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1 Dexterous manipulation, a major subfield of robotics and 1 (Professor of Mathematics and Computer

Science, Courant Institute, NY, USA)manufacturing, experienced a mathematical rebirth in the
mid 80’s, when this nascent field established many beautiful
connections to convexity theory and computational geometry.
Jack Schwartz played a seminal role in its inception and
development. Here, I speculate on where Jack might have
liked this field to go in the future.

Opening

After meeting Jack Schwartz, I promptly made up my mind to
abandon theoretical (FOCS/STOC) computer science and em-
bark upon a new career, combining mathematics, computer sci-
ence and robotics. Jack promised to help. During my first year
at Courant, a suspiciously simple-looking but thorny robotics
problem kept popping up at our lunch and dinner conversations.
Eventually, it led to the discovery of a surprisingly intimate re-
lation between robot grasping and an elegant theorem due to
Constantin Carathéodory.

Later, it dawned on me that Jack might have been mentoring me
on the art of blending mathematics, computer science and robotics
(or for that matter, any other applied field). After that experience,
it has never been too difficult to be a “Bud-of-all-trades.” But
that’s only a small part of all I have learned from Jack.

Carathéodory’s theorem (belonging to a larger family of Helly-
type theorems) 2, 3 is usually stated as follows: If a point p of R

d 2 C Carathéodory. Über den Variabilitätsbere-
ich der Koeffizienten von Potenzreihen die
gegebene Werte nicht annehmen. Math. Ann.,
64:95–115, 1907.

3 L Danzer, B Grünbaum, and V Klee. Helly’s
Theorem and its Relatives. Convexity, 7:
101–180, 1963.

lies in the convex hull of a set X, there is a subset Y = {y1, . . . , yr+1}
of X consisting of d + 1 or fewer points such that p lies in the convex
hull of Y. Equivalently, p lies in an r-simplex with vertices in X, where
r ≤ d.
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Figure 1: Example of Carathéodory’s
Theorem for d = 2.

Carathéodory proved his theorem in 1907 4 for the case when

4 C Carathéodory. Über den Variabilitätsbere-
ich der Koeffizienten von Potenzreihen die
gegebene Werte nicht annehmen. Math. Ann.,
64:95–115, 1907.

X is compact. In 1914 Steinitz expanded Carathéodory’s theorem
for any sets X in R

d. If one visualizes Carathéodory’s theorem
in 2 dimensions, it can be seen to state the existence of a trian-
gle consisting of points from X that encloses any point enclosed
by X — the theorem can be made constructive. For instance,
when X has finitely many points, a triangulation of X’s convex-
hull will have a triangle containing any point in the convex hull
of X. Consider a set X = {(0, 0), (0, 1), (1, 0), (1, 1)}, a subset
of R

2. The convex hull of this set is a square. Consider now a

1
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point p = (1/4, 1/4) ∈ conv X. We can then construct a set
{(0, 0), (0, 1), (1, 0)} = Y (|Y| = 3), the convex hull of which is
a triangle and encloses p. Another set, containing p in its convex
hull, of course is {(0, 0), (1, 1)} = Y′ (|Y′| ≤ 3), but it presents
a degenerate example. Similar arguments extend the theorem to
higher dimensions.

Carathéodory was born in Berlin in 1873, to a prominent Greek
family, closely involved with the Ottoman Empire. After attend-
ing a variety of schools in Belgium, Carathéodory finally enrolled
as a student of artillery and engineering at the Belgian Military
Academy in 1891, where he received extensive technical train-
ing in engineering. It covered some antiquated calculus but also
courses in mechanics, probability, astronomy, geography, and ther-
modynamics. His lifelong fascination with descriptive geometry, a
core area of engineering mechanics, began at the academy.

