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Abstract. Nonlinear optimization algorithms that use Newton’s method to determine the search direction
exhibit quadratic convergence locally. In the predominant case where the Hessian is positive definite, Cholesky fac-
torization is a computationally efficient algorithm for evaluating the Newton search direction −∇2f(x(k))−1∇f(x(k)).
If the Hessian is indefinite, then modified Cholesky algorithms make use of symmetric indefinite factorization to per-
turb the Hessian such that it is sufficiently positive definite and reasonably well-conditioned, while preserving as
much as possible the information contained in the Hessian. This paper measures and compares the performance of
algorithms implementing Cholesky factorization, symmetric indefinite factorization and modified Cholesky factoriza-
tion. From these performance data we estimate the work (runtime) involved in symmetric pivoting and modifying
the symmetric indefinite factorization. Furthermore, we evaluate the effect of the degree of indefiniteness of the
symmetric matrix on performance. For each of these matrix factorizations we developed routines that implement
a variety of performance optimization techniques including loop reordering, blocking, and the use of tuned Basic
Linear Algebra Subroutines.

1. Introduction. Nonlinear optimization algorithms generate a minimizing sequence of it-
erates x(k), where x(k+1) = x(k) + t(k)∆x(k). The step length t(k) is positive, and the search
direction ∆x(k) in a descent method must satisfy ∇f(x(k))T∆x(k) < 0. The sequence of iter-
ates x(k) terminates when an optimal point with sufficient accuracy has been found. In moving
from one iterate to the next, nonlinear optimization algorithms determine a search direction ∆x(k)

and choose a step length t(k). A natural choice for the search direction is the negative gradient,
∆x(k) = −∇f(x(k)). The gradient descent method moves in the direction −∇f(x(k)) at every step,
which provides a computational advantage since it only requires calculation of the gradient. It
typically exhibits linear convergence, but can be very slow, even for problems where the Hessian
is moderately well-conditioned. By comparison, the Newton method, with search direction given
by ∆x(k) = −∇2f(x(k))−1∇f(x(k)), exhibits quadratic convergence locally [5]. When the Hessian
∇2f(x(k)) is positive definite, the Newton direction is guaranteed to be a descent direction; when the
Hessian is indefinite, the Newton direction may not exist or satisfy the downhill condition. In the
latter case, nonlinear optimization algorithms modify the Hessian to be sufficiently positive definite
and reasonably well-conditioned, while preserving as much as possible the information contained in
the Hessian.

Rearranging the equation for the Newton direction and introducing conventional linear algebra
notation, we have Ax = ∇2f(x(k))∆x(k) = −∇f(x(k)) = b. In the predominant case in which
the Hessian, A = ∇2f(x(k)), is positive definite, nonlinear optimization algorithms make use of
Cholesky factorization to efficiently solve for the Newton direction. Cholesky algorithms factors A
by computing the unique lower triangular matrix L with positive diagonal entries, where A = LLT .
Given Ax = LLTx = b, the Newton direction is then determined by solving the triangular systems
of equations Ly = b and LTx = y. Cholesky factorization involves 1

3n
3 + O(n2) floating point

operations (flops), while solving for the Newton direction adds O(n2) flops to the computation.

If the Hessian is indefinite, nonlinear optimization algorithms make use of modified Cholesky
factorization to efficiently modify the Hessian and solve for the Newton direction. Modified Cholesky
algorithms make use of symmetric indefinite factorization to find a matrix Â = A + E, where
Â is sufficiently positive definite, so that the Newton direction satisfies the downhill condition.
Symmetric indefinite factorization takes the form PAPT = LDLT , where D is diagonal or block
diagonal, L is unit lower triangular, and P is a permutation matrix for symmetric pivoting. We
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consider two approaches to modified Cholesky factorization: the method proposed by Gill, Murray
and Wright [14], where D is diagonal, and A is modified as the factorization proceeds; and the

one proposed by Cheng and Higham [8], where D is block diagonal with block order 1 or 2, and Â
is found by modifying a computed factorization of A. For both approaches the cost of modifying
the factorization is a small multiple of n2 flops. For symmetric indefinite factorization, numerical
stability comes at the expense of pivoting. Partial pivoting makes only O(n2) comparisons of
matrix elements but has the worst accuracy; complete pivoting involves O(n3) comparisons; and
rook pivoting involves between O(n2) and O(n3) comparisons. The Gill-Murray-Wright algorithm
uses a form of partial pivoting, while our implementation of the Cheng-Higham algorithm employs
either Bunch-Kaufman [6] (partial) or bounded Bunch-Kaufman [2] (rook) pivoting. Given these
estimates of the work (flops) involved in computing a modified Cholesky factorization, we anticipate
that much of the variation in performance between modified Cholesky algorithms will be explained
by the pivoting strategy employed.

This paper measures and compares the performance of algorithms implementing Cholesky fac-
torization, symmetric indefinite factorization, and modified Cholesky factorization (Gill-Murray-
Wright and Cheng-Higham algorithms). From these performance data we estimate the work (run-
time) involved in symmetric pivoting and modifying the symmetric indefinite factorization. Ad-
ditionally, for symmetric indefinite and modified Cholesky factorizations, we evaluate the effect of
the degree of indefiniteness of the symmetric matrix on performance. For each of these matrix
factorizations we implement a variety of performance optimization (tuning) techniques including
loop reordering, blocking, and the use of tuned BLAS (Basic Linear Algebra Subroutines). By com-
paring the performance of these algorithms with a benchmark, the corresponding LAPACK (Linear
Algebra PACKage) routine, this paper assesses the efficacy of various performance optimization
techniques.

Section 2 lists the software developed for this research, and provides technical specifications
for hardware, compilers and libraries. Section 3 introduces performance optimization techniques
such as loop reordering and blocking to maximize data locality, and describes the use of efficient
libraries including tuned BLAS and LAPACK. Matrix multiplication is used to demonstrate these
performance optimization concepts. Unblocked and blocked algorithms for Cholesky factorization
are explained in Section 4. We measure the performance of our implementation of basic and
“optimized” algorithms for Cholesky factorization and compare it with that of the corresponding
LAPACK routine to assess their efficiency. Section 5 outlines Bunch-Kaufman (partial), bounded
Bunch-Kaufman (rook) and Bunch-Parlett [7] (complete) pivoting strategies, and discusses un-
blocked and blocked algorithms for symmetric indefinite factorization. In addition to measuring
the performance of our implementation of these algorithms, we also evaluate the effect of pivot-
ing strategy employed and the degree of indefiniteness of the symmetric matrix on performance.
Section 6 builds on the discussion of standard Cholesky and symmetric indefinite factorizations
to explain the Gill-Murray-Wright and Cheng-Higham algorithms for modified Cholesky factoriza-
tion. Again, we measure the performance of our implementation of basic and optimized versions of
these algorithms, and compare the work (runtime) involved in modifying the symmetric indefinite
factorization with the work to perform symmetric pivoting. Finally, Section 7 introduces paral-
lel programming using the MPI (Message-Passing Interface) library, and demonstrates concepts of
speedup and efficiency using Fox’s algorithm for parallel matrix multiplication. This paper focuses
on performance optimization of serial algorithms implementing matrix factorizations, so an obvious
extension to this research would develop parallel algorithms for these matrix factorizations and
measure their performance.
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2. Hardware and Software. Timing experiments to measure the performance of algorithms
analyzed in this research were conducted primarily on an Intel Xeon 5345 processor, 2.33 GHz, with
4 dual-cores, each dual-core sharing 4096 KB of cache. The operating system is Red Hat Linux
release 5.1 running kernel 2.6.18.-128.7.1.el5 lustre.1.8.1.1 on CPU architecture x86 64.
Software is coded in the C programming language [18], and compiled using Intel C compiler version
11.1.046 with -O3 optimization level. Installed on this machine is Intel MKL version 10.2.2, which
is compliant with LAPACK release 3.1. Parallel programming is implemented using MPI library
functions, MVAPICH version 1.1.0. Unless explicitly stated otherwise, performance data presented
in this paper are for routines executed on this machine, and references to BLAS and LAPACK in
the context of this machine should be read as Intel MKL implementations of BLAS and LAPACK
libraries. Timing experiments (jobs) were submitted using a portable batch system script.

In order to provide a comparison of performance across hardware, compilers and libraries, some
timing experiments were also conducted on an alternative machine — AMD Opteron 180, 2.4 GHz,
dual-core with 1024 KB of L2 cache per core. The operating system is Red Hat Linux release
5.4 running kernel 2.6.18-194.3.1.el5 on CPU architecture x86 64. Programs are compiled
using GNU C compiler version 4.1.2 with -O3 optimization level. Installed on this machine are
ATLAS (Automatically Tuned Linear Algebra Software) versions of LAPACK and BLAS routines
(atlas.x86 64 3.6.0-15.el5). References to BLAS and LAPACK in the context of this machine
should be read as ATLAS implementations of BLAS and LAPACK libraries.

Source code developed for matrix factorization and matrix multiplication algorithms includes:

lufact.c Gaussian elimination (LU factorization)1

cholfact.c Cholesky factorization
ldltfact.c symmetric indefinite factorization with Bunch-Kaufman, bounded Bunch-Kaufman

and Bunch-Parlett pivoting
modchol.c modified Cholesky algorithms (Gill-Murray-Wright and Cheng-Higham)
matmult.c matrix multiplication
matmultp.c parallel matrix multiplication

All matrix computations are performed using double-precision arithmetic.

