L);
 error_matrix_comp_frob(&eps, &err, n, n, L, A);
 test_assert(eps, tol, test_name[i]);
 free(A);
 free(L);
 }
#undef SIZES
}

/*
 * Checks whether an implementation of contiguous blocking using the BLAS and
 * LAPACK libraries for Cholesky factorization is performed correctly on n-by-n
 * symmetric positive definite matrices. The results are verified against those
 * produced by the outer product algorithm.
 */
void test_chol_contig_block_blas(void)
{
 const int mat_size[] = { 11, 64, 87 };
 #define SIZES (sizeof(mat_size) / sizeof(int))
 const double tol = 1e-12, alpha = 1.0;
 char *test_name[SIZES];
 double eps, err;
 double *A, *L;

 // Define test names
 test_name[0] =
 "Cholesky, contiguous blocking using BLAS and LAPACK libraries --\n "
 "matrix dimension less than block dimension";
 test_name[1] =
 "Cholesky, contiguous blocking using BLAS and LAPACK libraries --\n "
 "matrix dimension a multiple of block dimension";
 test_name[2] =
 "Cholesky, contiguous blocking using BLAS and LAPACK libraries --\n "
 "matrix dimension not a multiple of block dimension";

 for (int i = 0; i < SIZES; i++) {
 int n = mat_size[i];
 A = (double *) malloc(n*n*sizeof(double));
 L = (double *) malloc(n*n*sizeof(double));
 create_random_spd(alpha, n, A);
 copy_matrix(n, n, A, L);
 // Perform Cholesky factorization, compare result with outer product solution
 chol_contig_block_blas(n, A);
 chol_outer_product(n, L);
 error_matrix_comp_frob(&eps, &err, n, n, L, A);
 test_assert(eps, tol, test_name[i]);
 free(A);
 free(L);
 }
 #undef SIZES
}
/ * Checks whether the wrapper function properly invokes LAPACK routine DPOTRF,
* which computes the Cholesky factorization of a real symmetric positive
* definite matrix.
*/
void test_chol_lapack(void)
{
 const double tol = 1e-12; // Error tolerance
 const int n = 52; // n-by-n matrix A

 char* test_name = new char[80];
 double* A, *L;
 sprintf(test_name,
 "Cholesky factorization, LAPACK routine DPOTRF, %dx%d matrix", n, n);
 A = (double*) malloc(n*n*sizeof(double));
 L = (double*) malloc(n*n*sizeof(double));
 create_random_spd(alpha, n, A);
 copy_matrix(n, n, A, L);
 chol_lapack(n, A);
 chol OUTER product(n, L);
 error_matrix(frob, &eps, &err, n, L, A);
 test_assert(eps, tol, test_name);
 free(A);
 free(L);
}

/**/

/* Checks whether the outer product method (kji indexing) for symmetric
* indefinite factorization (LDL') is performed correctly on n-by-n matrices.
* The factorization PAP = LDL', where A is an n-by-n symmetric matrix, L is
* unit lower triangular, D is block diagonal with block order 1 or 2 and P is
* the permutation matrix, is tested with Bunch-Kaufman (partial), bounded
* Bunch-Kaufman (rook) and Bunch-Parlett (complete) pivoting. Matrix LD stores
* the correct unit lower triangular and diagonal factors.
*/

void test_ldl_outer_product(void)
{
 const double tol = 1e-12; // Error tolerance

 char* test_name = new char[80];
 int n;
 int* piv, *ord;
 double* eps, *err;
 double AA[16], BB[16], CC[16];
\textbf{double} \quad \mathbf{A}[\cdot] = \{ 1, 5, 7, 8, 5, 4, 12, 3, \\
7, 12, 10, 9, 8, 3, 9, 6 \};

\mathbf{LKA}[\cdot] = \{ 6, 0.5, 1.5, 4.0/3.0, 5, 2.5, 7.5, -34.0/65.0, \\
7, 12, -3.5, 4.0/13.0, 8, 3, 9, -1483.0/195.0 \},

\mathbf{LBA}[\cdot] = \{ 6, 0.5, 1.5, 4.0/3.0, 5, 2.5, 7.5, -34.0/65.0, \\
7, 12, -3.5, 4.0/13.0, 8, 3, 9, -1483.0/195.0 \},

\mathbf{B}[\cdot] = \{ -4, 8, 2, -4, 8, 6, -12, 3, \\
2, -12, 4, 2, -4, 3, 2, 3 \}.

\mathbf{LBB}[\cdot] = \{ 6, -12, -7.0/15.0, -0.3, 8, 4, -0.9, -0.4, \\
2, -12, 23.0/15.0, -12.0/23.0, -4, 3, 2, 197.0/46.0 \},

\mathbf{LPB}[\cdot] = \{ 6, -12, -0.3, -7.0/15.0, 8, 4, -0.4, -0.9, \\
2, -12, 4.7, -8.0/47.0, -4, 3, 2, 197.0/141.0 \},

\mathbf{C}[\cdot] = \{ 4, 6, 1, -4, 6, 8, -12, 8, \\
1, -12, 6, 10, -4, 8, 10, 4 \},

\mathbf{LKC}[\cdot] = \{ 4, 1.5, -1, 0.25, 6, -1, 14, 11.0/14.0, \\
1, -12, 0, -89.0/98.0, -4, 8, 10, 1291.0/49.0 \},

\mathbf{LBC}[\cdot] = \{ 4, 1.5, -1, 0.25, 6, -1, 14, 11.0/14.0, \\
1, -12, 0, -89.0/98.0, -4, 8, 10, 1291.0/49.0 \},

\mathbf{LPC}[\cdot] = \{ 8, -1.5, 1, 0.75, 6, -12, 22, -45.0/109.0, \\
1, -12, -4, 25.0/109.0, -4, 8, 10, 1291.0/218.0 \};

n = 4;

\texttt{printf(test_name, \textquotedblleft LDL\textquotesingle{} factorization, Bunch-Kaufman pivoting, outer product, \%dx\%d matrix\textquoteright{}, n, n)};

\texttt{piv = (int *) malloc(n*\texttt{sizeof}(int));
ord = (int *) malloc(n*\texttt{sizeof}(int));
// Perform LDL\textquotesingle{} factorization with Bunch-Kaufman pivoting,
// and compare result with correct answer
\texttt{copy_matrix(n, n, A, AA);
\texttt{ldlt_outer_product(\texttt{'K'}, n, piv, ord, AA);
\texttt{error_matrix_comp_frob(&eps, &err, n, n, LKA, AA);
test_assert(eps, tol, test_name);
\texttt{free(piv);
\texttt{free(ord);

\texttt{printf(test_name, \textquotedblleft LDL\textquotesingle{} factorization, bounded Bunch-Kaufman pivoting, outer product, \%dx\%d matrix\textquoteright{}, n, n);

\texttt{piv = (int *) malloc(n*\texttt{sizeof}(int));
ord = (int *) malloc(n*\texttt{sizeof}(int));
// Perform LDL\textquotesingle{} factorization with bounded Bunch-Kaufman pivoting,
// and compare result with correct answer
\texttt{copy_matrix(n, n, A, AA);
\texttt{ldlt_outer_product(\texttt{'B'}, n, piv, ord, AA);
\texttt{error_matrix_comp_frob(&eps, &err, n, n, LBA, AA);
test_assert(eps, tol, test_name);
\texttt{free(piv);
\texttt{free(ord);

\texttt{printf(test_name, }
"LDL' factorization, bounded Bunch-Kaufman pivoting, outer product, %dx%d matrix",
 n, n);
 piv = (int *) malloc(n*sizeof(int));
 ord = (int *) malloc(n*sizeof(int));
 // Perform LDL' factorization with bounded Bunch-Kaufman pivoting,
 // and compare result with correct answer
 copy_matrix(n, n, B, BB);
 ldlt_outer_product('B', n, piv, ord, BB);
 error_matrix_comp_frob(&eps, &err, n, n, LBB, BB);
 test_assert(eps, tol, test_name);
 free(piv);
 free(ord);
 n = 4;
 sprintf(test_name,
 "LDL' factorization, Bunch-Parlett pivoting, outer product, %dx%d matrix", n, n);
 piv = (int *) malloc(n*sizeof(int));
 ord = (int *) malloc(n*sizeof(int));
 // Perform LDL' factorization with bounded Bunch-Kaufman pivoting,
 // and compare result with correct answer
 copy_matrix(n, n, B, BB);
 ldlt_outer_product('P', n, piv, ord, BB);
 error_matrix_comp_frob(&eps, &err, n, n, LPB, BB);
 test_assert(eps, tol, test_name);
 free(piv);
 free(ord);
 sprintf(test_name,
 "LDL' factorization, Bunch-Kaufman pivoting, outer product, %dx%d matrix", n, n);
 piv = (int *) malloc(n*sizeof(int));
 ord = (int *) malloc(n*sizeof(int));
 // Perform LDL' factorization with bounded Bunch-Kaufman pivoting,
 // and compare result with correct answer
 copy_matrix(n, n, C, CC);
 ldlt_outer_product('K', n, piv, ord, CC);
 error_matrix_comp_frob(&eps, &err, n, n, LKC, CC);
 test_assert(eps, tol, test_name);
 free(piv);
 free(ord);
 sprintf(test_name,
 "LDL' factorization, bounded Bunch-Kaufman pivoting, outer product, %dx%d matrix", n, n);
 piv = (int *) malloc(n*sizeof(int));
 ord = (int *) malloc(n*sizeof(int));
 // Perform LDL' factorization with bounded Bunch-Kaufman pivoting,
 // and compare result with correct answer
 copy_matrix(n, n, C, CC);
 ldlt_outer_product('B', n, piv, ord, CC);
 error_matrix_comp_frob(&eps, &err, n, n, LBC, CC);
test_assert(eps, tol, test_name);
free(piv);
free(ord);

n = 4;
sprintf(test_name,
"LDL' factorization, Bunch-Parlett pivoting, outer product, %dx%d matrix", n, n);
piv = (int *) malloc(n*sizeof(int));
ord = (int *) malloc(n*sizeof(int));
// Perform LDL' factorization with bounded Bunch-Kaufman pivoting,
// and compare result with correct answer
copy_matrix(n, n, C, CC);
ldlt_outer_product('P', n, piv, ord, CC);
error_matrix_comp_frob(&eps, &err, n, n, LPC, CC);
test_assert(eps, tol, test_name);
free(piv);
free(ord);
}

