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1 It is often said that genomics science is on a Moore’s law,
growing exponentially in data throughput, number of assem-
bled genomes, lowered cost, etc.; and yet, it has not delivered
the biomedical promises made a decade ago: personalized
medicine; genomic characterization of diseases like cancer,
schizophrenia, and autism; bio-markers for common complex
diseases; prenatal genomic assays, etc. What share of blame
for this failure ought to be allocated to computer science (or
computational biology, bioinformatics, statistical genetics,
etc.)? How can the Indian computational biology community
lead genomics science to rescue it from the current impasse?
What are the computational solutions to these problems?
What should be our vision of computational biology in the
coming decade?

Jevons” Paradox

William Stanley Jevons (1835 — 1882), a British computer scientist,
statistician, logician and economist, is usually remembered, along
with Menger and Walras, for his work in economics on marginal
utility theory of value — and only occasionally for his work on an
early logical computer, the “Logic Piano,” constructed in 1869.

He is also immortalized by a paradox, which bears his name,

first identified in his 1865 book “The Coal Question” 3. Jevons
observed that, after James Watt introduced his more efficient coal-
fired steam engine, somewhat counter-intuitively, England’s con-
sumption of coal skyrocketed — notwithstanding the savings from
higher efficiency. Because of innovations due to Watt and others,
which improved the engines’ efficiency over Thomas Newcomen’s
existing design, rapidly coal became much more cost-effective

as a source of energy and the steam engine found many more
hitherto unanticipated applications. Consequently, the total coal
consumption increased quickly — but not necessarily always with
a beneficial effect. This paradoxical rebound effect 4 came to be
called a “backfire.”

Over the last few years, a genomic version of “Jevons’ para-
dox” seems to be playing out in the arena of biotechnology. With
the advent of next-generation sequencing technologies, and with
rapidly decreasing cost of optical or electronic detection systems
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that they require, it has become exponentially easier, faster and
cheaper to acquire — in a matter of weeks, if not days — hundreds
of times coverage in sequence reads of thousands of human-sized
genomes. The massive amount of data generated by these ma-
chines has kept lab technicians, bioinformaticists, systems man-
agers, computer architects and computer scientists increasingly
busy, diverting their attention from fundamental statistical, algo-
rithmic and ultimately, biomedical innovations >. As they spend
more and more time shifting, shuffling, storing and stockpiling
massive amounts of sequence data spewing out of marginal-
quality second- and third-generation sequencing platforms, they
find themselves embroiled in a Jevonian backfire — the torren-
tial amount of data appears to have paradoxically dried up the
biological insights and biomedical outcomes. The genomic rev-
olution appears to have been postponed — at least, for the time
being. A shadow of doubt has been cast on the progress so far;
one wonders: whether the human genome project has produced
a reference that correctly reflects the complexity of genome re-
arrangements; whether Hapmap captures the most meaningful
genomic variants; or whether the disease markers obtained from
large-scale GWAS (genome-wide association studies) correctly
interpret the etiology of common human diseases. Uncannily,
biotechnology’s Moore’s law is now stuck in a Jevons paradox.
It has been said, most likely in jest, that biotechnology has been
on an “Inverse-Moore’s Law” — every eighteen months or so, de-
spite (or because of) exponential growth in genomics data, the
biologists are becoming twice less insightful.

Following is a short list of critical issues that the field faces now:

Data Storage: With the advent of next-generation sequencing

technologies around 2008, the throughput from the sequenc-

ing platforms have outpaced both computer and storage
technologies. Hard-disk technologies develop under a prin-

ciple called Kryder’s law, which states that storage disk den-

sity doubles annually and that the cost of storing one byte
of data is halved every fourteen months as a result. On the
other hand, the per-base cost of sequencing is dropping by

half about every five months and is likely to continue at that

rate for the near future. However, since individual and pop-

ulations of genomes are highly structured, one could exploit

this structure in a Bayesian manner to bound the amount of
sampling needed (number of individuals as well as the cov-

erage needed for each individual genome) and the degree to
which the genomic data can be compressed (loss-lessly or in
lossy compression; see TotalRecaller ¢, which combines base-

calling, alignment and variant-calling in one step). Ideas
from probabilistic analysis (e.g., 0-1-laws) 7, rate-distortion
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theory 8, algorithms based on Block-Sorting compression
and related opportunistic data structures ¢ can provide the
needed solution.

