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Systems Biology

* Introduction to Biology
e Regulatory & Metabolic Processe
e Algebraic Models in Biology

Made by A-PDF PPT2PDF



Symbolic Computation
Algebraic Biology 11

Bud Mishra
Courant Inst, NYU
NYU SoM, TIFR, MSSM

Made by A-PDF PPT2PDF



Model Checking

e Temporal Logic

e Kripke Models

* Model Checking

* Biologically Faithful Models
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Semi-Algebraic Geometry

¢ Real Closed Field

e Tarski Algebra

* Decision Theories

e Hybrid Models

e Algorithmic Algebraic Model
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Hybrid Systems

e Hybrid Models

e Algorithmic Algebraic Models & Model
Checking

e O-minimal Systems & SaCoRe

e [IDA

e Open Problems
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Desideratum

» We would like to answer questions like the
following?

— Given a description of a biological system as a
(discrete+continuous) automaton (with some of
the systems parameters known, but many
unknown: ¢, ¢, ...) and a temporal logic formula

D...

— Are there specific relations among the unknowns
that must be satisfied for @ to be true
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Biology

¢ Can we determine relations among the
unknowns, C, to determine various
properties of the biological system? E.g .,
Vol(C ) ==z robustnss? Reachable( C) M
BadState?

e Invariants: For realistic values in C,what
other properties 't hold true?

¢ Distinction: Given a wildtype, W and a
mutant, M, are there properties 'ty true for
mutant but false for wildtype?
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Biological Regulatory Networks
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1. Genetic Regulation

CELL MIPLLELS:

e Players: DNA, RNA,
Proteins

* rocesses: Transcription,
Translation

e Other factors: promoters,
repressors, transcription
factors, splicing...
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2. Signal Transduction

* Players: Receptors, Ligands,
Second Messengers,
Transcription factors. ..

... *® Processes: Binding of

" signaling molecule with

receptor; ... Modification of

structure of receptor ;

... Dispatching of second

messengers; ... Entry into

nucleus and gene
regulation

.......
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3. Metabolic Pathways

¢ Carbohvdrate
i - - S
Metabolism: s oo B PO

Glycolysis, Ghoatle (g TEEV e E.;“;_";f“' Hﬂ__
Phosphate... o h:'#xx Mo
— - e s A |.n:“: L SN P il Tt
* Lipid Metabolism: s N\ = a0
= = LT &GP Ry — ~ Fnslf
Triacyl Glycerol, borts St g 98 :
: = ; L SR gy A
Fatty Acids. .. L e AL
* Amino Acid ol
Metabolism: % Gt g
Glutamate, Urea. .. G
* Energy Metabolism: T
ATP, | Cott Membrane
Ityrici et Pk
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Details: Transcription Initiation
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¢ Typically, TFs (Transcription

Factors) do not bind singly, but in
complexes:

Once bound to the DNA, TF
complex allows RNA polymerase
(RNAP) to bind to the DNA
upstream ot the coding region.
RNAP forms a transcriptional
complex that separates the two
strands of DNA, thus forming an
open complex, and transcribes the
coding region into mRNA.



Model of transcription

A = conentration of 2 TF tI'aI‘lSCI‘iptiﬂI"l I = concentration of an mEMNA
|| X x, v} _l-

« v = Cooperativity coefficient

* « = Concentration of a at which transcription of m
is “half-maximally” activated.

e dp/dt=®>D(a K, v)=V aY/[K'+aY]

e A graph of function @ = Sigmoid Function

o [f v =1 then, the transcription activation function
resembles the classical Michaelis-Menten.

Made by A-PDF PPT2PDF



Regulatory Networks

o All cells in an organism have the same
genomic data, but the proteins synthesized in
each vary according to cell type, time and
environmental factors

e There are network of interactions among
various biochemical entities in a cell (DNA
RNA, protein, small molecules)
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Gene Regulation

DNA

transeription
mEBENA
Nonphosphorylated
protein
Nonphosphorylated
protein
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Transcriptional Regulation:
Example: The lac Operon

- Fegions coding for proteins

- Regulatory Regions

@ [hftusable regulatory proteins

R NA
polymerase

mBEMA + m BMA, +
Hbosomes Fibosomes
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The lac Operon

¢ Regulates utilization of lactose by the
bacterium E. coli.

¢ Lactose is not generally available to E. coli as
a food substrate, so the bacterium does not
usually synthesize the enzymes necessary for
its metabolic use.

e There is an operon, called the lac operaon,
normally turned off, that codes for three
enzymes:

— P-galactoside permease, B-galactosidase and f3-
thingalartacids :'-‘H"'.D'l‘}}l transferase.
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Activation of the /ac operon

¢ If the bacterium is exposed to lactose, these enzymes
work together to
— transport lactose into the cell and

— isomerizes lactose into allolactose (an allosteric isomer of
lactose).

* The allolactose binds with a repressor molecule to
keep it from repressing the production of mRNA.

¢ Production of allolactose turns on the production of
mRNA, which then leads to production of more
enzyme, enabling production of more lactose to
allolactose. ..

