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Abstract

In this paper, we describe our algorithmic approach to constructing ordered restriction maps
based on the data created from the images of population of individual DNA molecules (clones)
digested by restriction enzymes. The goal is to devise map-making algorithms capable of pro-
ducing high-resolution, high-accuracy maps rapidly and in a scalable manner. The resulting
software is a key component of our optical mapping automation tools and has been used
routinely to map cosmid, lambda and BAC clones. The experimental results appear highly
promising.

1 Genomics and Optical Mapping

Optical mapping [CAH+95, CJI4+96, HRL+95, JRH496, MBC+95, SCH+95, SL.LH493,
WHS95] is a single molecule methodology for the rapid production of ordered restriction
maps from individual DNA molecules. Ordered restriction maps were constructed originally
from yeast chromosomes by using fluorescence microscopy to visualize restriction endonucle-
ase cutting events on individual fluorochrome-stained DNA molecules [SCH+95, SLH+93].
Restriction enzyme cleavage sites are visible as gaps that appear flanking the relaxed DNA
fragments (pieces of molecules between two consecutive cleavages). Relative fluorescence
intensity (measuring the amount of fluorochrome binding to the restriction fragment) or
apparent length measurements (along a well-defined “backbone” spanning the restriction
fragment) have proven to be accurate size-estimates of the restriction fragment and were
used to construct the final restriction map. It is worth noting at this point that such a
restriction map created from one single DNA molecule is limited in its accuracy by the
resolution of the microscopy, the imaging system (CCD camera, quantization level, etc.),
illumination and surface conditions. Furthermore, depending on the digestion rate and the
noise inherent to the intensity distribution along the DNA molecule, with some probabil-
ity one is likely to miss a small fraction of the restriction sites or introduce spurious sites.
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Additionally, we may sometimes (rather infrequently) lack the exact orientation information
(whether the left-most restriction site is the first or the last). Thus, given two arbitrary
single molecule restriction maps for the same DNA clone obtained this way, we expect them
to be roughly the same in the following sense—if we “align” the maps by first choosing the
orientation and then identifying the restrictions sites that differ by small amount, then most
of the restrictions sites will appear roughly at the same place in both the maps.

Clearly, there are two approaches to further improve the accuracy and resolution of the
maps: namely, improve the chemical and optical processes to minimize the effect of each
error source and secondly, to use statistical approaches where the restriction maps of a
large number of identical clones are combined to create a high-accuracy restriction map.
These two approaches are not mutually exclusive and interesting trade-offs exist that can be
exploited fruitfully. A large well-coordinated multidisciplinary effort at our laboratory has
attacked this problem by continuously improving the chemical, optical, computational and
automation aspects.

For instance, in the original method, fluorescently-labeled DNA molecules were elongated
in a flow of molten agarose containing restriction endonucleases, generated between a cover-
slip and a microscope slide, and the resulting cleavage events were recorded by fluorescence
microscopy as time-lapse digitized images [SLH+93]. The second generation optical mapping
approach, which dispensed with agarose and time-lapsed imaging, involve fixing elongated
DNA molecules onto positively-charged glass surfaces, thus improving sizing precision as
well as throughput for a wide range of cloning vectors (cosmid, bacteriophage, and yeast
or bacterial artificial chromosomes (YAC or BAC)). Further improvements have recently
come from many sources: development of a simple and reliable procedure to mount large
DNA molecules with good molecular extension and minimal breakage; optimization of the
surface derivatization, maximizing the range of usable restriction enzymes and retention of
small fragments; and development of an open surface digestion format, facilitating access
to samples and laying the foundations for automated approaches to mapping large insert
clones.

The complementary sets of improvement have come from powerful statistical tools that
process a preliminary collection of single-molecule restriction maps, each one created from
an image of a DNA molecule belonging to a pool of identical clones. Such a collection
of restriction maps are almost identical with small variations resulting from sizing errors,
partially digested restriction sites and “false” restriction sites and can be combined eas-
ily in most cases. However, the underlying statistical problem poses many fundamental
challenges; for example, we will show in a later section that the presence of some uncer-
tainty in the alignment of a molecule (both orientation and/or matching in the sites) in
conjunction with either false cuts or sizing error is sufficient to make the problem infeasi-
ble (NP-complete [GJ79]).(Also, see Danéik et al. [DHM97] for some related results on the
complexity of a somewhat idealized model of this problem.) We note parenthetically that
these negative results only correspond to pathological cases that are unlikely to occur in
real life and we demonstrate that there are good probabilistic algorithms (using a Bayesian
scheme) that can handle this problem adequately. Nonetheless, these negative results play
an important role in clarifying the care needed in structuring the algorithm properly.

The paper is organized as follows: In section 2 and 3, we describe the restriction map
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model and formulate the underlying algorithmic problems. We also present several results
on the worst-case complexity of the problem. In section 4, we describe a statistical model
for the problem based on rather simple assumptions on the distributions of the bases in
DNA and the properties of the chemical processes involved in optical mapping. These
models are then used to devise probabilistic algorithms with good average time complexity.
The algorithm produces as its output several maps ranked by a “quality of goodness.”
Additionally, it gives estimates of several auxiliary parameters governed by the underlying
chemical, optical and image analysis processes (e.g., the digestion rate, false-cut rate, sizing
error, contamination with other molecules, etc.). In section 5, we present experimental
results on wide array of data sets (lambdaphage, cosmids; BAC data will be presented in
a sequel). We conclude with a discussion of the results and future planned modifications.
The relevant background material can be found in the following references: discussion on
restriction maps and their role in human genome project [Kar93, KH92, Nic94, Pev90, Pri95,
Wat89, Wat95, Wat77], statistics of restriction maps [LW88, Lan95a, Lan95b, Wat95] and
the algorithmic and computational complexity issues [BSP490, GGK+95, Kar93, Kra88,
Lan95a, Lan95b, PW95, Wat95].

2 Restriction Map Models

Our problem can be formulated mathematically as follows. Assuming that all individual
single-molecule restriction maps correspond to the same clone, and that the imaging algo-
rithm can only provide the fragment size estimates that are scaled by some unknown scale
factor, we represent a single molecule restriction map (SMRM) by a vector with ordered set
of rational numbers on the open unit interval (0, 1):

D]': (81]‘752]'7...78]\47]')7 0<81j <85 <o <8y, 5 < 1, S5 eQ
J J
By D; + ¢ (a rational ¢ € [0, 1]), we denote the vector
Dj+c=(s1;+¢85+¢,...,8M,;+c)

where —s;; <e <1 - SM; ,j-
Given a rational number s € (0, 1), its reflection is denoted by s =1 —s. Similarly, by

DF, we denote the vector
R _ (R R _R
D] = (8]\4]7]'7 . .752]', 81]’).

Note that if the entries of D; are ordered and belong to the open unit interval, so do D; +¢
and DF provided that c is appropriately constrained.
Thus our problem can be described as follows: given a collection of data (SMRM vectors)

D17D27"'7Dm
we need to compute a final vector H

H = (hy,ha, ..., hy)
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such that H is “consistent” with each D;. Thus, H represents the correct restriction map and
D;’s correspond to several “corrupted versions” of H. We shall define such a general notion
of “consistency” using a Bayesian approach which depends on the conditional probability
that a data item D; can be present given that the correct restriction map for this particular
clone is H.

However, any such consistency requirement must satisfy certain straightforward condi-
tions, under certain side information. For instance, if we assume that there is no false-cut
and the sizing information is accurate (but the digestion may be partial), then it must be the
case that for each j, either D; C H or Df C H. In particular, if the digestion is complete
(ideal case) then all the D;’s are identical up to reflection and H can be simply chosen as
Dl.

3 Complexity Issues

Next, we shall consider five simple special cases of this problem that will shed some light on
the complexity of this problem. The first case corresponds to the situation where there is no
sizing error; however, there may be false cuts and missing cuts (due to partial digestion).
On the other hand, we make the strong assumption that a precise lower bound on the partial
digestion rate is available. The second case corresponds to the situation where there is no
false cut, but there is some sizing error. However, we assume that rough location of the
cut sites may be known in advance. In either case, we assume that for some fraction of
the single molecule restriction maps the correct orientation is not known. The third case
corresponds to the situation where an end fragment (either left or right) is missing, but it
may be uncertain which end the fragment is missing from. (In this case, the orientation of the
molecule may be assumed to be known.) The last two problems model the situations where
we may have spurious data or data from k& (> 2) distinct populations. In all situations, the
notion of “consistency” can be defined in the most natural manner. We make these notions
more precise.

3.0.1 Problem 1 (Unknown Orientation)
Given a set of ordered vectors with rational entries in the open interval (0, 1):

Dy, Dg,....,D;, Diyy,..., Dp,

a rational number p. € (0, 1) and an integer V.
An admissible alignment of the data can be represented as

DY, Dy,...,D;, Dy y,...,D],
where D} € {D;, DR} (1 < j <) and D} = D; (j > ). For any such alignment (Ay)
and a rational number h; € [0, 1], define an indicator variable m;j;; to be 1, if ~; € D} and

0, otherwise. Now, define a characteristic function x; : [0,1] — {0,1}, as xx(h;) = 1, iff
Ej Mk > pem.
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Determine: If there is an admissible alignment Aj such that
[{h € [0, 1[xk(h) = 1} = N.

This decision problem plays a crucial role in formulating a binary search algorithm to
solve the following optimization problem: assuming that the data support an N-cut solution,
find a final restriction map H* with no fewer than N cuts where each cut is supported
independently by pXm matches or more, where p? attains the maximal possible value. Note
that the two parameters N and p. are interrelated and cannot be optimized independently.
In practice, however, the values of N can be characterized quite accurately by means of its
distribution from some known prior information. The dual problem of estimating p. however
do not work as well, since the chemical processes that govern the digestion process (particu-
larly on a stretched molecule on a surface) is difficult to model with any significant accuracy.
Another approach would be to formulate the problem in terms of a weight function that are
monotonically non-decreasing in both p. and N. Under some reasonable assumptions, it can
be shown that the worst-case complexity of the problem remains unchanged.

