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Systems Biology

* Introduction to Biology
e Regulatory & Metabolic Processe
e Algebraic Models in Biology
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Model Checking

e Temporal Logic

e Kripke Models

* Model Checking

* Biologically Faithful Models
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A Simple Model of Biochemical
Processes

e Such a model can be obtained through
spatio-temporal discretization.

e [t can be further compressed through a
“bisimulation-equivalence” relation.
e Technicalities to be elaborated further.
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XSSys 1s a modular system

Canonical Form:

GO K@) = X 01] [7)=0
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SimPathica System
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Simpathica i1s a multi-functional system

Model data structures. ——a ROy S [Ty
SBML et TImedFrequency [
Equations Handling —— _ Combined TLATH

OctavedMatlab :

code generation

ratliah
Octave

-

NYUMAD
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Purine Metabolism

¢ Purine Metabolism

— Provides the organism with building blocks tor the synthesis
of DNA and RNA.

— The consequences of a maltunctioning purine metabolism
pathway are severe and can lead to death.

¢ The entire l_‘iﬂtl'lh-"ﬂ}' 1s almost closed but also quite
complex. It contains
— several feedback loops,

— cross-activations and
— reversible reactions

¢ Thus 1s an 1deal candidate for reasoning with
computational tools.
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Simple Model
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Biochemuistry of Purine Metabolism

> - The main metabolite in purine
biosynthesis is 5-plresplionbosiyl-a-1-
prophosphate (PRPP).
- ' . ]
‘ - A linear cascade of reactions
+

converts PRPP into 1nosme
= monophosphate (IMP). IMP is the

central branch point of the purine

i

:H ’T-\E: ;;:, mEtabﬂliSI‘I‘l Path‘-ﬂ-‘ﬂ}r.
f o : ot 4 - IMP is transformed into AMDP and

P S=anlF

GTe Sadl G th.

1

- (Guanosine, adenosine and their

| — T
> ™ derivatives are recycled (unless

1
L
- s used elsewhere) into hypoxantitine
I (HX) and xantinne (XA).

- XA is finally oxidized into ure acid

(LLA).
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L

Queries

Variation of the initial
concentration of PREPP does
not change the steady state.
(PRPP=10" PRPP’I} implies
steady_state()

This query will be true when
evaluated against the
modified simulation run (i.e.
the one where the initial
concentration of PRPP is 10
times the initial
concentration in the first run

— PRPP1).

TpUE
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Fersistent increase in the initial
concentration of FRFF does
cause unwanted changes in the
steady state values of some
metabolites,

If the increase in the level of
FEFF is in the order of 70% then
the system does reach a steady
state, and we expect to see
increases in the levels of [MF
and of the hypoxanthine pool in
a “comparable” order of
magnitude,

Always (PRPP = 1L.7*PRIPT'1)
unplies steady_state()



Queries

®* Consider the following
statement:

®*  Eventually

(Alwavs (PRPP = 1.7 * PRIT1)
implies
steadv_state()
and Eventually

Always(IMP < 2% IMP1))

and Eventually (Alwavs
(hx_pool < 107hx_pooll)))

® where IMP1land hx_pooll are
the values cbsarved in the
unmodified tracae, The above
statement turns out to be false
over the modified experitment
trace.,

[tv:fact; the increasein [N F:is
about 6.5 fold while the
hypoxanthine pool increase is
akbout 60 fold,

Sirice the above queries turn out
to be false over the modified
trace, we conclude that the
model “over-predicts” the
increases in some of its products
and that it should therefore be

amended
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Final Model

RS LR TR YA IR, R LT LR T
mA | o Kavid T cdedy idual pwie reg drd fBae

Made by A-PDF PPT12PDF ==



Made by A-PDF PPT2PDF



Framework & Outline

* Language: * Logic & Models
— Ontology — Temporal Logic
— Controlled Vocabulary — Model Checking
¢ Model Building * Examples
— Kripke Structure — Yeast Cell Cycle
— Model Building; Hidden — Host-Pathogen
Kripke Models (HKM) Interaction
— Information Bottleneck — Life Cycle of a Parasite
e [nvariants & — Cancer Initiation and
Redescriptions Progression
_ Labeling with * Implementation
Propositions

— LCtatictical Qimnificancma
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Model Checking & Kripke
Structure

e Definition: Kripke Structure
— ...captures the intuition about behavior of a
reactive system...