Error-Correction: Despite many technological advances, all next-

generation sequencing platforms tend to be significantly
more error-prone. The errors have many sources, but are pri-
marily caused by loss of synchronization in the bio-chemical
cycles, which operate in synchrony on a small number of
clonal copies of the DNA being sequenced *°, **. As the
feature sizes (wells, beads, and bound DNAS) are reduced
in order to increase the throughput, these errors become
further exacerbated, and traditional base callers fail after
reading only a few hundred base pairs. Other error sources
leading to homo-polymer compression and chimerisms im-
pose even more difficulties. Novel Bayesian base callers such
as TotalReCaller **, mentioned earlier, have addressed many
of these problems quite well, but still leave room for many
additional improvements. The current trend of using “er-
ror correctors” or “gap fillers,” as a pre-processing step in
sequence assembly, consumes a disproportionately large
fraction of assembly-compute-cycles, while producing im-
provement of dubious quality. Since the assembler and its
error corrector modules run in the cloud, this strategy also
entails a large amount of unnecessary data movement.

Unused and Low Effective-Coverage: Because of the size limita-

tions and increased error rates in the sequence reads from
next-generation sequencers, the assemblers require a higher
overlap threshold ratio 6, thus reducing the effective cover-
age ¢, = ¢(1—0), where c = NL/G = coverage, N = num-
ber of reads, L = read length and G = the genome size *3.
Thus while the improvement in the total achievable coverage
under biotech’s Moore’s law is breathtakingly impressive,
the improvement in effective coverage is only modest. Fur-
thermore, most assemblers, developed after 2008 to specifi-
cally handle next-generation sequencing data 4, 15, °, tame
their computational complexity by only computing overlaps
with exact matches (which can be computed quickly with
prefix trees) and structuring shorter k-mers from the reads
in a deBruijn graph, thus worsening the data/coverage loss.
Specific heuristics in these algorithms, developed to deal
with “dead ends” and “p-bubbles” are symptomatic of the
massive amount of data leakage that must be tolerated by
these Eulerian-path algorithms.

Missingness: Because of historic reasons, the algorithmic strate-

gies still favored by most are based on shot-gun assembly
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— with few post-processing modules added, like an after-
thought, at the end for scaffolding and validation using
mate pairs. Consequently, the assembly produced is usually
genotypic, lacking any reliable characterization of rearrange-
ments or haplotypic phasing. Very few assemblers have
built-in mechanisms to utilize more informative long-range
information (e.g., from optical maps, dilution mapping or
strobed sequences) in order to perform haplotypic and self-
validating assembly — the only interesting exception being
SUTTA %7, 8,19, The missingness has led to unsatisfactory
results, when such genome assemblies are used in GWAS
(genome-wide association studies), since they adversely af-
fect population stratification, null models (distorted by Yule-
Simpson effects), resulting errors in p-values and subsequent
multiple-hypothesis-testing corrections.

Correctness: Finally, as these new technologies have spurred
more and more assembled genome references for thousands
of organisms, their assembly accuracy remains uncertain.
Even the human reference genome, after some thirty-seven
builds, is still only genotypic and is suspected to have many
unrecognized rearrangement errors. The usual metrics,
such as N5o0, routinely used to characterize the strength
and accuracy of assemblers, has been found to be rather
misleading *°. Recent studies have shown that the genome
simulators used in characterizing the genome assemblers are
unreliable. Although technologies to produce long-range,
albeit lower-resolution, genomic information have been
available for more than a decade, none of them have been
used in any meaningful way to validate genome references

in all but a handful of microbial genomes **, **, 23, 24, 25 and
26

In summary, one may pause here and question whether genomics
is really better off with the Moore’s law that it has spawned. In
the rest of the paper, we attempt to assume a tone of measured
optimism.

A Genome Operating System

Following our optimism, below, we suggest several innovations,
all relying upon intelligent Bayesian priors in order to perform
data compression, error correction, haplotypic phasing and assem-
bly validation as early and as eagerly as possible in the sequencing
pipeline. Thus instead of moving the raw data to a central reposi-
tory (e.g., a cloud), where model-driven algorithms perform data
interpretation, correction and assimilation, the models should
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be moved to the periphery — getting as close to the sequencing
machines as possible.