We shall show that problem 1 is NP-complete for size m. The problem is clearly NP-
computable, since if one can guess a correct admissible alignment, then it is easy to check
in polynomial time if there are no fewer than N restriction sites.

The NP-hardness of the problem can be easily shown with a simple transformation from
3-SAT. Consider an instance of a 3-SAT problem with [ variables, 1, x5, ..., ; and n
clauses, Cy, Cyq, ..., C, (we may take n > [). Without loss of generality, we assume that
no clause contains a variable z; and its negation z;, since such a clause always assumes
true value, independent of z;’s truth value. With each clause, C; associate a location f; =
i/2(n+1) € (0,1/2)and fR =1~ f, = (2n—i+2)/2(n+ 1) € (1/2,1). The problem is
NP-hard in size [. For each instance of the 3-SAT problem we create a dataset Dy, ..., Dy,
Dty ... Dy, with m = 20— 1 as follows: Each D; will have cuts only at f;’s and s, We
will have total m = 2] — 1 data items, where the first / data items may need to be reoriented,
but the last [ — 1 items are in correct orientation:

DH—I:"':Dm:(f17f27---7fn)

The first [, D;’s are determined as follows. f; € D;,iff z; € C; and fF € D;, iff z; € C;.
Of course, we choose N = n and p. = 1/2. If the CNF has a satisfying assignment, then
choose an admissible alignment, in which D; = D;, if z; = True and D;- = Df, if z; =
False (for 1 < j < [). The last [ — 1 data items are left untouched. Clearly, for every
fi (1 <4 < n) there are [ — 1 “matches” from the data items Dj4q, ..., D, and at least

one more from Df, ..., D] (since each clause must have been satisfied). Thus, for each ¢
(1<i<n), 3 ymigp >1>pm=(20—1)/2 and xx(f;) = 1 and for all h # f;, xi(h) = 0.

{h e [0, 1]Ixk(h) =1} = {f1, for-- -, fu}

and

[{h € [0,1][xx(h) =1} = n.
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Conversely, it is rather easy to see that if the CNF has no satisfying assignment, then for every
admissible alignment k there exists an 7 (1 <4 < n) with 3. m;j, = [—1 < pom = (2[—1)/2
and hence

[{h € 0, 1]xa(h) = 1}] < n.

3.0.2 Problem 2 (Sizing Errors)

Given a set of ordered vectors with rational entries in the open interval (0, 1):
Dy, Dy, .. '7D17Dl—|—17 vy D,

an approximate solution

H = (hy,...,hn),

an approximation factor € and a variance upper bound 2.
An admissible alignment of the data can be represented as

! ! ! ! !
D17D27"'7DZ7DZ—I—17"'7Dm7

where D € {Dj, Dﬁ} (1<j<l)and D; = D; (5 > 1), as before. For any such alignment

(Ag) and an approximate cut site h; define a set
Sijk = {S € D§| |S — ilzl < 6}

and

Sik = L—ﬂ Siik
J

Define h; = mean(S;;) and o? = var(S).
Determine: If there is an admissible alignment Ay such that

V; o <o’

We shall show that problem 2 is NP-complete in the size m. The problem is clearly
NP-computable, since if one can guess a correct admissible alignment, then it is easy to
check in polynomial time if the variance bound can be met.

The NP-hardness of the problem can be easily shown with a simple transformation from
NOT-ALL-EQUAL 3-SAT. Consider an instance of NOT-ALL-EQUAL 3-SAT problem with
[ variables, z1, 3, ..., z; and n clauses, Cy, Cy, ..., C, (with n > [). As before, we assume
that no clause contains a variable z; and its negation z;, since such a clause has always one
true literal and one false literal, independent of z;’s truth value. This problem is NP-hard
in size [. Consider a given instance of NOT-ALL-EQUAL 3-SAT problem; with each clause,
C; associate locations f; = i/2(n+ 1), g; = f; — 1/5(n+ 1), ff and g®. Bach D; will have
cuts only at f;’s, g;’s, ff’s and gf*’s. We will have total m = [ 4 3 data items, where the
first [ data items may need to be reoriented, but the last 3 items are in correct orientation:

Dl+1:"':Dm:(f17"'7fn7 577f1R)
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The first [, D;’s are determined as follows. ¢; € D;, iff z; € C; and = D;, iff z; € C;.
We set
H = (fh"'af'ru 577f1R)

and ¢ = 1/5(n+ 1) and 0? = 6/625(n+ 1)2.

If the CNF has a satisfying assignment such that each clause has at least one true literal
and at least one false literal, then choose an admissible alignment, in which D;- =Dj,ifz; =
True and D’ = D?, if z; = False (for 1 < j <!). The last 3 data items are left untouched.
Clearly, for every fMLZ (1 <7 < n) there are 3 “matches” from the data items Djtq, ..., Dy,
with a value f; and exactly one or two additional matches from Df, ..., D] with a value g;.
Thus the variance of Sy is o2 < var(0, 0, 0, ¢, €) = (2/5)(3/5)(1/5(n+1))? = 6/625(n+ 1)
A similar argument shows that variances for n + 1 < ¢ < 2n are also similarly bounded.

If on the other hand, for every truth assignment there exists a clause C; that must have its
literals all True or all False, we see that either o = var(0, 0, 0, ¢, ¢, ¢) = (1/2)(1/2)(1/5(n+
1))2=1/100(n+1)? or 03,_, = 1/100(n+ 1)2. In either case, either 6 > o% or 02,_; > o?.
The following observation is sufficient to derive these values: if C; has all its literals true,
then

Sik = {g27g27g27f27f27f2} and SQn—i,k = {fiR7 iR7fz'R}'
If C; has all its literals false, then

Sik - {f27f27f2} and SQn—i,k = {ng7ngvng7 ZR7 ivaiR}'

3.0.3 Problem 3 (Missing Fragments)

Given a set of ordered vectors with rational entries in the open interval (0, 1):
Dy, Dy, .. '7Dl7Dl+17 vy D,

a rational number p. € (0, 1) and an integer V.
An admissible alignment of the data can be represented as

! ! ! ! !
D17D27"'7DZ7DZ—I—17"'7Dm7

where D} € {D;,Dj+¢;} (0 <¢; <1—sp45, 1 <j<I)and D= D; (j >1). Observe
that in this case, we have assumed that the orientations of the molecules are known, but the
first [ molecules may have missing fragments on either end. The possibility of a missing
end fragment is not a problem for small-sized clones (e.g., cosmids), but do pose serious
difficulties for larger clones (i.e., BACs).

For any such alignment (Aj) and a rational number h; € [0, 1], define an indicator
variable m;;i, to be 1, if h; € D; and 0, otherwise. Now, define a characteristic function
Xk 1 [0,1] = {0,1}, as xx (hi) = 1, iff Zj Mijk > Pcm.

Determine: If there is an admissible alignment Aj such that

[{h € [0, 1[xk(h) = 1} = N.
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We shall show that problem 3 is also NP-complete in size m. The problem is clearly
NP-computable, since if one can guess a correct admissible alignment, then it is easy to
check in polynomial time if there are no fewer than N restriction sites.

The NP-hardness of the problem can be easily shown with a simple transformation
from 3-SAT. Consider an instance of a 3-SAT problem with [ variables, zq, z9, ..., 24
and n clauses, Cq, Csq, ..., C,, (with n > [). Without loss of generality, we assume that
no clause contains a variable z; and its negation Z;, since such a clause always assumes
true value, independent of z;’s truth value. For a given instance of 3-SAT problem, we
proceed as follows: With each clause, C; associate a location f; = i/(n+ 1) € (0,1) and
gi=(1—1/2)/(n+1) € (0,1). Each D; will have cuts only at f;’s and g;’s. We will have
total m = 2/ — 1 data items, where the first [ data items may need to be translated, but the
last [ — 1 items are in correct orientation:

Dl-l-l:"':Dm:(fhf?w'wfn)

The first [, D;’s are determined as follows. f; € D;, iff z; € C; and ¢; € D;, iff 7; € C;.
Of course N = n and p. = 1/2. If the CNF has a satisfying assignment, then choose an
admissible alignment, in which D’ = D;, if z; = True and D} = D; +1/2(n+ 1), if z; =
False (for 1 < j < [). The last [ — 1 data items are left untouched. Clearly, for every
fi (1 <4 < n) there are [ — 1 “matches” from the data items Dj4q, ..., D,, and at least
one more from Df, ..., D] (since each clause must have been satisfied). Thus, for each ¢
(1<i<n), > mijg > > p.m and Xk(fi) = 1 and for all h # f;, xx(h) = 0.

{h e 0, 1Ixk(h) =1} = {f1, for- -, [}

and
[{h € [0, 1]Ixk(h) =1} = n.

Conversely, it is rather easy to see that if the CNF has no satisfying assignment, then for
every admissible alignment &

[{h € [0, 1[xx(h) = 1}| < n.

3.0.4 Problem 4 (Spurious Data)

Next, we model the effect of the fact that some of the data items may be invalid (“bad”). Thus
these data items can be assumed to have no relation to the restriction map being computed
and hence should be discarded before the final restriction map is computed. However, we
may assume that each molecule is given with the correct orientation and that the fragments
are correctly sized. The number of bad molecules is also assumed to be known and is exactly
py fraction of the total number of molecules. The bound on the digestion rate is denoted as
before by p..
Given a set of ordered vectors with rational entries in the open interval (0, 1):

D={Dy,Dy,...,Dp,},

two rational numbers p., p» € (0,1) and an integer N.
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The set D may then be partitioned into two subsets Dy (the “good” molecules) and Dj
(the “bad” molecules). The final restriction map is then computed using only the D with
respect to the alignment given (implicit in the way D is presented).