An autoctalyitic reaction..
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Transcriptional Regulation:
Example: The lac Operon

Binds but —] Regions coding for proteins
cannot move to
trafiscribe ===i Regulatory Regions

Dittusable regulatory proteins

T Mo mRMA

Witen lactose 1s absent, the protein encoded by
lacl veprresses transcription of the lac operon
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Transcriptional Regulation:
Example: The lac Operon

- Fegions coding tor proteins

- Fegulatorv Regions
4 ¥ 2
e

Diffusable regulatory proteins

EMNA
polymerase

mREMNA +
ti bosames

L3 ctose

Canfitmational
change
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Mathematical Model

G+mP 2, KX
* Production of enzyme is turned on by m
molecules of the product allolactose P...
* G=Inactive state of the gene
¢ X=Active state of the gene

¢ In a large population of genes, the percentage
of active genes is given by the chemical
equilibrium:

p = [P1™/(k,,™ + [P]™)
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Production of mRNA

¢ The ditferential equation governing the
(average) production of mRNA

dM/dt =M, + K, [PI™/(k,.™ + [PI™) - K, M,

e where M is the concentration of mRNA that
codes for the enzyme.

¢ Production of the enzymes (responsible for
tarnsforming into allolactose substrate):

dE,/dt=c, M -d, E;
dE,/dt=c, M -d, E,
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l.actose states

¢ S, = Concentration of the lactose that is
exterior to the cell.

¢ S = Concentration of the lactose that is
interior to the cell.

¢ [P] = Concentration of allolactose.
dS,/dt=-c, E; Sy/(K, + Sy)
dS/dt=oc,E; Sy/(Kg+ Sy) - 6, E, S/(K, +S)
d[P}/dt=06,E, Sk, +S) - o, E, [P],J'(kp + [P])

Made by A-PDF PPT2PDF



Simplification

¢ Assume: mRNA is in quasi-steady state:
M = (K /K)P]™/ (K @+ P]™) + My/Ky;
¢ Assume: d; = d,. Degradation is slow
compared to cell growth. Also, E; = E,.
dE,/dt =
¢ My/ky + (o] Ky/K)IPI™/(K ™+ P]™) — d, Ey;
e Assume: No delay in conversion of the
lactose into allolactose:
dP)/dt = o, E; Sy/(Ky*+Sy) - 0, E; [PI/ (K, +[P)).
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Dimensionless Form

* Dimensionless variables: 5;=Kk; s, [PP] = Ko P
E;=¢je,andt=tyT...
de/dt=m, + p™/(x™ + p™) - € e,
dp/dz = p els/(s+1) - A p/(p+1)],
ds/dt = -e s/(s+1),
e where eg? = ¢;kok;/(gks), tg = k+0/(eg50),
A =05/00, b= Kok, K = KK, my = My/k,

P
ande=t;d;...
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Time Evolution

xtermal lactose, s

outeg- Crphice .. Tie =
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The lac operon

stermal lactos=, ¢

B-galictosidase, «

allalactase. p

L L

If the amount of lactose is too small,
then the lactose is gradually depleted,
although there is no increase in
enzyme concentration.

However, if the lactose dose is
sutficiently large, then there is an
autocatalytic response, as the lac
operon is turned on and enzyme is
produced.

The production of enzyme shuts down
when the lactose stimuls is consumed,
and the enzyme concentration
gradually declines...
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Example of Competition

¢ The mutant Lac repressor X186:
— This mutant represses transcription of the
lac genes in the presence of lactose...

— The mutant binds DNA so tightly that, in
the absence of inducer (allolactose), it is
sequestered on non-operator DNA sites.

— The inducer weakens the binding of the
mutant repressor; thus, allowing it bind to
the lac operon.
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Lac repressor X 186

- Regions coding for proteins

- Fegulatory Regions

@®  Diffusable regulatory proteins

Binds
somewhere
glze

RMNA

! ulym era i

T Mo mRMA

Wihten lactose 1s absent. the protein encoded by
mutant lacl inds fo some other site.
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Lac repressor X 186

EMNA
polymerase

h

I'r'JRNF'-. +
rlb-;:ns-::u Fras

L3 ctos

Canfitmational
change

- Fegions coding tor proteins
] Regulatory Regions

Diffusable regulatory proteins

Wihen lactose 1s present, the protein encoded

iy mmutant lacl no longer binds to the otfrer

site, and blocks the lac operator!!
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A General Scheme
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Modular Description of
Biochemical Pathways

Canonical Form:

i nhn nthn
b ql:lpff - ﬁE[Xf 525 M
J g

G- - Zmt)=XG] [])=0
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Example

Gl’ftﬂgl!l]
Pi

Glacose Glacose- ‘l— PhﬂSPhGI"}FlEISE 3

\ / Phosphoglacomatase

Glacokinase Glacose-6-P GlYCﬂlYSIE

}—-- thphaghcase isamergse
Fractose-6-P
lc——— Phﬂsphﬂﬁ*ucfﬂ kinase

SIMPATHICA
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Discrete Models

e By quantizing time and state space, the
models can be converted into a Kripke
Structure... labeled Finite State
Model...

* The properties of these systems can be
scrutinized by queries structured in a
Temporal Logic.