— ...consists of a set of states, a set of
transitions between states, and a function
that labels each state with a state of
properties —true in that state.
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Formal Definition

¢ Let AP be a set of atomic propositions. A
Kripke Structure M over AP is a four tuple M
= (5, 54,R,L) where

d S is a finite set of states.
d S; €S is a set of initial states.

d R C S =S is atransition relation that must be

total, that is, for every state s € S there is a state s,
< Ssuch that R(s, sg).

d L:S — 24F i5 a function that labels each state
with the state of atomic propositions that are true
in that state.
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First Order Representation

* Logical Connectives: and /, or 'V not —, implies =, so
on.

* Quantifiers: universal quantifiers v, existential
quantifiers 3, so on.

* A logic is propositional, if it consists of atomic
propositions and formulas created with the logical
connectives... but no quantifiers.

* A logic is first order if the atomic propositions take
values in a domain (not necessarily finite) and in
addition the formulas are quantified over the
domain.
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Example

V initial cell Mass, ;. .,

[CellIn(S, 0) = V_,CellIn(S, t)]
AV initial cell mass,_ .,

[CellIn(S, 0) = 3., CellIn(M, b]
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Temporal Logic

* Temporal Logic is a formalism for
describing a sequence of transitions
between states in a reactive system...

* [n this logic, time is never mentioned
explicitly with a metric... But only in a
“topological” manner...
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Modes

e “Eventually something happens”...
“Always something is true”...
“Something is never true” ...
“Something else holds almost always” ...
“This is true infinitely often” ...

e Main modes or temporal operators are
X, F G Uand R

* Main path quantifiers are A and E.
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Computation Tree Logic CTL

¢ CTL formulas describe properties of
computation trees. The tree is formed by
designating a state in a Kripke structure as
the initial state and then unwinding the
structure into an infinite tree with the
designated state at the root ..

¢ The tree shows all possible execution paths in
the tree...

e C'TL formulas are composed of path
quantifiers and temporal operators.
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Kripke Structure

¢ Thus KS provides formal encoding
of a Biological Dynamical System:
¢ Simple and intuitive pictorial
representation of the behavior of a
complex system
— A Graph with nodes representing

system states labeled with
information true at that state

— The edges represent system
. transitions as the result of some
. vl action

A, |
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Computation Tree

[b]
k!
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0 @
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Finite set of states: Some
are initial states

Total transition relation:
every state has at least
one next state i.e.
infinite paths

There is a set of basic
environmental variables
or features ("atomic
propositions’)

In each state, some
atomic propositions are
true



Computation Tree Logic CTL

¢ Next Time: X P... property P holds in the second state
of the path.

* Eventually: FP ... property P will hold at some state
on the path (in the future)

* Always: G P ... property P holds at every state on the
path (globally)

® Until: PU Q ... property Q holds at some state on the
path and property P holds at all preceding states

* Release: PR Q ... property Q holds along the path up
to and including the first state at which P holds (if it
does at all)
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Computation Tree Logic CI1L

® There are two types of formulas in CTL:
state formulas and path formulas .

— ... state formulas are true in a specific
state...

— ...path formulas are true along a specitic
path...
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Syntax

e Let AP be the set of atomic proposition
names.

e The syntax of state formulas:
—If p € AP, then p is a state formula.

—If tand g are state formulas, then - £, f V g
and f A g are state formulas.