To ensure that algorithms coded for this research perform matrix computations accurately,
testing harnesses were developed for matrix factorization (mfactest.c) and serial and parallel
matrix multiplication (mmultest.c and mmultstp.c, respectively). Then to measure the perfor-
mance of, and profile these algorithms, timing harnesses were developed for matrix factorization
(mfactime.c) and serial and parallel matrix multiplication (mmultime.c and mmultmp.c, respec-
tively). Timing harnesses write performance data to an output file. Common matrix operations are
coded in matcom.c, and timing functions used for measuring performance and profiling are coded
in timing.c.

The source code, header files and Makefiles [21, 23] developed for this research are listed
in the appendix, a separate document (perf optm sym factor appx.pdf) that accompanies this
article. These documents, along with a tar archive file containing the source code, header files and
Makefiles, are posted on the web pages http://www.cs.cornell.edu/~bindel/students.html

and http://www.cs.nyu.edu/overton/msadvising.html.

1Although not discussed in this paper, LU factorization routines were developed as part of the research effort. LU
factorization is normally used to introduce the concepts of matrix factorization and pivoting before one progresses
to standard Cholesky factorization, symmetric indefinite factorization and modified Cholesky factorization.
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3. Performance Optimization Guidelines. In optimizing the performance of matrix fac-
torization code we consider: data locality; the use of efficient libraries; and compiler optimization
levels. The goal in high performance computing is to keep the functional units of the central pro-
cessing unit (CPU), which perform computations on input data, running at their peak capacity.
Since moving data between levels of the memory hierarchy to the CPU (memory access) is the
major performance bottleneck, high performance is achieved through data locality. At the top of
a typical memory hierarchy are the registers of the CPU, followed by two levels of cache, then
main memory, and finally disk storage. As one proceeds down the memory hierarchy, memory size
increases but so does access time (latency) of the CPU to data in memory. To provide some orders
of magnitude, approximate access times range from immediate for registers, one clock cycle for L1
cache, ten cycles for L2 cache and as many as one-hundred cycles for main memory [15].

There are two basic types of data locality: temporal and spatial. Temporal data locality means
that if data stored in some memory location is referenced, then it likely will be referenced again in the
near future. Spatial data locality means that if data stored in some memory location is referenced,
then it is likely that data stored in nearby memory locations will be referenced in the near future.
Efficient algorithms for matrix factorizations, the primary concern of this paper, employ memory
access optimization techniques including loop reordering and blocking to maximize data locality. In
general, blocked factorization algorithms iteratively factor a diagonal block, then solve a triangular
system of equations to yield a column block of a lower triangular matrix or a row block of an
upper triangular matrix, and finally update the trailing sub-matrix. Blocked algorithms for matrix
factorization spend the bulk of their time updating the trailing sub-matrix, which is essentially
a matrix multiplication operation. Therefore, we begin by demonstrating the maximization of
data locality on matrix multiplication, and measuring the performance gains attributable to loop
reordering and blocking. The observations we make will inform the performance optimization of
matrix factorizations discussed in the subsequent sections of this paper.

for i = 1 : n
for j = 1 : n

for k = 1 : n
C(i, j) = C(i, j) +A(i, k)B(k, j)

end

end

end

Fig. 3.1. Inner product method for matrix multiplication, C = C + AB.

for j = 1 : n
for k = 1 : n

for i = 1 : n
C(i, j) = C(i, j) +A(i, k)B(k, j)

end

end

end

Fig. 3.2. Implementation of SAXPY operation for matrix multiplication, C = C + AB.
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for j = 1 : n : r
for k = 1 : n : r

for i = 1 : n : r
C(i : i+r− 1, j :j+r− 1) = C(i : i+r− 1, j :j+r− 1) +

A(i : i+r− 1, k :k+r− 1)B(k :k+r− 1, j :j+r− 1)
end

end

end

Fig. 3.3. Simple blocking algorithm for matrix multiplication, C = C + AB.

Consider the matrix multiplication operation C = C + AB, where A, B and C are n-by-n
matrices stored in column-major order. The simplest implementation of matrix multiplication, the
inner product method outlined in Figure 3.1, employs ijk indexing. From a data locality perspective
it is far from optimal, since the inner-most loop makes row and column accesses. The combined
scalar multiplication and vector addition method, or SAXPY2 operation, adds a scalar multiple of
a column to another column. The SAXPY operation, which employs jki indexing, achieves better
spatial data locality than the inner product method through loop reordering (Figure 3.2). Data
locality is further improved by partitioning the matrices into blocks, where block size is chosen such
that the three matrix blocks referenced in the inner-most loop can be stored in fast access cache
[10]. Figure 3.3 outlines a simple blocking algorithm for matrix multiplication in pseudocode. The
step size r of the nested loops is the dimension of the matrix blocks. Throughout this research,
unblocked and simple blocking algorithms operate on matrices stored in column-major order3.

Given n-by-n matrices A, B and C, the matrix multiplication operation C = C + AB in-
volves 2n3 floating point operations (flops). Figure 3.4 plots the performance gains achieved by
improving data locality through loop reordering and blocking. Our implementation of the SAXPY
operation produces a three-fold increase in performance over the inner product method, while our
implementation of simple blocking roughly doubles performance relative to the SAXPY operation.

To minimize the cost of communication latency across memory hierarchy levels for matrix
multiplication, sub-matrices optimally sized for different levels of the memory hierarchy should be
stored contiguously so that data reuse is maximized within each hierarchy level [3]. In order to
examine this idea, we implemented blocked algorithms that operate on data structures designed
around the memory hierarchy. One data structure, which we refer to as contiguous block storage,
stores matrix blocks sized for L2 cache contiguously. Another, which we refer to as recursive
contiguous block storage, stores matrix blocks sized for L2 cache contiguously, and within each block,
sub-blocks sized for L1 cache are stored contiguously. Throughout this research, contiguous blocking
algorithms operate on matrix blocks stored in column-major order, while recursive contiguous
blocking algorithms operate on sub-blocks stored in column-major order. Some experimentation
led us to choose a block size equal to 96-by-96 and sub-block size equal to 8-by-8 for the matrix
multiplication on the Intel machine. While our implementation of contiguous blocking marginally

2The term SAXPY comes from the BLAS single-precision routine which computes a scalar multiple of a vector
added to another vector. In this paper we use SAXPY in the generic sense to refer to the combined scalar multiplica-
tion and vector addition operation irrespective of arithmetic precision. Routines developed for this research perform
matrix computations using double-precision arithmetic.

3The C programming language stores two-dimensional arrays in row-major order. We store an n-by-n matrix A
in a one-dimensional array A[n×n] in column-major order.
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Fig. 3.4. Data locality in matrix multiplication.

outperforms simple blocking, recursive contiguous blocking4 boosts performance by more than 40%
relative to simple blocking (Figure 3.5).

Common matrix computations, such as matrix multiplication, have been standardized as Basic
Linear Algebra Subroutines (BLAS) [4] and optimized by computer manufacturers for their ma-
chines. There is a hierarchy of BLAS routines: level 1 BLAS routines, including inner product
and combined scalar multiplication and vector addition, perform O(n) flops on vectors; level 2
BLAS routines, such as matrix-vector multiplication and solving a triangular system of matrix-
vector equations, perform O(n2) flops on matrices and vectors; and level 3 BLAS routines, in-
cluding matrix multiplication and solving a triangular system of matrix equations, perform O(n3)
flops on matrices [9]. The software library LAPACK (Linear Algebra PACKage) provides routines
for solving linear systems of equations, and least squares, eigenvalue and singular value problems.
LAPACK routines implement blocked algorithms and use highly efficient level 3 BLAS to the fullest
extent possible [20]. Ultimately, our goal is to reorganize the matrix factorization algorithms that
we develop to exploit BLAS, in much the same manner that LAPACK does. Figure 3.5 compares
the performance of our implementation of blocked algorithms with that of BLAS. The level 3 BLAS
matrix multiplication routine DGEMM [4] runs at triple the speed of any of the blocked routines that
we developed.

4To control looping in the matrix multiplication kernel, which operates on sub-blocks, we use a symbolic constant.
This requires setting elements of the fringe sub-blocks that are not in the matrices to zero. Symbolic constants are
evaluated during compilation, while variables are evaluated at run time. Performance is almost halved when using
variables to control looping in the matrix multiplication kernel.
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Fig. 3.5. Blocked algorithms for matrix multiplication.

In this research we evaluate the efficiency of our implementation of basic and optimized al-
gorithms for matrix factorization by comparing their performance with that of the corresponding
LAPACK routines. In this manner we can estimate the contribution to performance of the vari-
ous performance optimization techniques. The LAPACK routines choose an optimal block size for
the local environment based on the routine and matrix leading dimension. Our implementation
of blocked algorithms uses the same block size as the corresponding LAPACK routine for a given
matrix leading dimension, unless a different block size is found to produce superior performance.

Programs measuring the performance of algorithms are compiled at -O3 optimization level,
which turns on expensive optimizations with speed-space tradeoffs [17]. Our timing experiments
find that even at an optimization level of -O1, optimizing floating point operations by hand using
techniques such as loop unrolling and software pipelining is unnecessary.