Made by A-PDF PPT2PDF



Semantics for CTL

¢ For peAP:

sEFp © pel(s) sE-p < peglLis)
* skFfAg © skEf andskEg
* skfvg © skFforskg

* sEEXf < IM=(5;S,... ) fromss, Ff
* sEFE(fUg < I7= (545,... ) froms
4120 [ siFgand Vi: 0<1<)[s; FE]]
* sEFEGf < J7=(5;5,... ) fromsVi>0:s,Ff
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Some CTL Operators

EF g AF g EG ¢ AG g
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Model Checking in Engineering

g— | Answer
Mode! - | e Yes if model satisfies
(system requirement S  specification

Counter-example if model
does not satisfy specificat

Made by A-PDF PPT2PDF



Next Step

* Explore possible confluence of the theory of hybrid
automata and the techniques of algorithmic algebra
and model checking to create a computational basis
for systems biology.

+ Simplest Scenario:

* Devise a method to compute bounded reachability by
combining Taylor polynomials and cylindric
algebraic decomposition algorithms.

* What are the power and limitations of this
framework .
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Algorithmic Algebraic Model
Checking

* Replacing numerical integration by a symbolic step:
* Generalizing Euler forward Numerical integration:
fOGHh) ~ (O + ¢ FOGH h+ --- + ¢ F7(X,t) hE
* Expression in “X”, “t” and “h"
* Error: integration discretization approximation
* Model Checking = iterative process of checking what
is true now and at “next” time

* Possible over “semi-algebraic sets” using “quantifier
elimination”
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Symbolic Analysis

Invariant: ®(s(t))

Invariant: @©(s(t+h))

m e W TSR

Y ofr R RY s Y(g(E+h )]
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Symbolic Model Checking

e Take the following question: Is a semi-
algebraic formula @ an invariant of the
system?

e (Given @ is true at t, is it true at t+h?
v, @(s(t)) = D(s(t+h))?

The above statement can be expressed as
a Tarski sentence...
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Theorem

o Let ¥ bea Tarski sentence. There is an
effective decision procedure for .

Let ¥ bea Tarski formula. There is a
quantifier-free formula @ logically
equivalent to .

e Jf ¥ involves only polynomials with
rational coefficients, then so does the

>

sentence @. U
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Why approximate?

Can we get the complete and
exact picture.. even when the
system parameters remain
unknown?
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Differential Algebraic
Approaches

* Ritt-Kolchin: Ideal Theoretic approach
e Kolchin-Singer: Galois Theoretic
Approach
e Lie: Group Theoretic Approach
— Understand their interrelationship

— Determine how effective these approaches
are...
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Differential Algebra

Assume that the system (SIS0} is described as shown below:

n o= Flt:{:uiﬂ:‘ '*:u{k}}

Ir = po(X a0, ul)

0 = ql{xrﬂ}
D = gX,u)
¥y = h(X u}

Consider the following differential ideal I in the differential ring B{X,u,y}:

I= [ii '"P'la*-*:irmpﬁql:“-ﬂqny-h]*

The input-output relation is then obtained by finding the contraction I° of the
ideal T to the ring B{u,y}. The generators of I¢ = I NR{u,y} give the differential
rer, the underlying algorithmic questions for
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Example System

Example Consider the following system (adapted from Forsman [Forsman92]):
A— B,
with the following kinetic equations:
[B] = [4]°* — [B]**.
The input u controls the concentration [A] as follows:
[4] = u[A]2 — [A]7*%,

and the output y is simply |B]:
y = [B].

We can simplify the above system to a polynomial system by following transforma-
tions:
zi = [4] and 3 =B].
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Input-Output Relations

Thus,
I = [22%&1 + o1 — u, 2522 + B2 — 31,75 — V).
After eliminating z; and x,, we obtain the following input-output relation:
{Eﬂyﬂ - S @lﬂy_dgﬂ.ﬂyﬁ + 4[}1}4#4 _ Eﬁgjiyﬁ + 41’.5}?;‘;2
+ (dugy — 4%y — 209°y® + 40uy®y® + 209%y® + 20ugy® + 4y*)y
— %y" =+ 5yty* — 109°y° + 20ui’y? + 105°%° + y* — 8y + L0uy®y
— u?y + 2ugy — 7Py — 55" % + "% + 89y + 2ugy® = 0.0
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Obstacles

e Various Approaches:

¢ [deas based on Groebner Bases

¢ [deas based on Ritt’s Characteristic Set]
e Obstacles:

— Failure of a Hilbert Basis like theorem
(only a weaker version, Ritt-Radenbush
theorem holds), existence of non-recursive
differential ideals, etc.
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Hybrid Automaton

¢ A hybrid automaton (of dimensionk)H=(Z, Z', V,
E, Inv, Dyn, Act, Reset ) (over M), consists of the
f 1'1111'111'i1’l g components:
..... Z)and Z' = (Z') , ... 2, ) are two vectors of
varlab es ranging over the reals, IZ;
2. (| V, E} is a finite directed graph; the vertices of V are called
locations, or control modes, the directed edges in E, control
switches:

3. Each v € V is labeled by the two formula Inv(v)[Z] and
Dyn(v)[Z,Z', T] such that it Inv(v)[p] holds (in M), then
Dyn(v)[p, p, 0] holds as well;

