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Systems Biology

* Introduction to Biology
e Regulatory & Metabolic Processe
e Algebraic Models in Biology
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Model Checking

e Temporal Logic

e Kripke Models

* Model Checking

* Biologically Faithful Models
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Semi-Algebraic Geometry

¢ Real Closed Field

e Tarski Algebra

* Decision Theories

e Hybrid Models

e Algorithmic Algebraic Model
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Hybrid Automaton

¢ A hybrid automaton (of dimensionk)H=(Z, Z', V,
E, Inv, Dyn, Act, Reset ) (over M), consists of the
f 1'1111'111'i1’l g components:
..... Z)and Z' = (Z') , ... 2, ) are two vectors of
varlab es ranging over the reals, IZ;
2. (| V, E} is a finite directed graph; the vertices of V are called
locations, or control modes, the directed edges in E, control
switches:

3. Each v € V is labeled by the two formula Inv(v)[Z] and
Dyn(v)[Z,Z', T] such that it Inv(v)[p] holds (in M), then
Dyn(v)[p, p, 0] holds as well;

4. Each e £ Eis labeled by the formulae Act(e)[Z] and
Reset(e)[Z,2].
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Thermostat

A thermostat model

X<15:X' =X
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Intuition

Hybrid Automata - Intuitively

Intuitively, a hybrid automaton is a finite state automaton H with
continuous variables X

Reset(e)[X, X']: Aect{e)[X]

e

Dyn(v)IX . X 1]
Fno(t/)[X]

Dyn(v)[X, X".T]

Inv(v)[X]

.

Resel (e :;[JL__‘L ']_ .-i_c_-l' (e :l[-‘il:]

A ctata ic a nair (v r\ wharg r js an evaluation for X
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Semantics

Hybrid Automata - Sematics Hybrid Automata - Sematics

Dadirtion (Discrate Transition)

thera axists a continuous f : BT —

R* such that r = (D), & = K (v, ¥') = £ and
i e L] i ) ¥
V. F—g V.8 == and for gach I' = [0 I] the formulas vor) 255 (v 8) = Imw}['fl' ¢ Activ. vl
Inv(V)[f{(t')] and Dyn(v)[r.f{t'). £] ' Heaet{iv, vi))lr. 8], and
hold fmv{v'}[5] hold
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Engineered Systems

S logic that selects
i which controller 1o use

bank of controllers

controller | p—e

aa
"\'y\v——~| process
i

confroller 2 }——

o = switching signal taking values in the set {1.2}

2 i = B
1
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Reachability

* Let H be a hybrid automaton of dimension k.
A point r € R* reaches a pﬂint S € IE"‘k ( in time

t) if there exists a tracetr= (v, 1 LR,

fm some v, u eV (and tis L?.1mp11 the sum nt
the elapsed times in continuous transitions).

— We use ReachSet (r) to denote the set of points
reachable from r. Moreover, given a region R C R¥
we use ReachSet (R) to denote the set U,
ReachSet (r). O
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Decidability

¢ It has been shown that “hybrid automata
reachability problem” is not decidable.

* Characterizing subclasses of hybrid automata
over which reachability is decidable

* A common approach for deciding

reachability of hybrid automata emplurq the
technique of discretizing the automata using

— bisimulation: equivalence relations which
strongly preserve reachability

— abstractions (e.g., predicate abstraction).
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Examples

* Examples: timed automata, multirate
automata, rectangular automata, and o-
minimal automata...

¢ Rectangular automata are special cases of
linear hybrid automata

e For a linear hybrid automata, its dynamics,
invariants, and activation relations are all
defined by linear expressions over the set Z of
variables.
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Linear Hybrid Automata

¢ For the control modes
— The dynamics is defined by a differential equation of the
torm dz/dt = k, where k is a constant, one for each variable in

Z

— The invariants are detfined by linear equalities and
inequalities (corresponding to a convex polyhedron) in Z.

* For each transition, the set of reset assignments
consists of linear formula in Z.