4. Cholesky Factorization. In order to solve a symmetric positive definite system of equa-
tions Ax = b in a computationally efficient manner, we make use of a numerically stable factorization
known as Cholesky factorization. If A ∈ Rn×n is symmetric positive definite, then the Cholesky
factor is the unique lower triangular matrix L ∈ Rn×n with positive diagonal entries such that
A = LLT . Given Ax = LLTx = b, x is recovered by solving the triangular systems of equations
Ly = b and LTx = y. Cholesky factorization takes 1

3n
3 +O(n2) flops, while solving the triangular

systems of equations involves O(n2) work. The numerical stability of Cholesky factorization follows

from the inequalty l2ij ≤
∑i
k=1 l

2
ik = aii, which shows that the entries of lower triangular factor L

are nicely bounded [16].
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For this research, we implemented a number of Cholesky factorization algorithms employing a
variety of performance optimization techniques. In the interests of clarity and brevity we identify
each algorithm by its function name from the source code listings in the appendix when it is
introduced in the discussion. Thereafter, we reference the algorithm by its function name.

for k = 1 : n

A(k, k) =
√
A(k, k)

for i = k + 1 : n
A(i, k) = A(i, k)/A(k, k)

end

for j = k + 1 : n
for i = j : n

A(i, j) = A(i, j)−A(i, k) ∗A(j, k)
end

end

end

Fig. 4.1. Outer product method for Cholesky factorization.

for j = 1 : n
for k = 1 : j − 1

for i = j : n
A(i, j) = A(i, j)−A(i, k) ∗A(j, k)

end

end

A(j, j) =
√
A(j, j)

for i = j + 1 : n
A(i, j) = A(i, j)/A(j, j)

end

end

Fig. 4.2. Implementation of SAXPY operation for Cholesky factorization.

We implemented two unblocked algorithms for computing the standard Cholesky factorization
of a symmetric positive definite matrix. The outer product method (chol outer product) outlined
in Figure 4.1 employs kji indexing. Each pass through the k loop subtracts the outer product of
column A(k+1 : n, k) with its transpose from the lower triangular part of the trailing sub-matrix
A(k+1:n, k+1:n). With matrix elements stored in column-major order, each pass through the k
loop accesses each row of the trailing sub-matrix, which makes for less than optimal data locality.
An implementation of the SAXPY operation (chol saxpy) in Figure 4.2, which uses jki indexing,
improves data locality through loop reordering. In this case, each pass through the j loop subtracts
a multiple (element A(j, k)) of column A(j :n, k) from column A(j :n, j) for k = 1, . . . , j−1. That
is, the inner-most loop performs a combined scalar multiplication and vector addition operation.
Because of symmetry, the Cholesky factorization algorithms need only update elements on and
below the diagonal. Both unblocked algorithms overwrite A(i, j) with L(i, j) for i ≥ j.
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In order to factor large matrices efficiently, we turn to blocked algorithms. Suppose that we
have factored the symmetric positive definite matrix A; then the factorization may be written in
block form:  A11 AT21 AT31

A21 A22 AT32
A31 A32 A33

 =

 L11

L21 L22

L31 L32 L33

 LT11 LT21 LT31
LT22 LT32

LT33

 .

We examine the block matrix operations required to factor matrix A by multiplying triangular
block matrices L and LT together, and equating terms with blocks of A. Because of symmetry we
need only consider the lower triangular blocks of A. A11

A21 A22

A31 A32 A33

 =

 L11L
T
11

L21L
T
11 A22

L31L
T
11 A32 A33

 ,

where (
A22

A32 A33

)
=

(
L21

L31

)(
LT21 LT31

)
+

(
L22

L32 L33

)(
LT22 LT32

LT33

)
.

A11 can be factored into L11L
T
11 using an unblocked Cholesky algorithm, say, chol saxpy. With L11

known, we can recover L21 and L31 by solving the triangular systems of equations L21L
T
11 = A21 and

L31L
T
11 = A31, respectively. Note that a rectangular version of an unblocked Cholesky algorithm

could factor A11 and recover L21 and L31 without directly solving triangular systems of equations.
If matrix A is stored in column-major order, the data locality of these two approaches is equivalent
and neither has a performance advantage. Then, rearranging the equation pertaining to the trailing
sub-matrix yields(

Ã22

Ã32 Ã33

)
=

(
L22

L32 L33

)(
LT22 LT32

LT33

)
=

(
A22

A32 A33

)
−
(
L21

L31

)(
LT21 LT31

)
.

Proceeding in the same manner with the trailing sub-matrix, we have(
Ã22

Ã32 Ã33

)
=

(
L22L

T
22

L32L
T
22 L32L

T
32 + L33L

T
33

)
,

where

Â33 = L33L
T
33 = Ã33 − L32L

T
32.

Again, Ã22 can be factored into L22L
T
22, and L32 can be recovered by solving the triangular system

of equations L32L
T
22 = Ã32. Finally, we factor Â33 into L33L

T
33, and we have the lower triangular

factor L of A. The blocked algorithm we have just described is a right-looking version, which
computes a column block at each step and uses it to update the trailing sub-matrix [10].

Our simple blocking algorithm (chol block), which factors a symmetric positive definite ma-
trix stored in column-major order, is a right-looking one. Figure 4.3 outlines the algorithm in
pseudocode. A crucial parameter for optimizing performance of a blocked algorithm is block di-
mension, variable r in the pseudocode listing, which specifies the step size for the outer loop. Note
that lower triangular factor L overwrites the lower triangular part of A. For ease of exposition,
the pseudocode for blocked algorithms in this paper assumes that the matrix dimension n is evenly
divisible by the block dimension r.
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factor A(1 :r, 1:r) into lower triangular block L(1 :r, 1:r)
for k = r + 1 : n : r

for i = k : n : r
solve triangular system of equations:

L(i : i+r−1, k−r :k−1)L(k−r :k−1, k−r :k−1)T = A(i : i+r−1, k−r :k−1)
end

for j = k : n : r
for i = j : n : r

update trailing sub-matrix block:
A(i : i+r−1, j :j+r−1) = A(i : i+r−1, j :j+r−1)−

L(i : i+r−1, k−r :k−1)L(j :j+r−1, k−r :k−1)T
end

end

factor A(k :k+r−1, k :k+r−1) into lower triangular block L(k :k+r−1, k :k+r−1)
end

Fig. 4.3. Cholesky factorization, simple blocking, right-looking algorithm.

In the previous section we demonstrated some principles of performance optimization using
matrix multiplication and found that recursive contiguous block storage produced a significant per-
formance improvement over simple blocking. For standard Cholesky factorization we implemented
contiguous blocking (chol contig block) and recursive contiguous blocking (chol recur block)
algorithms. In the former, elements of matrix A are copied into an array where matrix blocks sized
for L2 cache are stored contiguously, then a blocked algorithm performs Cholesky factorization on
the contiguous blocks, and finally the contiguous blocks are copied back into matrix A in column-
major order. In the latter, elements of matrix A are copied into an array where matrix blocks
sized for L2 cache are stored contiguously, and within each block, sub-blocks sized for L1 cache are
stored contiguously. Then a blocked algorithm performs Cholesky factorization on the recursive
contiguous blocks, and finally the recursive contiguous blocks are copied back into matrix A in
column-major order. Both chol contig block and chol recur block are left-looking algorithms,
which compute one column block at a time using previously computed columns [10].

Left-looking chol contig block performs the same block matrix operations as described above
for right-looking chol block, only the block matrix operations are performed in a different sequence
and matrix blocks are stored contiguously. Table 4.1 and Table 4.2 contrast the sequences of matrix
block operations for right-looking and left-looking Cholesky factorization algorithms, respectively.
Assume that the symmetric positive definite matrix A can be partitioned into 4-by-4 blocks, and
its lower triangular factor L overwrites the lower triangular part of A as the factorization proceeds.
Ljj = chol(Ajj) represents the Cholesky factorization of diagonal block Ajj ; solving the triangular
system of equations for lower triangular block Lij is represented as LijL

T
jj = Aij ; and updating

trailing sub-matrix block Aij is represented as Aij = Aij −LikLTjk. The superscript preceding each
equation enumerates the sequence of the block matrix operations.

Algorithm chol recur block adds an additional data layer and level of blocking. Sub-blocks
are stored contiguously within contiguous blocks, and the left-looking sequence of block matrix
operations enumerated in Table 4.2 is repeated for sub-blocks within each diagonal block when
performing Cholesky factorization. A left-looking sequence of sub-matrix operations also exists for
each of the other block matrix operations — triangular solve and trailing sub-matrix reduction.
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Table 4.1
Sequence of block matrix operations for right-looking Cholesky factorization algorithm.

1L11 = chol(A11)

2L21L
T
11 = A21

5A22 = A22 − L21L
T
21

11L22 = chol(A22)

3L31L
T
11 = A31

6A32 = A32 − L31L
T
21

8A33 = A33 − L31L
T
31

12L32L
T
22 = A32

14A33 = A33 − L32L
T
32

17L33 = chol(A33)

4L41L
T
11 = A41

7A42 = A42 − L41L
T
21

9A43 = A43 − L41L
T
31

10A44 = A44 − L41L
T
41

13L42L
T
22 = A42

15A43 = A43 − L42L
T
32

16A44 = A44 − L42L
T
42

18L43L
T
33 = A43

19A44 = A44 − L43L
T
43

20L44 = chol(A44)

Table 4.2
Sequence of block matrix operations for left-looking Cholesky factorization algorithm.