/*
 * Checks whether an implementation of the SAXPY operation (jki indexing) for
 * symmetric indefinite factorization (LDL') is performed correctly on an n-by-n
 * matrices. Symmetric indefinite factorization is tested with Bunch-Kaufman
 * (partial) and bounded Bunch-Kaufman (rook) pivoting. The results are
 * verified against those produced by the outer product method.
 */
void test_ldlt_saxpy(void)
{
 const int n = 14; // n-by-n matrix A
 const double tol = 1e-12, // Error tolerance
 alpha = 10.0; // Scaling factor for random matrix

 char test_name[80];
 int *piv, *ord;
 double eps, err;
 double *A, *LD;

 // Bunch-Kaufman pivoting
 sprintf(test_name,
"LDL' factorization, Bunch-Kaufman pivoting, SAXPY, %dx%d matrix", n, n);
 A = (double *) malloc(n*n*sizeof(double));
 LD = (double *) malloc(n*n*sizeof(double));
 piv = (int *) malloc(n*sizeof(int));
 ord = (int *) malloc(n*sizeof(int));
 create_random_symmetric(alpha, n, A);
 copy_matrix(n, n, A, LD);
 // Perform LDL' factorization with Bunch-Kaufman pivoting,
 // and compare result with outer product solution
 ldlt_saxpy('K', n, piv, ord, A);
 ldlt_outer_product('K', n, piv, ord, LD);
error_matrix.comp_frob(&eps, &err, n, n, LD, A);
test_assert(eps, tol, test_name);
free(A);
free(LD);
free(piv);
free(ord);

// Bounded Bunch–Kaufman pivoting
sprintf(test_name,
"LDL' factorization, bounded Bunch-Kaufman pivoting, SAXPY, %dx%d matrix", n, n);
A = (double *) malloc(n*n*sizeof(double));
LD = (double *) malloc(n*n*sizeof(double));
piv = (int *) malloc(n*sizeof(int));
ord = (int *) malloc(n*sizeof(int));
create_random_symmetric(alpha, n, A);
copy_matrix(n, n, A, LD);
// Perform LDL' factorization with bounded Bunch–Kaufman pivoting ,
// and compare result with outer product solution
ldlt_saxpy("B", n, piv, ord, A);
ldlt_outer_product("B", n, piv, ord, LD);
error_matrix.comp_frob(&eps, &err, n, n, LD, A);
test_assert(eps, tol, test_name);
free(A);
free(LD);
free(piv);
free(ord);

/*
* Checks whether simple blocking for symmetric indefinite factorization is
* performed correctly on n-by-n matrices. Symmetric indefinite factorization
* is tested with Bunch–Kaufman (partial), bounded Bunch–Kaufman (rook) and
* Bunch–Parlett (complete) pivoting. The results are verified against those
* produced by the outer product method.
*/
void test_ldlt_block(void)
{
 const int mat_size[] = { 14, 64, 114 };
 #define SIZES (sizeof(mat_size) / sizeof(int))
 const double tol = 1e-12; // Error tolerance
 alpha = 10.0; // Scaling factor for random matrix

cchar *test_name[SIZES];
int *piv, *ord;
double eps, err;
double *A, *LD;

// Bunch–Kaufman pivoting
test_name[0] = "LDL' factorization, Bunch-Kaufman pivoting, simple blocking --\n"matrix dimension less than block dimension\n";
test_name[1] = "LDL' factorization, Bunch-Kaufman pivoting, simple blocking --\n" "matrix dimension a multiple of block dimension";

for (int i = 0; i < SIZES; i++) {
 const int n = mat_size[i];
 A = (double *) malloc(n*n*sizeof(double));
 LD = (double *) malloc(n*n*sizeof(double));
 piv = (int *) malloc(n*sizeof(int));
 ord = (int *) malloc(n*sizeof(int));
 create_random_symmetric(alpha , n , A);
 copy_matrix(n , n , A, LD) ;
 // Perform LDL' factorization and compare result with outer product solution
 ldlt_block('K' , n , piv , ord , A);
 ldlt_outer_product('K' , n , piv , ord , LD);
 error_matrix_comp_frob(&eps , &err , n , n , LD , A);
 test_assert(eps , tol , test_name[i]);
 free(A);
 free(LD);
 free(piv);
 free(ord);
}

// Bounded Bunch-Kaufman pivoting

for (int i = 0; i < SIZES; i++) {
 const int n = mat_size[i];
 A = (double *) malloc(n*n*sizeof(double));
 LD = (double *) malloc(n*n*sizeof(double));
 piv = (int *) malloc(n*sizeof(int));
 ord = (int *) malloc(n*sizeof(int));
 create_random_symmetric(alpha , n , A);
 copy_matrix(n , n , A, LD) ;
 // Perform LDL' factorization, compare result with outer product solution
 ldlt_block('B' , n , piv , ord , A);
 ldlt_outer_product('B' , n , piv , ord , LD);
 error_matrix_comp_frob(&eps , &err , n , n , LD , A);
 test_assert(eps , tol , test_name[i]);
 free(A);
 free(LD);
 free(piv);
 free(ord);
PERFORMANCE OPTIMIZATION OF SYMMETRIC FACTORIZATION ALGORITHMS

// Bunch-Parlett pivoting
test_name[0] = "LDL' factorization, Bunch-Parlett pivoting, simple blocking --\n" "matrix dimension less than block dimension";
test_name[1] = "LDL' factorization, Bunch-Parlett pivoting, simple blocking --\n" "matrix dimension a multiple of block dimension";
test_name[2] = "LDL' factorization, Bunch-Parlett pivoting, simple blocking --\n" "matrix dimension not a multiple of block dimension";
for (int i = 0; i < SIZES; i++) {
 const int n = mat_size[i];
 A = (double *) malloc(n*n*sizeof(double));
 LD = (double *) malloc(n*n*sizeof(double));
 piv = (int *) malloc(n*sizeof(int));
 ord = (int *) malloc(n*sizeof(int));
 create_random_symmetric(alpha, n, A);
 copy_matrix(n, n, A, LD) ;
 // Perform LDL' factorization, compare result with outer product solution
 ldlt_block('P', n, piv, ord, A);
 ldlt Outer_product('P', n, piv, ord, LD);
 error_matrix_comp_frob(&eps, &err, n, n, LD, A);
 test_assert(eps, tol, test_name[i]);
 free(A);
 free(LD);
 free(piv);
 free(ord);
}
#endif

*/ Checks whether an implementation of simple blocking using the BLAS library
for symmetric indefinite factorization is performed correctly on n-by-n
matrices. Symmetric indefinite factorization is tested with Bunch-Kaufman
(partial) and bounded Bunch-Kaufman (rook) pivoting. The results are
verified against those produced by the outer product method.
*/
void test_ldlt_block_blas(void)
{
 const int mat_size[] = { 27, 96, 133 };
 #define SIZES (sizeof(mat_size) / sizeof(int))
 const double tol = 1e-12, // Error tolerance
 alpha = 10.0; // Scaling factor for random matrix
 char *test_name[SIZES];
 int *piv, *ord;
 double eps, err;
 double *A, *LD;

 // Bunch-Kaufman pivoting
test_name[0] = "LDL' factorization, Bunch-Kaufman pivoting, BLAS routines --
" matrix dimension less than block dimension";
test_name[1] = "LDL' factorization, Bunch-Kaufman pivoting, BLAS routines --
" matrix dimension a multiple of block dimension";
test_name[2] = "LDL' factorization, Bunch-Kaufman pivoting, BLAS routines --
" matrix dimension not a multiple of block dimension";
for (int i = 0; i < SIZES; i++) {
 const int n = mat_size[i];
 A = (double *) malloc(n*n*sizeof(double));
 LD = (double *) malloc(n*n*sizeof(double));
 piv = (int *) malloc(n*sizeof(int));
 ord = (int *) malloc(n*sizeof(int));
 create_random_symmetric(alpha, n, A);
 copy_matrix(n, n, A, LD);
 // Perform LDL' factorization, compare result with outer product solution
 ldlt_block_blas('K', n, piv, ord, A);
 ldlt_outer_product('K', n, piv, ord, LD);
 error_matrix_comp_frob(&eps, &err, n, n, LD, A);
 test_assert(eps, tol, test_name[i]);
 free(A);
 free(LD);
 free(piv);
 free(ord);
}

// Bounded Bunch-Kaufman pivoting
test_name[0] = "LDL' factorization, bounded Bunch-Kaufman pivoting, BLAS routines --
" matrix dimension less than block dimension";
test_name[1] = "LDL' factorization, bounded Bunch-Kaufman pivoting, BLAS routines --
" matrix dimension a multiple of block dimension";
test_name[2] = "LDL' factorization, bounded Bunch-Kaufman pivoting, BLAS routines --
" matrix dimension not a multiple of block dimension";
for (int i = 0; i < SIZES; i++) {
 const int n = mat_size[i];
 A = (double *) malloc(n*n*sizeof(double));
 LD = (double *) malloc(n*n*sizeof(double));
 piv = (int *) malloc(n*sizeof(int));
 ord = (int *) malloc(n*sizeof(int));
 create_random_symmetric(alpha, n, A);
 copy_matrix(n, n, A, LD);
 // Perform LDL' factorization, compare result with outer product solution
 ldlt_block_blas('B', n, piv, ord, A);
 ldlt_outer_product('B', n, piv, ord, LD);
 error_matrix_comp_frob(&eps, &err, n, n, LD, A);
 test_assert(eps, tol, test_name[i]);
 free(A);
 free(LD);
#undef SIZES
}

/* Checks whether the wrapper function properly invokes LAPACK routine DSYTRF, which computes the factorization of a real symmetric indefinite matrix. */
void test_ldlt_lapack(void)
{
 const double tol = 1e−12, // Error tolerance
 alpha = 10.0; // Scaling factor for random matrix
 const int n = 18; // n-by-n matrix A
 double eps, err, normA, normLD;
 char test_name[80];
 int *piv, *ord;
 double *A, *LD;

 sprintf(test_name,
 "LDL' factorization, Bunch-Kaufman pivoting, LAPACK routine DSYTRF, %dx%d matrix",
 n, n);
 A = (double *) malloc(n*n*sizeof(double));
 LD = (double *) malloc(n*n*sizeof(double));
 piv = (int *) malloc(n*sizeof(int));
 ord = (int *) malloc(n*sizeof(int));
 create_random_symmetric(alpha, n, A);
 copy_matrix(n, n, A, LD);
 // Perform LDL' factorization with LAPACK routine DSYTRF,
 // and compare result with outer product solution
 ldlt_lapack('K', n, piv, ord, A);
 ldlt_outer_product('K', n, piv, ord, LD);