When in 1897 an annual Nile flood interrupted his job as an
engineer, to kill time, he started studying mathematics: Jordan’s
Cours d’Analyze, Salmon’s book on conics, etc. During this process,
he became enamored with pure mathematics and decided – to the
chagrin of his entire extended aristocratic family – to relinquish
engineering. Soon, he was attending lectures in pure mathematics
by Schwartz, Fuchs, and Frobenius, and on symbolic logic by Carl
Friedrich Stumpf.

Carathéodory came to Göttingen in the summer of 1902, and
met Zermelo, Born, Blumenthal, the Youngs (William and Grace),
Minkowski, Klein and Hilbert. When he proved the theorem pre-
sented earlier, with its centrality in convexity theory, neither he
nor his colleagues could foresee any possible application of the
theorem — physical or otherwise. The purity (rather absence of
any obvious usefulness) seemed to have delighted Carathéodory.
Five decades later, when Carathéodory’s work began to find ap-
plications in economic theories of markets and equilibria, they
were dismissed as non-physical (hence artificial) applications, not
affecting the utter purity with which Carathéodory had held his
theorem.

However, our initial work (started with Schawrtz and Sharir) 5 5 B Mishra, JT Schwartz, and M Sharir. On
the Existence and Synthesis of Multifinger
Positive Grips. Algorithmica, 2:541–558, 1987.and its sequels 6, 7, 8 showed how the theorem can be directly

6 B Mishra and N Silver. Some Discussion
of Static Gripping and Its Stability. IEEE
Transactions on Systems, Man and Cybernetics,
19:783–796, 1989.

7 D Kirkpatrick, B Mishra, and C Yap. Quan-
titative Steinitz’s Theorem with Applications
to Multifingered Grasping. Discrete &
Computational Geometry, 7:295–318, 1992.

8 M Teichmann. Grasping and Fixturing: a
Geometric Study and an Implementation. PhD
thesis, New York University, New York, 1995.

related to static problems in classical mechanics and applied for
robots to plan “grasping,” “work-holding” and “fixturing.” With
that, alas, whatever purity (imagined or real) Carathéodory might
have bestowed on his theorem, seemed to have evaporated ir-
revocably. On the other hand, this might be seen as yet another
example of marvels of mathematics: “The Unreasonable Effective-
ness of Mathematics in the Natural Sciences 9,” of which Wigner

9 E Wigner. The Unreasonable Effectiveness of
Mathematics in the Natural Sciences. Commu-
nications in Pure and Applied Mathematics, 13,
1960.

wrote about so eloquently. “The miracle of the appropriateness
of the language of mathematics for the formulation of the laws
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of physics is a wonderful gift, which we neither understand nor
deserve. We should be grateful for it...”

Jack seemed to have been rather skeptical of the claims of math-
ematics’ unreasonable effectiveness. “... The intellectual attrac-
tiveness of a mathematical argument, as well as the considerable
mental labor involved in following it, makes mathematics a pow-
erful tool of intellectual prestidigitation — a glittering deception
in which some are entrapped, and some, alas, entrappers,” Jack
wrote in his 1986 essay entitled “The Pernicious influence of Mathe-
matics on Science 10.” 10 J Schwartz. The Pernicious Influence of

Mathematics on Science, pages 230–235.
Springer, 2006.In the following few paragraphs, I will outline the intellectual

prestidigitation necessary to claim the robot grasping problem
as solved — with its elegant reformulation in convexity theory 11 11 L Danzer, B Grünbaum, and V Klee. Helly’s

Theorem and its Relatives. Convexity, 7:
101–180, 1963.and computational geometry 12, 13. It is worth pondering how

12 H Edelsbrunner. Algorithms in Combinatorial
Geometry. Springer-Verlag, 1987.

13 J O’Rourke. Computational Geometry in C.
Cambridge University Press, 1994.

dexterously the assumptions might have been manipulated to
bring about this mental entrapment — a reach exceeding our
grasp, perhaps. But then, can we rebuild a more realistic theory
and algorithms for robot grasping, which would also include
hand design as well as kinematics, dynamics and control in their
formulations? Few such ideas have been explored preliminarily
and tentatively, as in the paradigm of “reactive robotics,” a topic
to which we will return eventually.