1L11 = chol(A11)

2L21L
T
11 = A21

5A22 = A22 − L21L
T
21

8L22 = chol(A22)

3L31L
T
11 = A31

6A32 = A32 − L31L
T
21

11A33 = A33 − L31L
T
31

9L32L
T
22 = A32

13A33 = A33 − L32L
T
32

15L33 = chol(A33)

4L41L
T
11 = A41

7A42 = A42 − L41L
T
21

12A43 = A43 − L41L
T
31

17A44 = A44 − L41L
T
41

10L42L
T
22 = A42

14A43 = A43 − L42L
T
32

18A44 = A44 − L42L
T
42

16L43L
T
33 = A43

19A44 = A44 − L43L
T
43

20L44 = chol(A44)
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Fig. 4.4. Blocking parameter for Cholesky factorization.

Figure 4.4 plots the block size chosen by LAPACK for its Cholesky factorization routine DPOTRF
[20] on the Intel machine over a range of matrix sizes. Our implementation of blocked algorithms
for Cholesky factorization uses the same block size for a given matrix leading dimension as that
chosen for DPOTRF. Figure 4.5 illustrates the performance gains attributable to the improved data
locality of chol block relative to chol saxpy achieved through blocking, and chol saxpy relative to
chol outer product achieved through loop reordering. The performance gains are not as dramatic
as we saw for matrix multiplication, but nonetheless significant — for large matrices chol saxpy

outperforms chol outer product by roughly 40%, and chol block outperforms chol saxpy by
a further 40%. The promise of performance gains through recursive contiguous block storage,
as evidenced for matrix multiplication, did not materialize with our implementation of Cholesky
factorization. With a 32-by-32 sub-block size chol recur block is 20% slower than chol block.
Perhaps at optimization level -O3 the speed-space tradeoff chosen by the compiler to optimize an
additional data layer and level of blocking is detrimental to performance. By contrast, Elmroth et
al. [11] report that on a typical RISC (Reduced Instruction Set Computer) processor, their packed
storage recursive Cholesky algorithm using BLAS is about 5% faster than full storage LAPACK
routine DPOTRF for large matrices. With respect to our implementation of contiguous block storage,
algorithm chol contig block is marginally faster than chol block for large matrices (Figure 4.6).
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Fig. 4.5. Data locality in Cholesky factorization.
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Fig. 4.8. Performance variability across hardware, compilers and libraries.
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Our implementation of blocked algorithms achieves less than one-quarter of the flop rate at-
tained by LAPACK routine DPOTRF, which is a right-looking blocked algorithm. Profile data for
chol block factoring 2000-by-2000 symmetric positive definite matrices reveal that the algorithm
spends approximately 98% of its time performing block triangular solves (18%) and trailing sub-
matrix reductions (80%). If we were to use chol saxpy to perform Cholesky factorization on
diagonal blocks, but call BLAS routines DTRSM and DSYRK [4], respectively, to perform block tri-
angular solves and trailing sub-matrix reductions, we would expect a substantial performance
boost. We identify this blocked algorithm as chol block blas. Indeed, Figure 4.7 shows that
chol block blas performs in line with LAPACK routine DPOTRF. The time to factor diagonal blocks
is the same for chol block and chol block blas — both algorithms invoke chol saxpy — but
level 3 BLAS routines DTRSM and DSYRK perform block triangular solves and trailing sub-matrix re-
ductions much more efficiently. As a consequence the proportion of time spent by chol block blas

on factoring diagonal blocks rises to 8% and the overall time to perform Cholesky factorization is
cut by more than 75%.

Finally, in Figure 4.8 we use chol block blas to demonstrate the variability in performance
across hardware, compilers and libraries.

5. Symmetric Indefinite Factorization. To solve an n-by-n symmetric, possibly indefinite,
system of equations Ax = b in a computationally efficient and numerically stable manner, we make
use of the factorization PAPT = LDLT , where A ∈ Rn×n is symmetric, L ∈ Rn×n is unit lower
triangular, D is block diagonal with block order 1 or 2, and P ∈ Rn×n is a permutation matrix
for pivoting. Given Ax = PT (LDLT )Px = b, x is recovered by solving the triangular systems of
equations Lw = Pb, Dz = w, LT y = z and Px = y. Although the cost of symmetric indefinite
factorization depends on the pivoting strategy chosen, a lower bound is provided by Cholesky
factorization, which takes 1

3n
3 + O(n2) flops. Solving the triangular systems of equations involves

O(n2) work [16].

α = (1 +
√
17)/8

λ = |ar1| = max{|a21|, . . . , |am1|}
if λ > 0

if |a11| ≥ αλ
use a11 as 1-by-1 pivot

else

σ = |apr| = max{|a1r|, . . . , |ar−1,r|, |ar+1,r|, . . . , |amr|}
if |a11|σ ≥ αλ2

use a11 as 1-by-1 pivot
else if |arr| ≥ ασ

use arr as 1-by-1 pivot
else

use

[
a11 ar1
ar1 arr

]
as 2-by-2 pivot

end

end

end

Fig. 5.1. Bunch-Kaufman (partial) pivoting algorithm.
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Numerical stability of a matrix factorization is assured when entries in the factors are nicely
bounded. For symmetric indefinite factorization, numerical stability comes at the expense of sym-
metric pivoting. We outline three pivoting strategies for symmetric indefinite factorization: Bunch-
Kaufman [6] (partial pivoting), bounded Bunch-Kaufman [2] (rook pivoting), and Bunch-Parlett [7]
(complete pivoting). Partial pivoting involves O(n2) comparisons, complete pivoting O(n3) compar-
isons, and rook pivoting between O(n2) and O(n3) comparisons. Clearly, Bunch-Kaufman pivoting
has a performance advantage over bounded Bunch-Kaufman and Bunch-Parlett, but unfortunately
it has the worst accuracy of the three.

Suppose that A is an n-by-n symmetric matrix, and at the kth step of the factorization we
have the reduced symmetric trailing sub-matrix, or Schur complement,

Ak =

 a11 · · · am1

...
. . .

...
am1 · · · amm

 where Ak ∈ R(n−k+1)×(n−k+1).

Each of the pivoting strategies compares entries of the Schur complement Ak in making its pivot
selection at the kth step.

The algorithm for Bunch-Kaufman pivoting is outlined in Figure 5.1. The parameter α bounds
the element growth of the sequence of trailing sub-matrices. With the value of α set to
(1 +

√
17)/8, the bound on trailing sub-matrix growth for a 2-by-2 pivot equals that for two con-

secutive 1-by-1 pivots, and thereby minimizes the worst case growth for any arbitrary sequence of
pivot selections. Ashcraft, Grimes and Lewis [2] show that in cases where a11 is a 1-by-1 pivot

α = (1 +
√
17)/8

λ = |ar1| = max{|a21|, . . . , |am1|}
if λ > 0

if |a11| ≥ αλ
use a11 as 1-by-1 pivot

else

i = 1
do

σ = |apr| = max{|a1r|, . . . , |ar−1,r|, |ar+1,r|, . . . , |amr|}
if |arr| ≥ ασ

use arr as 1-by-1 pivot
else if λ = σ

use

[
aii ari
ari arr

]
as 2-by-2 pivot

else

i = r
λ = σ
r = p

end

until pivot selected
end

end

Fig. 5.2. Bounded Bunch-Kaufman (rook) pivoting algorithm.
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α = (1 +
√
17)/8

ξ = maxi6=j{|aij |}
η = |ass| = maxk{|akk|}
if ξ > 0 or η > 0

if |a11| ≥ αλ
if η ≥ αξ

use ass as 1-by-1 pivot
else

use

[
aii aji
aji ajj

]
as 2-by-2 pivot

end

end

end

Fig. 5.3. Bunch-Parlett (complete) pivoting algorithm.

with |a11|σ ≥ αλ2 or

(
a11 ar1
ar1 arr

)
is a 2-by-2 pivot, there is no upper bound on the magnitude of

entries in the lower triangular factor L. In both these aberrant cases it is necessary to control the
ratio σ/λ, as defined in Figure 5.1, in order to bound the entries of L. Ashcraft, Grimes and Lewis
denote their variant of the Bunch-Kaufman algorithm as bounded Bunch-Kaufman (Figure 5.2).
The idea is to only permit the two aberrant cases when the ratio σ/λ = 1, otherwise replace a11
with arr and proceed with comparisons until a pivot is selected. The condition that σ/λ = 1
eliminates the first aberrant case, since |a11|σ ≥ αλ2 reduces to the case where |a11| ≥ αλ, and
in the second aberrant case the entries of L are nicely bounded. The bounded Bunch-Kaufman
algorithm provides the stability of complete pivoting at a cost that is potentially little more than
that of partial pivoting, and no higher than the cost of complete pivoting. Figure 5.3 outlines the
Bunch-Parlett algorithm for complete pivoting in pseudocode.

As in the previous section we identify LDLT factorization algorithms that we implemented by
their function names from the source code listings in the appendix. To identify the pivoting strategy
employed by these algorithms we use the acronyms BK, BBK and BP for Bunch-Kaufman, bounded
Bunch-Kaufman and Bunch-Parlett, respectively. So, for example, ldlt saxpy(BK) signifies our
implementation of the SAXPY operation with Bunch-Kaufman pivoting.