 // The factorization produced by LAPACK routine DSYTRF takes the form
 // A = (P*L)*D*(P*L)', whereas the factorization produced by
 // ldlt_outer_product() takes the form P*A*P' = L*D*L'. Therefore, verify
 // that DSYTRF is called correctly by comparing the norms of factors
 // (matrices) computed by DSYTRF and ldlt_outer_product().
 normA = 0.0;
 normLD = 0.0;
 for (int j = 0; j < n; j++) {
 for (int i = 0; i < n; i++) {
 double aij = fabs(*(A + i + j*n));
 double lij = fabs(*(LD + i + j*n));
 normA += aij;
 normLD += lij;
 }
 }
}
err = abs(normA - normLD);
eps = err / normA;
test_assert(eps, tol, test_name);
free(A);
free(LD);
free(piv);
free(ord);

/*******************

/* Checks whether the outer product method (kji indexing) for the modified
* Cholesky algorithm proposed by Gill, Murray & Wright is performed correctly
* on an n-by-n symmetric matrix. Matrix A represents an n-by-n symmetric
* linear system and matrix LD stores the correct unit lower triangular and
* modified diagonal factors.
*/
void test_chol_gmw_outer_product(void)
{
 const double tol = 1e-12; // Error tolerance
 char test_name[80];
 int n;
 int *piv, *ord;
 double eps, err;
 double A[] = {-4, 3, 8, 2, 8, 5, 6, 1,
 2, 6, -9, 12, 3, 1, 5, 8},
 LDA[] = {16, 0.5, 0.75, 0.375, 8, 8, -0.5, 0,
 2, 6, 3, -7.0/6.0, 3, 1, 5, 4.0/3.0};

 n = 4;
 sprintf(test_name, "Modified Cholesky, Gill-Murray-Wright, outer product, %dx%d matrix", n, n);
 piv = (int*) malloc(n*sizeof(int));
 ord = (int*) malloc(n*sizeof(int));
 // Perform modified Cholesky factorization, compare result with correct answer
 chol_gmw_outer_product("D", n, piv, ord, A);
 error_matrixComp_frob(&eps, &err, n, n, LDA, A);
 test_assert(eps, tol, test_name);
 free(piv);
 free(ord);
}

/* Checks whether an implementation of the SAXPY operation (jki indexing) for
* the modified Cholesky algorithm proposed by Gill, Murray & Wright is
* performed correctly on an n-by-n symmetric matrix. The result is verified
* against that produced by the outer product method.
*/
void test_chol_gmw_saxpy (void)
{
 const int n = 22; // n-by-n matrix A
 const double tol = 1e-12, // Error tolerance
 alpha = 10.0; // Scaling factor for random matrix

 char test_name[80];
 int *piv, *ord;
 double eps, err;
 double *A, *LD;

 sprintf(test_name,
 "Modified Cholesky, Gill-Murray-Wright, SAXPY, %dx%d matrix", n, n);
 A = (double *) malloc(n*n*sizeof(double));
 LD = (double *) malloc(n*n*sizeof(double));
 piv = (int *) malloc(n*sizeof(int));
 ord = (int *) malloc(n*sizeof(int));
 create_random_symmetric(alpha, n, A);
 copy_matrix(n, n, A, LD);
 // Perform modified Cholesky factorization,
 // and compare result with outer product solution
 chol_gmw_saxpy('D', n, piv, ord, A);
 chol_gmw_outer_product('D', n, piv, ord, LD);
 error_matrix_comp_frob(&eps, &err, n, n, LD, A);
 test_assert(eps, tol, test_name);
 free(A);
 free(LD);
 free(piv);
 free(ord);
}

/*
 * Checks whether simple blocking for the modified Cholesky algorithm proposed
 * by Gill, Murray & Wright is performed correctly on n-by-n symmetric matrices.
 * The results are verified against those produced by the outer product method.
 */
void test_chol_gmw_block(void)
{
 const int mat_size[] = { 25, 96, 107 };
 #define SIZES (sizeof(mat_size) / sizeof(int))
 const double tol = 1e-12, // Error tolerance
 alpha = 10.0; // Scaling factor for random matrix

 char *test_name[SIZES];
 int *piv, *ord;
 double eps, err;
 double *A, *LD;

 test_name[0] = "Modified Cholesky, Gill-Murray-Wright, simple blocking --\n" "matrix dimension less than block dimension";

test_name[1] = "Modified Cholesky, Gill-Murray-Wright, simple blocking --\n" "matrix dimension a multiple of block dimension";
test_name[2] = "Modified Cholesky, Gill-Murray-Wright, simple blocking --\n" "matrix dimension not a multiple of block dimension ";
for (int i = 0; i < SIZES; i++) {
 const int n = mat_size[i];
 A = (double *) malloc(n*n*sizeof(double));
 LD = (double *) malloc(n*n*sizeof(double));
 piv = (int *) malloc(n*sizeof(int));
 ord = (int *) malloc(n*sizeof(int));
 create_random_symmetric(alpha, n, A);
 copy_matrix(n, n, A, LD);
 // Perform modified Cholesky factorization ,
 // and compare result with outer product solution
 chol_gmw_block('D', n, piv, ord, A);
 chol_gmw_outer_product('D', n, piv, ord, LD);
 error_matrix_comp_frob(&eps, &err, n, n, LD, A);
 test_assert(eps, tol, test_name[i]);
 free(A);
 free(LD);
 free(piv);
 free(ord);
}
#undef SIZES

/*
 * Checks whether an implementation of simple blocking using the BLAS library
 * for the modified Cholesky algorithm proposed by Gill, Murray & Wright is
 * performed correctly on n-by-n symmetric matrices. The results are verified
 * against those produced by the outer product method.
 */
void test_chol_gmw_block_blas(void)
{
 const int mat_size[] = { 25, 96, 107 };
 #define SIZES (sizeof(mat_size) / sizeof(int))
 const double tol = 1e-12, // Error tolerance
 alpha = 10.0; // Scaling factor for random matrix

 char *test_name[SIZES];
 int *piv, *ord;
 double eps, err;
 double *A, *LD;

 test_name[0] = "Modified Cholesky, Gill-Murray-Wright, BLAS routines --\n" "matrix dimension less than block dimension";
 test_name[1] = "Modified Cholesky, Gill-Murray-Wright, BLAS routines --\n" "matrix dimension a multiple of block dimension";
 test_name[2] = "Modified Cholesky, Gill-Murray-Wright, BLAS routines --\n" "matrix dimension not a multiple of block dimension";
for (int i = 0; i < SIZES; i++) {
 const int n = mat_size[i];
 A = (double *) malloc(n*n*sizeof(double));
 LD = (double *) malloc(n*n*sizeof(double));
 piv = (int *) malloc(n*sizeof(int));
 ord = (int *) malloc(n*sizeof(int));
 create_random_symmetric(alpha, n, A);
 copy_matrix(n, n, A, LD);
 // Perform modified Cholesky factorization,
 // and compare result with outer product solution
 chol_gmw_block_blas('D', n, piv, ord, A);
 chol_gmw_outer_product('D', n, piv, ord, LD);
 error_matrix_comp_frob(&eps, &err, n, n, LD, A);
 test_assert(eps, tol, test_name[i]);
 free(A);
 free(LD);
 free(piv);
 free(ord);
}
#endif SIZES

/* Checks whether the outer product method (kji indexing) for the modified * Cholesky algorithm proposed by Cheng & Higham is performed correctly on an * n-by-n symmetric matrix. Matrix A represents an n-by-n symmetric linear * system and matrix LD stores the correct unit lower triangular and modified * diagonal factors. */

void test_chol_ch_outter_product(void)
{
 const double tol = 1e-06; // Error tolerance
 char test_name[80]; // ERROR tolerance
 int n;
 int *piv, *ord;
 double eps, err;
 double a, b, c, delta;
 double A[] = { 1, 5, 7, 8, 5, 4, 12, 3,
 7, 12, 10, 9, 8, 3, 9, 6 },
 LDA[] = { 6, 0.5, 1.5, 4.0/3.0, 5, 2.5, 7.5, -34.0/65.0,
 7, 12, -3.5, 4.0/13.0, 8, 3, 9, -1483.0/195.0 };

 n = 4;
 sprintf(test_name, "%Modified Cholesky, Cheng-Higham, outer product, %dx%d matrix", n, n);
 piv = (int *) malloc(n*sizeof(int));
 ord = (int *) malloc(n*sizeof(int));
 // Matrix LDA has been initialized with results from symmetric indefinite
 // factorization, P*A*P = L*D*L'. Update diagonal block D so that (A + dA)
// is positive definite i.e., \(P(A+dA)P = L^*D^*L \).
delta = 38.0 * sqrt(0.5*DBL_EPSILON);
c = sqrt(29.0);
a = 58.0 + 4.0 * c;
b = 58.0 - 4.0 * c;
LDA[5] = 12.5 * (3.0*c - 1.0) / b + 25.0 * delta / a;
LDA[6] = 2.5 * (89.0 - 7.0*c) / b + 5.0 * delta * (2.0 + c) / a;
LDA[10] = 0.5 * (103.0*c - 381.0) / b + delta * (33.0 + 4.0*c) / a;
LDA[15] = delta;

// Perform modified Cholesky factorization, compare result with correct answer
chol_ch_factor('K', n, piv, ord, A);
error_matrix_comp_frob(&eps, &err, n, n, LDA, A);
test_assert(eps, tol, test_name);
free(piv);
free(ord);

/*/ Checks whether an implementation of the SAXPY operation (jki indexing) for */
* the modified Cholesky algorithm proposed by Cheng & Higham is performed */
* correctly on an n-by-n symmetric matrix. The result is verified against that */
* produced by the outer product method. */

void test_chol_ch_saxpy(void)
{
 const int n = 20; // n-by-n matrix A
 const double tol = 1e-12, // Error tolerance
 alpha = 10.0; // Scaling factor for random matrix
 int *piv, *ord;
 char test_name[80];
 double eps, err;
 double *A, *LD;

 sprintf(test_name,
 "Modified Cholesky, Cheng-Higham, SAXPY, %dx%d matrix", n, n);
 A = (double *) malloc(n*n*sizeof(double));
 LD = (double *) malloc(n*n*sizeof(double));
 piv = (int *) malloc(n*sizeof(int));
 ord = (int *) malloc(n*sizeof(int));
 create_random_symmetric(alpha, n, A);
 copy_matrix(n, n, A, LD);
 // Perform modified Cholesky factorization,
 // and compare result with outer product solution
 chol_ch_saxpy('K', n, piv, ord, A);
 chol_ch_factor('K', n, piv, ord, LD);
 error_matrix_comp_frob(&eps, &err, n, n, LD, A);
 test_assert(eps, tol, test_name);
 free(A);
 free(LD);
PERFORMANCE OPTIMIZATION OF SYMMETRIC FACTORIZATION ALGORITHMS

free(piv);
free(ord);