® Jts trajectory is a piecewise linear function whose
values at the points of discontinuity are finite
sequences of discrete changes.
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Nonlinear Hybrid Automata

e Changing linear descriptions to higher
order algebraic descriptions. ..

e Semialgebraic Geometry

e Decidability through finite description
via Tarski Algebra...
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Computational Semialgebraic
Geometry

e Study of various algorithmic questions
dealing with the real solutions of a
system of equalities, inequalities, and
inequations of polynomials over the
real numbers.

— It is largely motivated by its applications to
biology, robotics, vision, computer-aided
design, geometric theorem proving, etc.
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Tarski Formulas & Tarski
Sentences

e Tarski formulas are formulas in a first-order
language (defined by Tarski in 1930)
constructed from equalities, inequalities, and
inequations of polynomials over the reals.

¢ Such formulas may be constructed by
introducing logical connectives and universal and
existential quantifiers to the atomic formulas.

e Tarski sentences are Tarski formulas in
which all variables are bound by
quantification.
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Theorem

o Let ¥ bea Tarski sentence. There is an
effective decision procedure for .

Let ¥ bea Tarski formula. There is a
quantifier-free formula @ logically
equivalent to .

e Jf ¥ involves only polynomials with
rational coefficients, then so does the

>

sentence @. U
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Glossary

e Term: A constant, variable, or term
combining two terms by an arithmetic
operator: {+, -, -, /}. A constant is a real
number. A variable assumes a real number as
its value. A term contains finitely many such
algebraic variables: x;, x,, . . ., X

¢ Atomic formula: A formula comparing two
terms by a binary relational operator: {=, =, >,

5 - <
" - e
r — — -
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Glossary

¢ Quantifier-free formula: An atomic formula,
a negation of a quantifier-free formula given
by the unary Boolean connective {—}, or a
formula combining two quantifier-free
formulas by a binary Boolean connective: {=,

— Example: The formula (x? - 2 =0) A (x > 0) detines
the (real algebraic) number +\2.
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Glossary

¢ Tarski formula: If O(yy, . . ., v,) is a quantifier-free
formula, then it is also a Tarski formula. All the variables
y; are free in ®. Let (v, ..., v,)and (z;, . . ., Z,) betwo

Tarski formulas (W 1th free variables Vi and
respectively), then a formula u“:l]lhll’lll‘lb and by a
Boolean connective is a Tarski formula with free
variables {y;} U {z}. Lastly, if Q stands for a quantifier
(either universal ¥ or existential 3) and if 5 VR V. %) 18
a Tarski formula (with free variables x and y's), then

(Q V[D(yy, ..., Yo x)]

is a Tarski formula with only the v's as free variables. The
variable x is bound in (Q x)[@].
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Glossary

¢ Tarski sentence: A Tarski formula with no free
variable.

— Example: (3 x) (7 y) [v? - x < 0]. This Tarski sentence is false.
¢ Prenex Tarski formula: A Tarski formula of the form
(Q x)) (Qx;) - (Q x ) [PV, Vo) v+ Vor Xgp #0014 X0,
where ¢ is quantifier-free. The string of quantifiers

(Q ) (Q x) --- (Q x,) is called the prefix and @ is
called the matsix.

¢ Prenex form of a Tarski formula, ¥: A prenex Tarski
formula logically equivalent to V.
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Glossary

¢ For every Tarski formula, one can find its prenex
form using a simple procedure that works in four
steps: (1) eliminate redundant quantifiers, (2) rename
variables so that the same variable does not occur as
free and bound, (3) move negations inward; and
finally, (4) push quantifiers to the left.

* Extension of a Tarski formula, ®@(y,, ..., y,) with
free variables {yv,, . . ., v,}: Thesetotfall (..., € )
& I such that

Dy, ..., C,) = True.
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General Decision Problem for
the First-order Theory of Reals

* The general decision problem for the first-order
theory of reals: is to determine if a given Tarski
sentence is true or false.