By definition, |Dj| = ps|D|. For any such subset Dy and a rational number h; € [0, 1],
define an indicator variable m;;; to be 1, if h; € D; and D; € Dj, and 0, otherwise. Now,
define a characteristic function xy, : [0, 1] — {0, 1}, as xx(h;) = 1, iff 37, myjn > pe|Dil-

Determine: If there is a subset of “good” molecules Dy, such that

[{h € [0, 1[xk(h) = 1} = N.

We shall show that problem 4 is NP-complete in size m. The problem is clearly NP-
computable, since if one can guess a correct subset of good molecules, then it is easy to
check in polynomial time if there are no fewer than N restriction sites.

The NP-hardness of the problem can be shown by a transformation from 3-SAT. Consider
an instance of a 3-SAT problem with [ variables zy, x5, ..., 2; and n clauses, Cy, Cy, ...,
Cy, (with n > ). As before, without loss of generality, we assume that no clause contains a
variable z; and its negation z;, since such a clause always evaluates to true, independent of
z;’s truth value. For a given instance of 3-SAT problem, we proceed as follows: With each
variable, z; associate a location g; = j/2(I+ 1) € (0,1/2); with each clause, C; associate a
location f; = 1/2+i/4(n+ 1) € (1/2,3/4) and finally, a location e = 7/8. Each D; will
have cuts only at f;’s, g;’s and e. We will have total m = 4/ — 2 data items, all of them in
correct alignment. The first 2/, D;’s (1 < j < 2[) are determined as follows: There are two
data items Dy;_; and Dg; for each variable z;. g; € Dy;_1 and g; € Dqj;. fi € Doy, iff
z; € Crand f; € Dy, iff z; € C;. The next [ — 1, D;’s (21 < j < 3l — 1) are given as

D21+1 =-=D31= (glv"'7gl7f17"'7fn)'
The last [ — 1, D;’s (31 — 1 < j < 4l — 2 =m) are given as
D3y =---=D,, = (e).

Finallyy, N=n+{and p. = p, = 1/2

If the CNF has a satisfying assignment, then choose a partition of D as follows: For
1 <3 <2l, Dyj_q € Dy, if z; = True and Dy; € Dy, if z; = False. For 21 < 7 < 3/ -1,
D; € Dy. The rest of the molecules are in Df. Clearly the number of bad molecules is
I+ (l—1)=2l-1=pym. Also Dy, has exactly 2/ — 1 elements. Since either Dy;_; or Dy;
is in Dy, xx(g;) = 1 (There are [ > p (2] — 1) cuts at each location g; in Dy). Since every
clause is satisfied individually, xx(fi) = 1 (There are at least [ > p.(2/ — 1) cuts at each
location f; in Dy). Clearly xx(e) = 0.

{h e 0, 1]xe(h) =1} = {g1,. 91, frse o fu

and

[{h € [0,1]|xx(h) = 1}| = n+1.

Conversely, if D can be partitioned so that D (the “good” molecules) satisfies all the
constraints, then we make the following observations about Dj: (1) For 3/ < j < 41 — 2,
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D; ¢Dy. (2) For2l+1<j<3l—1, D; € Dy. (3) For 1 < j <[, exactly one of Dy;_; and
Dy; must be in Dy. Otherwise, either there will not be enough cuts at g; in Dy, or the subset

¢ will not have half (py fraction) of all the data elements. From this it follows that at each
fi location there will be at least [ cuts in Dy and the corresponding clause will evaluate to
true leading to a truth assignment in which z; is true (respectively, false) if Dy;_1 € Dy
(respectively, Dq; € Dy).

3.0.5 Problem 5 (k-Populations)

Finally, we model a closely related problem, in which each of the data items is assumed to
correspond to exactly one of k different restriction maps. Thus one assumes that the optical
map data was derived by taking a mixture of &k different clones and then cleaving them by
a restriction enzyme. Thus computationally our job is to partition the data items into &
“equivalent classes” and then compute k restriction maps corresponding to each of the k
subsets. We show that this problem is NP-complete even when k£ = 2, all the orientations are
known and there is no sizing error. The construction is very similar to the one for problem
4, but we present it for the sake of completeness.
Given a set of ordered vectors with rational entries in the open interval (0, 1):

D={Dy,Dy,...,Dp,},

two rational numbers py, pz € (0,1) and two integers Ny and Nj.

The set D may then be partitioned into two subsets Dj (the type 1 molecules) and
Dj. (the type 2 molecules). The final type 1 (respectively, type 2) restriction map is then
computed using only the Dy (respectively, Df) with respect to the alignment given. For the
sake of simplicity, we shall assume that |Dy| = |Dg].

For any such subset D; and a rational number h; € [0, 1], define an indicator variable
myjk to be 1,if h; € D; and D; € Dy, and 0, otherwise. Now, define a characteristic function
Xk 2 [0,1] = {0, 1}, as xg(h;) = 1, iff 32, mij > p1|Dg|. Similarly, define x§, with Df and
po taking the roles of Dy and pq, respectively.

Determine: If there is an equi-partition of D = Dj, U Dy, such that

[{h € [0, 1[xx(h) = 1}]
[{h € [0, 1[xz(h) = 1}]

Ny, and

>
> NQ.

Problem 5 is NP-complete in size m. The problem is clearly NP-computable, since if
one can guess a correct partition, then it is easy to check in polynomial time if the two maps
have no fewer than Ny and Ny restriction sites, respectively.

The NP-hardness of the problem can be shown by a transformation from 3-SAT. Consider
an instance of a 3-SAT problem with [ variables zy, x5, ..., 2; and n clauses, Cy, Cy, ...,
Cy, (with n > [). As before, without loss of generality, we assume that no clause contains a
variable z; and its negation z;, since such a clause always evaluates to true, independent of
z;’s truth value. For a given instance of 3-SAT problem, we proceed as follows: With each
variable, z; associate a location g; = j/2(l + 1) € (0,1/2); with each clause, C; associate
two locations f; = 1/2+i/4(n+1) € (1/2,3/4) and f/ =3/4+i/4(n+ 1) € (3/4,1). Each
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D; will have cuts only at f;’s, f/’s and g¢;’s. We will have total m = 4/ — 2 data items, all
of them in correct alignment. The first 2/, D;’s (1 < j < 2[) are determined as follows:
There are two data items Dy;_; and Dj; for each variable z;. ¢g; € Dy;_1 and g; € D;.
fi € Dgj_1 and f] € Dy;, iff z; € C; and f/ € Dyj_q and f; € Dy, iff z; € C;. The next
l—1,D;’s (2l < 7 <3l —1) are given as

D21+1: o= Dg1 = (g17"'7gl7f17"'7fn)-
The last [ — 1, D;’s (31 — 1 < j < 4l — 2 =m) are given as
D3l:"':Dm:(g17"'7gl7f{7"'7f'r/z)'

Finallyy, Ny = No=n+1land p; =p, =1/2

If the CNF has a satisfying assignment, then choose a partition of D as follows: For
1 <37 <2, Dyj_q € Dy, if z; = True and Dy; € Dy, if z; = False. For 21 < j7 < 31 -1,
D; € Dyj. The rest of the molecules are in Dj. Both D and Df, have exactly 2/ — 1 elements.
Since either Dy;_q or Dy; is in Dy, (respectively Df), xx(g;) = 1 (respectively, x5 (g;) = 1).
Since every clause is satisfied individually, xx(f;) = 1 and x%.(f]) = 1.

{h e [0, 1]xe(h) =1} = {g1,- 91, frse o fu

and
{he [0, 1]Ixi(h) =1} = {g1,- s 01, fis ooy Fr -
Thus
[{h € [0,1]Ixk(h) =1} = KA € [0,1][xi(h) =1} = n+1.

Conversely, if D can be partitioned so that the two subsets satisfy all the constraints, then
we claim that there always exist a partition satisfying the following additional properties:
(1) For2l+1<3<3l—1,D; €Dy. (2) For 3l <j<4l—-2,D; €Dj. (3) For1 <j <,
exactly one of Dy;_1 and Dy; must be in Dj. Otherwise, there will not be enough cuts at g;
in Dy, or its complement. From this it follows that at each f; location there will be at least /
cuts in Dy and the corresponding clause will evaluate to true leading to a truth assignment
in which z; is true (respectively, false) if Dy;_y € Dy, (respectively, Dqg;_; € Df).

4 Efficient Probabilistic Algorithm

In spite of the pessimistic results of the previous section, it is not hard to see that the problem
admits efficient algorithms once the structure in the input is exploited. For instance, if the
digestion rate is quite high, then by looking at the distribution of the cuts a good guess can
be made about the number of cuts and then only the data set with large numbers of cuts
can be combined to create the final map [Ree97]. Other approaches have used formulations
in which one optimizes a cost function and provides heuristics (as the exact optimization
problems are often infeasible). In one approach?, the optimization problem corresponds
to finding weighted cliques; and in another [MP96], the formulation corresponds to a 0-1

2An earlier algorithm due to the first author.
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quadratic programming problem. However, these heuristics have only worked on limited
sets of data and their effectivity (or approximability) remains unproven.

Here, we present a probabilistic algorithm based on a Bayesian approach. Our ap-
proach is to use a carefully constructed prior model of the cuts to infer the best hypothetical
model by using Bayes’ formula[DLR77, GM93]. The solution requires searching over a
high-dimensional hypothesis space and is complicated by the fact that the underlying dis-
tributions are multimodal. We show how the search over this space can be accomplished
without sacrificing efficiency. The algorithm has been implemented and extensively tested
over automatically generated data for more than a year with good results (see section 5).
Furthermore, one can speed up the algorithm quite easily by suitably constraining various
parameters in the implementation (but at the loss of accuracy or an increased probability of
missing the correct map).