/*
* Checks whether simple blocking for the modified Cholesky algorithm proposed
* by Cheng & Higham is performed correctly on n-by-n symmetric matrices. The
* results are verified against those produced by the outer product method.
*/
void test_chol_ch_block(void)
{
 const int mat_size[] = { 14, 64, 87 };
#define SIZES(sizeof(mat_size) / sizeof(int))
const double tol = 1e-12; // Error tolerance
 alpha = 10.0; // Scaling factor for random matrix

 char *test_name[SIZES];
 int *piv, *ord;
 double eps, err;
 double *A, *LD;

 // Bunch Kaufman pivoting
 test_name[0] = "Modified Cholesky, Cheng-Higham, simple blocking --\n" "matrix dimension less than block dimension";
 test_name[1] = "Modified Cholesky, Cheng-Higham, simple blocking --\n" "matrix dimension a multiple of block dimension";
 test_name[2] = "Modified Cholesky, Cheng-Higham, simple blocking --\n" "matrix dimension not a multiple of block dimension";

 for (int i = 0; i < SIZES; i++) {
 const int n = mat_size[i];
 A = (double *) malloc(n*n*sizeof(double));
 LD = (double *) malloc(n*n*sizeof(double));
 piv = (int *) malloc(n*sizeof(int));
 ord = (int *) malloc(n*sizeof(int));
 create_random_symmetric(alpha, n, A);
 copy_matrix(n, n, LD, A);
 // Perform modified Cholesky factorization,
 // and compare result with outer product solution
 chol_ch_block('K', n, piv, ord, A);
 chol_ch_outer_product('K', n, piv, ord, LD);
 error_matrix_comp_frob(&eps, &err, n, n, LD, A);
 test_assert(eps, tol, test_name[i]);
 free(A);
 free(LD);
 free(piv);
 free(ord);
 }
#undef SIZES
}
Checks whether an implementation of simple blocking using the BLAS library for the modified Cholesky algorithm proposed by Cheng & Higham is performed correctly on n-by-n symmetric matrices. The results are verified against those produced by the outer product method.

```c
void test_chol_ch_block_blas( void )
{
    const int mat_size[] = { 14, 64, 87 };  // Matrices sizes
    #define SIZES(sizeof(mat_size) / sizeof(int))
    const double tol = 1e-12, // Error tolerance
                   alpha = 10.0;  // Scaling factor for random matrix
    char *test_name[SIZES];
    int *piv, *ord;
    double eps, err;
    double *A, *LD;

    // Bunch Kaufman pivoting
    test_name[0] = "Modified Cholesky, Cheng-Higham, BLAS routines --\n    " matrix dimension less than block dimension";
    test_name[1] = "Modified Cholesky, Cheng-Higham, BLAS routines --\n    " matrix dimension a multiple of block dimension";
    test_name[2] = "Modified Cholesky, Cheng-Higham, BLAS routines --\n    " matrix dimension not a multiple of block dimension";
    for ( int i = 0; i < SIZES; i++ ) {
        const int n = mat_size[i];
        A = (double *) malloc( n*n*sizeof(double) );
        LD = (double *) malloc( n*n*sizeof(double) );
        piv = (int *) malloc( n*sizeof(int) );
        ord = (int *) malloc( n*sizeof(int) );
        create_random_symmetric( alpha, n, A );
        copy_matrix( n, n, A, LD );
        // Perform modified Cholesky factorization,
        // and compare result with outer product solution
        chol_ch_block_blas( 'K', n, piv, ord, A );
        chol_ch_outer_product( 'K', n, piv, ord, LD );
        error_matrix_comp_frob( &eps, &err, n, n, LD, A );
        test_assert( eps, tol, test_name[i] );
        free( A );
        free( LD );
        free( piv );
        free( ord );
    }
    #undef SIZES
}
```
A.13. mmultest.c – testing harness for matrix multiplication.

/*
 * Testing harness for unblocked and blocked algorithms implementing matrix
 * multiplication (and addition), $C = C + A\times B$, on square matrices. The number
 * of tests and error count are accumulated through a single execution of the
 * mmultest program, and all test results are written to an output file
 * destination (terminal).
 */

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "matmult.h"
#include "matcom.h"

static void test_assert(double eps, double tol, const char *test_name);
static void test_mmult_dot_product(void);
static void test_mmult_saxpy(void);
static void test_mmult_unroll(void);
static void test_mmult pipeline(void);
static void test_mmult_block(void);
static void test_mmult_contig_block(void);
static void test_mmult_recurs_block(void);
static void test_mmult_rect_recurs_block(void);
static void test_mmult_blas(void);

static int tests = 0, // Test count
 errs = 0; // Error count
static FILE *fp;

int main()
{
 fp = stdout;

 test_mmult_dot_product();
 test_mmult_saxpy();
 test_mmult_unroll();
 test_mmult_pipeline();
 test_mmult_block();
 test_mmult_contig_block();
 test_mmult_recurs_block();
 test_mmult_rect_recurs_block();
 test_mmult_blas();

 if (errs == 0) {
 fprintf(fp, "Passed all %d tests.\n", tests);
 } else {
 fprintf(fp, "Total of %d error(s) encountered in %d tests.\n",

}
/*
* Checks whether the dot (inner) product method with ijk indexing performs
* matrix multiplication (and addition), \(C = C + A \times B \), correctly. Verification
* is done on pre-specified \(n \times n \) matrices with leading dimension \(n \) stored in
* column-major order.
*/
void test_mmult_dot_product(void)
{
 const int n = 4; // n-by-n matrix
 const double tol = 1e-12; // Error tolerance
 char test_name[80];
 double eps, err;
 double A[] = { 4.2, 9.2, 7.9, 9.6, 6.6, 0.4, 8.5, 9.3,
 6.8, 7.6, 7.4, 3.9, 6.6, 1.7, 7.1, 0.3 },
 B[] = { 2.8, 0.5, 1.0, 8.2, 6.9, 3.2, 9.5, 0.3,
 4.4, 3.8, 7.7, 8.0, 1.9, 4.9, 4.5, 6.5 },
 C[] = { 8.9, 9.6, 5.5, 1.4, 1.5, 2.6, 8.4, 2.5,
 8.1, 2.4, 9.3, 3.5, 2.0, 2.5, 6.2, 4.7 },
 C_ans[] = { 84.88, 57.10, 97.49, 39.29,
 118.18, 140.07, 162.54, 135.64,
 156.82, 116.52, 190.14, 113.51,
 115.82, 67.19, 142.31, 88.01 };

 sprintf(test_name,
 "Matrix multiplication, dot product (ijk indexing), %dx%d matrix", n, n);
 // Perform matrix multiplication and compare result with correct answer
 mmult_dot_product(n, A, B, C);
error_matrix.comp.frob(&eps, &err, n, n, C_ans, C);
test_assert(eps, tol, test_name);
}

/*
* Verifies that the SAXPY operation with jki indexing performs matrix
* multiplication (and addition), C = C + A*B, correctly. The result from the
* SAXPY operation is compared with that produced by the dot product method.
*/
void test_mmult_saxpy(void)
{
 const int n = 72; // n-by-n matrix
 const double tol = 1e-12; // Error tolerance
 alpha = 10.0; // Scaling factor for random matrix

 char test_name[80];
 double eps, err;

 sprintf(test_name,
 "Matrix multiplication, SAXPY (kji indexing), %dx%d matrix", n, n);
 A = (double *) malloc(n*n*sizeof(double));
 B = (double *) malloc(n*n*sizeof(double));
 C = (double *) malloc(n*n*sizeof(double));
 C_ans = (double *) malloc(n*n*sizeof(double));
 create_random_matrix(alpha, n, n, A);
 create_random_matrix(alpha, n, n, B);
 create_random_matrix(alpha, n, n, C);
 copy_matrix(n, n, C, C_ans);

 // Compute C_ans = C + A*B using the dot product method
 mmult_dot_product(n, A, B, C_ans);
 // Compute C = C + A*B using the SAXPY operation, compare with C_ans
 mmult_saxpy(n, A, B, C);
 error_matrix.comp.frob(&eps, &err, n, n, C_ans, C);
test_assert(eps, tol, test_name);
 free(A);
 free(B);
 free(C);
 free(C_ans);
}

/*
* Verifies that the dot product method with loop unrolling performs matrix
* multiplication (and addition), C = C + A*B, correctly. The results from the
* optimized algorithm with loop unrolling are compared with those produced by
* the basic dot product method.
*/
void test_mmult_unroll(void)
{
const int mat_size[] = { 6, 48, 66 };
#define SIZES (sizeof(mat_size) / sizeof(int))
const double tol = 1e-12; // Error tolerance
alpha = 10.0; // Scaling factor for random matrix

char *ptr, *test_name[SIZES];
double eps, err;

// Define test names
ptr = "Matrix multiplication, dot product with loop unrolling --\n matrix dimension less than UNROLL_DEPTH";
test_name[0] = ptr;
ptr = "Matrix multiplication, dot product with loop unrolling --\n matrix dimension a multiple of UNROLL_DEPTH";
test_name[1] = ptr;
ptr = "Matrix multiplication, dot product with loop unrolling --\n matrix dimension not a multiple of UNROLL_DEPTH";
test_name[2] = ptr;

for (int i = 0; i < SIZES; i++) {
 const int n = mat_size[i];
 A = (double *) malloc(n*n*sizeof(double));
 B = (double *) malloc(n*n*sizeof(double));
 C = (double *) malloc(n*n*sizeof(double));
 C_ans = (double *) malloc(n*n*sizeof(double));
 create_random_matrix(alpha, n, n, A);
 create_random_matrix(alpha, n, n, B);
 create_random_matrix(alpha, n, n, C);
 copy_matrix(n, n, C, C_ans);

 // Compute C_ans = C + A*B using the dot product method
 mmult_dot_product(n, A, B, C_ans);
 // Compute C = C + A*B using loop unrolling, compare with C_ans
 mmult_unroll(n, A, B, C);
 error_matrix_comp_frob(&eps, &err, n, n, C_ans, C);
 test_assert(eps, tol, test_name[i]);
 free(A);
 free(B);
 free(C);
 free(C_ans);
}

#undef SIZES

/*
 * Verifies that the SAXPY method with software pipelining performs matrix
 * multiplication (and addition), C = C + A*B, correctly. The results from the
 * optimized algorithm with software pipelining are compared with those
 * produced by the basic dot product method.
 */
void test_mmult_pipeline(void)
{
 const int mat_size[] = { 3, 64, 77 };
 #define SIZES(sizeof(mat_size) / sizeof(int))
 const double tol = 1e-12; // Error tolerance
 alpha = 10.0; // Scaling factor for random matrix

 char *ptr, *test_name[SIZES];
 double eps, err;