¢ The existential problem for the first-order theory of
reals: An interesting special case of the problem is
when all the quantifiers are existential.

* The general decision problem was shown to be
decidable by Tarski [1930; published 1951].
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Complexity Issues

* Tarski's original algorithm has a high complexity: a
very 1ap1dh‘-wum1n” function of the input size

— (e.g., it could not be expressed as a bounded tower of
exponents of the input size).

* The first substantial improvement over Tarski’s
algorithm was due to Collins [1975]
— doubly-exponential time complexity in the input size —the
number of variables appearing in the sentence.
¢ Further improvements

— (Grigor'ev-Vorobjov [1988], Canny [1988-93], Heintz et al.
[1969-90], Renegar [1992])

— Basu et al. [1994].
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Algorithmic Complexity

* Assume that a Tarski sentence is presented in its
prenex form:

(Qux) (Qyx12) --(Qg x19)) [W(xI, . . ., xlal)],
where the Q;'s form a sequence of alternating
quantifiers (i.e., ¥ or 3, with every pair of consecutive
quantifiers distinct), with xltl a partition of the
variables

U_® x={x;, x5, ..., x,}, x, and I xl!| =n,,
and where ¥ is a quantifier-free formula with atomic
predicates consisting of polynomial equalities and
inequalities of the form

o, (x[”,“+,x[“’1§{];i=1ﬁ”;m+
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Bit-complexity of the
Decision Problem

* Here, g; is a multivariate polynomial (over E or (), as
the case may be) of total degree bounded by d.

¢ There are atotal of m such polynomials.

¢ The special case w = 1 reduces the problem to that of
the existential problem for the first-order theory of
reals.

* If the polynomials of the basic equalities, inequalities,
inequations, etc., are over the rationals, then we
assume that their coefficients can be stored with at

most L bits. Thus the arithmetic complexity can be
described in terms of n, n;, @, m, and d, and the bit

complexity will involve L as well.

Made by A-PDF PPT2PDF



Bit-complexity of the
Decision Problem

TABLE 29.1.1 Selected time complexity results.
GENERAL OR
EXISTENTIAL TIME COMPLEXITY SOURCE
(General La{mdjgmmli ! [Col75]
Existential LOM) (1)@ () (GV92]
General LOM) ()@ maD*™* (Gri88]
Existential Li+e(1) (m)(nt1) (4)O(n?) [(Can88b, Can93]
General (L log Llog log L)(md)(2° " )in; [Ren92a,b,c]
Existential (Llog Lloglog L)m (m/n)™ (d)9™ [BPR94]
General (L log Llog log L)(m)Mni +1)(4)10(n;) [BPR94]
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Quantifier Elimination Problem

* Given a Tarski formula of the form,

P(xl0) = (Q, x111) (Q, x12) --- (Q_ xIo)) [p(x10], xI1, . o]
where y is a quantifier-free formula, the quantifier
elimination problem is to construct another
quantifier-free formula, $(xI%), such that ¢(x[°) holds
if and only if ¢(>d%) holds.
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Quantifier-Free Formula

¢ Such a quantifier-free formula takes thﬁ form
POt = v, T A E (x[ﬂ]} 2
where f; € E[x"] is a multlvauate p{_}lj;nmnial with
real {_{}F’fJflLIE‘I'ItH

® Significantly improved bounds were given by Basu,
Polack & and are summarized next

I £ (m)I mil{ )1 Omi)
J; £ (m)li-0 i+l )Hi-0 Otni),

* The total degrees of the polynomials f;;(x°l) are
bounded by
(d)Mi-0 Ofmi)
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Quantifier-Free Formula

¢ The best bound for the size of the equivalent
quantifier-free formula is now
I, ], < (m)li-0 i+ D(d)n'oIhi-0 Otni)

* where n'y=min(ng, Tl 4(n+1)) and Tisa
bound on the number of free-variables
occurring in any polynomial in the original

Tarski fmmula "The total de grees of the
polynomials f;,(x!]) are still botnded by