Thus, in this architecture, a suitably modified sequencing ma-
chine may hold a compressed version of the draft or finished
reference genome (or its approximation that is statistically indis-
tinguishable from the true reference) to perform base calling with

both error correction and data compression (using a A-modulation

scheme); since pattern recognition and variant calling will come
for free, its usefulness as a clinical machine should be obvious.
Similarly, the error processes corrupting the sequence reads,
informative structures occurring in the genome, and the long-
range information from the genome can all be encoded in certain
likelihood-based score functions, which could then be made avail-
able to the sequence assembler so it can build a self-validating
assembly of the genome. Such an assembler can be easily formu-
lated as a constrained global optimization problem, as has been
done in the pipeline of NYU’s Bioinformatics Group consisting
of TotalReCaller, SUTTA, “Long-Range-Map-Scores” and “ICA-
Feature-Scores;” the current implementation has been validated
with mate pairs, and similar scores based on dilution maps, opti-
cal maps or clone libraries are also applicable.

Within our framework, where the optimization algorithm’s ar-

chitecture is separated from the domain-, genome- and sequencing-

device-specific properties (via well-selected priors and ensuing
score and penalty functions), the pipeline is capable of handling
multiple technologies, being technologically agnostic as well as
rapidly evolvable. Below, we delve into the details of three of the
pipeline’s main modules.

o TotalReCaller 7 aims to improve base calling quality by in-
terpreting the analog signals from sequencing machines,
while simultaneously aligning the sequence reads to a
source reference (draft or finished) genome, whenever avail-
able, to reduce the error rate.

e SUTTA %, % is a self-validating sequence assembler, based
on a flexible branch-and-bound 3° framework that forcefully
and quickly eliminates incorrect solutions (i.e., implausible
layouts). To achieve this goal, SUTTA relies on technology-
agnostic score functions that enable combining data from
multiple sources and distinct technologies.

o Feature-Response Curves (FRC) 3* have been designed to
evaluate the relative accuracies, coverages and contig sizes
of the outputs from different assembly pipelines. PCA and
ICA (principal and independent component analysis, respec-
tively) have been used to characterize and select the most
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informative features that can evaluate the correctness of the
assembly 32.

TotalReCaller

TotalReCaller combines the knowledge from sequencers’ raw in-
tensity data with information from a reference genome (when
available). In other words, it generates the most plausible m-base
string (out of 4™ possibilities) that is most likely to have gener-
ated the channel intensity (analog) data, and also most likely to
have originated at some location of the reference genome (and
spanning m bases). Like many global combinatorial optimization
problems, TotalReCaller tames the worst-case exponential com-
plexity of the implementation by using a beam search 33 strategy
(an adaptation of the branch-and-bound 34 method).

For this purpose TotalReCaller relies on a base-by-base align-
ment algorithm, based on the Ferragina-Manzini search, which
serves as a feedback for a linear error model, resulting in this
novel approach to base calling 3.

Differently from previously published base callers, TotalRe-
Caller uses a completely new strategy to recover each base of the
sequence from the raw sequencing data. Specifically, this strategy
is used to concurrently extend multiple high-quality reads that are
immediately validated not only by the intensity signals but also
by the likely alignments to a reference genome (thus the genome
provides a weak prior to a Bayesian inference). This scheme builds
on a rigorously defined Bayesian score function that accounts for
both — thereby resulting in a single score to quantify the quality
of a given sequence read. Since, by Bayes’ theorem, the condi-
tional probability of a base B, given an intensity Xj (in the kth
cycle) is

PB|X) = DXIBPB) i perace T ()
Pe(X)
P(X | B)Pc(B)

" P(Xi | B)Pi(B) + Pu(X; | =B)P,(—B) ()
1
P(X;]=B) Pi(—B)’ (3)

I+ 3B 5@

it leads to a simplified score function:

e = log (b 0L ) g tog () @

Pe(Xy | —B) Pr(=B)
—
intensity-based score alignment-based score

In order to execute the base calling task, TotalReCaller imple-
ments four different components that are described in detail
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elsewhere 3%: (1) linear error model; (2) base-by-base sequence
alignment; (3) beam search read extension; and, finally, (4) score
function. Note that TotalReCaller can be implemented directly in
hardware (GPU or FPGA), residing close to (or embedded in) the
sequencing platform. Furthermore, since it computes the align-
ment with respect to a reference directly, it only needs to output
a compressed data stream, containing the location of alignments
and base pair differences (including SNV’s and indels) for the
receiver to be able to reconstruct the exact sequence. In the most
advanced implementations, TotalReCaller may only output those
SNPs that are clinically relevant, or only those de novo mutations
that are still uncharacterized.