4. Each e £ Eis labeled by the formulae Act(e)[Z] and
Reset(e)[Z,2].

Made by A-PDF PPT2PDF



Thermostat

A thermostat model

X<15:X' =X
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Subclasses Of Hybrid Systems

Timed Automaton - a
discrete transition system
where the only continuous
variable allowed is the clock

Multirate Automaton - a
discrete transition system
where there can be inanjis
continuous variables with a
constant flow

Rectangular Automaton is a
discrete transition system
where the flows are allowed
to vary within a range
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Linear Systems - The
reachability problem for sub-
classes of linear hybrid
systems have been proved
Time-Invariant Systems:
tlow equations, guards and
state invariants are all
independent of time

O-Minimal Systems -
restriced jump condition: the
new continuous state cannot
depend on the old state, and
the system is assumed to be
time-invariant



Decision problems

More Expressive

Undecidability
A :

: Simple Multirate ectangular Initializa
| Y
Less Expressive @ Decidability
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SaColRe

¢ Hybrid Automata’s inclusion dynamuics,
approximated by semi-algebraic formula.
Dyn[X,X’, T] = Semialgebraic Set
¢ A more realistic approximation, for time
invariant systems:
— Dyn[X, X/, h]
=X X' =X+FX,0h+35, |ol <g},
for a suitably chosen
e = | F(X,0) hZ/2! + F(X,0) h#/3! + - --
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Another Example: Biological
Pattern Formation

¢ Embryonic Skin Of
The South African
Claw-Toed Frog

¢ “Salt-and-Pepper”
pattern formed due
to lateral inhibition
in the Xenopus
epidermal layer

Figure 3: Xenopus embryo labeled by a marker for
ciliated cell precursors seen as black dots.’
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Delta-Notch Signaling

PSSR RBERORRRR eSS

S80S0 00 R ORGP aBal
GO0C0SLROO AP 000000
LA A LA S A A AR L) ;

Physically adjacent cells laterally inhibit each
other’s ciliation (Delta production)
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Delta-Notch Pathway

¢ Delta binds and
activates its receptor
Notch in neighboring
cells

¢ Activated Notch
suppresses ligand
(Delta) production in
the cell

* A cell producing more
ligands forces its
neighboring cells to
produce less
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Pattern formation by lateral inhibition with feedback:

a mathematical model of Delta-Notch intercellular

signaling ... Collier et al.(1996)

1 .-:.'b" 1 .'I\-rn 3 / J
AX/R0) . BB/ Do) — uNp/No.

dr
WDp/ Dy P
M: f_’-!'l-\"p-;ll'rn:’_ I}DJ'..IF}II-
dr
Rewriting...

e = flde) — np.

dp = viging) — dp;.

Where:
¥ [

a4+ x* glx) = I + Bx™

filx) =
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4 \
Delta active m

Notch inaetive —‘ +

-

Notch activated

Delta inactivation

% J

%

\

>

i, 1. Dagrammate representation of the etffective Feedback
leop between Notch and Delta m seighbounng cells. Detals ol the
Motch signalling pathway are omitted for clarity, Key: e Deliag

MNotch,

Collier et al.



One-Cell Delta-Notch Hybrid
Automaton -

el = (O, X, E Init. f, Inv_R)
=aqqq3.9s
X = (r ..1':_|J e B
G
L {uw Z;.w;h.m“}

it =0 x {X C R 1 X X >0}

—ApX|: —AyXa 3 if ¢ =gy
Ry — ApXy: r.,».,-.'.:;]' if ¢ = ¢
1g,x] = ¢
-'.I_:;'|:..Hll|- -".N.'|_l:]- |E g = i3
I -
L IRy = Anx i Ry = Ars] if g =g,

fnv = {gqy, {=x < hp, 1y < hy } 11

G2 =2 = hp ay < fry U

(a) Transition diagram for a single cell T S e W T
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Two-Cell Delta-Notch System

Cell 1 16 Discrete States Cell 2
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System Properties:
True & Approximate

L

.
i H

Delta 2268 I I I .

(a) Nonlinear model (b) Hybrid systems model

Fig. 7. Phase plane projections for two cell system showing equilibria. Labels d; and
ds are the Delta protein concentrations in cell 1 and 2 respectively.
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State Reachability
) 4

Reaching State g7 (2,3) When we ask True 3 [-2n; > —1A
Bda < 1 A —2np < —1 A Bdy > 1], we get:

Iteration 1: 5d; =1 2 0A2n; —1 < 0ADBde —1<0A2n2-12>0
Iteration 2: n1 — 1 < 0A[[2rny —5dy < 0ABd2 —1 < 0 A 8na
bda —3 > 0Ana24+n1—1= []]V[Hﬂl—ﬁdl —3<0Adda+d1—1
0A2na —1 :_3‘“}"\3?12-|-5ff1—5 :_:"ﬂl"'u-’[Erdl— 1 = 0A2n: — 5dy
0ABda+2n1 —2<0A2n—-1>20]V[6di —1>0A2n; —1
0ABda —1<0A8ng —5da —3>20]Vv[2n; —1<0A5dy —1
0A8Bny —5da —3 > 0A8ng +5d; —5 > 0]V [2n1 — 5d,
0ABdy —1<0A2n—12>20A8ny+ 5d; —5 = (0]