(d)ILi>0 Oni),
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Quantifier-Free Formula

¢ Furthermore, the algorithmic complexity of
the new procedure involves only
(m)LLi-0 mi+1)(d)yn'o IL-0 Oln;)

arithmetic operations.
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Glossary

¢ Semialgebraic Set: A subset 5 C " defined by a set-
theoretic expression involving a system of
polynomial inequalities
S=u,_,1 N (8, .. &) ERN I sgnlf (€, ... E ) =5},
— where the fiJ]- 's are multivariate polynomials over R and the

5,5 are corresponding sets of signs in {-1, 0, +1}.

* Real algebraic set: A subset Z C " defined by a

system of algebraic equations.
Z={(&, ..., L EP | f(E, ... E)=--=£ (L, ..., E)=0}

— where the fi's are multivariate pnlynnmials over I,
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Glossary

* Semialgebraic decomposition of a semialgebraic set
S5: A finite collection K of disjoint connected
semialgebraic subsets of S whose union is 5. The
collection of connected components of a
semialgebraic set forms a semialgebraic
decomposition. Thus, every semialgebraic set admits
a 5emialgehraic decomposition.

¢ Set of sample points for S: A finite number of points
meeting every nonempty connected component of 5.
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Glossary

* Sign assignment: A vector of sign values of a set of
polynomials at a point p. More formally, let F be a set
of real multivariate puh*nmmala in n variables. Any
pointp=(&,;... &, ) € B has a sign assignment
with respect to F as follows:

sgng(p) = (sgn(fE,, ..., &) | f€F).
* A sign IISS'fgu'rumf induces an equivalence relation: Given
two points p, q € B, we say p ~q, if and only if
sgnAp)=sgnzq).
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Glossary

* Sign class of F: An equivalence class in the partition
of " defined by the equivalence relation ~ -

* Semialgebraic decomposition for F: A finite
collection of disjoint connected semialgebraic subsets
{C,} such that each C, is contained in some
semialgebraic sign class of F, That is, the sign of each
f £ Fisinvariant in each C;. The collection of
connected components of the sign-invariant sets for
F forms a semialgebraic decomposition for .
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Glossary

* Cell decomposition for F: A semialgebraic
decomposition for F into finitely many disjoint
semialgebraic subsets {C;} called cells, such that each
cell C, is homeomorphic to %Y, 0 = &(i) = n. 6(i) is
called the dimension of the cell C,, and C, is called a
f}{i_}-t?t%ll.

* Cellular decomposition for F: A cell decomposition
for JF such that the closure C, of each cell C, is a union

al calle & D C% = LUAC
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Univariate Decomposition

¢ One-dimensional case: A semialgebraic set is the
union of finitely many intervals whose endpoints are
real algebraic numbers.

* Given a set of univariate defining polynomials:

F={E(x)eQ[x] l1=1,... m},

we may enumerate all the real roots of the fi's (i.e.,
the real roots of the single p{:}lj_,-'m:}mial F=1If)as
B T S e A AL - S A
¢ (Consider the fr:nllmurpT finite set /U of elementary
1nte1 vals defined by thew roots:
w0, E [E &40 (&1 &0), - - o0 €y &) L& &5)0 (&, &) - - -0 L6, E) (8, +2].
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Univariate Decomposition

* Note that A is, in fact, a cellular decomposition for F.
Any semialgebraic set S defined by Fis simply the
union of a subset of elementary intervals in /..
Furthermore, for each interval C £ &, we can
compute a sample point o as follows:

[ 211, if C'= [—00,&):

£;, if C' = [&,&];
(& + &iv1)/2, if C' = (&, &i+1);
| &+ 1, if C' = (&,,+x].
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Multivariate Decomposition

* A generalization of the univariate decomposition to
higher dimensions

* Collins’s cylindrical algebraic decomposition.