SUTTA

SUTTA, unlike the traditional heuristics-based assembly algo-
rithms (e.g., greedy, sequencing by hybridization or overlap layout
consensus), assembles each contig independently and dynamically
one after another using the Branch-and-Bound (B&B) strategy.
Originally developed for linear programming problems 37, B&B
algorithms are well-known searching techniques applied to in-
tractable (NP-hard) combinatorial optimization problems. While
SUTTA follows the basic idea of searching the complete space of
assembly solutions, it avoids the usual caveat that explicit enu-
meration is practically impossible (i.e. due to exponential time
and space complexity). The tactics honed by B&B are to limit the
search to a smaller subspace that contains the optimum. This
subspace is determined dynamically through the use of certain
well-chosen score functions.

At a high level, SUTTA’s framework views the assembly prob-
lem simply as that of constrained optimization (based on a formu-
lation of overlaps in consistent layouts): it relies on a rather simple
and easily verifiable definition of feasible solutions as “consistent
layouts.” It generates potentially all possible consistent layouts,
organizing them as paths in a “double tree” structure rooted at
a randomly selected “seed” read. A path is progressively evalu-
ated in terms of an optimality criterion, encoded by a set of score
functions based on the set of overlaps along the layout.

This strategy enables the algorithm to concurrently assemble
and check the validity of the layouts (with respect to various long-
range information) through well-chosen constraint-related penalty
functions. Complexity and scalability problems are addressed by
pruning most of the implausible layouts via a branch-and-bound
scheme. Ambiguities resulting from repeats or haplotypic dis-
similarities may occasionally delay immediate pruning and force
the algorithm to perform lookahead, but in practice, the computa-
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tional cost of these events has been low. Because of the generality
and flexibility of the scheme (it only depends on the underlying
sequencing technologies through the choice of score and penalty
functions), SUTTA is extensible, at least in principle, to deal with
possible future technologies. It also allows concurrent assem-

bly and validation of multiple layouts, thus providing a flexible
framework that combines short- and long-range information from
different technologies (e.g., optical or dilution mapping). In a sim-
ilar manner, SUTTA can also use supervised learning to cull the
most informative metrics, out of those currently popular (e.g., N50
or overlap structures, or standard amosville features 38) to opti-
mize a score that ensures that only the most “reasonable” layout is
generated and used. Because of its reliance on a universal frame-
work, it allows no room for (nor does it need to) ad hoc heuristics
for error correction, gap filling, repeat masking, etc.

The high level SUTTA pseudocode is shown in Algorithm 1.
Here, two important data structures are maintained: a forest of
double trees (D-trees) B and a set of contigs C. At each step a new
D-tree is initiated from one of the remaining reads in F. Once the
construction of the D-tree is completed, the associated contig is
created and stored in the set of contigs C. Next the layout for this
contig is computed and all its reads are removed from the set of
all available reads F. This process continues as long as there are
reads left in the set F.

Finally, note that the proposed Algorithm 1 is input-order de-
pendent. SUTTA adopts a simple ordering policy, which always
selects the next unassembled read with the highest occurrence as
seed for the D-tree. This strategy minimizes the extension of reads
containing sequencing errors. However, empirical observations
indicate that changing the order of the reads rarely affects the
structure of the solutions, as the relatively longer contigs are not
affected.

Scaling SUTTA to handle larger genomes, at the macro level,
primarily requires a substantial speed improvement, which is
achieved in following two ways: (1) improving the single-thread
execution time and (2) parallelizing the basic SUTTA algorithm
to the best possible extent. One of the most expensive tasks that
SUTTA needs to perform is the Overlapper, which has been scaled
using a divide-and-conquer approach, in which the entire data
set of reads is divided into multiple “prefix trees” that can be ac-
cessed independently and in parallel. SUTTA’s kernel is in the
process of being redesigned and reengineered so that it can take
advantage of modern multi-core microprocessor (16 to 32 core) ar-
chitectures. The main innovation in the redesign involves a clever
optimization of the code used in the D-tree generation, which is
complicated by its need to efficiently perform transitivity collapse
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Input: Set of N reads
Output: Set of contigs

1 B:=0; /* Forest of D-trees

2 C:=0; /* Set of contigs

3 F:= U:N {ri}; /* All the available reads/fragments

4 while (F # @) do

5 r:= F.getNextRead();

6 | if (—isUsed(r) A —isContained(r) ) then

7 DT := create_double_tree(r);

8 B:=BU{DT};

9 Contig CTG := create_contig(DT);

10 C:=CU{CTG};

1 CT G layout(); /* Compute contig layout
F = F\{CTG reads}; /* Remove used reads

12 end

13 end

14 return C;

Figure 1: Algorithm 1: SUTTA Pseudo Code.