= fz (sav).
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State Reachability

©x @

Reaching State q0 (3.2) When we ask True 3l [-2n; <
—1AbBds > 1A =2n5 > -1 A bdy < 1], we get:

Iteration 1: 5d; —1 <0A2n; —1 > 0AGd2 -1 >0A2n2—-1<0
Iteration 2: ng —1 < 0A[[2n1 —1 > 0ABd2+8n1 —5 > 0Ada +
-lt'fl—l=ﬂﬂ2?12+5d1—2£ﬂ]¥[‘2ﬂ1—1 < 0A8Bn, —5Hdy — 3
0 ABdy +8ny — 5 >0Anz4+n1—1 —ﬂ]V[BHi — hdy — 3
0ABde +8n1 —5 < 0AbBde+2n1 —22>20Ana4+n1 -1 =
0 "-I[Ern —120A58d2—120A2n2+5d1 -2 <0Ana+ni1—1<
() “'-.-'“[5{11—1 <0A2nN1—1>20Ab0da48n1 —5 > 0A2ns —5da <
0]V[6di —1<0A2n1 —1>0ABd2 4811 —5>0A2n—-1<
0]V [8n1—5d1—3 > 0ABd2—1 > 0A2n2+5d1—2 < 0A2n2—1 < 0]
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Impossibility Of Reaching Wrong

Equilibrium:
_ D x &

_f",r.""‘-. —=_,r]_.|_-_| = iy — 1 = 0O M [[2”1 — 5dy =< 0 A Bdy — 1
0ABna —Hda —3 > 0Anzs+mn1 —1 = 0]V [2n1 — 1
O0ASBde —1 < 0A8na — 6da —3 = 0A 210 4+ Hdy — 2
0] v[2ny — 1 < 0A5Sds 4+ 21y — 2 < 0A 4dds 4+ dy — 1
ODArea4-1p—1 = ﬂ}“."[?ﬂ-] —Bdy =< 0ABds—1 << 0ATE24+m11—1
0A2nz2—1>=>0]Vv[2n1 —1 <0AbBda—1 < 0A8Bng —56da —3
ONASna+5dy —5>20]V[Eny —5d1 —3<0ndda+di1— 1

VVIIEVIAA

O0A2na—1 = 0ABnz+56d; —5 = U]V[ﬂ{fj_ 1 = 0A2R1 —5d; <
DABde+2n —2 <0A2ns—1 =0]v[Edy —1=0A2n0; —1 <
':..-‘"‘--Gdg—].'i:ﬂﬁﬂ?’lz—sﬂlg—a:_-‘(ll"flgﬂl—l = 0Abd; —1 <

0 A Brig — 5dy — 3 = 0 A 8ng <+ 5dy 5 = 0]]

Since we have assumed no upper bound on the initial values
and since we have been able to compute only two iterations,
this formula does net evaluate to True given ny = nz A
d1 = da. However, when (Jepcad simplifies the above formula
assuming that nqy = no A dy < da. it immediately evaluates
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Semi-Algebraic Hybrid
Automata.

® Definition A k-dimensional hybrid automaton is a
7-tuple, H=(Z, V , E, Init , Inv, Flow, Jump),
consisting of the following components:

={ZLy, ..., Z,} a finite set of variables ranging over the reals
ey

{Zlf ..., 2y} denotes the tirst derivatives with respect to
the time t E ]Il-‘(’ during continuous change;

=1{Z',, . .., Z',} denotes the set of values at the end of a
discrete change;

* (V.E) is a directed graph; the vertices of V are called
control modes, the edges of E are called control
switches;
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Semi-Algebraic Hybrid
Automata.

* Each vertex v € Vis labeled by “initial”, “invariant”
and “flow” labels: Init (v), Inv(v), and Flow(v); the
labels Init(v) and Inv(v) are constraints whose free
variables are in Z; the label Flow(v) is a constraint
whose free variables are in Z U Z;

* —FEachedge e € E is labeled by “jump” conditions:
Jump(e), which is a constraint whose free variables
arein Z U Z".

* We say that H is semi-algebraic if the constraints in

Init , Inv, Flow, and Jump are llI‘lL]lldI‘ltlflE'd f11 st-
order formulae over the reals (i.e., over (R, +-,=<)).
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Semi-Algebraic Hybrid
Automata.

* We say that H is in explicit form if each
Flow(v) is of the form

— J"'h"l.1=1k Zl G i:l(Zl-" § -"Zk) |:|
e Here, we consider only semi-algebraic hybrid
automata in explicit form.
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Example

.-'___--.\__ T e 1
= e e T -, !
st 2 =y WEEIEIE TN T i e N
! -— | W
Inv:; 1 == & <3| | Imv:1<Z<3)
\x}'.l““" Z=1 e""h'----_ e Flow: 2 = _!>;
- T ilumpes Bt o) N T

+ (Consider the fmllmu-'ing semialgehraic automaton in explicit

form. =1

* The initial mode of this hybrid automaton is shown on the left,
where from the starting value of Z=1, Z grows with a constant
rate of 1. At time t =2, when the automaton reaches a value of 2
=3, it jumps to the other mode on the right. In this second mode,
Z wanes with a constant rate of -1 and upon reaching the value

of Z =1, it jumps back to the initial mode.
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Hybrid Automata: Semantics

¢ Let H be a hybrid automaton of dimension k. For any

given control mode v £V, denote with @(v) the set
of functions from I, to ¥ satisfying the constraints

in Flow(v).