The main ingredients of this Bayesian scheme are the following;:

e A Model or Hypothesis H, of the map of restriction sites.

e A Prior distribution of the data (SMRM vectors)

PrlD;[#],
Assume pair-wise conditional independence of the data (SMRM) vectors D;

Pr[D;|D;,, ..., D;,., ”H] =Pr[D;|H],

Thus, the prior of the entire data set of SMRM vectors becomes

m

Pr[D|H] = HPl‘[Dj|7‘l],

J

where index j ranges over the data set.
e The Posterior distributions via Bayes’ rule

Pr[H|D] = Pr[D|H] Pr[H]
Pr[D]

Using this formulation, we search over the space of all hypotheses to find the most
“plausible” hypothesis H* that maximizes the posterior probability. Here Pr[H] is the prior
unconditional distribution of hypothesis # , and Pr[D] is the unconditional distribution of
the data.

The hypotheses # will be modeled by a small number of parameters ®(#) (e.g., number
of cuts, distributions of the cuts, distributions of the false cuts, etc.). We have prior models
for only a few of these parameters (number of cuts), and the other parameters are implicitly
assumed to be equi-probable. Thus the model of Pr[#] is rather simplistic. The unconditional
distributions for the data Pr[D] does not have to be computed at all since it does not effect
the choice of H*. In contrast, we use a very detailed model for the conditional distribution
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for the data given the chosen parameter values for the hypothesis. One can write the above
expression as

log(Pr[®(#)|D]) = £ + Penalty + Bias,

where £ = 37 log(Pr[D;|®(#)]) is the likelihood function, Penalty = log Pr[®(#)] and
Bias = — log(Pr[DP]) = a constant. In these equations ®(#) corresponds to the parameter
set describing the hypothesis and ®(#) C ®(#) a subset of parameters that have a nontrivial
prior model. In the following, we shall often write  for ®(#), when the context creates no
ambiguity.

Also, note that the bias term has no effect as it is a constant (independent of the hypoth-
esis), and the penalty term has any discernible effect only when the data set is small. Thus,
our focus is often on the term £ which dominates all other terms in the right hand side.

As we will see the posterior density, Pr[7|D] is multimodal and the prior Pr[D;| ] does
not admit a closed form evaluation (as it is dependent on the orientation and alignment with
H). Thus, we need to rely on iterative sampling techniques.

Thus the algorithm has two parts: we take a sample hypothesis and locally search for
the most plausible hypothesis in its neighborhood using gradient search techniques; we use
a global search to generate a set of sample hypotheses and filter out all but the ones that
are likely to be near plausible hypotheses. We present the algorithmic descriptions of the
local and global searches in that order.

Note that our approach based on the Bayesian scheme enjoys many advantages:

e One obtains the best possible estimate of map given the data, subject only to the
comprehensiveness of the model ®(#) used.

e For a comprehensive model H, estimates of ®(#) are unbiased and errors converge
asymptotically to zero as data size increases.

e Additional sources of error can be modeled simply by adding parameters to ®(H).
e Estimates of the errors in the result can be computed in a straightforward manner.
e The algorithm provides an easy way to compute a quality measure.

However, the approach also has many shortcomings:

e It is computationally expensive to compute Pr[®(H)|D].

e The search for best ®(#H) is often expensive since posterior distributions are typically
multimodal.

e Typically sampling on the parameter space is the only option. However this sampling
is not exhaustive, and hence the best ®(H) may not always be found.

e Good prior Pr[®(#)] may not be available, requiring more data for the same “quality
of goodness” and may introduce bias.

e The quality measure and parameter accuracy estimates may be incorrect if the data
sample size is small.
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4.1

Maps by Bayesian Inference

In order to accurately model the prior observation distribution Pr[D|#], we need to consider
following categories of errors in image data: 1) Misidentification of spurious materials in
the image as DNA, 2) Identifying multiple DNA molecules as one, 3) Identifying partial
DNA molecules as complete, 4) Errors in estimating sizes of DNA fragments, 5) Incomplete
digestion of DNA, 6) Cuts visible at locations other than digest sites, and 7) Orientation of
DNA molecule is not always known.

Our observation probability distribution Pr[D|#] is modeled as following:

e A molecule on the surface can be read from left to right or right to left. The uncer-

tainty in orientation is modeled as Bernoulli processes, with the probability for each
orientation being equal.

The restrictions sites on the molecule are determined by a distribution induced by the
underlying distribution of the four basesin the DNA. For example, we shall assume that
the probability that a particular base (say, A) appears at a location 7 is independent
of the other bases, though the probabilities are not necessarily identical.

The false cuts appear on the molecule as a Poisson process. This is a consequence
of the simplifying assumption that over a small region Ah on the molecule, the Pr[#
False cuts = 1 over Ah] = AfAh and the Pr[# False cuts > 2 over Ah] = o(AR).

The fragment size (the size of the molecule between two cuts) is estimated with some
loss of accuracy (dependent on the stretching of the molecule, fluorochrome attachments
and the image processing algorithm). The measured size is assumed to be distributed
as a Gaussian.

Following notation will be used to describe the parameters of the independent processes
responsible for the statistical structure of the data. Unless otherwise specified, the indices 1,
7 and k are to have the following interpretation:

The index 7 ranges from 1 to N and refers to cuts in the hypothesis.
The index j ranges from 1 to M and refers to data items (i.e., molecules).

The index k ranges from 1 to K and refers to a specific alignment of cuts in the
hypothesis vs. data.

Now the main parameters of our Bayesian model are as follows:

14 @

p.; = Probability that the 7th sequence specific restriction site in the molecule will be
visible as a cut.

o; = Standard deviation of the observed position of the ith cut when present and
depends on the accuracy with which a fragment can be sized.

As = Expected number of false-cuts per molecule observed. Since all sizes will be
normalized by the molecule size, this will also be the false-cuts per unit length.
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e p, = Probability that the data is invalid (“bad”). In this case, the data item is assumed
to have no relation to the hypothesis being tested, and could be an unrelated piece
of DNA or a partial molecule with a significant fraction of the DNA missing. The
cut-sites (all false) on this data item are assumed to have been generated by a Poisson
process with the expected number of cuts = A,.

Note that the regular DNA model reduces to the “bad” DNA model for the degenerate
situation when p,, — 0 and Ay — A,. As a result, “bad” DNA molecules cannot
be disambiguated from regular DNA molecules if p., =~ 0. In practice, p,; > 0 and
An > Ay, and the degenerate case almost never occurs. Here the “bad” molecules are
recognized by having a disproportionately large number of false cuts.

e )\, = Expected number of cuts per “bad” molecule.
Recall that by Bayes’ rule

Pr[D|#H] Pr(H)

Pr[H|D] = Pr[D]

Assuming that the prior Pr[#] distribution is given (as in the following subsection) in terms
of just the number of restriction sites, based on the standard Poisson distribution, we wish
to find the “most plausible” hypothesis # by maximizing Pr[D|H].

In our case, H is simply the final map (a sequence of restriction sites, hy, hg, ..., hy)
augmented by the auxiliary parameters such as p.;, 0;, A¢, etc. When we compare a data
item D; with respect to this hypothesis, we need to consider every possible way that D;
could have been generated by H. In particular we need to consider every possible alignment,
where the k™" alignment, Aji, corresponds to a choice of the orientation for D; as well as
identifying a cut on D; with a true restriction site on H or labeling the cut as a false cut.
By D;AJ k) [also abbreviated as D;-k)
with respect to the alignment A;;.
which D; could have been generated from #, and therefore the total probability density of
D; is the sum of the probability density of all these alignments, plus the remaining possible
derivations (invalid data).

As a consequence of the pairwise independence and the preceding discussion, we have
the following;:

], we shall denote the “interpretation of the jth data item

? FEach alignment describes an independent process by

M
Bi[D[H] = [[BeD,H],

i
where index j ranges over the data set.

Pr;=Pr[D;|H] = %Z Pr[D§k)|’H, good] Pr[good] + %ZPT[D;k)llﬂ, bad] Pr[bad]
k k

where index k ranges over the set of alignments.

In the preceding equation, ]P’I[D;k)ﬂ-l, good] (abbreviated, Pr;;) is the probability density of
model D; being derived from model # and corresponding to a particular alignment of cuts
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(denoted, A;). The set of alignments include alignments for both orientations, hence each
alignment has a prior probability of 1/2. If D; is bad, our model corresponds to H with
Pe; — 0 and Ay — A,. We shall often omit the qualifier “good” for the hypothesis #, when
it is clear from the context.

Thus, in the example shown in Figure 2, for a given hypothesis #, the conditional
probability density that the j* data item D; with respect to alignment Aj; (i.e., D;k))
could have occurred is given by the following formula:

P e—(s1=h1)?/207
Tjfp = Poy———F—=——
J Pey /_271'0'1

In the most general case, we proceed as follows. Let

—(sn—hn)?/202
e N
/\f X oo X Pe

o V2ton

X (1 —pe,) X Ape”

N = Number of cuts in the hypothesis #.
h; = The 1th cut location on H.
M; = Number of cuts in the data D;.

K; = Number of possible alignments of the data/evidence D; against the hypothesis H (or
its reversal, the flipped alignment HR).

s;;z = The cut location in D; matching the cut A; in #, given the alignment A;;. In case
such a match occurs, this event is denoted by an indicator variable m,;; taking the
value 1.

m;;r = An indicator variable, taking the value 1 iff the cut s;;; in D; matches a cut £; in
the hypothesis H, given the alignment A;;. It takes the value 0, otherwise.