*/
*/
*/

*/
*/



the genome question:
moore vs. jevons 9

(to keep the search tree skinny) and lookahead (to disambiguate
repeat boundaries and haplotypic differences).

FRC

Complex genomic structures, intricate error profiles and error-
prone long-range information conspire in convoluted ways to
make de novo sequencing tasks challenging, and are usually han-
dled by different sequence assemblers in idiosyncratic manners.
Thus, it is unclear how to quantify the accuracy and contiguity
of the output of a sequence assembler. This problem is further
complicated by the fact that, more often than not, no (accurate)
reference genome is available to assess the correctness of the as-
sembled contigs. Furthermore, widely used metrics (such as N5o
contig size), for this purpose, can be highly misleading, since they
only emphasize size, poorly capturing the contig quality.

The Feature-Response Curve (FRCurve) is a novel assembly
metric 3 to overcome many of these limitations. It is publicly % G. Narzisi and B. Mishra. Comparing de
available as an AMOS module. By analyzing the arrangement of NSO Sesemy: The long and short of

. , 6(4):e19175, 2011a

the reads in a contig and producing a simple curve, FRC is able
to evaluate and compare different assemblies and assemblers.
Specifically, inspired by the receiver operating characteristic (ROC)
curve, the FRCurve captures the trade-offs between contiguity
(genome coverage) and quality (number of features/errors) of the
assembled contigs. Features are computed using the automated
assembly validation pipeline, amosValidate, which analyzes the
output of an assembler using a suite of manually selected as-
sembly metrics. Using amosvalidate, each contig is assigned a
number of features that correspond to suspicious regions of the
sequence. For example, in the case of mate pair checking, the
amosvalidate tool flags regions where multiple mate pairs are
mis-oriented or the insert coverage is low. Given such a set of
features, the FRCurve analyzes the response (quality) of the as-
sembler output as a function of the maximum number of possible
errors (features) allowed in the contigs. Specifically, for any fixed
feature threshold ®, the contigs are sorted by size and, starting
from the longest, only those contigs are tallied whose sum of
features is < . For this set of contigs, the corresponding approx-
imate genome coverage is computed, leading to a single point
of the FRCurve. Since no reference sequence is used in this pro-
cess, the FRCurve is particularly useful in de novo sequencing
projects. Furthermore, separate FRCurves can be generated for
each feature type, allowing the analysis of the relative strengths
and weaknesses of different assemblers. A rapidly growing FR-
Curve usually signifies better assemblies.

Thus, FRC transparently captures the trade-offs between con-

Feature-Response curve
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Figure 2: Feature-Response Curve (FRCurve).



tigs’ quality against their size. Nevertheless, the relationship
among the different features and their importance is still largely
unknown, and can only be inferred empirically. In particular, FRC
cannot account for correlation among the different features. In

a further extension of FRC, we have recently analyzed the rela-
tionship among different features in order to better describe their
relationships and their importance in gauging assembly quality
and correctness. In particular, using multivariate techniques like
principal and independent component analyses we were able to
estimate the “excess dimensionality” of the feature space. Further-
more, principal component analysis pointed out how poorly the
acclaimed N5o metric describes the assembly quality. Applying
independent component analysis, it was possible to identify a sub-
set of features that better describe the assemblers’ performances.
Thus, by focusing on a reduced set of highly informative features,
the FRCurve can reliably describe and compare the performances
of different assemblers.

Improvements in Assembly

Unlike other sequence assemblers, SUTTA does not include any
error correction preprocessing step. So we designed the following
pipeline to take advantage of both SUTTA and TotalReCaller
capabilities 4°/4*:

1. DRAFT AssemBLY: Using SUTTA (or any other sequence
assembler) generate a draft assembly using the available
reads.

2. BASE CALLING & ERROR CORRECTION: Given the reads’ in-
tensity files and the draft assembly (generated in step 1),
run TotalReCaller to generate a new set of reads with higher
accuracy.

3. SEQUENCE AssEMBLY: Run SUTTA on the new set of reads
generated in step 2 to create an improved assembly.

Steps 2 and 3 may be repeated several times in order to further
improve the assembly quality, although the results presented here
only use a single execution of these steps.

Assembly results

This pipeline has been tested on an Illumina E. coli 4%, 43 dataset.
Note that current [llumina software can filter the data by re-
moving reads that do not pass the GA analysis software called
Failed_Chastity. To stress-test the assemblers on harder datasets,
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4 G. Narzisi. Scoring-and-Unfolding Trimmed
Tree Assembler: Algorithms for Assembling
Genome Sequences Accurately and Efficiently.
PhD thesis, Department of Computer Science,
Courant Institute of Mathematical Sciences,
New York University, 2011.