Gripping

Imagine an idealized dextrous hand, consisting of several inde-
pendently movable force-sensing fingers. These fingers move as
points in three-dimensional space. The problem of grip selection
for an object is to study how to hold that object in equilibrium
with point fingers — in the absence of static friction between the
surface of the object and the fingers. Since the fingers are assumed
to be point fingers, a finger can only apply a force on the object
along the surface-normal at the point of contact, directed inward.

When the shape of the object is precisely known, the problem of
grip selection reduces to that of choosing a set of grip points and a
set of associated force targets. We may then ask two questions:

• Can an arbitrary object be gripped with a finite number of fingers?

• If so, what are the grip points and the magnitudes of the forces
exerted by the fingers (force targets) for such a grip?

From elementary study of statics in classical mechanics, we
know how an object in equilibrium can be characterized. We may
think of the forces as polygenic (the force/torques applied at the
fingers are generated by some actuators whose mechanics need
not concern us). Equilibrium can be characterized by the resultant
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force and torque equation, as in the classical Newtonian mechan-
ics.

θ

θ

θ

θ

x

y

0

p

p
p

f

f

3

4

f1
1

1

p
2

2

2

f4

3

3

4

Figure 2: A planar object subject to four
forces f1, f2, f3 and f4.

Consider a rigid body subject to a set of external polygenic
forces f1, . . ., fk, applied respectively at the points p1, . . ., pk, as
in Figure 2. Then the necessary and sufficient condition for the
rigid body to be in equilibrium is that the resultant force and the
resultant torque must be null vectors. In mathematical notations, this
condition can be stated as follows:

k

∑
i=1

fi = 0 and
k

∑
i=1

pi × fi = 0,

where the cross product τ = p × f gives a torque 14. 14 The cross product τ = p × f is defined as

τx = py fz − pz fy,

τy = pz fx − px fz , and

τz = px fy − py fx.

Thus, in order to hold an object in equilibrium with a multi
fingered hand (say, with k fingers), we need to place these fingers
at points p1, . . ., pk on the boundary of the objects and apply
forces f1, . . ., fk in such a manner that the equilibrium condition is
satisfied.

For example, consider a planar rectangular object with four grip
points at the mid points of the edges (shown in Figure 3.)
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Figure 3: A planar rectangular object with
designated grip points {p1, p2, p3, p4}.

In this example, let the grip points be denoted as p1, p2, p3 and
p4 and the respective unit surface normals as n1, n2, n3 and n4.
Then we wish to determine if there are four scalar quantities α1,
α2, α3 and α4 such that

α1n1 + α2n2 + α3n3 + α4n4 = 0

α1(p1 × n1) + α2(p2 × n2) + α3(p3 × n3) + α4(p4 × n4) = 0

α1 ≥ 0, α2 ≥ 0, α3 ≥ 0, α4 ≥ 0 and not all 0.

Note that, for this example, any choice of α1 = α3 and α2 = α4
will satisfy the conditions (assuming that at least two of them are
nonzero and all of them are nonnegative). In particular, we could
have chosen all the α’s to be 1/4!

To make matters little more abstract, we may define a wrench
map, Γ, taking a point on the boundary of the object B to a point
in the d-dimensional wrench space R

d. Note that the term wrench
space is used to denote a vector space consisting of all the wrenches.
Its dimension d is 1, 3 or 6, depending on whether the object be-
longs to 1, 2 or 3-dimensional space.

Γ : ∂B → R
d

: pi 7→ (ni, pi × ni).

Thus the wrench map Γ maps a point pi ∈ ∂B on the boundary of
the body B to a wrench (a force/torque combination) that would
be created if we apply a unit normal force directed inward at the
point pi. Then the feasibility of a positive grip can be expressed
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in terms of the existence of a solution of the following system of
linear equations and inequalities:

k

∑
i=1

αiΓ(pi) = 0

αi ≥ 0, i = 1, . . . , k,
k

∑
i=1

αi = 1.