¢ To represent a semialgebraic set S C ", assume
recursively that we can construct a cell
decomposition of its projection (S) C ™! (also a
semialgebraic set); ... then decompose S as a union of
the sectors and sections in the cylinders above each
cell of the projection, m(S). This also leads to a cell
decomposition of 5.
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Multivariate Decomposition

* (One can further assign an algebraic sample point in
each cell of S recursively in a straightforward
manner.

¢ If Fis aset of polynomials defining the semialgebraic
set S C B then at no additional cost, we may in fact
compute a cell decomposition for F using the
procedure described above.

¢ Such a decomposition leads to a cylindrical algebraic
decomposition for F.
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Cylindrical Algebraic
Decomposition
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Cylindrical Algebraic
Decomposition (CAD)

* A recursively defined cell decomposition of E" for F.
The decomposition is a cellular decomposition if the
set of defining polynomials F satisfies certain
nondegeneracy conditions.

¢ In the recursive definition, the cells of n-dimensional
CAD are constructed from an (n—1)-dimensional
CAD: Every (n-1)-dimensional CAD cell C" has the
property that the distinct real roots of F over " vary
continuously as a function of the points of C".[J
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CAD

* Moreover, the following quantities remain invariant
over a (n-1)-dimensional cell:
1. the total number of complex roots of each polynomial of F;
2. the number of distinct complex roots of each polynomial of
F: and

3. the total number of comimon complex roots of every
distinct pair of polynomials of F.

¢ These conditions can be expressed by a set ®(F) of
at most O(md)? polynomials in (n - 1) variables,
obtained by considering principal subresultant
coefficients (P5C's)..

Made by A-PDF PPT2PDF



CAD

¢ Thus, the conditions encoded by @(F) correspond
roughly to resultants and discriminants, and ensure
that the polynomials of F do not intersect or “fold” in
a cylinder over an (n-1)-dimensional cell

¢ The polynomials in @(F) are each of degree no more
than d<

¢ More formally, an F-sign-invariant cylindrical
algebraic decomposition of " is:

* Base Case: n=1. A univariate cellular decomposition
of R1 as shown earlier
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CAD

* Inductive Case: n > 1. Let K' be a @(F)-sign-invariant
CAD of "L For each cell C" € I, define an auxiliary
polynomial g~(x;, . .., X1, X,) as the product of
those polynomials of Fthat do not vanish over the
(n-1)-dimensional cell, C'. The real roots of the
auxiliary polynomial g'- over C' give rise to a finite
number (perhaps zero) of semialgebraic continuous
functions, which partition the cylinder C" x(I2 U {£
o0) into finitely many F-sign-invariant “slices.” The
auxiliary polynomials are of degree no larger than
md.
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CAD

* Assume that the polynomial g-(p’, x,) has | distinct
real roots for each p" € C": ry(p’), t3(p). . . ., 1i(p’), each
r; being a continuous function of p".

* The following sectors and sections are cylindrical
over ('

-_"_":/j = 1

_ pzn) | pPeC Az, € [—’:-c'.r](p’}:l}.

: {
:;;’/ Cp = {{p’.;rn) | p € Az, €[r1(p). 1 [P’J]}-
{

]
T
7"

ci = {W.a) | ¥ eC A zye(m@).ra(p) ],

= o J’{‘;;";r,,} | P e C' Az, € {?‘!{F’]*'l'-""'—]}*
Made by A-PDF PPT2PDF



Sample Points

¢ Cylindrical algebraic decomposition (CAD) provides
a sample point in every sign-invariant connected
component for F

* However, the total number of sample points
generated is doubly-exponential, while the number
of connected components of all sign conditions is
only singly-exponential.

¢ In order to avoid this high complexity (both algebraic
and combinatorial) of a CAD, many efficient
techniques have been proposed recently.
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Decision Process

* In the general case, the decision procedure follows a
search process that proceeds only on the coordinates
of the sample points in the CAD

* This follows because a sample point in a cell acts as a
representative for any point in the cell as far as the
sign conditions are concerned.