F;; = Number of false (non-matching) cuts in the data D; for alignment A;z, that do not
match any cut in the hypothesis 7. Thus

N
Fip= M; =Y mij

i=1
Number of missing cuts is thus
N N
Z(l - mijk) =N — Zm”k

By an abuse of notation, we may omit the indices 7 and k, if from the context it can be
uniquely determined which data D; and alignment A;; are being referred to.

Note that a fixed alignment A;; can be uniquely described by marking the cuts on D;
by the labels T (for true cut) and F' (for false cut) and by further augmenting each true cut
by the identity of the cut h; of the hypothesis #. From this information, m;;x, sk, £k, etc.
can all be uniquely determined. Let the cuts of D; be (sq, s, ..., sa,). Let the event F;
denote the situation that there is a cut in the infinitesimal interval (s; — Az/2, s; + Az /2).
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Thus we have:

]P’r[ng)W-L good]Azy -+ - Azyy,

= ]P’r[ng)W-l, good](Az)Ms
= problEy, ..., Ex,, Aje|H, good]
= prob[Ey, ..., Eyy, Ajglmije, Mj, H, good] x prob[m;;x, M;|H, good]
= prob[El, ]k|mwk7 M;, H, good] x prob[Eq, A;i|Er, myjk, M;, H, good]
X - X prob[Ey, Akl Ev, ..., Eaoq, myjr, M;, H, good] X
x problEny,, Aje|Ey, ..., B, 1, mije, M, H, good]
x prob[m;;r, M;|H, good]

Note the following:

1.
Al A
prob[miji, M;|H, good] = [H (Pe;mije + (1= pe, ) (1 — mijk))] x e ML [ P!
V

2. For the event F, there are two possible situations to be considered:

p:j;]k pbt)(l—mi]k)‘| X e—’\f,\fFJk/ij!

(a) s, is a false cut and the number of false cuts among sq, ..., s4—1 is f.
problEy, Ak Ev, ..., Eoz1, myjk, M, H,good] = (Fjr — f)Az.

(b) sq = sk is a true cut and h; is the cut in H associated with it.
b, A g U
rob|Ey, A;k| B,y ..., Fqo_1, ik, M;, H,good] = ———— Ax.
p [ J | 1 1 J J g ] \/ﬂO’i
Thus,

prob[El, e By, Ajklmije, M;, M, good]

e~ (sijr—hi)? (207
N 2:1_[1 V21o;

Suk ki ) /20 Mgk M
— l A: J
H ( V2ro; ) (Aa)

=1

Mgk
Ax) X ij!(Am)FJ’“
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Putting it all together:

]P’r[ng)W-l, good]

N —(sijr—hi)? /207 \ Mok
€ J 2
= I lpe——— 1= pg,)(Immiam) | e= A7 Fon 1
L:l (pl B, ) (1-p) € f (1)

By an identical argument we see that the only alignments relevant for the bad molecules
correspond to the situation when all cuts in D; are labeled false, and for each of two such
alignments,

Pr[DY|3, bad] = =AM
The log-likelihood can then be computed as follows:

L= E log Pr[D;|H].

J

Thus,

1_
L = Zlog pbe_/\”/\nMJ +( Qpb)zprjk
J k

= Zlog[Pbej + (1 = py)d;]

where, by definition, e; = e=An M
and d.]' = (Z Pr]‘k)/Q.
k

4.2 Prior Distribution in the Hypotheses Space

In the model, we shall use an extremely simple distribution on the prior Pr[#] that only
depends on the number of restriction sites, N and not any other parameters. Implicitly, we
assume that all hypotheses with same number of cuts are equi-probable, independent of the
cut location.

Given a k-cutter enzyme (e.g., normally six-cutters like EcoR | in our case), the proba-
bility that it cuts at any specific site in a sufficiently long clone is given by

()

Thus if the clone is of length G bps and if we denote by A\, = G'p. (the expected number of
restriction sites in the clone), then the probability that the clone has exactly N restriction
cuts is given by

/\N
prob[# restriction sites = N| enzyme, e and clone of length G] =~ e_/\e%.

The preceding computation is based on the assumption that all four bases € {A, T', C,
(G} occur in the clone with equal probability i. However, as it is known,[BSW84], human
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genome is C'G-poor (i.e., Pr[C] + Pr[G] = 0.32 < Pr[A] + Pr[T] = 0.68), a more realistic
model can use a better estimation for p,:

pe = (0.16)#99(0.34)#4T

where #C'GG denotes the number of C' or G in the restriction sequence for the enzyme and
similarly, #AT denotes the number of A or T in the restriction sequence.

4.3 Local Search Algorithm

In order to find the most plausible restriction map, we shall optimize the cost function
derived earlier, with respect to the following parameters:

Cut Sites = hq,hg, ..., Ay,

Cut Rates = pe;yPeys- -3 Pens
Std. Dev. of Cut Sites = oy,09,...,0n,
Auxiliary Parameters = py, Ay and A,.

Let us denote any of these parameters by #. Thus, we need to solve the equation

oL

98 =0

to find an extremal point of £ with respect to the parameter 8.

4.3.1 Case 1: 8 — p

Taking the first partial derivative, we get

oL
Opy

_ Z (6]' - dj) ) (2)

~ Dbej + (1 —pp)d;

Taking the second partial derivative, we get

_ a4y
> EE )

Accordingly, £ can now be easily optimized iteratively to estimate the best value of py,
by means of the following applications of the Newton’s equation:

. OL/Op
Po:= Do 78%/8@)2'
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4.3.2 Case 2: § = )\,

This parameter is simply estimated to be the average number of cuts. Note that,

oL _ T pye; (M /A = 1)
O S pre + (1= p)d;

should be zero at the local maxima. Thus a good approximation is obtained by taking
M;
——-1]=
S (5-1) =0
j

leading to the update rule
_=Ej M; _ Zj M;

Apt = .
>l Total number of molecules

Thus A, is simply the average number of cuts per molecule.

4.3.3 Case 3: 0 = hj, p;;, 0; (i=1, ..., N), or A¢

Unlike in the previous two cases, these parameters are in the innermost section of our
probability density expression and computing any of these gradients will turn out to be
computationally comparable to evaluating the entire probability density.

In this case,

oL _
08

> % (1 5 Z]P’rijjk(H)) ;  where Pr; =Pr[D;|#] and
j Ly 2 k

where

I P Yy
Xf’“(e)—lAf 90 08

N
Z mijk 3[)01. 1-— Mk 8pct.:|

+Z.:1 pe; 00 1—-p., 00

N
O [ —(sijk — hi)* 1 do;
2 mi [% (—203 exh
For convenience, now define

= <1—pb) Prjp
k= 2 Pr;

= Relative probability density of the alignment A;; for data item D;.

Thus, our earlier formula for % now simplifies to

oL
20 = DO mik Xk (6).
k

J
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Before, examining the updating formula for each parameter optimization, we shall intro-
duce the following notations for future use. The quantities defined below can be efficiently
accumulated for a fixed value of the set of parameters.

Uy, = Zj Dok TRk = Expected number of cuts matching h;

vy, = Z]« Yo TikMiiksi;x =  Sum of cut locations matching h;

Uoi = X500k ﬁjkmijks?jk = Sum of square of cut locations matching h;
By = 252k Tjk = Expected number of “good” molecules

Yo = 2k TikM; = Expected number of cuts in “good” molecules

We note here that W’s can all be computed efficiently using a simple updating rule that
modifies the values with one data item D; (molecule) at a time. This rule can then be
implemented using a Dynamic Programming recurrence equation (described later).
Case 3A: 6§ — h; Note that,
0= hi
= Xik(hi) = miji(sije — ha) /o]

oL
= h :Ezﬂjkmijk(sijk_hi)/gz-
k3 ] k

Thus,
o 1

oh; o?

k3

(Wy; — hiWy;) .

Although, W’s depend on the location h;, they vary rather slowly as a function of h;. Hence
a feasible update rule for h; is

LTS (4)

Thus the updated value of h; is simply the “average expected value” of all the s;;;’s that
match the current value of h;.

Case 3B: 0 — p.; Note that,

0 =p.
My 1 —mgj
= XjkWPe) = -
! ( ) pci 1- Pci
oL mie 1 — mig
= = Tk — .
apci zj: Zk: ! pci 1- pci

Thus,
8[: - & ,ug — \IIOZ'
apci Pe; 1- Pe; '
Again, arguing as before, we have the following feasible update rule for p.,

W,
Pe, i = . (5)
g
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Thus p,, is just the fraction of the good molecules that have a matching cut at the current
value of h;.

Case 3C: # — 0, Note that,

0= ag;
= Xik(0:) = mijk (7( g - —.)