The last condition is added only for convenience. Geometrically,
we were then asking if some convex combination of the Γ(pi)’s
would yield the null vector. More compactly,

0 ∈ convex hull (Γ(p1), . . . , Γ(pk))?

If the answer to the preceding question is yes, then we can hold
the object in equilibrium with the given grip points by applying
forces whose magnitudes simply correspond to the coefficients
used in the convex combination to express the null vector.

How Many ...

One of the simplest problems in grasping theory can be stated as
below:

Given: An arbitrary rigid 3-dimensional object B and some num-
ber k.

Determine: Whether one can choose k (finite) grip points, {p1,
p2, . . ., pk} ⊆ ∂B on the boundary of B such that the object
can be grasped (positively) by placing fingers at those grip
points.

(

∃?{p1, . . . , pk} ⊆ ∂B
) [

0 ∈ conv (Γ(p1), . . . , Γ(pk))
]

.

The answer to the problem turns out to be “yes” and the neces-
sary number of fingers is SEVEN (and not five!).

The proof proceeds in three simple steps:

Step 1: Show that
0 ∈ conv Γ(∂B),

where Γ : ∂B → R
6 : p 7→ (n, p × n). This is a simple con-

sequence of the fact that an object under uniform pressure
remains in equilibrium. The proof of this claim can be given
rigorously using the Divergence theorem of Gauss.



mathemati
s' mortua manus:dis
overing dexterity 6

Step 2: By Carathéodory’s theorem
(

∃ {Γ(p1), . . . , Γ(pk)} ⊆ Γ(∂B)
) [

k ≤ 7 and 0 ∈ conv (Γ(p1), . . . , Γ(pk))
]

.

Hence there are positive nonnegative scalar quantities α1, . . .,
αk such that:

α1n1 + · · ·+ αknk = 0,

α1(p1 × n1) + · · ·+ αk(pk × nk) = 0.

Step 3: The positive grip is then selected by choosing as grip
points

Grip Points = {p1, . . . , pk} ⊆ ∂B,

Force Magnitudes = α1, . . . , αk,

with k no larger than 7.
2
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Figure 4: Grasping planar objects.

Similar arguments in the plane imply that one would need
FOUR fingers. The number four is arrived at by taking the dimen-
sion of the wrench space and adding one to it, as implied by the
Carathéodory’s theorem. It is also instructive to examine a set of
equilibrium grasps for three planar objects: a rectangle, a triangle
and a disc. First consider the grasps for the rectangle. Clearly, the
grasps (a) and (d) are not as secure as (g)—a horizontal external
force will break the grasp (a) and an external torque about the
center of the rectangle will break the grasp (d). In comparison,
the grasp (g) is immune to such external disturbances, provided
of course that such disturbances are relatively small in magni-
tude. Similar examination will show that the grasp (h) is the most
secure for a triangle. However, in the case of the disc, while the
grasps (f) and (i) are better than (c), there is simply no way to re-
sist an external torque about the center irrespective of how many
fingers are used.

The kinds of secure grasps described in the preceding para-
graph have been characterized as closure grasps. Furthermore,
exactly those objects that do not allow closure grasps can also be
characterized in purely geometric terms, and are referred to as ex-
ceptional objects. While we shall not go into a detailed description
of closure grasps and exceptional objects (see 15), it should suffice 15 B Mishra, JT Schwartz, and M Sharir. On

the Existence and Synthesis of Multifinger
Positive Grips. Algorithmica, 2:541–558, 1987.for the present purpose to say that the only planar bounded ex-

ceptional object is a disc and the only spatial bounded exceptional
object is an object bounded by a surface of revolution16. 16 If one allows unbounded objects then in

3-D, we have to include unbounded prisms
and helical objects and in 2-D an unbounded
strip of constant width. These objects in 3-D
describe the so-called Reuleux pairs, studied
almost a century ago.