¢ Consider a Tarski sentence

{lelll} {szlﬂl} =5 Q x[®l) [q;(xlll ..., xiel],

with F the set of polynomials appearing in the matrix

y. Let h be a cylindrical algebraic decomposition of
En for .
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Decision Process

* Since the cylindrical algebraic decomposition
produces a sequence of decompositions:
K, of RL K, of R?, . .. K of R,

¢ syuch that the i—'ﬂ{_l-l cell C, 1} of /; is cylindrical over

some cell C_; of Ay, th'l-“ m—*ﬂlth progresses by first
finding cells C; of I} such that

(Q,x,) --- (Q, x,)) [lp{ﬂcl , Xy« .., X)) = True.
¢ For each Cy, the search continues over cells Cy; of /
cylindrical over C; such that

{QSXS} T {Qn 11} ['-P{ac (ICIE L xn}] = Truef

eto.
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Decision Process

* Finally, at the bottom level the truth properties of the
matrix | are determined by evaluating at all the
coordinates of the sample points.

® This produces a tree structure, where each node at
the (i-1)-th level corresponds to a cell C’1 e e K, and
its children correspond to the cells C,_,; = sk that are
cylindrical over C,_;. The leaves of the tree
correspond to the LE‘H'—-. of the final decomposition A =
I, Because we only have finitely many sample
pmnta the universal quantifiers can be replaced by
finitely many conjunc tmna and the existential

quantifiers by disjunctions.
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Decision Process

¢ Thus, we label every node at the (i-1)-th level “TAND"
(respectively, “OR") if Q, is a universal quantifier 7
(respectively, 3) to produce a so-called AND-OR tree.
The truth of the Tarski sentence is thus determined
by simply evaluating this AND-OR tree.

* A quantifier elimination algorithm can be devised by
a similar reasoning and a slight modification of the
CAD algorithm described earlier.
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Next Step

* Explore possible confluence of the theory of hybrid
automata and the techniques of algorithmic algebra
and model checking to create a computational basis
for systems biology.

+ Simplest Scenario:

* Devise a method to compute bounded reachability by
combining Taylor polynomials and cylindric
algebraic decomposition algorithms.

* What are the power and limitations of this
framework .
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Algorithmic Algebraic Model
Checking

* Replacing numerical integration by a symbolic step:
* Generalizing Euler forward Numerical integration:
fOGHh) ~ (O + ¢ FOGH h+ --- + ¢ F7(X,t) hE
* Expression in “X”, “t” and “h"
* Error: integration discretization approximation
* Model Checking = iterative process of checking what
is true now and at “next” time

* Possible over “semi-algebraic sets” using “quantifier
elimination”
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Symbolic Model Checking

e Take the following question: Is a semi-
algebraic formula @ an invariant of the
system?

e (Given @ is true at t, is it true at t+h?
v, @(s(t)) = D(s(t+h))?

The above statement can be expressed as
a Tarski sentence...
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Topics in Semi-Algebraic
Hybrid Systems

e Algorithmic Algebraic Model Checking

e Semi-Algebraic subclass & TCTL

e Undecidability in the “real” Turing
Machine

e Approximate Methods: Extended

Bisimulation Partitioning, Polytopes,
Grids, Time Discretization
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History
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Algorithmic Algebra

¢ A mathematician in the court of Caliph Harun
Al Rasid of Abassid Dynasty
¢ Two of his books:
& — Al-Kitab al-Mukhtasar fi-hisab al-Jabr al_Mugabalah
(Algebra)
— Kitab al-Jam'a wal-Tafreeq bil-Hisab al-Hindi
(Algorithm)

— Translated into Latin in the twelfth century, as
Algoritmi de numero Indorum

— Translated Aryabhatta’s Siddhanta into Arabic

(SindHind)
* Amalgamation of Indian & Greek
mathematics

' asd al-Khwarizmi (780-850 AD)
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Some Milestones in the History
of Algebra

® 820: The word algebra is derived from operations
described in the treatise of al-Khwarizmi titled Al-Kitab
al-Jabr wa-1-Mugqabala

¢ Circa850: Persian mathematician al-Mahani conceived
the idea of reducing geometrical problems such as
duplicating the cube to problems in algebra.