 // Define test names
 ptr = "Matrix multiplication, SAXPY with software pipelining --\n "matrix dimension less than PIPE_DEPTH";
 test_name[0] = ptr;
 ptr = "Matrix multiplication, SAXPY with software pipelining --\n "matrix dimension a multiple of PIPE_DEPTH";
 test_name[1] = ptr;
 ptr = "Matrix multiplication, SAXPY with software pipelining --\n "matrix dimension not a multiple of PIPE_DEPTH";
 test_name[2] = ptr;

 for (int i = 0; i < SIZES; i++)
 {
 const int n = mat_size[i];
 A = (double *) malloc(n*n*sizeof(double));
 B = (double *) malloc(n*n*sizeof(double));
 C = (double *) malloc(n*n*sizeof(double));
 C_ans = (double *) malloc(n*n*sizeof(double));
 create_random_matrix(alpha, n, n, A);
 create_random_matrix(alpha, n, n, B);
 create_random_matrix(alpha, n, n, C);
 copy_matrix(n, n, C, C_ans);

 // Compute C_ans = C + A*B using the dot product method
 mmult_dot_product(n, A, B, C_ans);
 // Compute C = C + A*B using software pipelining, compare with C_ans
 mmult_pipeline(n, A, B, C);
 error_matrix_comp_frob(&eps, &err, n, n, C_ans, C);
 test_assert(eps, tol, test_name[i]);
 free(A);
 free(B);
 free(C);
 free(C_ans);
 }
 #undef SIZES
}

/*
Verifies that the simple blocking algorithm performs matrix multiplication (and addition), \(C = C + A\times B \), correctly. The results from the blocked algorithm are compared with those produced by the dot product method.

```c
void test_mmult_block( void )
{
    #define SIZES ( sizeof(mat_size) / sizeof(int) )

    const int mat_size[] = { 21, 96, 111 };
    const double tol = 1e-12;  // Error tolerance
    alpha = 10.0;  // Scaling factor for random matrix

    char *ptr, *test_name[SIZES];
    double eps, err;

    // Define test names
    ptr = "Matrix multiplication, simple blocking -- \n    matrix dimension less than block dimension";
    test_name[0] = ptr;
    ptr = "Matrix multiplication, simple blocking -- \n    matrix dimension a multiple of block dimension";
    test_name[1] = ptr;
    ptr = "Matrix multiplication, simple blocking -- \n    matrix dimension not a multiple of block dimension";
    test_name[2] = ptr;

    for ( int i = 0; i < SIZES; i++ ) {
        const int n = mat_size[i];
        A = (double *) malloc( n*n*sizeof(double) );
        B = (double *) malloc( n*n*sizeof(double) );
        C = (double *) malloc( n*n*sizeof(double) );
        C_ans = (double *) malloc( n*n*sizeof(double) );
        create_random_matrix( alpha, n, n, A );
        create_random_matrix( alpha, n, n, B );
        create_random_matrix( alpha, n, n, C );
        copy_matrix( n, n, C, C_ans );

        // Compute \( C_{\text{ans}} = C + A\times B \) using the dot product method
        mmult_dot_product( n, A, B, C_ans );
        // Compute \( C = C + A\times B \) using the blocked algorithm, compare with \( C_{\text{ans}} \)
        mmult_block( n, A, B, C );
        error_matrix_comp_frob( &eps, &err, n, n, C_ans, C );
        test_assert( eps, tol, test_name[i] );
        free( A );
        free( B );
        free( C );
        free( C_ans );
    }
    #undef SIZES
}
```
/*
* Verifies that the contiguous blocking algorithm performs matrix
* multiplication (and addition), \(C = C + A \times B \), correctly. The results from the
* blocked algorithm are compared with those produced by the dot product method.
*/

void test_mmult_contig_block(void)
{
 const int mat_size[] = { 13, 96, 122 };
#define SIZES (sizeof(mat_size) / sizeof(int))

 const double tol = 1e-12; // Error tolerance
 alpha = 10.0; // Scaling factor for random matrix

 char *ptr, *test_name[SIZES];
 double eps, err;

 // Define test names
 ptr = "Matrix multiplication, contiguous block storage --\n" "matrix dimension less than block dimension";
 test_name[0] = ptr;
 ptr = "Matrix multiplication, contiguous block storage --\n" "matrix dimension a multiple of block dimension";
 test_name[1] = ptr;
 ptr = "Matrix multiplication, contiguous block storage --\n" "matrix dimension not a multiple of block dimension";
 test_name[2] = ptr;

 for (int i = 0; i < SIZES; i++) {
 const int n = mat_size[i];
 A = (double *) malloc(n*n*sizeof(double));
 B = (double *) malloc(n*n*sizeof(double));
 C = (double *) malloc(n*n*sizeof(double));
 C_ans = (double *) malloc(n*n*sizeof(double));
 create_random_matrix(alpha, n, n, A);
 create_random_matrix(alpha, n, n, B);
 create_random_matrix(alpha, n, n, C);
 copy_matrix(n, n, C, C_ans);

 // Compute \(C_{\text{ans}} = C + A \times B \) using the dot product method
 mmult_dot_product(n, A, B, C_ans);
 // Compute \(C = C + A \times B \) using the blocked algorithm, compare with \(C_{\text{ans}} \)
 mmult_contig_block(n, A, B, C);
 error_matrix_comp_frob(&eps, &err, n, n, C_ans, C);
 test_assert(eps, tol, test_name[i]);
 free(A);
 free(B);
 free(C);
 free(C_ans);
 }
}
#undef SIZES
}

/*
 * Verifies that the recursive contiguous blocking algorithm performs matrix
 * multiplication (and addition), \(C = C + A \cdot B \), correctly. The matrix
 * multiplication kernel uses a symbolic constant to control looping. The
 * results from the blocked algorithm are compared with those produced by the
 * dot product method.
 */

void test_mmull_recur_block(void)
{
 const int mat_size[] = { 13, 96, 122 };
 #define SIZES (sizeof(mat_size) / sizeof(int))
 const double tol = 1e-12, // Error tolerance
 alpha = 10.0; // Scaling factor for random matrix

 char *ptr, *test_name[SIZES];
 double eps, err;

 // Define test names
 ptr = "Matrix multiplication, recursive contiguous blocking --
 "matrix dimension less than block dimension";
 test_name[0] = ptr;
 ptr = "Matrix multiplication, recursive contiguous blocking --
 "matrix dimension a multiple of block dimension";
 test_name[1] = ptr;
 ptr = "Matrix multiplication, recursive contiguous blocking --
 "matrix dimension not a multiple of block dimension";
 test_name[2] = ptr;

 for (int i = 0; i < SIZES; i++) {
 const int n = mat_size[i];
 A = (double *) malloc(n*n*sizeof(double));
 B = (double *) malloc(n*n*sizeof(double));
 C = (double *) malloc(n*n*sizeof(double));
 C_ans = (double *) malloc(n*n*sizeof(double));
 create_random_matrix(alpha, n, n, A);
 create_random_matrix(alpha, n, n, B);
 create_random_matrix(alpha, n, n, C);
 copy_matrix(n, n, C, C_ans);

 // Compute \(C_{\text{ans}} = C + A \cdot B \) using the basic dot product algorithm
 mmull_dot_product(n, A, B, C_ans);
 // Compute \(C = C + A \cdot B \) using the optimized algorithm, compare with \(C_{\text{ans}}
 mmull_recur_block(n, A, B, C);
 error_matrix_comp_frob(&eps, &err, n, n, C_ans, C);
 test_assert(eps, tol, test_name[i]);
 }
}
Verifies that the recursive contiguous blocking algorithm performs matrix multiplication (and addition), $C = C + AB$, correctly. The matrix multiplication kernel uses variables to control looping. The results from the blocked algorithm are compared with those produced by the dot product method.

```c
void test_mmult_rect_recur_block( void ) {
    const int mat_size[] = { 25, 128, 141 };#
define SIZES (sizeof(mat_size) / sizeof(int))
    const double tol = 1e-12, // Error tolerance
        alpha = 10.0; // Scaling factor for random matrix
    char *ptr, *test_name[SIZES];
    double eps, err;

    // Define test names
    ptr = "Multiplication, recursive contiguous blocking, variable looping --\n     matrix dimension less than block dimension";
    test_name[0] = ptr;
    ptr = "Multiplication, recursive contiguous blocking, variable looping --\n     matrix dimension a multiple of block dimension";
    test_name[1] = ptr;
    ptr = "Multiplication, recursive contiguous blocking, variable looping --\n     matrix dimension not a multiple of block dimension";
    test_name[2] = ptr;

    for ( int i = 0; i < SIZES; i++ ) {
        const int n = mat_size[i];
        A = (double *) malloc( n*n*sizeof(double) );
        B = (double *) malloc( n*n*sizeof(double) );
        C = (double *) malloc( n*n*sizeof(double) );
        C_ans = (double *) malloc( n*n*sizeof(double) );
        create_random_matrix( alpha, n, n, A );
        create_random_matrix( alpha, n, n, B );
        create_random_matrix( alpha, n, n, C );
        copy_matrix( n, n, C, C_ans );

        // Compute C_ans = C + AB using the dot product method
```
mmult_dot_product(n, A, B, C_ans);
// Compute C = C + A* B using the blocked algorithm, compare with C_ans
mmult_rect_recur_block(n, A, B, C);
error_matrix_comp_frob(&eps, &err, n, n, C_ans, C);
test_assert(eps, tol, test_name[i]);
free(A);
free(B);
free(C);
free(C_ans);
}

#define SIZES

/
/*
 * Checks whether the wrapper function properly invokes BLAS routine DGEMM,
 * which performs matrix multiplication.
 */
void test_mmult_blas(void)
{
 const int n = 48; // n-by-n matrix
 const double tol = 1e-12, // Error tolerance
 alpha = 10.0; // Scaling factor for random matrix

 char test_name[80];
 double eps, err;

 sprintf(test_name,
 "Matrix multiplication, BLAS routine DGEMM, %dx%d matrix", n, n);
 A = (double *) malloc(n*n*sizeof(double));
 B = (double *) malloc(n*n*sizeof(double));
 C = (double *) malloc(n*n*sizeof(double));
 C_ans = (double *) malloc(n*n*sizeof(double));
 create_random_matrix(alpha, n, n, A);
 create_random_matrix(alpha, n, n, B);
 create_random_matrix(alpha, n, n, C);
 copy_matrix(n, n, C, C_ans);

 // Compute C_ans = C + A* B using the dot product method
 mmult_dot_product(n, A, B, C_ans);
 // Compute C = C + A* B using DGEMM, compare with C_ans
 mmult_blas(n, A, B, C);
 error_matrix_comp_frob(&eps, &err, n, n, C_ans, C);
 test_assert(eps, tol, test_name);
 free(A);
 free(B);
 free(C);
 free(C_ans);
}