—If tis a path formula then E fand A fare
state formulas.
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The syntax of path formulas:

e [f fis a state formula, then fis also a
path formula.

e [f f and g are path formulas, then = f, f Vv
gfAg XI,Ff,Gf,fUgandfR gare
path formulas.
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Semantics of CTL with Kripke
Structure

e M=(SRL)=a I<11p}\e Structure. S = the set
of btati?‘;:- R f‘_ « 5§ = transition relation (total)
and L: S — I_*AP = the labeling function... labels
each state with a set of atomic propositions
true in that state

e A path in M is an infinite sequence of states m
=8y, S1, - . - such that v;_; (s, s;41) € R
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Semantics for CTL

¢ For peAP:

sEFp © pel(s) sE-p < peglLis)
* skFfAg © skEf andskEg
* skfvg © skFforskg

* sEEXf < IM=(5;S,... ) fromss, Ff
* sEFE(fUg < I7= (545,... ) froms
4120 [ siFgand Vi: 0<1<)[s; FE]]
* sEFEGf < J7=(5;5,... ) fromsVi>0:s,Ff
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Some CTL Operators

EF g AF g EG ¢ AG g
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Least Fixed Point
Characterization

{ It suffices to define all path formulas in terms of: P, —f,
f1N f2, AXf1, EX [, A[f1ld f2] and E[f1l4 f7]

O P=puz.P ¢ Alflfa] = pz.fav (f1 A AXZ)

O h=pz-h QO Elfilifzl=pz.fav(finEXZ)
O hnfaspzfinfa
O AYfi=puz. AXN

O EXfi=pz.EX N
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Algorithm

Label-Graph(f. M) B
begin case;

0 f=PF:
while 35 € 5§ s.t. [f € Lbl(s) and P € L(s)]
Add f to Lbi(s)

Q f==f
Label-Graph( fi, M),
while 3s € S s.t. [f € Lbi(s) and fy € Lbl(s)]
Add f to Lbi(s)

¢ fF=hHAAf
Label-Graph( f1, M );
Label-Graph( fa. M);
while 3s € S s.t. [f & Lbl(s) and f; € Lbi(s) and fa £ Lbl(s)]
Add f to Lbi(s)

M i A
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while 3s € S s.t. [f & Lbi(s) and ¥t € suce(s), fi & Lbl(t)]
Add f to Lbi(s)

Q _f = E-f?fj,l
Label-Graph(fi, M);
while Js £ S s.t. [f & Lbl(s) and 3t € succ(s). f1 € LB(t)]
Add f to Lbi(s)

O f= A[Hlf]:
Label-Graph( f1. M):
Label-Graph( fa, AM);
while 3s € S s.t. [f & Lbl(s) and (f2 & Lbl(s)
or (f1 € Lbl(s) and ¥t € succ(s), f € Lbl(t)))]
Add f to Lbi(s)

O f= Alflf]:
Label-Graph( fi, M);
Label-Graph( f2. M);
while 3s € S s.t. [ & Lbl(s) and (fa € Lbl(s)
or (f1 € Lbl(s) and 3t € suce(s), f € Lbl{(1)))]
Add f to Lhi(s)
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In Summary

¢ First Order Logic: Time is an explicitly
quantified variable

¢ Propositional Modal logic: was invented to
formalize modal notions and suppress the
quantified variables — with operators
“possibly P” and “necessarily P” (similar to
“eventually” and “henceforth”)

 Temporal Logic: Short hand for describing
the way properties of the system change with
time; Time is implicit.
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Branching versus Linear Time

¢ Linear-time: {‘!nl*ﬁ; one lrr{:w.k_:sihle future in a moment

— Look at individual computations

* Branching-time: It mav be possible to split to
different courses depending on possible futures

— Look at the tree of computations

oO-O-~-0O—-0O—
O-0O-0-0O—
O-O-O-0O— O
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LY

* A path quantifier can be
followed by an
arbitrary number of CTI!
temporal operators

¢ There are 1_'}1‘{}1_"1-:*.1*ti15‘.5

expressible in CTL but
not in LTL and vice-

versa
e [ TL, CTL are contained
in CTL*
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Complexity Comparison

Size of transition system: I
Size of temporal logic formula: 1N
* Worst Case Comparison:

— CTL: linear - O(nm)

— LTL: exponential —n 20tm

¢ For an LTL formula that can also be expressed in VCTL, LTL model-
checking can be done i atime linear in the size of the formula

* LTL is PSPACE complete: Hamiltonian Path problem can be
recduced to an LTL Model Checking problem:

Fp, A Fpa A Fps A
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Other Model Checking Algorithms

¢ LTL Model Checking: Tableu-based...
¢ CTL* Model Checking: Combine CTL and LTL
Model Checkers...
¢ Symbolic Model Checking
— Binary Decision Diagram
— OBDD-based model-checking for CTL

— Fixed-point Representation

— Automata-based LTL Model-Checking
¢ SAT-based Model Checking
¢ Algorithmic Algebraic Model Checking
¢ Hierarchical Model Checking
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Story generation

* TE‘.ITIIJ{I}I‘H] Logic formulae
can be rendered in
English.

Formaly

Genergtor

7 ¢ Temporal Logic formulae

4 7
can be generated
Fornzala o _ :
automatically (with care).

¢ Fach formula can be
tested against a set of
datasets: differences can

Nataral Language then be noted.
Story Generation

Temrpma|
Logic An3 |ys is
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Cell Cycle Story Generation Results

Report on "Test Experiment: WT, 1 Mutant, 2 Mutants.”

The results refer to the following datasets:
* The first dataset 1s named "Experiment/Yeast Dataset WT".
* The second dataset 1s named "Experiment/Yeast Dataset Mutl".

* The third dataset is named "Experiment/Yeast Dataset mut2”.

&4, CDHIL less than or equal to 1.0071%83 will always hold until CDHI activates CYCE,
15 true in the first dataset, 15 true in the second dataset, and 1s false 10 the thard
dataset.

: CWCE implies CYCH is greater than or equal to 0.65, isfalze in the

first r:l:at:a-s.ut_, iz trie in the second r:l:at:a-zn;-t_ atnid is true in the third dataset,
eventually, CDHI is less than or equal to CYCE, 1s false in the first dataset, is true
i1 the second dataset, and 15 true 1n the third dataset,
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Circadian Clock

Temporal Logic cannot reason
about cases where time must be
“metric.”
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Circadian Oscillations

* “A model for circadian oscillations in the
Drosophila period protein (PER),” Albert
Goldbeter,

— Proc. R. Soc. Lond. B (1995), 261:319-324.

¢ A theoretical model:

— Takes into account contemporary experimental
observations

— Model for circadian clock is based on
1. multiple phosphorylation of PER protein

2. the negative feedback exerted by PER on the
transcription of the period (per) gene.
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Model

¢ This minimal biochemical model provides a
molecular basis for circadian oscillation of
the limit cycle type.

¢ During oscillations, the peak in per mRNA
precedes by several hours the peak in total
PER protein.

— Accepted view: Multiple PER phosphorylation
induces time delays which strengthen the

capability of negative feedback to produce
oscillation.
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Many Unresolved Issues:

e [somorphism to Van der Pol system,

e Robustness.
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Two Competing Biological Models

e Edery et al. (1994) Model:

— Based upon multiple phosphorylation of PER and
on repression of per transcription by a
phosphorylated form of the PER protein.

e Abbott et al. (1995) Model.

— Based upon the effect of a larger number of
phosphorylated residues and their effect upon
delaying the entry of the protein into nucleus and

the resulting negative feedback effect on per
transcription.
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Circadian Oscillation of PER and
per mRNA: Assumptions

I.  permRNA is synthesized in the
nucleus and transferred ti

oo cytosol, where it is degraded.
¥ Fdas Jﬂ'm ﬁﬂ; M = Cytosolic concentration of per
e = 1
HE I ] 2. Rate of synthesis of PER (by
LA £ translation of per mRNA) is
Y k. fEQ /ﬁlf“} H' proportional to M.
permBMa (A PPER, FER, feR. 3. PERis multiply
& 2 NS B) N b Vi phosphorylated:
L5 4 Po TP =T,

4. Phosphorylated PER is

transported into the nucleus: Py

|

Py acts directly as a repressor
and reduces the per
trdnsulptmn rate.
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Phosphorylation of PER