¢ Circa850: Indian mathematician Mahavira solves various
quadratic, cubic, quartic, quintic and higher-order
equations, as well as indeterminate quadratic, cubic and
higher-order equations.
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Some Milestones in the History
of Algebra

¢ Circa990: Persian Abu Bakr al-Karaj, in his treatise al-
Fakhri, further develops algebra ...He replaces
geometrical operations of algebra with modern
arithmetical operations, and defines the monomials x, x;,
X, ... and 1/x, 1%, 1/, ... and gives rules for the products
of any two of these.

® Circa1050: Chinese mathematician Jia Xian finds
numerical solutions of polynomial equations.

® 1072: Persian mathematician Omar Khayyam develops
algebraic geometry and, in the Treatise on Demonstration
of Problems of Algebra, gives a complete classification of
cubic equations
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Some Milestones in the History
of Algebra

¢ 1114: Indian mathematician Bhaskara, in his Bijaganita
(Algebra), solves various cubic, quartic and higher-order
Imh nomial equations, as well as the general LlllElLllEltl{_
indeterminant equation.

e 1202 Algel-rm is introduced to Europe largelj.-' t.hr{:}ugl'l the
work of Leonardo Fibonacci of Pisa in his worlk Liber
Abaci.

* Circa1300: Chinese mathematician Zhu Shijie deals with

olynomial algebra, solves simultaneous equations etc.
L= l

¢ Circal400: Indian mathematician Madhava of
Sangamagramma finds 1terative methods for
approximate solution of non-linear equations.
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Some Milestones in the History
of Algebra

¢ 1545: Girolamo Cardano publishes Ars
magna -The great art which gives Fontana's
solution to the general quartic equation.

¢ 1591: Francois Viete develops improved
symbolic notation In artem analyticam
isagoge.

¢ 1682: Gottfried Wilhelm Leibniz develops
his notion of symbolic manipulation with
formal rules which he calls characteristica
generalis.
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Some Milestones in the History
of Algebra

* 1750: Gabriel Cramer, in his treatise Introduction to
the analysis of algebraic curves, states Cramer's rule
and studies algebraic curves, matrices and
determinants.

¢ 1824 Niels Henrik Abel proved that the general
quintic equation is insoluble by radicals.

e 1832 Galois theory is developed by Evariste Galois
in his work on abstract algebra.
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Semialgebraic Geomtery

« 1950: Tarski's worl: on a decision method for
elementary algebra and geometry
— Tarski's method 15 rather prohikbitive, as 1ts complexity

cannot be bound by a tower of exponential functions, 1.2 1s
not even elementary recursive.

— This asymptotic complexity 15 also the one of the methods
described by Seidenberg and Cohen.

* The first elementarv recursive method was found by
Collins using the technique of Cvlindrical Algebraic
Decomposttion (CAD), whose complexity is doubly

exponential.
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Practicality

* For purely existentially or universally quantified
problems methods of single exponential complesaty
was described first by Renegar.

+ A practically working quantifier-elimination methods
have been the so called “virtual substitution”
methods. Based on ideas of Ferrante and Racloff for
decision problems, virtual substitution methods for
quantifier elmmation was created by Welspfenming.

* Implemented m Redlog
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Quantifier Elimination (QE)

* Hong implemented Qepcad

e Other Tools: Redlog, Maple,
Mathematica, AQCS

—Input: @) [ x*+bx+c=0]
— OQutput: [b? - 4 ¢ >=0]
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..to be continued...
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Symbolic Computation
Algebraic Biology IV

Bud Mishra
Courant Inst, NYU
NYU SoM, TIFR, MSSM
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Hybrid Systems

e Hybrid Models

e Algorithmic Algebraic Models & Model
Checking

e O-minimal Systems & SaCoRe

e [IDA

e Open Problems
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The End
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