1

i = h)?
o Zzﬁ]km%(s]ki )‘07)'

Thus,

oL 1

Thus, we have the following feasible update rule for o2

o2 =(‘I’2i — 2h;Wq; + h3Wy,)
v Uy, '

Using the estimate for h; (equation (4)), we have

02:=\I’2¢ B (‘I’u)Q
LWy Uy,

This is simply the variance of all the s;;;’s that match the current value of h;.

~~~
(@)
~

Case 3D: 6§ — Ay Note that,

0=\
Fk M; Zzlrnlk
= xppAg) = 35— 1= ===~
f f
oL M] ZZmZJk )
vg—ZﬂI'oz_
Af 7

Thus, we have the following feasible update rule for A;

Vg Yo,
Api=— — .
d Hg ZZ: Hg

(7)

This is simply the average number of unmatched cuts per “good” molecule. (Note that the
molecules are already normalized to unit length.)
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Case 3E: § — p. = p,, = --- = p., (Constrained) Note that,

) W (R

7k =1 DPe 1_pc

Thus the update equation for this case is:

pc:=72i \IIOi/N. (8)

Hg
Case 3F: 0 - 0 =01 =---= oy (Constrained) Note that,
siie —h))? 1
2= 553w (2R 1),
7k =1

Thus the update equation for this case is:

v =Zz(q12i:_q\}1}jz/q}02) ) (9)

4.4 Update Algorithm: Dynamic Programming

In each update step, we need to compute the new values of the parameters based on the old
values of the parameters, which affect the “moment functions:” Wq;, Wy;, Wy;, py and ,.
For the ease of expressing the computation, we shall use additional auxiliary expressions as

]Pr]k ) )
(2%

Wi o = Xy <Lk;”k)

follows:
P;

g (10)
SUM;; = >k <%ﬂ}5uk)
€
P ijkS;
sq; = L <7kmxf£k)
7

—As repeatedly, since
this is a relatively expensive computation. Note that, the original moment function can now
be computed as follows:

One motivation for this formulation is to avoid having to compute e

Pr; = (1_%) 6_/\fXP]‘+p56]

wo = ()M B

v = ()N, P (11)
vy = (F)eN T, T

po = ()N R

Tg = (PTb) e_)\fzj]\%rf] J
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Finally,
Pr[D[#H] =[] Pr;.
J

The definitions for P;, W;;, SUM;; and SQ;; involve all alignments between each data
element D; and the hypothesis 7. This number is easily seen to be exponential in the
number of cuts N in the hypothesis H, even if one excludes such physically impossible
alignments as the ones involving cross-overs (i.e., alignments in which the order of cuts in
H and D; are different). First, consider P;:

N —(hi=sijg)? /207 ik n
€ J : s
= E {l | (pci o ) X | I(l _pq)l kX ’\fF]k}

Next we shall describe recurrence equations for computing the values for all alignments
efficiently. The set of alignments computed are for the cuts {1, ..., M;} of D; mapped
against the hypothesized cuts {1, ..., N}. We define the recurrence equations in terms of

Pyr = P]'(Sq, .. .,SM];hr, .o hN),

which is the probability density of all alignments for the simpler problem in which cuts sy,

... Sq—1 are missing in the data D; and the cuts hy, ..., h._; are missing in the hypothesis
H.
Then, clearly
P] = P171
N -1 e~ (hi=sq)? /207
Por = AfPgtr,+ qu+1¢+1{H(1 - Pci)}l’ctwy (12)

t=r i=r

where 1 <¢g< M;and 1 <r <N +1.

This follows from a nested enumeration of all possible alignments. The recurrence terminates
in Par, 41, which represents P; if all cuts in D; were missing and cuts Ay, ..., h,—y in H

were missing:
N

Par,r = [ J(1 = per)- (13)
Thus the total number of terms P, , to be computed is bounded from above by (M; +
1)(N + 1) where M; is the number of cuts in data molecule D; and N is the number cuts
in 7. Each term can be computed in descending order of ¢ and r using equations (12) and
(13). The time complexity associated with the computation of P, , is O(N — r) in terms of
the arithmetic operations.
Note also that the equation (12) can be written in the following alternative form:

P] = P171
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e~ (hi=s¢)%/207
P r = Aqu-}—lr +Pq+1 r+1pct—+ (1 — De ){Pq r+1 — Aqu—I—l 7“—}—1}7 (14)
q, [} [} \/ﬂat T [} ’

where 1 <g< M;and 1 <r <N +1.

Thus, by computing P, . in descending order of r, only two new terms [and one new prod-
uct (1—p,, ) in equation (14)] needs be to be computed for each P, .. With this modification,
the overall time complexity reduces to O(M;N).

The complexity can be further improved by taking advantage of the fact that the expo-
nential term is negligibly small unless h; and s, are sufficiently close (e.g., |hs — 54| < 30y).
For any given value of ¢, only a small number of ~; will be close to s,. For a desired finite
precision only a small constant fraction of h;’s will be sufficiently close to s, to require that
the term with the exponent be included in the summation?.

Note however that even with this optimization in the computation for equation (12), the
computation of P, . achieves no asymptotic improvement in the time complexity, since P,
with consecutive r can be computed with only two new terms, as noted earlier. However, for
any given ¢, only for a few r values are both of these additional terms non-negligible. The
range of r values (say, between rmin and rmax) for which the new terms with e~ (hr—s4)?/207
is significant can be precomputed in a table indexed by ¢ = 1, ..., M;. For r > rpay all
terms in the summation are negligible. For r < rpy;, the new exponential term referred to
previously is negligible. In both cases, the expression for P, , can be simplified:
P, = { /\qu-}—l,m lf r> Tmax[q]; (15)

’ AfPottr + (1= pe,)(Pyrt1 — APyt rt1), i 7 < rmin[g].

Since both rmin[g] and rmax[q] are monotonically nondecreasing functions of ¢, the (g, r)
space divides as shown in figure 3. Of course, the block diagonal pattern need not be as
regular as shown and will differ for each data molecule D;.

Note again that our ultimate object is to compute Py ;. Terms Py, 11 with r > rmpax[q],
cannot influence any term Py .+ with 7/ < r (see equation (12)). Therefore, any term Py 44
with r > rmax[¢] cannot influence Py as is readily seen by a straightforward inductive
argument. Therefore, all such terms need not be computed at all.

For r < rmin[q], these terms are required but need not be computed since they always

satisfy the following identity:

o= (1= o Prrsts 7 < Tl

This follows from equation (13) and (15) by induction on ¢. These terms can then be
generated on demand when the normal recurrence (equation (12)) is computed and whenever
aterm P,y , is required for which r < rpyin[g+1], provided terms are processed in descending
order of r.

Thus, the effective complexity of the algorithm is O (M (rmax — min + 2)). Since rmax —
Tmin + 2 is proportional for a given precision to [(cN 4+ 1)], (where ¢ is an upper bound
on all the o values) we see that the time complexity for a single molecule D; is O(c M;N).

In practice, even a precision of 107!° will only requires 3-5 terms to be included with ¢ around 1%.

December 1996 Optical Mapping e 25



Summing over all molecules D; the total time complexity is O(c M N), where M = > M.
The space complexity is trivially bounded by O(Mpax/N) where My = max; M;.

Essentially the same recurrence equations can be used to compute W;;, SUM;; and SQ;;,
since these 3N quantities sum up the same probability densities Pr;; weighted by m;s,
Mk Sijk OT mz’ij?jk respectively. The difference is that the termination of the recurrence
(cf equation (13)) is simply Pps,41,» = 0, whereas the basic recurrence equation (cf equa-
tion (12)) contains an additional term corresponding to the m;;; times the corresponding
term in the recurrence equation. For example:

SUM;; = SUM;q1;
iv: ﬁ o~ (himsq)? /207
SUMiq,r = ’\fSUMMH-lJ‘ + SUM’i7q+1¢+1{ (1 — Pec )}pc — a—_
t=r j=r ’ t 271—0—7“

-1 e—(hi=sq)? /207
+ Li>r 54Pgt1 i+1{H(1 — De )}pc —_— (16)
= ' i ’ " V270

where 1 <¢g< M;and 1 <r <N +1.

Note that the new term is only present? if ¢ > r, and as before need only be computed if
the corresponding exponent is significant, i.e., i lies between ryin[¢] and rmax[g]. This term
is the only nonzero input term in the recurrence since the terminal terms are zero. This
recurrence is most easily derived by noting (from equations (1) and (10)) that the sum of
products form of SUM;; can be derived from that of P; by multiplying each product term with
h; — s, in any exponent by s,, and deleting any term without A; in the exponent. Since each
product term contains at most one exponent with h;, this transformation can also be applied
to the recurrence form for P; (equation (12)), which is just a different factorization of the
original sum of products form. The result is equation (16). The corresponding derivation
for W;; and SQ;; is the same except that the s, is replaced by 1 or 53 respectively. If the
recurrences for these 3/V quantities are computed in parallel with the probability density P;,
the cost of the extra term is negligible, so the overall cost of computing both the probability
density P; and its gradients is O(c M N?). The cost of conversion equations (11) is also
negligible in comparison. Moreover this can be implemented as a vectorized version of
the basic recurrence with vector size 3V 4+ 1 to take advantage of either vector processors
or superscalar pipelined processors. We note in passing that if 3N is significantly greater
than the average width oM of the dynamic programming block diagonal matrix shown in
figure 3, then a standard strength reduction can be applied to the vectorized recurrence
equations trading the 3V vector size for a ¢ N + 1 vector size and resulting in an alternate
complexity of O(c2M N?). We have not tried implementing this version since it is much
harder to code and the gain is significant only when ¢ << 1. Note that the gradient must

4The indicator function Ii>, = (2 > r?1:0) is a shorthand for

1, if 1> r;
0, otherwise.
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be computed a number of times (typically 10-20 times) for the parameters to converge to a
local maxima.

We note that similar ideas have been explored in the work of G. Churchill [Chu97] in the
context of sequences assumed to be related by descent from a common ancestor. However, it
is not clear whether the general framework proposed by Churchill applies to our formulation.

4.5 Global Search Algorithm

Recall that our prior distribution Pr[DP|#] is multimodal and the local search based on the
gradients by itself cannot evaluate the best value of the parameters. Instead, we must rely
on some sampling method to find points in the parameter space that are likely to be near the
global maxima. Furthermore, examining the parameter space, we notice that the parameters
corresponding to the number and locations of restriction sites present the largest amount of
multimodal variability and hence the sampling may be restricted to just A = (N; hy, ko, .. .,
hx). The conditional observation probability density Pr[D|#] can be evaluated pointwise