* PER is multiply phosphorylated:
— To keep the model simple, only three states of the PER
protein is considered:
P, = Unphosphorylated, P, = Monophosphorylated and I, =
Biphosphorylated
— The precise number of phosphorylated residues is still
unknown. The role of PER phosphorylation is still unclear.
¢ Phosphorylation may control nuclear localization
and/or th—*”lﬂdﬂtlun of PER.
— Aszsume that the fully phosphorylated form I, iz marked both for

degradation and reversible transport into the nucleus,

* The effect of the nuclear form of PER (P} on the per

transcription (M) is described by an equation of Hill type with a
Hill (rannerativitir) coefficient of n =4
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Differential Equations
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dM/dt = v, K;/(K4® + Py?) —v.. M/(K,.+M)
dP,/dt = KM -V, Py/(K{+Py) + V5 Py /(K5 + Py)
dP,/dt = V, Po/(K,+Pg) V., Pi/(K,+P;)
—V3 Py/(Kg+Pq) +Vy Po/(Ky+P5)
dP,/dt = V, P,/(K4+P;) -V, P./(K,+P,) —k, P,
+ Ky Py — vy Po/(Ky+Py)
dPy/dt =ky Py — ks Py
P, =Py + Py + P+ Py







Phase Plane

I~
(=~
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Periodic Orbits and Limat
Cycles

¢ (Stable) Limit Cycle = A

periodic trajectory hich
attracts other solutions

. to it.
Stable Limit Cyele _
e Amember of a family of

“parallel” periodic
solutions (with linear
centers) is not a limit

cycle.
¢ Limit cycles are robust
In two ways:

Mot 3 Limit L”_}fc|-:
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Robustness of Limit Cycles

¢ If perturbation moves state to different initial
state away from the cycle, then the system will
return to cycle..
— e.g. Circadian rh} thm: Phase adjusts after jet lag...

— For a linear oscillator, this is not true; it will simply
start oscillating along a ditferent orbit and will never
return to the original orbit.

— If dynamics changes a little a limit cycle will still exist
(can be proved using Poincare-Bendixon theorem.)

¢ Think of a linear oscilator:
dx/dt =y, dy/dt=—=x+ey
(= da/dt? - e dx/dt +x =0)

— Changes to a spiral orbit (whether stable or unstable.
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Poincare-Bendixon Theorem

e For systems of two equations
dx/dt = F(x,y) & dy/dt = G(x,y),

* The following criterion determines the
existence of a limit cycle:

* Suppose a bounded region D in the plane
is so that no trajectory can exit D (on
boundary, the vector field (F,G) points
inside or tangentially) and either there are
no steady states mside or there is a single
steady state that 1s repelling then there is a
periodic orbit inside D.

¢ If the periodic orbit is unique then it is a
it rola
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Bendixon’s Criterion

¢ Givenregion D simply-connected (no holes)

e if the divergence of the vector field is always
positive or 1s always negative inside D, then
there cannot be a periodic orbit inside D:

FOx,v)=[f(xy)gxy)]' &divF=20fdx+2fdy
* By Gauss divergence theorem:
[JpdivFdxdy=[-n:-F=0.

¢ Thus F is not tangential to any closed
path...No periodic orbit inside D!
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Van der Pol Equation

e Consider a system involving two
variables: e.g., an mRNA and a protein:
x andy.

e For instance, consider the equations:
dx/dt =y — x>+ x
dy/dt = -x
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Van der Pol Equation

e [n other words:

d?x/dt? = dy/dt + (1-3 x?) dx/dt = (1-3 x?)
dx/dt —x or

d2x/dt? + (3x*-1) dx/dt +x =0
* This system has a stable limit cycle!

* These equations were originally
introduced to model a “self exciting”
electric circuit.
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Lienard Equations

¢ Generalization of Van der Pol system:

d?x/dt? + g(x) dx/dt + x =0

— If g(x) is zero, this is the linear oscillator.

— The term involving dx/dt is a “frictional” term,
where the friction depends on the position x.