# The description below is based on joint
work with Giuseppe Narzisi, also described
in Narzisi’s PhD thesis.

4 Illumina. De novo assembly using illumina
reads. Technical Note: sequencing, 2010. URL
http://www.illumina.com.

43 ER. Blattner, G. Plunkett, C.A. Bloch,

N.T. Perna, V. Burland, M. Riley, J. Collado-
Vides, ].D. Glasner, C.K. Rode, G.F. Mayhew,
J. Gregor, N.W. Davis, H.A. Kirkpatrick, M.A.
Goeden, D.J. Rose, B. Mau, and Y. Shao. The
complete genome sequence of escherichia coli
k-12. Science, 277(5331):1453-1462, 1997.



the genome question:
moore vs. jevons 11

in this study, we use the full output of the machine, usually con-
tained in the export file. This dataset consists of 49 million 125 bp
long reads, for a total coverage 1320 x. Since such a high coverage
is not typically available for larger genomes, it was subsampled
only at100x coverage for comparing the results.

Table 1 shows a comparison of the assemblies obtained by
SUTTA both on the original read set (created by Bustard) the
error-corrected set (base called by TotalReCaller). SUTTA’s per-
formance significantly improves on the new reads generated by
TotalReCaller. For comparison, SUTTA was tested against some
of the best assemblers for short read technology on the E. coli
dataset, specifically SOAPdenovo, ABySS and Velvet. The results
are reported in table 1. Since the reads are already 125 bp long,
only contigs with size > 200 have been considered in the compar-
ison. A contig is defined to be correct if it aligns to the reference
genome along the whole length with at least 95% base similarity.
Inspecting the results in the table it is clear that SOAPdenovo and
ABySS are particularly successful in assembling long contigs, in
fact their N5o statistic is the highest. However the assembly qual-
ity is inferior to SUTTA: if only correct contigs are aligned to the
reference genome, the total coverage of SOAPdenovo and ABySS
are respectively 66.3% and 61.9%, while SUTTA achieves a cover-
age > 80% in all instances. This improvement could be attributed
to the different assembly strategies adopted: both SOAPdenovo
and ABySS first create a set of contigs solely using the read se-
quences and only later, in a second step, extend and merge the
contigs using the mate pair information; SUTTA instead assembles
the contigs by concurrently optimizing mate pairs constraints and
sequence quality. Another source of the difference in behavior
could be found in the error-correction technique: SOAPdenovo
uses the k-mer analysis to correct the reads but, since this process
is not error-free (i.e., has false positives), it might be introducing
additional errors to the set of reads. Velvet’s contigs, on the other
hand, are similar in size to SUTTA’s but the coverage achieved
with the correct contigs is only 56.9%.

More explanatory information can be gleaned from the Feature-
Response curve analysis presented in figure 2. SUTTA clearly

outperforms Velvet assembly in quality. These results are in accor- Assembler #corr.  Nso  Cov.  Cow.
dance with the coverage analysis presented in table 1. There were (kbp) _all (%) corr. (%)
difficulties in computing the Feature-Response curve for the other Sggi (ZXPE) i’gg éi'é 9g'4 g;g
two assemblers, SOAPdenovo and ABySS, because their output SUTTA Er erfa )t) 154 717 382 8 1:3
could not be converted into AMOS format. However, based on the SOAPdenovo (ctg) 245 357 983 66.3
previous coverage in table 1, it is fair to presume that the results SOAPdenovo (scaf) 106 117.6 993 619
would not have significantly changed. ABySS 22 1344 1029 797
Velvet 126 54.8 98.5 56.9

Table 1: Assembly results (contigs) for E. coli
dataset (100X 125bp reads from one lane of
Genome Analyzer II). A contig is defined to
be correct if it aligns to the reference genome

along the whole length with at least 95% base

similarity.
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Haplotypes and Architecture for GWAS

