A Truss Problem

A typical task in structural engineering is to design a bridge to be strong
enough to withstand a certain load. Consider the following plane truss,
which is a set of metal bars connected by frictionless pin joints. The symbol
at the left end of the truss indicates that it is fixed at that end, while the
symbol at the right end indicates that the truss is free to move horizontally,
but not vertically. The three arrows pointing down represent loads on the
truss. These loads are 10 tons, 15 tons, and 10 tons respectively. The same
picture appears in Ex 2.3 of the text, although the notation and loads are
slightly different.

A C E

G
2 6 10 13
oy By D Fy D

10 Tons 15 Tons 10 Tons

The problem is to solve a certain linear system of equations for the internal
forces in the bars. A positive internal force indicates that the bar is being
extended (pulled apart a little), by the load, while a negative internal force
indicates that the bar is being compressed. It is assumed that, as long as
the internal forces are not too big, bars will not be stretched or compressed
more than a tiny amount: thus the structure does not collapse, but remains
in equilibrium. By computing the internal forces, an engineer has more
information as to whether the truss is indeed strong enough to withstand
the load.

There are two linear equations for each internal joint in the truss, repre-
senting forces in the horizontal and vertical direction which must balance at
the joints. Let us denote the internal forces by x1, xo, ..., x13, correspond-
ing to the numbers on the bars in the illustration. The balancing of forces
at joint C in the horizontal direction gives the equation

T4 = I8
while the balancing of forces at joint C in the vertical direction gives simply

IL’7:0.

The balancing of forces at joint B in the horizontal direction gives
To = Xg

while the vertical direction at joint B gives
z3 = 10.

The “10” comes from the 10 ton vertical load at joint B. The balancing
of forces at joint A is a little more complicated, since it involves two bars
oriented at an angle of 45 degrees as well as a horizontal and a vertical bar.
Let o = cos(mw/4) = sin(r/4) = v/2/2. Then the balancing of horizontal
forces at joint A gives the equation

ary = T4 + axs
and the balancing of vertical forces at joint A gives
ary + T3 + axs = 0.

There are also horizontal and vertical force equations at joints D, E and F
which can be derived using the same ideas. These amount to 12 equations
altogether. The 13th equation comes from the right end point G: since this
end point is free to move horizontally, but not vertically, there is just one
force equation, balancing the forces horizontally:

r13 + ax1o = 0.

Thus, we have a total of 13 linear equations defining the 13 internal force
variables. These equations are written out in detail in the text. Set up this
system of equations and solve it any way you like; this is very easy to do in
Matlab using x=A\b.

Then generalize this set of equations by writing a function that sets up
the system of equations for a variable-sized truss, with k sections exactly like
the section ABCDEF instead of one, where k is an input parameter to the
function. The function should return the matrix A and vector b defining
the system of equations for a variable-sized truss. This will require some
careful thought. Start by sketching the larger truss on paper and carefully
writing down the relevant equations systematically; working together with a
classmate for this part may be quite helpful and is permitted as long as it is
documented that you worked together. Make sure you number the variables
in the appropriate order, so that you recover your original answer when
k = 1. The load is a vector whose length depends on k (what is it?) and

should be provided to the function as a second input parameter. Make sure
you include plenty of comments explaining the code. Test your function,
solving the system of equations that it sets up for small k£ (including k£ = 1)
and carefully look at the output to see if it makes sense before going on to
the next part.

1. Solving the system: Solve the system using a load vector that in-
creases regularly like this from left to right: 10,20, 30,.... Print the
computed internal force vector z for k& = 10 (as numbers, you don’t
need to plot these values).

2. Sparsity: Graphically display the positions of the nonzero entries in
the matrix A for k = 10; this is easy in Matlab using spy. Do the same
for A=t (the inverse of A), and for the L and U factors obtained, in
Matlab, by inv(A) and [L,U,P] = 1u(A) respectively. By looking at
the permutation matrix P you can see whether pivoting occurs in the
LU factorization; does it? How sparse are A~!, L and U, compared
with the sparsity of A?

3. Timing Comparsion: Experiment with how long it takes to solve
the system of equations for k£ that is large enough that timing com-
parisons are meaningful (in Matlab you can use cputime). Compare
the following:

e direct solve of Az = b without any sparse matrix techniques (in
Matlab, by x=A\b).

e getting x by first computing A~ and multiplying it onto b

e getting x by first computing the L and U factors and permutation
P and then solving two triangular systems (you can use \ for this;
the triangular structure is discovered and exploited). Don’t forget
to apply the permutation to b first, unless it is built into L (this is
done, for example, if you use [L,U] = 1u(A) in Matlab). (This is
exactly what is going on behind the scenes when you type x=A\b.)

e the same 3 again, but with your function modified so that A
is stored using a sparse data structure where the zeros are not
explicitly stored (very easy in Matlab: type help sparse). This
allows handling much larger k£ than is otherwise possible.

Can you conclude anything about the running times as a function of
k: are they something like O(k), O(k?), O(k?) or what? Summarize
your results concisely, ideally using graphical output; do not turn in
pages of supporting output.