We implemented two unblocked algorithms for symmetric indefinite factorization: an outer
product version (ldlt outer product) which employs kji indexing; and a version of the SAXPY
operation (ldlt saxpy) which uses jki indexing. With each pass through the k loop of algorithm
ldlt outer product, pivot selection is performed on an updated trailing sub-matrix. Suppose that
a pivot has been selected and symmetric pivoting performed at the kth step, and denote the reduced
symmetric trailing sub-matrix by

PkAkP
T
k = Ãk =

(
Dk CTk
Ck Āk

)
=

(
I

CkD
−1
k I

)(
Dk

Āk − CkD−1k CTk

)(
I

CkD
−1
k I

)T
,

where either Dk is a diagonal entry, CkD
−1
k ∈ R(n−k)×1 is a column of the unit lower triangular

matrix, and Ak+1 = Āk − CkD−1k CTk ∈ R(n−k)×(n−k) is the updated trailing sub-matrix (before
pivot selection) at step k+1; or Dk is a 2-by-2 symmetric diagonal block, CkD

−1
k ∈ R(n−k−1)×2 is a

column block of the unit lower triangular matrix, and Ak+2 = Āk−CkD−1k CT ∈ R(n−k−1)×(n−k−1)
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is the updated trailing sub-matrix at step k+2. Our implementation of the outer product algorithm
is presented in Figure 5.4. It calls one of the pivoting algorithms outlined above based on the pivot
strategy passed in the argument list. The permutation matrix is encoded in the pivot vector piv[ ],
and symmetric pivoting only interchanges row and column entries on and below the diagonal.

k = 1
while k < n

perform pivot selection on A(k :n, k :n)
if k 6= piv[k]

interchange row and column k with piv[k]
end

if 1-by-1 pivot
for i = k + 1 : n

A(i, k) = A(i, k)/A(k, k)
end

for j = k + 1 : n
for i = j : n

A(i, j) = A(i, j)−A(i, k) ∗A(j, k) ∗A(k, k)
end

end

k = k + 1
else if 2-by-2 pivot

if k + 1 6= piv[k + 1]
interchange row and column (k+1) with piv[k+1]

end

compute column block of unit lower triangular matrix,
A(k+2:n, k :k+1) = A(k+2:n, k :k+1)A(k :k+1, k :k+1)−1

update trailing sub-matrix,
A(k+2:n, k+2:n) = A(k+2:n, k+2:n)−

A(k+2:n, k :k+1)A(k :k+1, k :k+1)−1A(k+2:n, k :k+1)T

k = k + 2
end

end

Fig. 5.4. Outer product method for symmetric indefinite factorization.

Now, with each pass through the j loop of algorithm ldlt saxpy, trailing sub-matrix updates
k = 1, . . . , j−1 are applied after pivot selection to column Ã(j :n, j). That is, when pivot selection is
performed at the beginning of the jth pass through the outer loop, no trailing sub-matrix updates
have been applied to Ã(j : n, j : n). Hence, trailing sub-matrix updates must be applied during
pivot selection to candidate columns before comparisons are made. Both unblocked algorithms
overwrite lower triangular entries of symmetric matrix A with unit lower triangular factor L and
block diagonal factor D.

We repeat the examination of Cholesky block matrix operations for symmetric indefinite fac-
torization to illustrate the matrix operations performed by blocked algorithms. Suppose we have
factored symmetric matrix A; then the factorization may be written in block form:

P

 A11 AT21 AT31
A21 A22 AT32
A31 A32 A33

PT =

 L11

L21 L22

L31 L32 L33

 D11

D22

D33

 LT11 LT21 LT31
LT22 LT32

LT33

 .
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Making use of symmetry we equate the lower triangular blocks of A with the product of block
matrices L, D and LT :

P

 A11

A21 A22

A31 A32 A33

PT =

 Ã11

Ã21 Ã22

Ã31 Ã32 Ã33

 =

 L11D11L
T
11

L21D11L
T
11 Ã22

L31D11L
T
11 Ã32 Ã33

 ,

where(
Ã22

Ã32 Ã33

)
=

(
L21

L31

)
D11

(
LT21 LT31

)
+

(
L22

L32 L33

)(
D22

D33

)(
LT22 LT32

LT33

)
.

A rectangular (unblocked) symmetric indefinite factorization algorithm factors Ã11 into L11D11L
T
11,

and solves for L21 and L31. Then rearranging the equation pertaining to the trailing sub-matrix
yields (

Â22

Â32 Â33

)
=

(
L22

L32 L33

)(
D22

D33

)(
LT22 LT32

LT33

)

=

(
Ã22

Ã32 Ã33

)
−
(
L21D11

L31D11

)(
LT21 LT31

)
.

Proceeding in the same manner with the trailing sub-matrix, we have(
Â22

Â32 Â33

)
=

(
L22D22L

T
22

L32D22L
T
22 L32D22L

T
32 + L33D33L

T
33

)
,

where

Ā33 = L33D33L
T
33 = Â33 − L32D32L

T
32.

Again, a rectangular (unblocked) symmetric indefinite factorization algorithm factors Â22 into
L22D22L

T
22, and recovers L32. Finally, after computing Ā33, it is factored into L33D33L

T
33, and

the symmetric indefinite factorization of matrix A is complete.
We implemented the simple blocking algorithm (ldlt block) outlined in Figure 5.5, a right-

looking algorithm that operates on matrices stored in column-major order. Variable r in the
pseudocode listing represents the blocking parameter. The following procedure is repeated for each
step r of the outer loop of ldlt block. Suppose that the factorization has progressed to the kth

column (k = ar+1, a ∈ N), and denote the Schur complement by PkAkP
T
k = Ãk =

(
Ãii ÃTji
Ãji Ãjj

)
.

Algorithm ldlt block invokes unblocked algorithm ldlt saxpy to factor r-by-r matrix block Ãii
into LiiDii and solve for (n−k− r+1)-by-r column block Lji. Then, ldlt block proceeds to

update the trailing sub-matrix by computing Âjj = Ãjj−LjiDiiL
T
ji. Before incrementing the outer

loop by r, pivot selections made during the factorization of Ãii are applied to columns 1 through
k−1 of Ã = PkAP

T
k . Entries of unit lower triangular matrix L and block diagonal matrix D
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overwrite the lower triangular entries of symmetric matrix A. Given the disappointing performance
of recursive contiguous blocking for Cholesky factorization, we did not pursue recursive contiguous
block storage, nor contiguous block storage, for symmetric indefinite factorization. In any case,
the pivoting requirement apparently precludes the development of effective left-looking blocked
algorithms [10].

factor A(1 :r, 1:r) into unit lower triangular block L(1 :r, 1:r) and block diagonal D(1 :r, 1:r)
solve for unit lower triangular column block L(r+1:n, 1:r)
for k = r + 1 : n : r

for j = k : n : r
for i = j : n : r

update trailing sub-matrix block,
A(i : i+r−1, j :j+r−1) = A(i : i+r−1, j :j+r−1)−

L(i : i+r−1, k−r :k−1)D(k−r :k−1, k−r :k−1)L(j :j+r−1, k−r :k−1)T
end

end

factor A(k :k+r −1, k :k+r−1) into unit lower triangular block L(k :k+r−1, k :k+r−1)
and block diagonal D(k :k+r−1, k :k+r−1)

solve for unit lower triangular column block L(k+r :n, k :k+r−1)
for i = k : k + r − 1

if i 6= piv[i]
interchange row vector L(i, 1:k−1) with L(piv[i], 1:k−1)

end

end

end

Fig. 5.5. Symmetric indefinite factorization, simple blocking, right-looking algorithm.

While the optimal block size chosen by LAPACK for Cholesky factorization on the Intel ma-
chine varies with matrix leading dimension, LAPACK chooses a constant block size of 64-by-64 for
symmetric indefinite factorization routine DSYTRF [20]. However, we find that algorithm ldlt block

is nearly 20% faster when using a block size of 128-by-128 rather than the optimal block size chosen
for DSYTRF. Therefore, performance data for ldlt block presented in this section were generated
with block size set to 128-by-128.

The performance improvement achieved through optimization of memory access on our im-
plementation of algorithms for symmetric indefinite factorization with Bunch-Kaufman pivoting is
illustrated in Figure 5.6. (Note that we use the lower bound on floating point operations given by
Cholesky factorization in our calculation of Mflops/sec.) Algorithm ldlt block achieves only 30%
of the flop rate attained by LAPACK routine DSYTRF, which is not inconsistent with the performance
observed for blocked algorithms implementing Cholesky factorization. One difference between the
designs of DSYTRF and ldlt block is that during the factorization of a column block of matrix A,
DSYTRF stores the product of the lower triangular column block of L and the diagonal block of D
in working storage. In terms of matrix blocks representing the Schur complement outlined above,

DSYTRF stores W =

(
Wii

Wji

)
=

(
Lii
Lji

)(
Dii

)
and updates the trailing sub-matrix by comput-

ing Âjj = Ãjj −WjiL
T
ji. Working array W is also used to compute trailing sub-matrix updates on

columns of the Schur complement during pivot selection. This design is more efficient in terms of
floating point operations, since columns of W are available after pivot selection but before solving
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for columns of the unit lower triangular factor, and hence the product of the lower triangular col-
umn block of L and the diagonal block of D need not be recomputed during the trailing sub-matrix
reduction. The use of working array W most likely explains LAPACK’s choice of constant block
size 64-by-64 for DSYTRF. When we incorporated this design feature in ldlt block and used the
block size chosen by LAPACK for DSYTRF, we found that it ran 20% slower than our implementa-
tion of ldlt block described above. So, we rolled back this potential performance enhancement to
ldlt block. For our implementation of simple blocking the cost of additional memory allocation
for the working array and its effect on data locality seems to overwhelm the saving in floating point
operations.
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Fig. 5.6. Data locality in LDLT factorization, Bunch-Kaufman pivoting.