Algorithm

At this point, it is natural for a roboticist to ask how one (a robot)
can construct a grasp for a specific object and what sorts of com-
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putation this may entail. The answer turns out to be very inter-
esting and shows a close connection of this problem to a classical
algorithm, “the simplex method,” used for solving linear program-
ming problems.

Thus, suppose we have a polyhedral object with n faces. We
proceed in a manner not very dissimilar from the ways we proved
the existences of such a grasp. We first create a grasp with ex-
tremely large number of fingers: about 15n grip points, where n
is the number of faces of the polyhedron. Next, step by step, we
can eliminate one finger in each step while maintaining grasp
as long as the number of grip points at the beginning of that
step is strictly larger than the lower bound. The algorithm ter-
minates when we are left with appropriate number of grip points
(or fewer).

In order to understand the process by which the fingers are
eliminated, we shall digress to consider an algorithmic approach
to algebraic manipulation with positive linear combinations.

Given: A set of vectors {V1, V2, . . ., Vl} ⊆ R
d and V ∈ R

d such
that

α1V1 + · · ·+ αlVl = αV

αi ≥ 0, α > 0, V 6= 0.

Find: A subset m ≤ d vectors

{Vi1 , Vi2 , . . . , Vim} ⊆ {V1, . . . Vl} and α′ > 0

such that

α′1Vi1 + · · ·+ α′mVim = α′V

α′i ≥ 0, (α′ > 0, V 6= 0).

Reduction Algorithm

if l ≤ d then HALT;

else repeat

Choose d vectors from {V1, . . . , Vl}
(Say, the first d): {V1, . . . , Vd}
There are two cases to consider, depending on whether
the vectors V1, . . ., Vd are linearly dependent or not.

Case 1: V1, . . ., Vd are linearly dependent.

We can write

β1V1 + · · ·+ βdVd = 0,
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not all βi = 0.
Assume that at least one βi < 0 (otherwise, replace each
βi by −βi in the equation to satisfy the condition.)
Let

γ = min
βi<0

(αi/βi) < 0.

(For specificity, we may assume γ = α1/β1.)
Put α′i = αi − γβi for 1 ≤ i ≤ d.

Hence by adding the equation (∑l
i=1 αiVi = αV) to

(−γ ∑
d
i=1 βiVi = 0), we get

α′2V2 + · · ·+ α′dVd + αd+1Vd+1 + · · · + αlVl = αV,

and by construction α′2, . . ., α′d ≥ 0.

Case 2: V1, . . ., Vd are linearly independent.

We can write

β1V1 + · · ·+ βdVd = V.

Assume that at least one βi < 0 (otherwise, we have
nothing more to do!)
Let

γ = min
βi<0

(αi/βi) < 0.

(For specificity, we may assume γ = α1/β1.)
Put α′i = αi − γβi for 1 ≤ i ≤ d, and α′ = α − γ > 0.

Hence by adding the equation (∑l
i=1 αiVi = αV) to

(−γ ∑
d
i=1 βiVi = −γV), we get

α′2V2 + · · ·+ α′dVd + αd+1Vd+1 + · · ·+ αlVl = α′V,

and by construction α′2, . . ., α′d ≥ 0.

In algorithmic terminology, we can prove that “the reduction
algorithm has a time complexity of O(ld3).” In our grasping appli-
cation, d will turn out to be a constant (= 6) and l no more than
15n.