* In addition, for any given r € ¥, we use Init (v)(r)
(Inv(v)(r) and Flow(v)(r)) to denote the Boolean value
obtained by pairwise substitution of r with Z in
Init(v) (Inv (v) and Flmw(v} 1eqpeat1vph}

¢ Similarly, for any given r, s € [P¥, we use Jump(e)(r, s)
to denote the boolean value obtained by pairwise
substitution of r with Z and s with Z’" in Jump(e).
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Hybrid Automata: Semantics

¢ Definition: Let H=(Z, V , E, Init , Inv, Flow, Jump) be a hybrid
automaton of dimension k. A location ( of His a pair | v, r }
where v £ Vis a state and r £ F¥ is an assignment of values to
the variables of Z.
— Alocation { v, r ) is said to be admissibls if Inv{v)(r) iz satisfied. The
continuous reachability transition relation, —, between admissible
locations is defined as follows:

(v,r}) —=c{v,s)ff
Jt>0, fe DvHED) =1 A EEt)=s AV € [0, tI{InvvHER)))).

— The discrete reachahbility transition relation, —p, between
admissible locations is defined as follows:

(v,r) —p{(u,s)iff (v,u) € E/ Jump({ v,u } Hr, s)
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Hybrid Automata: Semantics

. of

* A trace of His asequence [, 0y, ... [, ..

admissible locations such that

VA5 Bl B, 50 [L]
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The Bounded Reachability
Problem

* Let H be a semi-algebraic k-dimensional hybrid
automaton in explicit form...

— Let S C ¥ he a set of “start states”, characterized by the first
order formula 5(Z), and B € E¥ be a set of “bad states”,
characterized by the first order formula E(Z).

¢ We wish to check that there exists no trace of H
starting from a location of the form ( v, s ) withs €5
and reaching a location of the form (u, b } with b € B
within a specified time interval [0, end].

— It such traces exist we are interested in a characterization of
the points of 5 which reach B in the time interval [0, end].
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An Algebraic Approach

* Apply algebraic/semi-algebraic methods to the
1“‘*“111“““1’1‘1 of the traces of the hybrid automaton.

¢ Thus, the evolution of the automaton can be
described even in cases where system parameters
and initial conditions are uns l“n—*t“lflt-‘tl

— Semialgebraic decision procedures provide a succinct
description of algebraic constraints over the initial values
and parameters for which proper behavior of the system can
be expected.

— By keeping track of conservation principles (e.g., of mass
and energy) in terms of constraint or invariant manifolds on
which the system must evolve, we avoid many of the
obvious pitfalls of numerical approaches.
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Some Inherent Shortcomings

e Nonetheless, our method has an inherent
incompleteness:

— We proceed on the traces using a time step o
which implies that our answer is relative to a
limited time interval

— When the solutions of the differential equations
cannot be computed we approximate them using
the first few terms of the corresponding Taylor
polynomials, hence the error we accumulate
depends on o.
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The Basic Case

* Consider a system of differential equations of the
form Z ={(Z), where Z and Z are vectors of length k
and f is a function that operates on them.

* LetS B C X be characterized by the formulae 5(2)
and B(Z), respectively. As before, let [0, end] be a
time interval and 0 < d < end be a time step.

* We use pj(Z0, 0) to denote the Taylor polynomial of
degree j relative to the solution Z(t) centered in Z0
with a step size of 0. For instance, p1(Z0, 0) is the
vector expression Z0 + {(Z0) - 6.
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Semialgebraic formulation

¢ (Consider the fullm-ving first-order formula over the

reals
Fg(Z0,2) = 5(Z0) A JO(Z = py(Z0, O') A0 <O < D).
¢ The points reachable from S in the time interval [0, 8]

can be approximated with the set of points satistying
the formula 3 Z0(F4Z0,2)). Hence, the points in B
and reachable from S in [0, 8] can be approximated
by the formula

4 Z0(F5(Z0,7)) A B(Z).

Made by A-PDF PPT2PDF



Solving the System

* Symbolic algebraic techniques can be applied in
order to both simplify (e.g., eliminate quantifiers)
and decide the satisfial +111t1 of this formula.

* From these interesting counter -F‘“xdllll"*lt-“ can be
constructed. Note tlmt

— (1) The only approximation we have introduced is due to
the use of the Taylor polynomials;

— (2) We have only used existential quantified formulae;

— (3) The degree of the Taylor polynomial together with the
degrees of the f;'s intluence the complexity of the first-order
formulea we create and the number of steps needed to get a
sufficient precision.
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Approximation Issues

* When the derivative of orderj+1 of f is
bounded we can use the Lagrange Remainder
Theorem to both under and over approximate
the set of points reachable within the time
interval [0, end] and to estimate the error.

¢ This method can be generalized to the case in
which the f i1's are rational functions,
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Complexity Issues

* When we terminate, we are left with deciding the
satisfiability of a semialgebraic formula involving
— # variables = n = 2+k - [ end/d] +N(Z)+N(E)
— degree = d = max[j + deg(f), deg(3), deg(E)],
where N and deg denote the number of variables and total
degree, respectively used in the sernialgebraic description of

5 oand BE.