— For small x we are going to take g(x) negative so
that it is an “anti-frictional” term

— For large x we are going to take g(x) positive so
that it is a “frictional” term

¢ This is sufficient to guarantee the existence ot
a robnst limit cvele |
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When f(x) = -x + x5

* The graph of f{x) = -x +x%.
* Lienard’s Equation: dx/dt = v — f(x); dy/dt = -x.
— tisan odd function of
— f{x) < 0in (0,1) and f{x) = 0 in (0, o0)
— tisa strictly monetone increasing function of x (for x = 1)
— fgoestoinfinity as ¥ goesto oo

e Sufficient ta encuire a limit cycle.
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Van der Pol Equation

ANRL
A
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Van der Pol Equation

o Phase Portrait of the
Lienard Equation for
F(x) = -x + 3 with -1.4
“x=l4&14<y <
14...

> Stability of the lim it
cyc|e follows from
Poincare-Bend ixon.

Made by A-PDF PPT2PDF



History

Abbreviated from “The Birth of
Model Checking” by Edmund M. Clarke,
Department of Computer Science, Carnegie
Mellon University. FLOC 06 Talk.

&2
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A Nice Quote from Ed Clarke

e “When the time is ripe for certain
things, these things appear in different
places in the manner of violets coming
to light in early spring. “

(Woltgang Bolyai to his son Johann in urging lum to claun
the invention of non-Euclidean geometry without delay.)
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Quote from Clarke & Emerson 81

“Ihe task of proof conustrnuction is in general gmte tedions and a good deal
of tngenuity may be vequaved to organize the proof in a manageable fashion.

We argue that proof construction is nnunecessary in the case of finite
state concnrrent systems and can be replaced by a model-theoretic
approach wilach

will mechanically deterimne if the system meets a spectfication expressed
prropositional tempormal logic.

The global state graph of the concurrent systems can be viewved as a finite
Iu'r‘zrﬂ.s* structure and an efficrent n.{gﬂntﬁm can be groen to deterrnne
whether a structure 1s a model of a particnlar fm*mui'n (1.e. to

s 1ts specification)’
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The Model Checking Problem

The Model Checking Problem (CES1):
Let M be a Kripke structure

(i.e., state-transition graph).
Let f be a formula of temporal logic
(i.e., the specification).
Find all states s of M such that M s Ef.

Model Checker
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Advantages of Model Checking

+ No pr{H:rfS”

+ Fast (compared to other rigorous methods such)
* Diagnostic counterexamples

* No problem with partial specifications

* Logics can easily express main concurrency properties

Safety Froperty:
bad state utreachable

Counterexam ple
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Main Disadvantages

* Proving a program helps yvou understand it.

Bogus!

* TE’IT[]."‘GI'H] l+.'+g_i+:. specifimtiq:m:: are ugl_v,
Depe;nds on who 1s wriﬁﬂg them.

* Writing specifications is hard.

True, but perhaps partially a matter of education.

+ State explosion is a major problem.
Absolutely true, but we are making progress!
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Parallel Developments

Tadeo Murata:
— Fetrinet tools, late ¥ls

oa

3 Kurt Jensen:
‘M - [etrinet tools, late 70z

L
il
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Gregor Bochmanmn:
— Frotocol Verification, 1975

Holzmann:
Frotocal Verification, 1978-79




Mu-calculus

A. Tarski, A Lattice-theoretical fixpoint theorem and its applications,
FPacific Journal of Mathematics 5, Za5-309, 1955

5. C. Kleene, Introduction to Meta-Mathematics, 1964,

(First Eecursion Theorem)

+ ]. W. de Bakker and D[). Scott, & Theory of programs; unpublished notes, IBIM
Yienna, 1969,

+ DM Park, Fixpoint induction and proofs of program properties, in Machine

Intelligence 5, 1970

+ D.M.IE. Park, Finiteness is Mu-Ineffable, University of Warwick Theory of
Computation Report, July 1974,

+ E.A.Emerson and E.M. Clarke, Characterizing correctness properties of
Parallel programs using fixpoints in LINC5 85, Automata,Languages, and
FProgramming, pp 169-181, Springer 1920,

+ D Kozen, Results on the propositional mu-calculus, Theoretical Computer
Science, 2V333-304, 1953,
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Dataflow Analysis

'j ¢ G. Killdall: Lattice theoretic approach to iterative

- data flow Analysis (73)

¢ Ullmann and students: Monotone data-flow analysis
frameworks (76)

* L. Fosdick and L. Osterweil: Data-flow analysis for
static error detection (76)

* P. Cousot: Abstract Interpretation and Widening (77,
79)

* D. Schmidt: “Data-tflow Analysis is Model Checking
of Abstract Interpretations” (98)
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Temporal Logic

Temporal logics describe the ordering of events m time without
introducing time explicitly.