Another difference between DSYTRF and ldlt block is the use of BLAS by DSYTRF. DSYTRF calls
level 3 BLAS routine DGEMM (matrix-matrix multiplication) and level 2 BLAS routine DGEMV (matrix-
vector multiplication) to perform trailing sub-matrix updates. In addition, it calls a number of level
1 BLAS routines (DCOPY, DSWAP, DSCAL and IDAMAX) during pivot selection, symmetric pivoting and
solving for columns of the unit lower triangular factor [4]. Clearly DSYTRF is highly efficient, due
largely to its use of BLAS, but it is not as modular as DPOTRF, LAPACK’s Cholesky factorization
routine. Unlike DPOTRF, DSYTRF does not invoke an unblocked version of symmetric indefinite
factorization to factor diagonal blocks, and level 3 BLAS routines to solve for lower triangular
column blocks and perform trailing sub-matrix updates. LAPACK does provide an unblocked
version of symmetric indefinite factorization, routine DSYTF2, which uses the outer product method.
However, with its use of working array W , DSYTRF only invokes DSYTF2 to factor the last diagonal
block. Hence, our task of calling BLAS routines to perform most of the work in our blocked
algorithm for symmetric indefinite factorization is not as straightforward as it was for Cholesky
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factorization. When we selectively replaced code loops of ldlt block with BLAS routines DGEMM

and DGEMV and set block size to 128-by-128, this version of simple blocking reached 75% of the flop
rate attained by DSYTRF. Alternatively, if we incorporate working array W to store the product of
the lower triangular column block of L and the diagonal block of D, and replace code loops with
DGEMM and DGEMV, this blocked algorithm (ldlt block blas) achieves 80% of the flop rate attained
by DSYTRF (Figure 5.7). We set block size to 64-by-64 for ldlt block blas, consistent with the
block size chosen for DSYTRF, but found no deterioration in performance using a block size of 128-
by-128. Finally, we remark that invoking the aforementioned level 1 BLAS routines in addition to
DGEMM and DGEMV makes no real discernible difference to the performance of ldlt block blas.
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Fig. 5.7. Blocked algorithms for LDLT factorization, Bunch-Kaufman pivoting.

Profile data for ldlt block(BK) and ldlt block blas(BK) affirms that the superior perfor-
mance of the latter is attributable to the use of BLAS. Profiling indicates that while factoring a
2000-by-2000 randomly generated symmetric matrix A, ldlt block(BK) spends 89% of its time
performing trailing sub-matrix updates, 6% pivoting, and 5% factoring column blocks of A into
diagonal blocks of D and unit lower triangular blocks of L. By comparison, ldlt block blas(BK)

spends 79% of its time performing trailing sub-matrix updates, 13% pivoting, and 8% factoring col-
umn blocks of A. Algorithm ldlt block blas(BK) cuts the overall time for LDLT factorization by
70% relative to ldlt block(BK). Profile data looks much the same with bounded Bunch-Kaufman
pivoting.

Figure 5.8 plots the number of symmetric pivots (row and column interchanges) for a sam-
ple of randomly generated 2000-by-2000 symmetric matrices, starting with a positive definite one
and progressively increasing the degree of indefiniteness of each matrix, as proxied by the num-
ber of Bunch-Kaufman pivots. Note that the sample of randomly generated symmetric matrices
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was selected such that the number of Bunch-Kaufman pivots occurs at regular intervals. For the
same matrix, the number of row and column interchanges introduced by bounded Bunch-Kaufman
pivoting averages one and one-half times that made by Bunch-Kaufman pivoting — the cost of en-
suring numerical stability. Complete pivoting performs comparisons across all entries in the trailing
sub-matrix, so the number of row and column interchanges for Bunch-Parlett pivoting hovers near
the matrix dimension irrespective of the degree of indefiniteness. Also, we remark that the charts
above, which plot performance for a range of matrix dimensions, do so for randomly generated sym-
metric matrices whose degree of indefiniteness, or ratio of number of symmetric pivots to matrix
dimension, is near the top end of Figure 5.8.
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Intuitively, we expect that LDLT factorization of a symmetric positive definite matrix would
be faster than LDLT factorization of a symmetric indefinite matrix of the same dimension, with
the difference in speed a function of the amount of symmetric pivoting. Curiously enough, on our
simple blocking algorithm ldlt block we observe the inverse relationship — the time to factor
symmetric positive definite matrices is longer. It turns out that the inner-most loop executed by
the function that updates the trailing sub-matrix depends on whether the diagonal block of D
referenced in the computation is 1-by-1 or 2-by-2. For each 1-by-1 diagonal block, a multiple of a
column of L is subtracted from a column of the trailing sub-matrix, where the multiple is a product
of two local variables corresponding to the diagonal element and an element of LT . For each 2-by-2
diagonal block, multiples of two adjacent columns of L are subtracted from a column of the trailing
sub-matrix, where the multiples are some linear combination of five local variables corresponding
to the three elements of the (symmetric) diagonal block and two adjacent elements of a column of
LT . With each pass through the 2-by-2 diagonal block more floating point operations are executed
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than for every two passes through 1-by-1 diagonal blocks, and in the context of LDLT factorization
of a 2000-by-2000 randomly generated symmetric indefinite matrix (D is block diagonal with block
order 1 or 2), the total number of floating point operations is a fraction of one percent higher
than that for LDLT factorization of a symmetric positive definite matrix (D is diagonal) of the
same dimension. However, with more local variables in the inner-most loop that processes 2-by-2
diagonal blocks, the compiler is able to better exploit on-chip parallelism through optimization
of floating point operations, and as a consequence LDLT factorization of a symmetric indefinite
matrix is faster than that of a symmetric positive definite one of the same dimension.
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Fig. 5.9. Cost of Bunch-Kaufman pivoting with increasing indefiniteness, LDLT factorization.

In Figure 5.9 the relationship between the time to perform LDLT factorization of 2000-by-2000
symmetric matrices and the number of symmetric pivots, as a proxy for degree of indefiniteness,
exhibits the anticipated positive gradient for algorithm ldlt block blas and LAPACK routine
DSYTRF. It also plots a point on the vertical axis representing the time to perform Cholesky factoriza-
tion on the symmetric positive definite matrix using LAPACK routine DPOTRF. For a 2000-by-2000
symmetric positive definite matrix there is a 18% premium on the cost of computing the LDLT

factorization using DSYTRF over the cost of computing its Cholesky factorization. The performance
advantage of DPOTRF can probably be attributed to its use of level 3 BLAS routines DTRSM and
DSYRK to solve for a column block of the lower triangular factor and update the trailing sub-matrix,
respectively. As the degree of indefiniteness of the sample symmetric matrices increases, the time
to perform LDLT factorization using DSYTRF rises modestly, adding a further 7% to the cost of
factoring the symmetric positive definite matrix.
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Fig. 5.10. Cost of symmetric pivoting, blocked algorithm using BLAS.

Figure 5.10 plots the time to perform LDLT factorization using ldlt block blas(BK) and
ldlt block blas(BBK) against the number of row and column interchanges for Bunch-Kaufman and
bounded Bunch-Kaufman pivoting, respectively. For a given symmetric matrix, bounded Bunch-
Kaufman pivoting introduces at least as many row and column interchanges as Bunch-Kaufman
pivoting, and for the sample 2000-by-2000 symmetric matrices the ratio averages 3 :2 (Figure 5.8).
Since complete pivoting performs comparisons across all entries in the trailing sub-matrix, Bunch-
Parlett pivoting is only an option for the LDLT outer product method. Furthermore, when updating
the trailing sub-matrix even blocked algorithms are limited to an outer product operation on column
vectors (1-by-1 pivots) or multiplying column blocks of order 2 (2-by-2 pivots). As such, LDLT

factorization with Bunch-Parlett pivoting is an order of magnitude slower — taking approximately
9 seconds on 2000-by-2000 symmetric matrices — than LDLT factorization with either Bunch-
Kaufman or bounded Bunch-Kaufman pivoting. In Figure 5.11 we compare the performance of
algorithm ldlt block blas employing partial (Bunch-Kaufman), rook (bounded Bunch-Kaufman)
and complete (Bunch-Parlett) pivoting. For large randomly generated symmetric matrices, em-
ploying bounded Bunch-Kaufman pivoting in lieu of Bunch-Kaufman pivoting adds approximately
11% to the cost of symmetric indefinite factorization.