— Assume that the coetficients of the polynomials can be
stored with at most L bhits

¢ The total time complexity (bit-complexity) of the
decision procedure is

(L logL log log L)d“'w,
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A Toy Example

¢ Dynamics described by a system of ODE'’s
2=272+7,
— with Sand b charautenzed byS=Z>4and B=7%<4.
— Now, consider the time interval [0, (.5] and time step 0.5.

After time 0.5, using an approximation with Taylor
polynomial of degree 2, we get

170, 0'(Z0 >4
N LZ=Z0+(2Z0° + Z0) - &' +(8Z0° + 620 + Z0) - (0')*/2
A0 =05 0 Z2<c )
* This formula is unsatisfiable, thus implying that the
dynamical system reaches no bad states in the
specified time interval [0, 0.5].
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Other Related Ideas

* The formul@ involved in our method can be
easily simplified, if we introduce further
approximations.

* For instance, we may approximate
reachability by first evaluating the maxima
and the minima of the j-th Taylor polynomial
Pi(Z, d')s over S and [0, 8], and then using
them as upper and lower bounds.
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Example

* Consider the differential equation
Z=27,
* with S and B characterized by
0=2z7Z<4and B=3<7Z<5.

¢ The Taylor polynomial of degree 1 withd=0.5isZ +
27 -0 i.e, 27.

* Note that since the maximum and the minimum in S
are § and 4, respectively, and since the interval [4, §]
intersects (3, 5), S reaches B in time 0.5.
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The General Case

* We consider a polynomial k-dimensional hybrid
automaton H in explicit form
— Given amode v of H, we use the notation pj,(Z, 0) to denote

the Taylor polynomial of degree j in the mode v centered in
Z. The first-order formula

Flv, SHZ0,Z) =5(Z0) A A0 (ZL=p) (Z0,0') 10O =D
AVO (020" =0 — Invivipy (Z0, DN
characterizes the points reached within time 0 in the mode v,
under the approximation implied by the Taylor polynomial.
— As before, the formula
3 ZF[v, SIZ0,2Z)) /. B(Z)

— is satistiable if and only it the set B can be reached from 5
without leaving mode v within the time step 0.
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* In this case, the points of S which reach B are
characterized by
4 Z(F[v, SI(Z0,Z) AB(Z)).

* If the preceding formula is not satistiable, we have to
consider all possible alternative situations: that is,
either we continue to evolve within the mode v or we
discretely jump to another mode, u € V.
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¢ Define the formula 5™,

U (7) = JZ0(F(£0, Z), if u=w;
S 320, Z1(F;(Z£0,.Z1) A Jump({v.u))(£1,2)), otherwise.

* representing the states reached within time 6 in the
mode u.

¢ In the worst case one generates |E | satisfiable
formula on which one must iterate the method,
treating them as we treated 5(Z) in the first step.
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* At each step, we must check the minimum elapsed
time before a jump can be taken. Let M[(Z) =

Svu¥ (7)) be one of the formula obtained after some
number of iterations.

¢ Suppose now that we intend to jump from this mode
w to the next mode z. This can be formulated as:

T(w. 2. M)(T) = agu,zfl.z(mizm A Z1l=pj (20T AO<ST <6

AT <T' <T — Inv(v)(pj. (£20.7"))) A Jump({w, 2))(Z1, Z]),
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& ® ¥ ®

¢ The minimum amount of time can now be
computed as solution of the formula
Min(w, zMNT )= T(w, zMI(T)AVTA(T <T
— = T(w, z, M}T ).
— Along each generated path we have to iterate until
the sum of the minimum amounts reaches end.

— If all the paths accumulate a total amount of time
greater than end and B is never reached we can be
sure that B cannot be reached from S in the time
interval [0, end].
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— If B is reached, i.e., one of the formula involving B is
satisfiable before m iterations, then we can be sure that B is
reachable from 5 in the time interval [0, end].

— If B is reached after the first m iterations, then b is reachable
from 5 but we are not sure about the elapsed time, since we
keep together flows of different length.

— It is possible that some paths do not accumulate a total time
greater than end, e.g., the sequence of the minimum times
converges rapidly to 0. In this case our method could not
converge.

— We can also exploit here the Lagrange Remainder Theorem
to both under and over approximate the set of reachable
pmints and to estimate errors.
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Time-Complexity

¢ Assume that no path accrues more than M discrete
jumps (i.e., the method has converged). Thus we
have a quantitied semialgebraic formula with O(M)
alternations and involving
— #variables = n =k - [[ end/d] + O(M)] + N(3) + N(E)
— degree = d = max[j + deg(Init , Inv, Jump), deg(55), deg(E)],
where N and deg denote the number of variables and total
degree, respectively as before.