They were developed by philosophers for investigating how time is
used in natural language arguments.

Most have an operator like G £ that is true in the present if f is always
true m the future.

To assert that two events ¢ and ¢, never occur at the same time, one
writes G (—e; V —e,).

The meaning of a temporal logic formula is determined
with respect to a labeled state-transition graph or
Kripke structure.
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Temporal Logic and Program
Verification

®* Burstall 74, Kroeger 77, and Pnueli 77, all proposed using temporal
logic for reasoning about computer programs,

®  Pnueli 77 was the first to use temporal logic for reasonming about
CONCUITENCY.

® He proved program properties from a set of axioms that described the
behavior of the individual statements,

®  The method was extended to sequential circuits by BEochimann 82and
Owwickiand Malachi 51,

®  Cince proots were constructed by hand, the technique was often
difficult to use in practice,
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Pnueli 77 and Model Checking

¢ Did Pnueli invent Model Checking in 1977 ???

* Section on Finite State Systems most relevant for
this meeting.

® Theorem 4: The validity of an arbitrary eventuality G(A
— F B) ts decidable for for any finite state system.

* Proof of this theorem uses strongly connected
components and is very similar to the technique used
for EG(P) in CES 83 / 86.
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Expressive Power of Temporal
Logic

* Lamport was the first to investigate the expressive power of
various te:npmral l{rgics for verification.

» His 1980 POPL paper discussed two lmgics: a simple linear-time
logic and a simple branching-time logic.

* Branching-time lugic could not express certain natural fairness
properties that can e;lﬂilv ex'pre::sed in the linear-time lrmif

* Linear-time logic could not express the possibility of an event
occurring at sometime in the future along some computation

path.

* Technical difficulties with method that Lamport used tor his
results (somewhat like comparing "apples and oranges ).

* Emerson and Halpern fixed these problems in an 83 POPL
paper.
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Clarke and Emerson 81

¢ Edwmnnd M. Clarke and E. Allen Emerson. Design and Synthesis
of Synchronization Skeletons Using Branching-Time Temporal
Logic. Logics of Programs Workshop, Yorktown Heights, New
York, May 1981, LNCS 131. Also in Emerson’s Thesis (51).

* The temporal logic model checking algorithms of Clarke and
Emerson 1980's allowed this type of reasoning to be automated.

* (Checking that a single model satisfies a formula is much easier
than proving the validity of a formula for all models.

* The algorithm of Clarke and Emerson for CTL was
pelynomial in [M | andm (£ |.

¢ They also showed how fairness could be handled without
changing the complexity of the algorithm.
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The EMC Model Checker

* Clarke, Emerson, and Sistla (55 / 56) devised an improved
algorithm that was linear in the product of the [M | and It |.
¢ The algorithm was implemented in the EMC model checker and
used to check a number of network protocols and sequential
circuits.
¢ Could check state transition graphs with between 104 and 107
states at a rate of about 100 states per second for typical
formulas.
* In spite of these limitations, EMC was used successtully to find
previously unknown errors in several published circuit desi ans.
— EMC tool
— Fairness Constraints

— Emptiness of Non-deterministic Buchi Automata
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Hardware Verification

B. Mishra and E. M. Clarke, Automatic and Hierarchical
YWerification of Asynchronous Circuits using Tempeoral
Logic, CWMIU Tech Report (CWMU-C5-53-155) and
Theoretical Computer Science 38, 1985, pages 26%-291,

® Firstuse of Model Checking for | vmaoen | i oo epamea | Guip e
Hardware Verification!! i i ['}_*_ |

®*  (found bug in the Seitz’s FIFO Cueune i T_[_L__ |
from Mead and Conway, il f:" A o 1
Introduction to VLSI Systems). pur | TS} _{—bjr -Ef]??ﬁf‘imm i

®  Mishra and Clarke 53; ek | J—ffi'“a - .F"'"ﬁl ., __1,_55 P
Browne, Clarke, and Dill 56; ""':;" | S e e -%'éqcm

hll and Clarle 56
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Complexity of LTL

¢ Sistla and Clarke (82, 83) analyzed the model
checking problem for LTL and showed that the
problem was PSPACE-complete.