in time O(c M N) and the nearest local maxima located in time O (oM N?), though there is
no efficient way to sample all local maxima exhaustively.

Thus, our global search algorithm will proceed as follows: we shall first generate a set
of samples (hq, ha, hs, ...); these points are then used to begin a gradient search for the
nearest maxima and provide hypotheses (#1, Hz, Hs, ...); the hypotheses are then ranked
in terms of their posterior probability density Pr[#|D] (whose relative values also lead to
the quality measure for each hypothesis) and the one (or more) leading to maximal posterior
probability density is presented as the final answer.

However, even after restricting the sampling space, the high dimension of the space makes
the sampling task daunting. Even if the space is discretized (for instance, each h; € {0, 1/200,

.+ 7/200, ..., 1}), there are still far too many sample points (200") even for a small number
of cuts (say, N = 8). However, the efficiency can be improved if we accept an approximate
solution. We shall rely on following two approaches (and their combination):

1. We may use approximate Bayesian probability densities in conjunction with a branch
and bound algorithm to reject a large fraction of the samples without further local
analysis;

2. We may use an approximate posterior distribution for the location of the cut sites in
conjunction with a Monte Carlo approach to generate samples that are more likely to
succeed in the local analysis.

One can also combine the two methods: for instance, we can use the first approach to generate
the best hypotheses with small (say, 5) number of cuts and use it to improve the approximate
posterior to be used in the second approach. Note also that, if the data quality is “good,”
rather simple versions of the heuristics (for global search) lead to greedy algorithms that
yield good results quite fast. However, we shall only describe the first approach here and
postpone the discussion of the second heuristics to a sequel.

For the present the parameter N is searched in strictly ascending order. This means
one first evaluates the (single) map with no cuts, then applies global and gradient search to
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locate the best map with 1 cut, then the best map with 2 cuts etc. One continues until the
score of the best map of N cuts is significantly worse than the best map of 0 ... NV — 1 cuts.

4.5.1 Approximating Bayesian Probability Densities

The global search for a particular /V uses an approximate Bayesian probability density with
a scoring function that is amenable to efficient branch-and-bound search. Observe that good
scores for some molecule D, basically requires that as many cut locations sy;, ..., sa,,; as
possible must line up close to A1, ho, ..., Ay in one of the two orientations. This means that
any subset of the true map hy, ha, ..., by (m < N) will score better than most other maps of
size m, assuming that the digest rate is equal (p, = p., = - -+ = pc, ). Note that for physical
reasons, the variation among the digest rates is quite small; thus, our assumption is valid
and permits us to explicitly constrain these parameters to be the same. For example, if (hq,
ha, ..., hy) is the correct map, one expects maps with single cuts located at [h;] (1 <7 < N)
to score about equally well in terms of the Bayesian probability density. Similarly, maps
with two cuts located at pairs of [h;, h;] (1 <4 < j < N) score about equally well and better
than arbitrarily chosen two cut maps. Furthermore, the pair-cut probability densities are
more robust than the single cut probability densities with respect to the presence of false
cuts, hence, less likely to score maps with cuts in other than the correct locations. Hence
an approximate score function used for a map (hy, hg, ..., hy) is the smallest probability
density for any pair map [h;, h;] which is a subset of (hy, k2, ..., hy). These pair map
probability densities can be precomputed for every possible pair ([h;, h;]) if ks, h; are forced
to have only K values along some finite sized grid, for example at exact multiples of 1/2%
of the total molecule length for K = 200. The pair map probability densities can then
be expressed in the form of a complete undirected graph, with K nodes corresponding to
possible locations, and each edge between node ¢ to j having an edge value equal to the
precomputed pair map probability density of [h;, h;]. A candidate map (hq, ha, ..., An)
corresponds to a clique of size N in the graph, and its approximate score corresponds to the
smallest edge weight in the clique.

In general, the cliqgue problem (for instance, with binary edge weights) is NP-complete
and may not result in any asymptotic speedup over the exhaustive search. However, for
our problem effective branch-and-bound search heuristics can be devised. Consider first the
problem of finding just the best clique. We can devise two bounds that can eliminate much
of the search space for the best clique:

e The score of any edge of a clique is an upper bound on the score of that clique. If the
previous best clique found during a search has a better (higher) score than the score
of some edge, all cliques that include this edge can be ruled out.

e Lor each node in the graph, one can precompute the score of the best edge that includes
this node. If the previous best clique found during a search has a better (higher) score
than this node score, all cliques that include this node can be ruled out.

As with all branch-and-bound heuristics the effectiveness depends on quickly finding
some good solutions, in this case cliques with good scores. We have found that an effective
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way is to sort all K nodes by the Bayesian scores of the corresponding single cut map. In
other words we first try nodes that correspond to restriction site locations that have a high
observed cut rate in some orientation of the molecules. Also the nodes corresponding to cut
sites of the best overall map so far (with fewer than N cut sites) are tried first.

For data consisting of a few hundred molecules, the branch-and-bound heuristics allows
exhaustive search in under a minute on a Sparc System 20 with N < 7 (with K = 200).
For N > 7, a simple step wise search procedure that searches for the best map (hq, hg, ...,
hx) by fixing N — 7 nodes based on the previous best map, works well. The N — 7 nodes
selected are the optimal with respect to a simple metric, for instance, the nodes with the
smallest standard error (i.e., ratio of standard deviation to square root of sample size).

Next, the global search is modified to save the best B (typically 8000) cliques of each size
and then the exact Bayesian probability density is evaluated at each of these B locations,
adding reasonable values for parameters other than (N; Ay, ..., hx). These parameters can
be taken from the the previous best map, or by using some prior values if no previous best
map is available. For some best scoring subset (typically 32-64) of these maps gradient
search is used to locate the nearest maxima (and also accurate estimates for all parameters),
and the best scoring maxima is used as the final estimate for the global maxima for the
current value of N.

The branch-and-bound heuristics was modified to find the best B cliques, by maintain-
ing the best B cliques (found so far) in a priority queue (with an ordering based on the
approximate score).

4.5.2 Further Improvements
We plan to further investigate several variations to the global search described here:

e Lorlarge N the approximatescore diverges from the true Bayesian score. To reduce the
reliance on the the approximate score the step wise search procedure can be modified
to fixing N — 3 nodes (say) from the previous best map instead of N — 7. For the same
value of B this increases the fraction of the search space that is scored with the exact
Bayesian score. Fixing N — 1 or even N — 2 nodes would allow essentially the entire
remaining search space to be scored with the exact Bayesian score. The drawback is
that the amount of backtracking has been reduced and hence a wrong cut site found
for small N is harder to back out of.

e Instead of searching the space in strictly ascending order of N it is quicker to use a
greedy search to locate a good map for a small value of N (say, 5) and then use the
more exhaustive search with backtracking to extend it to larger value of N. For large
number of cuts (as in BACs) this heuristic leads to significant saving, since the molecule
orientations are known (with high probability) once the best map with N = 5 is found.
With known molecule orientations, even a greedy search using exact Bayesian scores
can locate the correct map with high probability. The final more exhaustive search is
needed mainly to get a good quality measure for the result.

e To fix the N — 2 or N — 3 best nodes it might be better to use a greedy search with
exact Bayesian scores: Successively try deleting one cut at a time, locating the cut
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which reduces the exact Bayesian score the least.

4.6 A Quality Measure for the Best Map

As a quality measure for the best map, we use the estimated probability of the dominant
mode (peak) of the posterior probability density. This could be computed by integrating
the probability density over a small neighborhood of the peak (computed in the parameter
space). Our cost function corresponds to a constant multiple of the posterior probability
density, as we do not explicitly normalize the cost function by dividing by a denominator
corresponding to the integral of the cost over the entire parameter space. To compute the
quality measure we make the following simplifying assumption: “All peaks are sharp and
the integral of the cost function over a neighborhood where the cost value is larger than a
specific amount is proportional to the peak density.” Also if we know the N most dominant
peaks (typically N = 64), we can approximate the integral over all space, by the integral
over the N neighborhoods of these peaks. Thus we estimate our quality measure for the
best map by the ratio of the value assigned to it (the integral of the cost function in a small
neighborhood around it) to the sum of the values assigned to the N best peaks. This, of
course, simplifies the computation while producing a rather good estimate. To take into
account the sampling errors (when the number of molecules is small) we penalize (reduce)
the density of the best map by an estimate of the sampling error. This approach makes the