Although we started our discussions with problems stemming
from an over-abundance of low-quality sequence-read data, a
much bigger and harder algorithmic problem resides at the heart
of genomics’ scientific failure: namely, the lack of well-designed
sequence assembly pipelines.
As a consequence, we don’t have a single well-validated reli-
able reference sequence; the existing reference sequences (coming
from a handful of individuals - not necessarily very representa-
tive of our shared humanity) are mostly neither haplotypic nor
known to be free of rearrangement errors; we don’t have enough
references or a large enough library exhaustively listing genetic
variants/polymorphisms; nor do we have a reliable understanding
of haplotype phasing, haplo-blocks or population stratification.
A rather unfortunate casualty of our disregard for basic scientific
soundness lies in many recent GWAS (genome-wide-association
studies) that have collected huge amounts of patient samples,
from which pitifully little of substance has come out, thus failing
to contribute much to our biomedical understanding of complex
diseases. The phenomena, widely reported and dubbed as “our
missing inheritance,” has flabbergasted the entire scientific com-
munity, but has not led to a consensus on how to move beyond
the resulting logjam.
It has been suggested that the solutions lie in deeper cover-
age (allowing one to characterize rare variants in the genomes),
broader sampling of cases and controls, fewer hypotheses (e.g.,
focus on well-targeted genomic regions: exomes, genes, genes
in certain pathways, genes connected by “networks,” etc.), more
hypotheses (epigenomics, microRNA’s, proteomics, etc.), etc.
The best place to restart would be after re-examining our no-
tions of “causality,” namely the ones connecting genotypes to phe-
notypes. A particularly attractive notion of causality, as developed
by Suppes # and made algorithmic by my group 45, 4° is based on 4 P. Suppes. A Probabilistic Theory of Causality.
the notion of probability raising and a few additional axioms to North-Holland Publishing Company, 1970.
handle “screening off,” Yule-Simpson effects, etc. In this setting, 45, Kleinberg and B. Mishra. Multiple testing
one could characterize and algorithmically identify a group of of causal hypotheses. Causality in the Sciences,
variants that collectively, but with a large number of small indi- Oxford University Press, 2011.
vidual effects, causally determine a complex phenotype. Since the #$, Kleinberg and B. Mishra. The temporal
process will generate a large number of “prima-facie causal hypothe- logic of token causes. Principles of Kinowledge
ses,” it requires auxiliary steps to separate “genuine causes” from Representation and Reasoning, KR 2010, 2010.
“spurious causes.” Consequently, it is critical that the hypothe-
ses can be tested against a background of null hypotheses (thus
computing a reliable p-value), and tightly controlling the false-
discovery rate. For this purpose, it is important that we have a
good model of haplotypic phasing among the non-causal variants
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that have little to do with the complex traits, but “screen off” the
causal variants, since they hitch-hike in the sub-populations that
also carry the trait.

This argument leads us back to many fundamental questions
in genomics: creating a database of a large number (about 10,000)
of haplotypic genome sequences, creating data technologies for
haplotypic sequences (e.g., long-range maps plus short reads),
creating accurate whole-genome haplotypic sequence assembly
algorithms, validating assemblers and assemblies and finally, cre-
ating the right computational architecture that can store, move
and manage large amounts of data, suitably corrected and com-
pressed. Most of the basic ingredients for these steps already exist
and can be integrated without requiring a massive amount of
resources.

Conclusion

Moving forward, one may wonder what a meaningful Biotechno-
logical Moore’s law should look like and what set of principles
should drive it. Clearly, such a law should enable a heterodox
technologically agnostic combination of a diverse set of ideas,
technologies and disciplines. This Moore’s law should not hinder
the evolution of a complex biotechnological eco-system, which
would be composed of many inter-dependent component tech-
nologies, and yet be driven by a Darwinian competition, favoring
the fittest. We outline desiderata, influenced to some degree by
the success of the computational Moore’s law.

Miniaturization

o Single Molecule, Single Cell, Nano-scale and Femto-second
Technology: We expect to see a trend towards usage of
smaller numbers of molecules (thus avoiding errors
due to loss of synchronization of basic indivisible bio-
chemical steps), with the ultimate goal of going down
to just one single molecule. Similarly, to avoid errors
due to cell heterogeneity, one must aim at working with
very few cells (e.g., one single cell). These trends will
also motivate technologies for direct — but non-invasive
— manipulation of single-molecule objects with high
resolution, speed and degree of care.

o Minute amount of material: The technologies will also
require simple and fast sample preparation, which
would necessarily avoid amplification or other complex
chemistry, since such steps will not be amenable to
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rapid automation, but may introduce many undesirable
artifacts.

o Non-Invasive, Asynchronous and Non-Realtime: The ideal
technology must aim to be non-invasive (i.e., will not
destroy the sample, as would be the case with one
based on electron microscopy) and asynchronous (i.e.,
not requiring multiple subtasks to be synchronized).
However, the amount of data should be processable
and compressible with relative ease, and thus, reduce
the burden on the data network, data storage and the
computational architecture.