Both Figure 5.10 and Figure 5.11 provide measures of performance of LDLT factorization com-
paring Bunch-Kaufman pivoting with bounded Bunch-Kaufman pivoting, while Figure 5.8 compares
the number of row and column interchanges introduced by the respective pivoting strategies for sam-
ple symmetric matrices of varying degrees of indefiniteness. It would be interesting to have some
measure of efficiency for these pivoting algorithms, which would require an estimate of extra work
done or duplicate computations performed by them. Pivot comparisons are performed on updated
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columns of the trailing sub-matrix, and the SAXPY operation underlying the blocked algorithms
only applies trailing sub-matrix updates (associated with columns 1 through j − 1) to column j
when the outer-loop processes column j. That is, in a manner analogous to the code outlined in
Figure 4.2, it computes A(j : n, j) = A(j : n, j) − L(j : n, 1 : j−1)D(1 : j−1, 1 : j−1)L(j, 1 : j−1)T .
If, for example, the current column is j, then ldlt saxpy(BK) applies trailing sub-matrix updates
associated with columns 1 through j−1 to column j. Furthermore, suppose that column j satisfies
the condition requiring pivot comparisons with elements of column r. Then trailing sub-matrix
updates associated with columns 1 through j−1 are also applied to column r. Now, if a 1-by-1
pivot is selected, only trailing sub-matrix updates applied to the column corresponding to the se-
lected pivot are retained; trailing sub-matrix updates applied to the column corresponding to the
discarded pivot are recomputed when pivot comparisons are next made on that column. In this
case one column of trailing sub-matrix updates is considered a duplicate computation, or extra
work performed by the algorithm. We find that for the sample 2000-by-2000 symmetric matrices
the duplicate computation of trailing sub-matrix updates on columns as a proportion of the num-
ber of row and column interchanges averages 0.9 for Bunch-Kaufman pivoting and 1.1 for bounded
Bunch-Kaufman pivoting. Coupled with the observation that the ratio of bounded Bunch-Kaufman
pivots to Bunch-Kaufman pivots averages 3:2, this estimate of extra work performed suggests that
the cost of bounded Bunch-Kaufman pivoting is much nearer O(n2) than O(n3), or little more than
the cost of partial pivoting.
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6. Modified Cholesky Algorithms. Given a symmetric, possibly indefinite, n-by-n matrix
A, modified Cholesky algorithms find a matrix Â = A+E, where Â is sufficiently positive definite
and reasonably well-conditioned, while preserving as much as possible the information of A. Fang
and O’Leary catalog modified Cholesky algorithms and analyze the asymptotic cost of the different
approaches [13]. Their research evaluates how close these different approaches come to achieving
the goal of keeping the cost of the algorithm to a small multiple of n2 higher than that of standard
Cholesky factorization, which takes 1

3n
3 +O(n2) flops.

Fang and O’Leary analyze three factorizations of a symmetric matrix A:
1. PAPT = LDLT , where D is diagonal, L is unit lower triangular and P is a permutation

matrix for symmetric pivoting.
2. PAPT = LBLT , where B is block diagonal with block order 1 or 2.
3. PAPT = LTLT = L(P̃T L̃B̃L̃T P̃ )LT , where T is tridiagonal with off-diagonal elements in

the first column all zero, and P̃ T P̃T = L̃B̃L̃T is the LBLT factorization of T .
Existing modified Cholesky algorithms typically use either the LDLT or LBLT factorization. Fang
and O’Leary propose a new modified Cholesky algorithm, which uses a sandwiched LTLT -LBLT

factorization and modifies a computed factorization. Aasen introduced an algorithm for reducing
an n-by-n symmetric matrix to tridiagonal form, which involves 1

3n
3 + O(n2) flops and exhibits

numerical stability comparable to that of Gaussian elimination with partial pivoting [1]. Fang
and O’Leary show that the LBLT factorization of a symmetric tridiagonal matrix remains sparse,
and the cost of symmetric pivoting is no more than O(n2), since pivot selection requires at most

3k comparisons for a k-by-k Schur complement [12]. Finally, the computed L(P̃T L̃B̃L̃T P̃ )LT

factorization is modified using the method proposed by Cheng and Higham [8]. This new approach
to modified Cholesky factorization achieves the objective of keeping the cost of the algorithm to a
small multiple of n2 higher than that of standard Cholesky factorization.

This paper analyzes the performance of modified Cholesky algorithms based on the more typical
LDLT and LBLT factorizations. In particular, we consider the modified LDLT algorithm proposed
by Gill, Murray and Wright [14], and the modified LBLT algorithm proposed by Cheng and Higham
[8]. Note that the discussion of the previous section on symmetric indefinite factorization is referred
to here as LBLT factorization, consistent with the notation used by Fang and O’Leary [13].

The Gill-Murray-Wright algorithm modifies the matrixA as the factorization proceeds. Suppose
pivot selection and symmetric pivoting have been performed at the kth step of the LDLT factoriza-

tion of an n-by-n symmetric positive definite matrix Â = A+E. Let PkÂkP
T
k = Ãk =

(
ak cTk
ck Āk

)
be the Schur complement, where ak ∈ R, ck ∈ R(n−k)×1 and Āk ∈ R(n−k)×(n−k). Note that if Â is
positive definite, so are PkÂkP

T
k and its principal sub-matrices, and all diagonal entries are positive.

So, âk = ak + δk > 0. The Gill-Murray-Wright algorithm sets

âk = max

{
δ, |ak|,

‖ck‖2∞
β2

}
where δ = εM (machine epsilon), ‖ck‖∞ = maxk<j≤n |akj |, β2 = max

{
η, ξ√

n2−1 , εM

}
, and η and ξ

are the maximum magnitude of the diagonal and off-diagonal elements of A, respectively. Then,

D(k, k) = âk, L(k+1:n, k) =
ck
âk
, and Âk+1 = Āk −

ckc
T
k

âk
.
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To ensure numerical stability, the Gill-Murray-Wright algorithm pivots on the maximum mag-
nitude diagonal element. That is, at the kth step, rows and columns are symmetrically interchanged
such that |ak| ≥ |Âk(j, j)| for j = 1, . . . , n−k+1. The cost of this form of partial pivoting is O(n2).

Any symmetric positive definite matrix has an LDLT factorization, where the diagonal elements
of D are positive. The Gill-Murray-Wright algorithm, which modifies the matrix A as the factoriza-
tion proceeds, factors a symmetric positive definite matrix Â = A+E, such that PÂPT = LDLT .
For symmetric matrices, in general, an LDLT factorization may fail to exist, but any symmetric
matrix has an LBLT factorization. Therefore, modified Cholesky algorithms that modify a com-
puted factorization, including the Cheng-Higham algorithm, use the LBLT factorization.

The Cheng-Higham algorithm first computes PAPT = LBLT , and then perturbs B such that
PÂPT = P (A + E)PT = L(B + ∆B)LT = LB̂LT and Â = A + E is symmetric positive definite.
Given an LBLT factorization ofA, the Cheng-Higham algorithm modifies each 1-by-1 diagonal block
d in B to be d̂ = max{δ, d}. For each 2-by-2 diagonal block D in B, the algorithm calculates its

spectral decomposition D = U

(
λ1

λ2

)
UT , sets λ̂k = max{δ, λk} for k = 1, 2, and computes

D̂ = U

(
λ̂1

λ̂2

)
UT . The parameter δ =

√
εM/2‖A‖∞ is the preset modification tolerance,

where ‖A‖∞ = max1≤i≤n

{∑n
j=1 |aij |

}
= max1≤j≤n

{∑n
i=1 |aij |

}
for a symmetric matrix.
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Fig. 6.1. Data locality in modified Cholesky, Gill-Murray-Wright algorithm.
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We have seen that Cholesky factorization, which provides a lower bound on modified Cholesky
factorization, involves 1

3n
3+O(n2) flops, and symmetric pivoting involves between O(n2) and O(n3)

flops. More specifically, the cost of partial pivoting isO(n2) flops, complete pivotingO(n3) flops, and
rook pivoting between O(n2) and O(n3) flops. The Gill-Murray-Wright algorithm employs partial
pivoting, while our implementation of the Cheng-Higham algorithm employs either Bunch-Kaufman
(partial) or bounded Bunch-Kaufman (rook) pivoting. In the previous section we estimated that
the cost of bounded Bunch-Kaufman pivoting is little more than the cost of partial pivoting. Given
that both the Gill-Murray-Wright and Cheng-Higham modifications to the symmetric indefinite
factorization involve a small multiple of n2 flops, we expect variations in performance between
modified Cholesky algorithms to be largely explained by the pivoting strategy employed.

Here, we adopt the same naming convention as used in earlier sections of this paper to reference
modified Cholesky algorithms. Since the Cheng-Higham algorithm modifies a computed symmetric
indefinite factorization, our implementation of the outer product method (chol ch outer product),
SAXPY operation (chol ch saxpy), simple blocking (chol ch block) and blocked routine using
BLAS (chol ch block blas) invoke the respective symmetric indefinite factorization algorithms
discussed in the previous section. On the other hand, the Gill-Murray-Wright algorithm modifies
the symmetric matrix as the factorization proceeds, so we developed separate and distinct routines:
outer product method (chol gmw outer product), SAXPY operation (chol gmw saxpy), simple
blocking (chol gmw block) and blocked routine using BLAS (chol gmw block blas).

Firstly, to complete the data locality picture, Figure 6.1 plots the effect of loop reordering
(chol gmw saxpy) and blocking (chol gmw block) on performance for the Gill-Murray-Wright al-
gorithm.

400

600

800

1000

1200

1400

1600

1800

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

P
er

fo
rm

an
ce

(M
fl

o
p
s/

se
c)

Matrix dimension, n-by-n

chol ch block(BK)

chol ch block(BBK)

ldlt block(BK)

ldlt block(BBK)

Fig. 6.2. Cost of modifying LDLT factorization, simple blocking.