Let us get back to our original question about grasping a poly-
hedron B with n faces. As hinted earlier, we shall start with a
closure grasp of B using no more than 15n grip points. Assume
that B is provided with a triangulation of each face, and

t1, t2, . . . , tN

is the set of triangles partitioning ∂B. For each triangle ti, choose
three non-collinear grip points pi1, pi2 and pi3 ∈ ti such that



mathemati
s' mortua manus:dis
overing dexterity 9

(pi1 + pi2 + pi3)/3 is the centroid of ti. In totality they will give
us the initial 3N grip points. Using Euler’s formula and some
simple combinatorics, one can show that N ≤ 5n − 12 and the
total number of grip points is no more than 15n − 36 (see 17). 17 B Mishra, JT Schwartz, and M Sharir. On

the Existence and Synthesis of Multifinger
Positive Grips. Algorithmica, 2:541–558, 1987.Now, it can be shown that if one chooses pi j

’s, 1 ≤ i ≤ N, j = 1,
2, 3, as the grip points then they give rise to a closure grasp. In
particular, we can see 18 (by using linear algebraic manipulations) 18 B Mishra, JT Schwartz, and M Sharir. On

the Existence and Synthesis of Multifinger
Positive Grips. Algorithmica, 2:541–558, 1987.that

Area (t1)

3
Γ(p11

) +
Area (t1)

3
Γ(p12) +

Area (t1)

3
Γ(p13)

+ · · ·+
Area (tN)

3
Γ(pN1) +

Area (tN)

3
Γ(pN2) +

Area (tN)

3
Γ(pN3) = 0,

and that
pos

(

Γ(p11
), Γ(p12), . . . , Γ(pN3)

)

= R
6.

Henceforth, rewriting these grip points as {p1, p2, . . ., pl}, and
the “area terms” as magnitude of coefficients: α1, α2, . . ., αl , we
have

α1Γ(p1) + α2Γ(p2) + · · ·+ αlΓ(pl) = 0, (1)

where αi > 0. Furthermore, since

lin
(

Γ(p1), Γ(p2), . . . , Γ(pl)
)

= R
6,

without loss of generality, assume that the first six wrenches are
linearly independent, thus spanning the entire wrench space, i.e.,

lin
(

Γ(p1), . . . , Γ(p6)
)

= R
6.

Synthesizing a Equilibrium Grasp with Seven Fingers Let us
now see how we can go from here to get a simple equilibrium
grasp with no more than seven fingers. Note first that we can
rewrite our equation 1 (for l-fingered grip) as

α1

αl
Γ(p1) + · · ·+

αl−1

αl
Γ(pl−1) = −Γ(pl),

where αi > 0 and Γ(pi) ∈ R
6. Now, we can use the “Reduction

Algorithm” to find

{pi1 , pi2, . . . , pim} ⊆ {p1, . . . , pl−1}

satisfying the conditions below:

α′1Γ(pi1) + · · ·+ α′mΓ(pim) = −α′Γ(pl),
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and m ≤ 6. Thus we have

α′1Γ(pi1) + · · ·+ α′mΓ(pim
) + α′Γ(pl) = 0,

with α′1 ≥ 0, . . ., α′m ≥ 0 and α′ > 0. Of course, this is our
equilibrium grasp using no more than m + 1 ≤ 7 fingers, placed
at grip points pi1, . . ., pim

, pl with associated force magnitudes α′1,
. . ., α′m, α′.

As analyzed earlier, our grasping algorithm could be shown
to take O(n) time with a constant in the complexity growing as
O(d3).

A few years later, in 1990, Papadimitriou and his colleagues re-
visited the problem 19, and proved (without appealing to Carathéodory- 19 X Markenscoff, L Ni, and CH Papadim-

itriou. The Geometry of Grasping. Inter-
national Journal of Robotics Research, 9:61–74,
1990.

like theorems) similar bounds on number of fingers. They also
showed how to turn the algorithmic problem into a linear pro-
gramming problem in certain special cases (e.g., planar convex
obects or non-convex objects with bounded number of concave
angles). As Megiddo had shown that these linear programming
problems have linear time solutions, when the dimension d is
treated as a constant, Papadimitriou et al. had also demonstrated
that grasping could be done in linear time – at least, for certain
special geometries.