computed quality measure somewhat pessimistic but provides a lower bound.

5 Experimental Results

The following experiments have been conducted with software implementing the Bayesian
Estimation described in the previous section. In each case, we report the number of cut sites,
molecules, the quality measure, the digest rate and cut site standard deviation reported by
the software. The map error displays either the RMS error between the map reported by the
software and the correct map known by some independent technique (for example complete
sequencing if available) in those cases where the software found the right number of cut sites.
Otherwise, the software indicates that the map found is unacceptable.

5.0.1 Lambda Bacteriophage DNA (I)

Deposited manually using the “peel” technique. Correct map known from sequence data.
Data collected: June 1995.

R. Enzyme | Cuts | Mols | Quality | Digest rate | Cut SD | Map Error
Sca 1 6 292 | 100% 35% 1.82% | 0.67%
Ava 1 8 504 | 99% 32% 1.66% | 0.83% (Fig. 4)

5.0.2 Lambda Bacteriophage DNA (II)

Deposited mechanically (by a robot) as a grid of spots, each spot producing an independent
map. Correct map known from sequence data. Data collected: July 1996.
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R. Enzyme | Cuts | Mols | Quality | Digest rate | Cut SD | Map Error

BamH 1 5 203 | 37% 42% 2.82% 1.07%

BamH 1 5 160 | 100% 45% 2.35% | 0.98%

BamH 1 5 257 | 100% 58% 1.74% | 0.79%

BamH 1 5 215 | 99% 50% 2.61% | 0.43%

BamH 1 5 215 | 100% 61% 1.19% | 0.29% (Fig. 5)
BamH 1 7 175 | 9% 24% 2.25% | Wrong Map

5.0.3 Human Cosmid Clones

Using a cosmid vector, and deposited as a grid of spots. Map verified by contig and gel
electrophoresis as having 6 cuts, with one small fragment (< 1k B, and optically undetectable
in most of the images) missing [Marked (*) in the table below]. Note that the first two rows
are the same experiment returning two equally likely answers. Data collected: October 1996.

R. Enzyme | Cuts | Mols | Quality | Digest rate | Cut SD | Map Error

Mlu 1 6 749 | 50% 38% 2.77% (%)

Mlu 1 5 649 | 50% 31% 2.50% | 0.61%

Mlu 1 6 960 | 100% 50% 2.22% (%)

Mlu 1 5 957 | 2% 26% 2.83% 1.45%

Mlu 1 5 745 | 99% 37% 2.77% | 0.67% (Fig. 6)
Miu 1 10 852 | 8% 14% 2.64% | Wrong Map

6 Conclusion

In this paper, we make three contributions toward the construction of restriction map with
optical mapping data.

1. We provide the first detailed model of the data produced by the optical mapping
process. We formulate and analyze the worst-case complexity of the problem of con-
structing restriction map from this data. The model as well as the complexity study
has played an important role in the formulation of a Bayesian approach that hinges on
the fact that the model is comprehensive and derives its efficiency from the interplay
between heuristic global search and exact local search.

2. We formulate a statistical algorithm for this problem that relies on a log-likelihood
function derived from a carefully modeled prior distribution. We also derive the update
rules for the model parameters and devise an efficient iterative algorithm based on
dynamic programming. The multi-modal structure of the prior does not allow a closed-
form solution or a local algorithm. This appears consistent with our complexity results
showing that the problem is NP-complete. We provide heuristics employing branch-
and-bound procedures that bound the search space significantly.
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3. We have implemented the algorithm (in C, running on Sparc 20’s) and experimented
extensively over a period of more than a year. The experiments yield highly accurate
maps, consistent with the best result one can expect from the input data.

It may appear that our algorithm is extremely conservative; the detailed modeling as
well as the global search may seem to be dispensable specially when one is willing to accept
maps that are occasionally wrong and/or relatively frequently inaccurate. We have instead
propounded a stronger approach. We justify this on several grounds:

1. The detailed modeling provides a clear physical/statistical interpretation of each step
of our algorithm. Should the algorithm ever fail on a set of data, we can immediately
trace the source of the error to a specific lack of comprehensiveness of our model and
rectify the problem.

2. The approach also allows one to produce not just a single map, but a set of maps
ranked by their “quality of goodness.” One can then use this information to safe-
guard the database from being corrupted and provide some very important feedback
to the experimenters who could repeat their experiment and gather more data when
the estimated qualities are too low.

3. The output of this algorithm is guaranteed to have the optimal accuracy. The
demand for this high-accuracy is justified by the fact that even a small loss of
accuracy contributes to an exponential growth in the complexity of the “con-
tig” problem and is ultimately a stumbling block to creating genome-wide physical

map [GGK+95, Kar93, PW95].

4. Finally, the approach generalizes quite easily to other cases where the data model
differs significantly. For instance, with BAC data one can expect the end-fragments to
occasionally break and to miss the interior fragments occasionally. Other important
situations involve the models for circular (non-linearized) DNA, genomic (uncloned)
DNA, data sets consisting of clones of two or more DNA’s. Other situation involves
augmentation with some more (helpful) data that can be made available by appropriate
changes to the chemistry—presence of external standards allowing one to work with
absolute fragment sizes, or external labeling disambiguating the orientation or alerting
one to the absence of a fragment. The flexibility of our approach derives from its
generality and cannot be achieved by the simpler heuristics.
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Figure 1: A statistical model of the cuts
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Example

Alignment

Ak

Figure 2: An example of the alignment detection
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r=r min [q]

a=M
r=1 r=N+1

Figure 3: A variable block diagonal matrix for the dynamic programming
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molecules=504,cuts=1441,uncut molecules=39,best 3 maps:

mapl:cuts=8,P=99.5354%,good mols=79.41%,digest rate=0.3251,false cuts=0.3315,5D=0.0166

9 frags: 0.09507 0.31530 0.03891 0.13294 0.07145 0.04462 0.08265
8 cuts : 0.09507 0.41037 0.44928 0.58221 0.65366 0.69828 0.78093
cut SDs : 0.01423 0.01653 0.01663 0.01786 0.01689 0.01823 0.01782
counts : 152.4 118.9 116.9 133.0 137.4 123.1 112.9

0.03984 0.17923
0.82077
0.01482

146.1

map2:cuts=9,P= 0.4646%,good mols=79.99%,digest rate=0.2860,false cuts=0.3458,5D=0.0150

10 frags: 0.09503 0.31652 0.03876 0.12911 0.05924 0.03397 0.03859
9 cuts : 0.09503 0.41155 0.45031 0.57942 0.63866 0.67263 0.71122
cut SDs : 0.01319 0.01488 0.01513 0.01593 0.01658 0.01360 0.01690
counts : 147.3 115.8 110.3 122.8 93.1 107.7 89.9

map3:cuts=10,P= 0.0000%,good mols=75.70%,digest rate=0.2596,false
11 frags: 0.09489 0.31828 0.03800 0.11818 0.02946 0.04939 0.02851
10 cuts : 0.09489 0.41317 0.45117 0.56935 0.59881 0.64820 0.67671
cut SDs : 0.01198 0.01335 0.01366 0.01294 0.01406 0.01344 0.01261
counts : 136.5 108.3 99.2 78.6 74.3 88.1 93.1

RMS Map Error=0.00826 (relative to mapl)

0.07162 0.03849 0.17867
0.78284 0.82133
0.01563 0.01370

110.5 140.6

cuts=0.3445,5D=0.0133
0.03574 0.07067 0.03786 0.17902
0.71245 0.78312 0.82098
0.01549 0.01407 0.01245
77.9 101.9 132.7

Figure 4: Map computed using the Bayesian approach. Correct ordered restriction map
(from sequence data) for the Lambda Bacteriophage DNA (I) with Ava I is: (0.09732,

0.39992, 0.43295, 0.57497, 0.65187, 0.69065, 0.78789, 0.82240)
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molecules=215,cuts=523 ,uncut molecules=34,best 3 maps:

mapl:cuts=5,P=100.0000%,good mols=60.4%,digest rate=61.4},,false cuts=0.14,5D=0.0119
6 frags: 0.14016 0.14444 0.13700 0.11331 0.35012 0.11496
5 cuts : 0.14016 0.28461 0.42161 0.53492 0.88504

cut SDs : 0.01166 0.01110 0.01180 0.01245 0.01232
counts : 62.0 75.3 92.2 86.6 59.9

map?2:cuts=6,P= 0.0000%,good mols=60.0%,digest rate=48.0%,false cuts=0.13,5D=0.0118
7 frags: 0.13921 0.14449 0.13165 0.01029 0.10845 0.35102 0.11489
6 cuts : 0.13921 0.28370 0.41536 0.42564 0.53409 0.88511

cut SDs : 0.01155 0.01102 0.01137 0.01188 0.01261 0.01207
counts : 58.8 70.1 45.0 47.1 79.6 56.9

map3:cuts=6,P= 0.0000%,good mols=60.0%,digest rate=48.0%,false cuts=0.15,5D=0.0113
7 frags: 0.13932 0.14426 0.13718 0.10475 0.01688 0.34333 0.11428
6 cuts : 0.13932 0.28358 0.42076 0.52551 0.54239 0.88572

cut SDs : 0.01138 0.01072 0.01157 0.01150 0.01108 0.01180
counts : 58.9 70.3 85.2 42.1 44 .8 56.0

RMS Map Error=0.00287 (relative to mapl)

Figure 5: Map computed using the Bayesian approach. Correct ordered restriction map
(from sequence data) for the Lambda Bacteriophage DNA (II) with BamH 1 is: (0.13960,
0.28870, 0.42330, 0.53930, 0.88650)
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molecules=745,cuts=1755,uncut molecules=66,best 3 maps:

mapl:cuts=5,P=99.8579%,good mols=80.

6 frags: 0.21919 0.26956 0.
5 cuts : 0.21919 0.48875 0.
cut SDs : 0.02782 0.03030 0.

counts : 210.3

map2:cuts=6,P= 0.1421%,good mols=77.
7 frags: 0.21963 0.26424 0.
6 cuts : 0.21963 0.48387 0.
cut SDs : 0.02525 0.02600 0.

counts : 188.1

map3:cuts=7,P= 0.0000%,good mols=90.
8 frags: 0.21327 0.27029 0.
7 cuts : 0.21327 0.48356 0.
cut SDs : 0.02475 0.02501 0.

counts : 183.0

194.2

160.7

166.4

09810 0.
58685 0.
02472 0.

278.6

08223 0.
56610 0.
02454 0.
167.6

08288 0.
56644 0.
02392 0.
169.0

25%,digest rate=0.3696,false cuts=0.5325,5D=0.0277

09723 0.18784 0.12808
68408 0.87192
02897 0.02748
218.6  203.1

15%,digest rate=0.3064,false cuts=0.5343,5D=0.0250

03746 0.08386 0.18410 0.12848
60356 0.68742 0.87152
02355 0.02561 0.02487
173.2 185.9 181.1

61%,digest rate=0.2513,false cuts=0.5985,5D=0.0241
03357 0.07312 0.06696 0.13289 0.12702

60002 0.67314 0.74009 0.87298
02221 0.02226 0.02620 0.02468
176.4 175.9 125.7 191.2

RMS Map Error=0.00665 (relative to mapl)

Figure 6: Map computed using the Bayesian approach. Correct fingerprint (from gel elec-
trophoresis) for the Human Cosmid Clone with Mlu I is: (0.09362,0.09974, 0.12643, 0.19763,
0.21862, 0.26396). This fingerprint omits one small (< 1kB) fragment. The correct ordered
restriction map consistent with the fingerprint data is: (0.21862, 0.48258, 0.57620, 0.67594,

0.87357).
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