Abstraction

o Multi-disciplinary, yet allowing Inter-disciplinary Abstrac-
tion: The ideal technology must allow abstraction, ide-
alization and approximation among different levels so
as to permit different multi-disciplinary teams to op-
erate at multiple levels without imposing unnecessary
constraints on the others. For instance, a population ge-
nomicist working on genome-wide association studies
should not have to deal with missingness imposed by
the errors in base calling analysis, which in turn could
depend on particular idiosyncrasies of the chemistry
(e.g., homo-polymer ambiguities).

Modularity

o Optimal Integration of Several Technologies: For instance,
a set of technologies based on manipulation of im-
mobile single molecules on a surface or mobile single
molecules in a nano-pore.

o Order of Emphasis on Technologies: While the combined
technologies may be partly computational, partly phys-
ical, and partly chemical, an ideal mix could be 85%,
10% and 5%, respectively. While there is no hard-and-
fast rule to justify such a portfolio structure, our in-
tuition is that such a mix would allow the integrated
technology to take advantage of existing Moore’s laws
(e.g., in CPU, communication, storage, sensing, optics,
sample preparation and reagents).

Error Resilience

o “Reliable Technologies” out of Unreliable Parts: A hallmark
of a rapidly growing technology must be its ability
to withstand uncertainty, errors and even occasional
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catastrophic failures in the underlying low-level compo-
nents. By repeated experiments, error-correcting codes
and error detection, it should be able to produce the
correct results (or detect and discard incorrect results,
which may happen occasionally). In these schemes,
accurate modeling of the error sources and their usage
through Bayesian priors will (and already do) play a
critical role.

e 0-1 Laws and Experiment Design: Many of the genome
sequencing/mapping problems contain intractable (e.g.,
NP-hard) problems at their core, thus suggesting a pes-
simistic consequence. If a well-known conjecture (viz.,
P # NP) is true, these problems are expected to have
unreasonable worst-case complexity. However, in many
cases, through well-conceived experimental designs, it
is possible to engineer the system to only have to deal
with “easy” instances of these hard problems. Thus,
it would be imperative that the technology design ex-
ploits these “computational phase transitions,” so that
it does not squander its progress in throughput or cost
benefits only to be defeated by a subsequent intractable
computational problem.

Over the last five years or so, my laboratory has been developing
a cost-effective whole-genome haplotypic sequencing technology,
called s*mM*a*s*H that attempts to fulfill the set of desiderata listed
above. S*M*a*s*H, instead of building a monolithic technology

ab initio, seeks to combine many design principles that have al-
ready been explored, namely in the context of optical mapping,
sequencing by hybridization (SBH) and algorithms for haplotypic
assembly of SBH data. The key ideas behind the technology are
rather simple: Since a single-molecule technology such as opti-
cal mapping can provide accurate long-range ordered-restriction
site information (over a single molecule with a length of about
500KDb), with sufficient coverage and in conjunction with probe-
hybridization data, it is not too difficult to construct a haplo-
typic whole-genome optical map for an individual. Such a pro-
cess produces two nearly identical ordered restriction maps for
each diploid autosomal chromosome — along with “k-mer spec-
tra” for each restriction fragment in the map. If the optical map
uses a 6-cutter restriction enzyme and a set of all (about 2000)
6-mer probes, modulo reverse complementation, then the 6-mer
spectra of a restriction fragment (of average length of about 4Kb)
consists of all the 6-mers occurring within any window of about
400bps. By analyzing a sliding window of about 400bps length, the
s*M*A*s*H algorithm creates the most plausible sequence for each



of the restriction fragments: i.e., the sequence that would have
created the observed spectra under a Bayesian prior, accounting
for various error processes. Further optimization in the choice of
restriction enzymes, and in the probe design (using “don’t care”
or universal bases) could be augmented to improve the technology
cost-effectively.

As a first step towards this goal, we implemented s*M*a*s*H
by building upon a set of simple experimental feasibility stud-
ies, from which it was possible to accurately estimate the error
parameters likely to be involved in such a system. Next, by in-
corporating realistic parametric descriptions as Bayesian priors to
the s*M*A*s*H assembler, we proceeded to validate the quality of
assembly by a rigorous simulation study. From these empirical
studies, it appears to be possible to obtain human-scale haplotypic
whole-genome assembly with an error rate as low as 1bp/Mb
and without any rearrangement or haplotypic ambiguities. While
practical construction of a set of full-scale whole-genome haplo-
typic reference human sequences for single individuals is yet to be
demonstrated, this technology delineates how to accomplish these

goals in the not-so-distant future*’.
48
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