29



0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

P
er

fo
rm

an
ce

(M
fl

op
s/

se
c)

Matrix dimension, n-by-n

chol ch block blas(BK)

chol ch block blas(BBK)

ldlt block blas(BK)

ldlt block blas(BBK)

Fig. 6.3. Cost of modifying LDLT factorization, blocked routines using BLAS.
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One way to measure the cost of modifying a symmetric indefinite factorization is to compare
the performance of modified Cholesky algorithms with the corresponding algorithms implementing
symmetric indefinite factorization. Figure 6.2 plots the performance of our implementation of simple
blocking for the Cheng-Higham algorithm and symmetric indefinite factorization, each employing
Bunch-Kaufman and bounded Bunch-Kaufman pivoting. Figure 6.3 makes the same performance
comparisons for our blocked routines using BLAS. Both charts reveal that the incremental cost
of modifying the symmetric indefinite factorization is small relative to the difference in cost be-
tween Bunch-Kaufman and bounded Bunch-Kaufman pivoting. Consistent with this observation,
Figure 6.4 shows that modified Cholesky algorithms employing partial pivoting perform in line
with one another (chol gmw block blas and chol ch block blas(BK)), while modified Cholesky
factorization with rook pivoting (chol ch block blas(BBK)) is more expensive.
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Figure 6.5 contrasts the number of symmetric pivots (row and column interchanges) introduced
by the Gill-Murray-Wright algorithm with that made by Bunch-Kaufman and bounded Bunch-
Kaufman pivoting for a sample of randomly generated 2000-by-2000 symmetric matrices of varying
degrees of indefiniteness. (This is the same sample of matrices used in the analysis of symmetric
indefinite factorization, where the degree of indefiniteness is proxied by the number of Bunch-
Kaufman pivots.) Since the Gill-Murray-Wright algorithm pivots on the maximum magnitude
diagonal element, the number of row and column interchanges hovers near the matrix dimension
irrespective of the degree of indefiniteness, not unlike Bunch-Parlett pivoting. Note that the charts
above, which plot performance for a range of matrix dimensions, do so for randomly generated
symmetric matrices whose degree of indefiniteness, or ratio of number of symmetric pivots to matrix
dimension, is near the top end of Figure 6.5.
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Fig. 6.6. Cost of modifying LDLT factorization with increasing degree of indefiniteness.
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In Figure 6.6 we provide an alternate measure (runtime) of the cost associated with modifying
the symmetric indefinite factorization. For the sample of symmetric matrices, the incremental
cost of the Cheng-Higham algorithm employing Bunch-Kaufman and bounded Bunch-Kaufman
pivoting over the corresponding symmetric indefinite factorization algorithms is fairly constant
across the spectrum of indefiniteness. We can explain the observed performance by remarking
that the computation of the preset modification tolerance by the Cheng-Higham algorithm involves
O(n2) flops, while its modification of 1-by-1 and 2-by-2 diagonal blocks takes only O(n) flops.

The time for algorithms chol ch block blas(BK) and chol ch block blas(BBK) to perform
modified Cholesky factorization on the sample of symmetric matrices of varying degrees of indef-
initeness tracks that of ldlt block blas(BK) and ldlt block blas(BBK), respectively — time
increases as the number of symmetric pivots rises, and for Bunch-Kaufman and bounded Bunch-
Kaufman pivoting the number of symmetric pivots rises with increasing degree of indefiniteness.
As illustrated in Figure 6.5, the number of symmetric pivots for the Gill-Murray-Wright algorithm
approaches the dimension of the matrix irrespective of the degree of indefiniteness, so the time for
chol gmw block blas to perform modified Cholesky factorization does not depend on the degree
of indefiniteness of the symmetric matrix (Figure 6.7).

7. Parallel Programming. This paper evaluates techniques for optimizing the performance
of serial algorithms implementing Cholesky factorization, symmetric indefinite factorization and
modified Cholesky factorization. A natural extension of this research would develop parallel algo-
rithms for these matrix factorizations, and measure their speedup and efficiency.

Speedup is the ratio of the runtime of the fastest serial algorithm to the runtime of a parallel
version of the algorithm run on p parallel processes, Sp = Tσ/Tπ. Amdahl’s Law states that the
speedup of a parallel program is limited by the serial fraction of the program. Let s be the serial
fraction of the program, where 0 ≤ s ≤ 1, then

Sp =
p

(p− 1)s+ 1
, and Sp →

1

s
as p→∞,

providing an upper bound on speedup. However, for many problems the serial fraction of the
program decreases as the problem size increases, leading to scalability. Efficiency is the ratio of the
runtime, or work done, by the serial program to the sum of the runtimes of p processes of the parallel
program solving the same problem. Interprocess communication, idle time and extra computation
are the main sources of overhead — extra work done by the parallel program over the serial program
— which determines the efficiency of a parallel program. Linear speedup, Sp = p, implies a perfectly
parallelized program with 100% efficiency. Returning to the concept of scalability, a parallel program
is scalable if it is possible to maintain a level of efficiency by increasing the number processes with
problem size [22].

As a demonstration of these ideas we implemented Fox’s algorithm for parallel matrix multi-
plication using the Message-Passing Interface (MPI) library [22, 19]. On 10000-by-10000 matrices
using 25 processors, Fox’s algorithm achieves a speedup of 21.7 with 83% efficiency relative to
the (serial) simple blocking algorithm — on each processor matrix blocks are multiplied using the
simple blocking algorithm (Figure 7.1).

Finally, we note that ScaLAPACK is a library of functions for solving linear algebra problems
on distributed-memory systems, and it has an implementation that uses MPI for its communication.
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8. Conclusion. In this paper we measure and compare the performance of algorithms imple-
menting Cholesky factorization, symmetric indefinite factorization, and modified Cholesky factor-
ization (Gill-Murray-Wright and Cheng-Higham algorithms). For each of these matrix factorizations
we developed routines that implement a variety of performance optimizations techniques including
loop reordering, blocking and the use of tuned BLAS. We summarize observations made from the
performance data generated by our timing experiments.

• High performance is achieved by maximizing data locality. For unblocked algorithms the
SAXPY operation improves data locality relative to that of the outer product method
through loop reordering. Data locality is further improved by partitioning matrices into
blocks where matrix blocks are stored in fast access cache. For the matrix factorizations
analyzed in this paper, the SAXPY operation outperforms the outer product method, and
simple blocking outperforms the SAXPY operation. The promise of performance gains
through recursive contiguous block storage did not materialize for our implementation of
Cholesky factorization, so we did not pursue these techniques for symmetric indefinite and
modified Cholesky factorizations.

• Reorganizing blocked algorithms to make use of tuned BLAS, and in particular level 3
BLAS, to the fullest extent possible produces the highest performance.

• Cholesky factorization is more efficient than LDLT factorization of a symmetric positive
definite matrix, primarily due to the greater use of level 3 BLAS by the Cholesky algorithm.
We estimate the cost premium for LDLT factorization of a symmetric positive definite
matrix at 18% over the cost of its Cholesky factorization. As the degree of indefiniteness
increases from symmetric positive definite to random symmetric we estimate that the cost
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of LDLT factorization with Bunch-Kaufman pivoting increases by a further 7% due to the
increasing number of row and column interchanges.

• For a given degree of indefiniteness the ratio of bounded Bunch-Kaufman pivots to Bunch-
Kaufman pivots averages 3:2. Coupled with estimates of duplicate computations associated
with trailing sub-matrix updates applied to columns during pivot selection, we contend
that bounded Bunch-Kaufman provides the numerical stability of complete pivoting at
little more than the cost of partial pivoting. Employing bounded Bunch-Kaufman (rook)
pivoting in lieu of Bunch-Kaufman (partial) pivoting adds approximately 11% to the cost
of symmetric indefinite factorization.

• The cost of modifying a symmetric indefinite factorization is a small multiple of n2 flops, so
variations in performance between modified Cholesky algorithms is largely explained by the
pivoting strategy employed. For randomly generated symmetric matrices, the Gill-Murray-
Wright algorithm with partial pivoting and the Cheng-Higham algorithm with Bunch-
Kaufman pivoting perform in line with one another, while the Cheng-Higham algorithm
with bounded Bunch-Kaufman pivoting is more expensive.

• For the Cheng-Higham algorithm with either Bunch-Kaufman or bounded Bunch-Kaufman
pivoting, the time to perform modified Cholesky factorization increases with increasing
degree of indefiniteness of the symmetric matrix, since the number of symmetric pivots rises
with increasing degree of indefiniteness. By contrast, the Gill-Murray-Wright algorithm
pivots on the maximum magnitude diagonal element, so the number of symmetric pivots
hovers near the matrix dimension irrespective of the degree of indefiniteness. Hence the
time it takes to perform modified Cholesky factorization does not depend on the degree of
indefiniteness of the symmetric matrix.

In conclusion, we remark that there are possibilities for continuing or extending this research
effort. Section 6 introduced the modified Cholesky algorithm proposed by Fang and O’Leary, which
uses a sandwiched LTLT -LBLT factorization that performs pivot selection on a (sparse) symmetric
tridiagonal matrix. So, one possibility for future research is to develop basic and optimized versions
of the Fang-O’Leary algorithm and compare their performance with that of the Gill-Murray-Wright
and Cheng-Higham algorithms, which perform pivot selection on dense symmetric matrices. An-
other possibility, as discussed in the previous section, is to develop parallel algorithms for standard
Cholesky, symmetric indefinite and modified Cholesky factorizations, and measure their speedup
and efficiency. Presently, LAPACK provides unblocked and blocked routines for symmetric indef-
inite factorization, which only employ Bunch-Kaufman pivoting. As a final suggestion for future
work, we propose enhancing LAPACK to provide the capability for symmetric indefinite factoriza-
tion with bounded Bunch-Kaufman pivoting.
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