/*
 * Testing harness for parallel algorithms implementing matrix multiplication
 * (and addition), C = C + A*B. The number of tests and error count are
 * accumulated through a single execution of the mmultstp program, and all test
 * results are written to an output file destination (terminal).
 */

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <mpi.h>
#include "matmultp.h"

static void test_assert(double eps, double tol, const char *test_name);
static void error_matrix_comp_frob(double *eps, double *err, int m, int n,
 const double *E, const double *F);
static void error_matrix_comp_l1(double *eps, double *err, int m, int n,
 const double *E, const double *F);
static void init_test_matrices_6(double *A, double *B, double *C, double *C_ans);
static void init_test_matrices(int n, double *A, double *B, double *C, double *C_ans);
static void test_serial_matrix_multiply(int n, const double *A, const double *B, double *C, const double *C_ans,
 double tol, const char *test_name);
static void test_parallel_matrix_multiply(int n, const double *A, const double *B, double *C, const double *C_ans,
 struct mpi_grid *grid, double tol, const char *test_name);

static int tests = 0, // Test count
tests = 0;
static FILE *fp; // Error count
static struct mpi_grid grid;

int main(int argc, char **argv)
{
 const double tol = 1e-12; // Error tolerance
 char test_name[80];
 int n;

 MPI_Init(&argc, &argv);
 // Establish Cartesian topology for collective communication
 setup_mpi_grid(&grid);

 fp = stdout;

n = 6;
if (grid.rank == 0) {
 // Allocate memory for matrices
 A = (double *) malloc(n*n*sizeof(double));
 B = (double *) malloc(n*n*sizeof(double));
 C = (double *) malloc(n*n*sizeof(double));
 C_ans = (double *) malloc(n*n*sizeof(double));
 // Test serial matrix multiply algorithm on 6x6 test matrices
 sprintf(test_name,
 "Serial matrix multiply algorithm, %dx%d matrix", n, n);
 init_test_matrices_6(A, B, C, C_ans);
 test_serial_matrix_multiply(n, A, B, C, C_ans, tol, test_name);

 // Re-initialize matrices for parallel matrix multiply test
 sprintf(test_name,
 "Fox algorithm on %d parallel processors, %dx%d matrix",
 grid.p, n, n);
 init_test_matrices_6(A, B, C, C_ans);
}
// Matrices are partitioned into p full blocks for parallel processing on
// p processors
test_parallel_matrix_multiply(n, A, B, C, C_ans, &grid, tol, test_name);
if (grid.rank == 0) {
 free(A);
 free(B);
 free(C);
 free(C_ans);
}

// Matrices are partitioned into (q-1)^2 full blocks and (2q-1) fringe
// blocks for parallel processing on p processors, p = q*q
n = 2000;
if (grid.rank == 0) {
 // Allocate memory for matrices
 A = (double *) malloc(n*n*sizeof(double));
 B = (double *) malloc(n*n*sizeof(double));
 C = (double *) malloc(n*n*sizeof(double));
 C_ans = (double *) malloc(n*n*sizeof(double));
 init_test_matrices(n, A, B, C, C_ans);
 sprintf(test_name,
 "Fox algorithm on %d parallel processors, %dx%d matrix",
 grid.p, n, n);
}
}
if (grid.rank == 0) {
 if (errs == 0) {
 fprintf(fp, \"Passed all %d tests.\n", tests);
 } else {
 fprintf(fp, \"Total of %d error(s) encountered in %d tests.\n",
 errs, tests);
 }
}
MPI_Finalize();
return 0;

V erifies that test results are accurate within specified tolerance, and
prints message indicating whether the routine passed or failed the test.

void test_assert(double eps, double tol, const char *test_name)
{
 tests++;;
 if (eps <= tol) {
 fprintf(fp, \"PASSED: %s\n(eps=%e <= tol=%e)\n\",
 test_name, eps, tol);
 } else {
 fprintf(fp, \"FAILED: %s\n(eps=%e > tol=%e)\n\",
 test_name, eps, tol);
 errs++;
 }
}

Computes the relative and absolute errors in a matrix computation using the
Frobenius norm ||F - E||, where F is the result of the floating point matrix
computation and E is the exact solution. Both matrices are stored in
column-major order with leading dimension m.

void error_matrix_comp_frob(double *eps, double *err, int m, int n,
 const double *E, const double *F)
{
 int ldim = m;
 double ssq_delta = 0.0;
 double ssq_eij = 0.0;

 for (int j = 0; j < n; j++) {
 const double *E_j = E + j*ldim;
 const double *F_j = F + j*ldim;
 for (int i = 0; i < m; i++) {
 double delta = *(E_j + i) - *(F_j + i);
 ssq_delta += delta * delta;
 }
 }
}
ssq.eij += *(E.j + i) * *(E.j + i);
}

*err = sqrt(ssq.delta);
*eps = *err / sqrt(ssq.eij);

/* Computes the relative and absolute errors in a matrix computation using the
 l1-norm ||F - E||, where F is the result of the floating point matrix
 computation and E is the exact solution. Both matrices are stored in
 column-major order with leading dimension m.
*/
void error_matrix_comp_l1(double *eps, double *err, int m, int n,
 const double *E, const double *F)
{
 int ldim = m;
 double sum_abs_delta = 0.0;
 double sum_abs_eij = 0.0;

 *err = 0.0;
 *eps = 0.0;

 for (int j = 0; j < n; j++) {
 const double *E.j = E + j*ldim;
 const double *F.j = F + j*ldim;
 for (int i = 0; i < m; i++) {
 double delta = *(E.j + i) - *(F.j + i);
 sum_abs_delta += fabs(delta);
 sum_abs_eij += fabs(*(E.j + i));
 }
 if (sum_abs_delta > *err) {
 *err = sum_abs_delta;
 *eps = *err / sum_abs_eij;
 }
 }
}

/* Initializes 6x6 matrices used to test serial and parallel matrix
 multiplication algorithms. Matrices A, B and C are initialized with preset
 values, and C_ans contains the result of the matrix multiplication (and
 addition), C_ans = C + A*B. Matrices are stored in column-major order.
*/
void init_test_matrices_6(double *A, double *B, double *C, double *C_ans)
{
 const int n = 6; // n-by-n matrices

 double AA[] = { -2, 1, -8, -8, 1, 5, 8, -7, 1, -1, -9, -3,
 -6, 6, -4, 1, -6, 2, -5, 3, 4, 5, -1, -8,
...
PERFORMANCE OPTIMIZATION OF SYMMETRIC FACTORIZATION ALGORITHMS

\[\begin{bmatrix} -5, & 8, & -7, & 6, & 1, & 9, & -8, & -1, & -7, & 9, & -9, & 5 \end{bmatrix}, \]

\[\begin{bmatrix} 6, & 7, & -8, & -2, & -5, & 6, & -1, & 8, & -6, & -4, & -7, & -7, & -6, & -5, & -2, & -9, & 8, & 8, & 0, & 0, & -3, & 8, & -2, & -7 \end{bmatrix}, \]

\[\begin{bmatrix} 5, & -2, & -5, & -2, & -8, & -7, & 8, & 9, & 1, & -8, & -5, & -3, & 6, & -9, & -9, & -6, & 3, & 4, & 3, & -1, & 1, & -4, & 5, & -6, & 4, & -6, & -2, & 2, & 5, & -8, & 8, & 5, & 0, & -1, & -1, & -4 \end{bmatrix}, \]

\[\begin{bmatrix} 84, & -145, & -29, & -51, & -74, & -13, & 221, & -145, & 123, & -139, & 18, & -110, & -14, & 23, & -158, & -38, & -18, & 164, & 142, & -73, & 85, & -115, & 80, & -41, & -71, & 40, & -99, & 128, & 1, & 157, & 52, & 2, & 107, & -39, & 70, & -127 \end{bmatrix}; \]

// Copy given n×n matrices into corresponding randomly generated matrices

```c
void init_test_matrices(const int n, double *A, double *B, double *C, double *C_ans)
{
    const double alpha = 10.0; // Scaling factor for random matrix

    create_random_matrix(alpha, n, n, A);
    create_random_matrix(alpha, n, n, B);
    create_random_matrix(alpha, n, n, C);
    // Compute C_ans = C + A*B using serial matrix multiply
    copy_matrix(n, n, C, C_ans);
    serial_matrix_multiply(n, A, B, C_ans);
}
```

// Checks whether the serial matrix multiply (jki indexing) algorithm performs
// matrix multiplication (and addition), \(C = C + A*B \), correctly. The
// verification is done on the n-by-n matrices passed in the argument list,
// which are stored in column-major order with leading dimension n.

```c
void test_serial_matrix_multiply(int n,
    const double *A, const double *B, double *C, const double *C_ans,
```
double tol, const char *test_name)
{
 double eps, err;

 // Perform serial matrix multiplication and compare result with correct answer
 serial_matrix_multiply(n, A, B, C);
 error_matrix_comp_frob(&eps, &err, n, n, C_ans, C);
 test_assert(eps, tol, test_name);
}

/*
 * Verifies that the Fox algorithm on parallel processors performs matrix
 * multiplication (and addition), C = C + A*B, correctly. The verification is
 * done on the n-by-n matrices passed in the argument list, which are stored
 * in column-major order with leading dimension n.
 */
void test_parallel_matrix_multiply(int n,
 const double *A, const double *B, double *C, const double *C_ans,
 struct mpi_grid *grid, double tol, const char *test_name)
{
 double eps, err;

 // Compute C = C + A*B using parallel algorithm and compare with correct answer
 parallel_matrix_multiply(n, A, B, C, grid);
 if (grid->rank == 0) {
 error_matrix_comp_frob(&eps, &err, n, n, C_ans, C);
 test_assert(eps, tol, test_name);
 }
}
PERFORMANCE OPTIMIZATION OF SYMMETRIC FACTORIZATION ALGORITHMS