¢ Pnueli and Lichtenstein (85) an algorithm that is
exponential in the length of the formula, but linear in
the size of the Model.

— Based on this observation, they argued that LTL model
checking is feasible tor short formulas.

ks
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CTL* Model Checking

CTL" is a very expressive logic that combines both branching-
time and linear-time operators.

¥

* Model checking for this logic was first considered in CE5 83/
80 where it was shown to be PSPACE-complete.

* (Can show that CTL* and LTL model checking have the same
complexity in M | and |t | (Emerson and Lei 85).

* Thus, for purposes of model checking, there is no practical
complexity advantage to restricting oneself to a linear temporal

logic.
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Witnesses and Counterexamples

* EMC did not give counterexamples for universal CTL
properties that were false or witnesses for existential properties
that were true.

+ Michael C. Browne (MMike) added this feature to the MCB
model checker in 1954

— It has been an important feature of Model Checkers ever since,

Model Checker B}
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Automata Theoretic Techniques

® CSome verifiers use automata as both specitications and
implementations.

® The implementation is checked to see whether its behavior conformes to
that of specification,

®* Thus, an implementation at one level can be used as a specification for
the next level,

®  The use of language containment is implicit in the work of Kurshan,
which ultinately resulted in the development of the COSP AN verifier,

® Aggarwal, Kurshan, and Sabnani 83; Dill’s Thesis 87, Har’El and
Eurshan 90
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Two Big Breakthroughs!

* Significant progress was made on the State Explosion Problem
around 1990:

. Symbolic Model Checking
Coudert, Berthet, and Madre 59
Burch, Clarke, McMillan, Dill, and Hwang 90;
Ken McMillan's thesis 92

¢+  The Partial Order Reduction
Valmari 9
Godefroid 90
FPeled 94
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Dealing with Very Complex
Systems

* Special techniques are needed when symbolic
methods and the partial order reduction don't work.

¢ Four basic technique:: are

» Compositional reasoning,

» Abstraction,

»  Symmetry reduction, and

» Induction and parameterized verification
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Big Events in Model Checking
since 1990
* Timed and Hybrid Automata
e Model Checking for Security Protocols
¢ Bounded Model Checking

¢ Localization Reduction and CEGAR

e Compositional Model Checking and
Learning

* Infinite State Systems (e.g., pushdown
systems)
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Challenges for the Future

* Software Model Checking, Model Checking and Static

Analysis

* Model Checking and Theorem Proving (I'V5, 5TEP, 5¢vMI,
Maude)

* Exploiting the Power of SAT, Satisfiability Modulo Theories
(SMT)

* Probabilistic Model Checking

* Efficient Model Checking for Timed and Hybrid Automata

+ Interpreting Counterexamples

* Coverage (incomplete Model Checking, have I checked enough
properties?)

+ Scaling up even more!!
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..to be continued...
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Symbolic Computation
Algebraic Biology III

Bud Mishra
Courant Inst, NYU
NYU SoM, TIFR, MSSM
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Semi-Algebraic Geometry

¢ Real Closed Field

e Tarski Algebra

* Decision Theories

e Hybrid Models

e Algorithmic Algebraic Model
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Symbolic Computation
Algebraic Biology IV

Bud Mishra
Courant Inst, NYU
NYU SoM, TIFR, MSSM
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Hybrid Systems

e Hybrid Models

e Algorithmic Algebraic Models & Model
Checking

e O-minimal Systems & SaCoRe

e [IDA

e Open Problems
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The End
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