— Assume that the coetficients of the polynomials can be

stored with at most L bits. Then the total time complexity
(bit-complexity) of the decision procedure is

(L logL log log L)d2""™.

double-exponential in the number of variables.
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Future History of Systems
Biology
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Challenges from Hybrid
Systems

¢ Problem 1: What are the most
important hybrid systems models for
biology?
— High Fidelity
— Expressivity
— Decidability

— Computational Efficiency
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Dynamics

* Replacing differential equations by “equivalent” dynamics:
If f{X. T) is the solution of X = 7(X. T). then
X=7(X.T) and DynlX.X'.T]=X =fX.T).
are equivalent

Inclusion Dynamics

We are interested in inclusion dynamics defined by formuls
Flr 24}

il Illl
roe fir, e & Jir, ) T
M Fir 34}
b

E'ln-_r. v, A Fir, dd]
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Michael’s Form

— Let EY(T) = {X’ | Dyn(v)[X, X', T] A Inv(v)[X]}
* A Hybrid automaton is in Michael's form if
— E.Y is lower semi-continuous
— For each t £ I, the set F, . ¥(t) is closed and convex

— where L,V is the largest [0, t) such that F ¥(t) = (], ¥
t [0, t").

If H is in Michael's form, then s = FY(t) iff (v.r) =sg (¥ 8).
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Reachability

Michael's Form and Reachability

For each automaton in Michael’s form, we can write a formula
Reach(H.ph)[X. X'.T],where ph = vy..... V, is a path on
(V. &), such that

H reaches (v, X')
Reach(H.ph)[X.X'.T] ~ __  Tfrom (1. X) with a
holds trajectory
corresponding to ph

Made by A-PDF PPT2PDF




Two New Models
FOCoRe and IDA

FOCoRe (First Order Constant Reset hybrid automata) are
first-order hybrid automata:

@ in Michael's form

@ with constant resets (i.e., Reset(e)[X. X'] does not depend
on X)

IDA (Independent Dynamics hybrid Automata) allows identity
resels between locations whose dynamic does not change

We can reduce reachability problem for either FOCoRe or IDA
T-automata to a satisfiability problem for formulae of 7

Made by A-PDF PPT2PDF



Hybrid Hierarchy

More Expressive

Undecidability
_.i -

Simple Multirate

Less Expressive

Rectangular Initlalizated

v
Decidability
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Formal Understanding of
Genetics

e Problem 2: How do genotypes
determine phenotypes?

— Take the view that the model (e.g.,
structure of the hybrid systems and their
parameters) encodes the genotypes, where
as the temporal logic formula satistied by
the model encode the phenotypes?

— How does biology relate them?
— Are there engineering principles governing
them?
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— What properties are important?

— Are some parameters more “flexible,” “facilitated” or
“robust” than others?

— Are there symmetries? Scaling laws? Laws governing
compositionality? Laws governing modularity and
hierarchy?

— How does evolution control them?

— What structural changes can be accomplished by nature?

— What selection forces act on them? What invariants are
important to biology? Are there utility functions that are
being optimized? What are they?
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Systems Biology & Synthetic
Biology

* Problem 3: How can our understanding
of systems biology lead to designing
useful artificial biological systems?

— Can we create ab initio a complete artificial
organism:

— Can we perturb the properties of an
existing cell by introducing synthesized
biological circuits?
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An Artificial Clock

The Repressilator:
a cyclic, three-repressor, transcriptional network

¢ Three proteins:

Fetht — Lacl, tetRR & X cl
\/ & — Arranged in a cyclic
Xl — Lael manner (logically, not

necessarily physically) so

= 1 gl g that the protein product
f f{l -T- l H%:) I E of one ggne is rpﬁessc\r for

/ nas | anae A the next gene.

A || gl o Lacl— — tetR; tetR— TetR
f l ..'I l ..Ii v TetR— = kel kel —= Xl

.x ~/ O“‘ A hcl— = lael: lncl— Lacl

profein A protein B J_-" probein ©
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Cycles of Repression

* The first repressor protein, Lacl from E. coli
inhibits the transcription of the second
repressor gene, tetR from the tetracycline-
resistance transposon Tnl0, whose protein
product in turn inhibits the expression of a
third gene, cI from 1 phage.

e Finally, CI inhibits lacl expression,

e completing the cycle.
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Biological Model

¢ Standard molecular

biology: Construct
Plasmids =

Lopressilator ke r
v pressilabor Keportar

— A low-copy plasmid
encoding the
repressilator and

Fy |
|

— A compatible higher-
copy reporter plasmid
containing the tet-
repressible promoter
I’Ltet0] fused to an
intermediate stability
variant of gfp.
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Cascade Model: Repressilator?

+++++++++++++++++++++++++ E {_;_Kzl.lflf_:l_t =— {:LE Klﬁgzéxlgzl onr 32 thzz
SESE. | dxy/di o XX B, X,
: dx./dt = o, X, 264X 865 - B, X166

X1, X3, X5 = const
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SimPathica System
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Model Building

* Problem 4: How do we build models?
What measurements are important in
this process?

— Causal Models vs. Phenomenological
Models

— Structural properties of models. Are they
important?
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Applications

¢ Problem 5: How can we apply our
understanding of systems biology to solve
important biomedical problem?
— Diagnostics and prognostics. If a particular aspects
of a model change, what properties are atfected?

— Drug discovery. Vaccine design. Better elucidation
of ADME/ /Tox profiles, as well as optimizing
clinical trial efficiency:.

— Genetically modified food
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The End
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