APPENDIX B. HEADER FILES

B.1. lapack.h – LAPACK and BLAS routines.

```c
#if !defined(LAPACK_H)
#define LAPACK_H_1

#if defined(__cplusplus)
extern "C" {
#endif

// Prototypes for LAPACK and BLAS routines:

// ILAENV determines the optimal block size for the local environment.
int ilaenv(const int *ISPEC, const char *NAME, const char *OPTS,
            const int *N1, const int *N2, const int *N3, const int *N4);

// DCOPY copies vector X to vector Y, where N is the number of elements, and
// INCX and INCY are increments of elements of X and Y, respectively.
int dcopy(const int *N, const double *X, const int *INCX,
          double *Y, const int *INCY);

// DSWAP interchanges vectors SX and SY, where N is number of elements, and
// INCX and INCY are increments of elements of SX and SY, respectively.
int dswap(const int *N, const double *SX, const int *INCX,
          double *SY, const int *INCY);

// IDAMAX returns the index of the element of DX having the maximum absolute
// value (maximum magnitude), where N is the number of elements and INCX
// is the increment of elements of DX.
int idamax(const int *N, const double *DX, const int *INCX);

// DGEMM performs matrix multiplication, C = beta*C + alpha*op(A)*op(B),
// where alpha and beta are scalars,
// C, A and B are M-by-N, M-by-K and K-by-N matrices, respectively,
// and op(X) = X or op(X) = X'.
int dgemm(const char *TRANSA, const char *TRANSB,
          const int *M, const int *N, const int *K,
          const double *ALPHA, const double *A, const int *LDA,
          const double *B, const int *LDB,
          const double *BETA, const double *C, const int *LDC);

// DGEMV performs matrix-vector operation y = beta*y + alpha*op(A)*x,
// where alpha and beta are scalars, x and y are vectors, A is an M-by-N
// matrix, and op(A) = A or op(A) = A'.
int dgemv(const char *TRANS, const int *M, const int *N,
          const double *ALPHA, const double *A, const int *LDA,
          const double *X, const int *INCY,
          const double *BETA, const double *Y, const int *INCY);

// DSYRK performs symmetric rank k operation
```

\[C = \alpha \cdot \text{op}(A) \cdot \text{op}(A)\' + \beta \cdot C, \] where \(\alpha \) and \(\beta \) are scalars, \(C \) is an \(N \times N \) symmetric matrix and \(A \) is an \(N \times K \) matrix, and \(\text{op}(X) = X \) or \(\text{op}(X) = X' \).

```c
int dsyrk_( const char *UPLO, const char *TRANS, const int *N, const int *K, const double *ALPHA, const double *A, const int *LDA, const double *BETA, double *C, const int *LDC );
```

// DTRSM solves a triangular system of the form
// \(\text{op}(A)\cdot X = \alpha \cdot B \) or \(X\cdot \text{op}(A) = \alpha \cdot B \),
// where \(\alpha \) is a scalar, \(X \) and \(B \) are \(m \times n \) matrices, \(A \) is a triangular
// matrix, and \(\text{op}(A) = A \) or \(\text{op}(A) = A' \).

```c
int dtrsm_( const char *SIDE, const char *UPLO, const char *TRANSA, const char *DIAG, const int *M, const int *N, const double *ALPHA, const double *A, const int *LDA, double *B, const int *LDB );
```

// DTRTRS solves a triangular system of the form \(A\cdot X = B \) or \(A'\cdot X = B \),
// where \(A \) is a triangular matrix of order \(N \), and \(B \) is an \(N \times NRHS \) matrix.

```c
int dtrtrs_( const char *UPLO, const char *TRANS, const char *DIAG, const int *N, const int *NRHS, const double *A, const int *LDA, double *B, const int *LDB, int *INFO );
```

// DGETRF computes an LU factorization of a general \(M \times N \) matrix \(A \) using
// partial pivoting with row interchanges. The factorization takes the form
// \(A = P \cdot L \cdot U \), where \(P \) is the permutation matrix encoded in the vector \(IPIV \),
// \(L \) is unit lower triangular and \(U \) is upper triangular. On exit, \(L \) and \(U \)
// overwrite \(A \).

```c
int dgetrf_( const int *M, const int *N, double *A, const int *LDA, int *IPIV, int *INFO );
```

// DPOTF2 computes the Cholesky factorization of an \(N \times N \) real symmetric
// positive definite matrix \(A \). The factorization takes the form \(A = L \cdot L' \) or
// \(A = U' \cdot U \), where \(L \) is lower triangular and \(U \) is upper triangular. On exit,
// \(L \) or \(U \) overwrites \(A \). This is LAPACK's unblocked version of Cholesky
// factorization.

```c
int dpotf2_( const char *UPLO, const int *N, double *A, const int *LDA, int *INFO );
```

// DPOTRF computes the Cholesky factorization of an \(N \times N \) real symmetric
// positive definite matrix \(A \). The factorization takes the form \(A = L \cdot L' \) or
// \(A = U' \cdot U \), where \(L \) is lower triangular and \(U \) is upper triangular. On exit,
// \(L \) or \(U \) overwrites \(A \).

```c
int dpotrf_( const char *UPLO, const int *N, double *A, const int *LDA, int *INFO );
```

// DSYTRF computes the factorization of a real symmetric matrix \(A \) using
// the Bunch–Kaufman pivoting. The factorization takes the form
// \(A = (P \cdot L) \cdot D \cdot (P \cdot L)' \) or \(A = (P \cdot U) \cdot D \cdot (P \cdot U)' \), where \(P \) is the permutation
// matrix encoded in \(IPIV \), \(L \) is unit lower triangular, \(U \) is unit upper
// triangular and \(D \) block diagonal with block order 1 or 2. On exit,
// \((P \cdot L) \) or \((P \cdot U) \) and \(D \) overwrite \(A \). This is LAPACK’s unblocked version
// of symmetric indefinite factorization.
int dsytf2_(const char *UPLO, const int *N, double *A, const int *LDA,
 int *IPIV, int *INFO);

// DSYTRF computes the factorization of a real symmetric matrix A using
// the Bunch−Kaufman pivoting. The factorization takes the form
// A = (P*L)*D*(P*L)' or A = (P*U)*D*(P*U)', where P is the permutation
// matrix encoded in IPIV, L is unit lower triangular, U is unit upper
// triangular and D block diagonal with block order 1 or 2. On exit,
// (P*L) or (P*U) and D overwrite A.
int dsytrf_(const char *UPLO, const int *N, double *A, const int *LDA,
 int *IPIV, double *WORK, int *LWORK, int *INFO);

#if defined(__cplusplus)
}
#endif

#endif
B.2. timing.h – timing functions.

#if !defined(TIMING_H_)
#define TIMING_H_ 1

#if defined(__cplusplus)
extern "C" {
#endif

 long double timespec_to_ldbl(struct timespec ts);
 long double timespec_diff(struct timespec sta, struct timespec end);
 long double timer_resolution(void);
 void get_time(struct timespec *ts);

#if defined(__cplusplus)
}
#endif

#endif
B.3. matcom.h – common matrix operations.

```c
#define !defined(MATCOMH_1)
#define MATCOMH_1

 ifndef __cplusplus
 extern "C" {
 endif

 // BDIM is the blocking parameter, i.e., block size = BDIM-by-BDIM.
 // Implementations of blocked algorithms typically use the blocking parameter
 // chosen by LAPACK for their routines. The BDIM parameter facilitates
 // overriding the LAPACK chosen blocking parameter. It is also used during
 // testing of blocked algorithms that perform matrix computations.
 // For recursive contiguous block storage, matrix computation kernels act on
 // sub-blocks of size KDIM-by-KDIM.
 if defined(DEBUG)
   #define BDIM 32
   #define KDIM 8
 else
   #define BDIM 96
   #define KDIM 8
 endif

 void create_random_matrix( double alpha, int m, int n, double *E );
 void create_random_unit_lower( double alpha, int n, double *E );
 void create_random_lower( double alpha, int n, double *E );
 void create_random_upper( double alpha, int n, double *E );
 void create_random_nonsingular( double alpha, int n, double *E );
 void create_random_spd( double alpha, int n, double *E );
 void create_random_symmetric( double alpha, int n, double *E );
 void clear_matrix( int m, int n, double *E );
 void copy_matrix( int m, int n, const double *E, double *F );
 void transpose_matrix( int m, int n, const double *E, double *F );
 void form_contig_blocks( int m, int n, int ldimE, const double *E, int mm, int nn, int bdim, int ldimF, double *F );
 void form_recur_blocks( int m, int n, int ldimE, const double *E, int mm, int nn, int kdim, int bdim, int ldimF, double *F );
 void unpack_contig_blocks( int mm, int nn, int bdim, int ldimE, 
```

const double *E, int m, int n, int ldimF, double *F);

void unpack_recur_blocks(int mm, int nn, int kdim, int bdim, int ldimE,
 const double *E, int m, int n, int ldimF, double *F);

void error_matrix_comp_frob(double *eps, double *err, int m, int n,
 const double *E, const double *F);

void error_matrix_comp_l1(double *eps, double *err, int m, int n,
 const double *E, const double *F);

void multiply_matrix(int m, int n, int p, int ldimA, const double *A,
 int ldimB, const double *B, int ldimC, double *C);

#if defined(__cplusplus)
}
#endif

#endif
B.4. lufact.h – Gaussian elimination (LU factorization).

```c
#include "cplusplus"
#include "C"

#define LFACT_H 1

#include "cplusplus"
extern "C" {

int get_block_dim_lu ( int ldim );

void lu_outer_product ( const int n, double *A );

void lu_saxpy ( const int n, double *A );

void lu_block ( const int n, double *A );

void lu_recur_block ( const int n, double *A );

void lu_pivot_outer_product ( const char pivot, const int n, int *piv, int *ord, double *A );

void lu_pivot_saxpy ( const char pivot, const int n, int *piv, int *ord, double *A );

void lu_pivot_block ( const char pivot, const int n, int *piv, int *ord, double *A );

void lu_pivot_lapack ( const char pivot, const int n, int *piv, int *ord, double *A );

}
#endif

```
B.5. cholfact.h – Cholesky factorization.

```c
#if !defined(CHOLFACT_H)
#define CHOLFACT_H_1

#if defined(__cplusplus)
extern "C" {
#endif

int get_block_dim_chol(int ldim);
void chol_outer_product(int n, double *A);
void chol_saxpy(int n, double *A);
void chol_block(int n, double *A);
void chol_rect_block(int n, double *A);
void chol_contig_block(int n, double *A);
void chol_recur_block(int n, double *A);
void chol_block_blas(int n, double *A);
void chol_contig_block_blas(int n, double *A);
void chol_lapack_unblocked(int n, double *A);
void chol_lapack(int n, double *A);

#if defined(__cplusplus)
}
#endif
#endif
```
B.6. ldltfact.h – symmetric indefinite factorization.

```c
#ifdef !defined(LDLTFACT_H_)
#define LDLTFACT_H_ 1

#ifdef (__cplusplus)
extern "C" {
#endif

int count_pivot( int piv_ord, int n, const int *piv, const int *ord );

int get_block_dim_ldlt( int lapack, int blas, int ldim );

void eval_pivot_diag( int n, int d, const double *diag, int *piv, int *ord );

void reduce_ldlt_vector_blas( int m, int n, int r, int *ord, int ldim,
                              const double *L, const double *M, double *vec );

void reduce_ldlt_mat_blk( int blas, int m, int n, const int *ord, int bdim,
                          int ldim, const double *L, const double *D, const double *M, double *A );

void pivot_sym( int n, int k, int r, int ldim, double *A );

void ldlt_outer_product( char pivot, int n, int *piv, int *ord, double *A );

void ldlt_saxpy( char pivot, int n, int *piv, int *ord, double *A );

void ldlt_block( char pivot, int n, int *piv, int *ord, double *A );

void ldlt_block_blas( char pivot, int n, int *piv, int *ord, double *A );

void ldlt_lapack_unblocked( char pivot, int n, int *piv, int *ord,
                            double *A );

void ldlt_lapack( char pivot, int n, int *piv, int *ord, double *A );

#ifdef __cplusplus
}
#endif

#endif
```
B.7. modchol.h – modified Cholesky algorithms.

```c
#ifdef !defined(MODCHOL_H)
#define MODCHOL_H 1

#ifdef(__cplusplus)
extern "C" {
#endif

void chol_gmw_outer_product(char pivot, int n, int *piv, int *ord, double *A);
void chol_gmw_saxpy(char pivot, int n, int *piv, int *ord, double *A);
void chol_gmw_block(char pivot, int n, int *piv, int *ord, double *A);
void chol_gmw_block_blas(char pivot, int n, int *piv, int *ord, double *A);
void chol_ch_outer_product(char pivot, int n, int *piv, int *ord, double *A);
void chol_ch_saxpy(char pivot, int n, int *piv, int *ord, double *A);
void chol_ch_block(char pivot, int n, int *piv, int *ord, double *A);
void chol_ch_block_blas(char pivot, int n, int *piv, int *ord, double *A);

#ifdef(__cplusplus)
}
#endif
#endif
```
B.8. matmult.h – matrix multiplication.

```c
#ifndef defined(MATMULT_H)
#define MATMULT_H 1

#ifndef defined(__cplusplus)
extern "C" {
#endif

#define UNROLL_DEPTH 8    // Depth of loop unrolling
#define PIPEDEPTH 8       // Depth of software pipelining

int get_block_dim_mmult( int ldim );

void mmult_dot_product( int n, const double *A, const double *B, double *C );
void mmult_saxpy( int n, const double *A, const double *B, double *C );
void mmult_unroll( int n, const double *A, const double *B, double *C );
void mmult_pipeline( int n, const double *A, const double *B, double *C );
void mmult_block( int n, const double *A, const double *B, double *C );
void mmult_contig_block( int n,    
        const double *A, const double *B, double *C );
void mmult_recur_block( int n,    
        const double *A, const double *B, double *C );
void mmult_rect_recur_block( int n,    
        const double *A, const double *B, double *C );
void mmult_blas( int n, const double *A, const double *B, double *C );

#ifndef defined(__cplusplus)
}
#endif
#endif
```


```c
#ifndef MATMULTP_H
#define MATMULTP_H 1

#define defined(_cplusplus)
extern "C" {
#endif

#define SIZES 11
#define COLINSER 6
#define BDIM 96

struct mpi_grid {
  MPI_Comm comm;
  MPI_Comm row(comm);
  MPI_Comm col(comm);
  int p;
  int q;
  int row;
  int col;
  int rank;
};

void setup mpi_grid( struct mpi_grid *grid );

void scatter_blocks( int bdim, int n,
  const double *A, const double *B, double *C, struct mpi_grid *grid );

void gather_blocks( int bdim, int n, double *C, struct mpi_grid *grid );

void create_random_matrix( double alpha, int m, int n, double *E );

void clear_matrix( int m, int n, double *E );

void copy_matrix( int m, int n, const double *E, double *F );

void multiply_matrix( int m, int n, int p, int ldimA, const double *A,
  int ldimB, const double *B, int ldimC, double *C );

void blocked_matrix_multiply ( int m, int n, int p, int ldimA,
  const double *A, int ldimB, const double *B, int ldimC, double *C );

void serial_matrix_multiply( int n,
  const double *A, const double *B, double *C );

void fox_matrix_multiply( int n,
  double *A, double *B, double *C, struct mpi_grid *grid );
```

void parallel_matrix_multiply(int n,
 const double *A, const double *B, double *C, struct mpi_grid *grid);

#if defined(__cplusplus)
#endif

#endif
C.1. Makefile – serial programs.

```bash
# Makefile for timing and testing of matrix computations: matrix multiplication,
# LU factorization (Gaussian elimination), Cholesky factorization, symmetric
# indefinite factorization and modified Cholesky algorithms.
# Sets compiler and linker parameters.
# Compiles source code and links objects to generate executable files:
# mmultime, mmultest, mfactime and mfactest.
# Cleans object and executable files in current directory.

# Hardware specifications
PROC = Intel Xeon 5345
CORES = 4 x dual-core
CLKSPEED = 2.33 GHz
CACHE = 4096 KB per dual-core

# Compiler options
CC = icc
LANGUAGE = -x c++
OPTM = -O3
CFLAGS = -Wall $(LANGUAGE) $(OPTM)
CPPFLAGS = -I$(includedir) -DCHOLFACT -DLDLTFACT -DMODCHOL
CPPFLAGS += "-DCOMPILER=""$(CC)"""" -DLANGUAGE=""$(LANGUAGE)""""
   "-DOPTM=""$(OPTM)"""" -DPROC=""$(PROC)"""" -DCORES=""$(CORES)""""
   "-DCLKSPEED=""$(CLKSPEED)"""" -DCACHE=""$(CACHE)""""
   "-DDATADIR=""$(DATADIR)"""

LDFLAGS = -shared -intel
LIBS = -L/share/apps/intel/Compiler/11.1/046/mkl/lib/em64t \
   -lmkl_intel_lp64 -lmkl_core -lmkl_intel_thread \
   -L/share/apps/intel/Compiler/11.1/046/lib/intel64 \
   -liomp5 -lpthread -lrt -lstdc++

prefix = /scratch/st1185
projectdir = $(prefix)
sourcedir = $(projectdir)/source
includedir = $(projectdir)/include
DATADIR = $(projectdir)/data
VPATH = $(sourcedir) $(includedir) $(datadir)

objects1 = mmultime.o matmult.o matcom.o timing.o
objects2 = mmultest.o mmultest.o matcom.o
objects3 = mfactime.o luftact.o cholfact.o modchol.o ldltfact.o matcom.o timing.o
objects4 = mfactest.o luftact.o cholfact.o modchol.o ldltfact.o matcom.o timing.o
objects = $(objects1) $(objects2) $(objects3) $(objects4)
sources = $(objects:.o=.c)

.PHONY: all
```
all: mmultime mmultest mfactime mfactest

mmultime: $(objects1)
 mmultime.o: matmult.h matcom.h timing.h
 matmult.o: matmult.h lapack.h matcom.h
 matcom.o: matcom.h
timing.o: timing.h

mmultest: $(objects2)
 mmultest.o: matmult.h matcom.h
 matmult.o: matmult.h lapack.h matcom.h
 matcom.o: matcom.h

mfactime: $(objects3)
 mfactime.o: lufact.h cholfact.h modchol.h ldltfact.h matcom.h timing.h
 lufact.o: lufact.h lapack.h matcom.h
 cholfact.o: cholfact.h lapack.h matcom.h timing.h
 modchol.o: modchol.h ldltfact.h lapack.h matcom.h timing.h
 ldltfact.o: ldltfact.h lapack.h matcom.h timing.h
 matcom.o: matcom.h
timing.o: timing.h

mfactest: $(objects4)
 mfactest.o: lufact.h cholfact.h modchol.h ldltfact.h matcom.h
 lufact.o: lufact.h lapack.h matcom.h
 cholfact.o: cholfact.h lapack.h matcom.h timing.h
 modchol.o: modchol.h ldltfact.h lapack.h matcom.h timing.h
 ldltfact.o: ldltfact.h lapack.h matcom.h timing.h
 matcom.o: matcom.h
timing.o: timing.h

Pattern rules
%.o: %.c
 $(CC) -c $(CFLAGS) $(CPPFLAGS) $< -o $@

.PHONY: cleanall cleanobj
cleanall: cleanobj
 rm -f mmultime mmultest mfactime mfactest
cleanobj:
 rm -f *.o
clean1:
 rm -f mmultime $(objects1)
clean2:
 rm -f mmultime $(objects2)
clean3:
 rm -f mfactime $(objects3)
clean4:
 rm -f mfactest $(objects4)

Makefile for timing and testing of parallel matrix multiplication (and addition).
Sets compiler and linker parameters.
Compiles source code and links objects to generate executable files:
mmultmp and mmultstp.
Cleans object and executable files in current directory.

Hardware specifications
PROC = Intel Xeon 5345
CORES = 4 x dual-core
CLKSPEED = 2.33 GHz
CACHE = 4096 KB per dual-core

Compiler options
CC = /usr/mpi/intel/mvapich-1.1.0/bin/mpicc
LANGUAGE = -x c++
OPTM = -O3
CFLAGS = -Wall $(LANGUAGE) $(OPTM)
CPPFLAGS = -I$(includedir)
CPPFLAGS += "-DCOMPILER="$(CC)" "-DLANGUAGE="$(LANGUAGE)" "
"-DOPTM="$(OPTM)" "-DPROC="$(PROC)" "-DCORES="$(CORES)" "
"-DCLKSPEED="$(CLKSPEED)" "-DCACHE="$(CACHE)" "
"-DDATADIR="$(DATADIR)"
LDFLAGS = -shared-intel
LIBS = -lm -lrt -lstdc++

prefix = /scratch/st1185
projectdir = $(prefix)
sourcedir = $(projectdir)/source
includedir = $(projectdir)/include
DATADIR = $(projectdir)/data
VPATH = $(sourcedir) $(includedir) $(datadir)

objects1 = mmultmp.o matmultp.o timing.o
objects2 = mmultstp.o matmultp.o
objects = $(objects1) $(objects2)
sources = $(objects:.o=.c)

.PHONY: all
all: mmultmp mmultstp

mmultmp: $(objects1)
mmultmp.o: matmultp.h timing.h
matmultp.o: matmultp.h
timing.o: timing.h

mmultstp: $(objects2)
mmultstp.o: matmultp.h
matmultp.o: matmultp.h

Pattern rules
%.o: %.o
 $(CC) $^ $(LDFLAGS) $(LIBS) -o $@
%.c: %.c
 $(CC) -c $(CFLAGS) $(CPPFLAGS) $< -o $@

.PHONY: cleanall cleanobj
cleanall: cleanobj
 rm -f mmultmp mmultstp
cleanobj:
 rm -f *.o