Thus, it seemed that any comprehensible formulation of the
grasping problem would unavoidably appeal to convexity the-
ory (to Carathéodory’s dismay). However, the complexity of the
algorithms (thus applicability) depended crucially on the exact
formulation – going the Megiddo 20 route meant that the algo- 20 N Megiddo. Linear programming in linear

time when the dimension is fixed. J. ACM, 31
(1):114–127, 1984.rithm would have an O(d2O(d)n) time complexity. Big Ouch!

However, except for few such theoretical quibbles, the grasping
problem had been more or less solved and with panache blanc – or
so we thought.

Groping

In an article 21 appearing about a decade later, it was lamented 21 A. Bicchi. Hands for dextrous manipulation
and robust grasping: a difficult road towards
simplicity. IEEE Trans. on Robotics and
Automation, 16(6):652–662, December 2000.

that, “Notwithstanding the great effort spent, and the [impres-
sive] technological and theoretical results achieved by the robotics
community in building and controlling dexterous robot hands, the
number of applications in the real-world and the performance of
such devices in operative conditions should be frankly acknowl-
edged as not yet satisfactory. In particular, the high degree of
sophistication in the mechanical design prevented so far dexterous
robotics hand to succeed in applications where factors such as
reliability, weight, small size, or cost, are at a premium. One figure
partially representing such complexity is the number of actua-
tors, which ranges between 9 and 32 for hands considered above.
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Further reduction of hardware complexity, even below the theo-
retically minimum number of 9, is certainly one of the avenues
for overcoming this impasse.” Thus, while the elegant theory we
had developed gave many insights into how to create a field of
dexterous manipulation, the industrial (or elsewhere) applications
of robot hands have never really embraced the needed complexity.
Instead, simple parallel-jaw grippers still rules the manufacturing
world.

What could be done? How can we connect the mathematical
theories with applications. Jack 22 had worried that, “Related to 22 J Schwartz. The Pernicious Influence of

Mathematics on Science, pages 230–235.
Springer, 2006.this deficiency of mathematics ... is the simple-mindedness of

mathematics – its willingness to elaborate upon any idea, however
absurd; to dress scientific brilliancies and scientific absurdities
alike in the impressive uniform of formulae and theorems. Unfor-
tunately however, an absurdity in uniform is far more persuasive
than an absurdity unclad.” We may wish to return to the various
underlying assumptions of the grasping theories to separate the
ones that are apt from those that are absurd.

Setting aside the issues of finger properties (friction, softness,
compliance, etc.) 23, object properties (degrees of freedom, de- 23 B Mishra and M Teichmann. The Power of

Friction: Quantifying the ‘Goodness’ of Frictional
Grasps, pages 311–320. A.K. Peters, Wellesley,
MA, 1997.

formability, elasticity, etc.), closure grasps 24, grasp quality 25, 26,

24 B Mishra and N Silver. Some Discussion
of Static Gripping and Its Stability. IEEE
Transactions on Systems, Man and Cybernetics,
19:783–796, 1989.

25 D Kirkpatrick, B Mishra, and C Yap.
Quantitative Steinitz’s Theorem with Appli-
cations to Multifingered Grasping. Discrete &
Computational Geometry, 7:295–318, 1992.

26 B Mishra. Grasp Metrics: Optimality and
Complexity, pages 137–166. A.K. Peters,
Wellesley, MA, 1995.

grasp stability, robustness, gaiting, grasp planning, hand kinemat-
ics, dynamics and control, one may just focus on one issue: why
simple hands have done so much better. For instance, a parallel-
jaw gripper works well only with objects with antipodal grip
points and of simple geometry (e.g., 2 1

2 -dimensional), and yet it is
ubiquitous.

In a recent publication, Matt Mason and colleagues 27 asked,

27 M Mason, SS Srinivasa, and AS Vazquez.
Generality and Simple Hands. In International
Symposium on Robotics Research, 2009.

“While complex hands offer the promise of generality, simple
hands are more practical for most robotic and telerobotic manip-
ulation tasks, and will remain so for the foreseeable future. This
raises the question: how do generality and simplicity trade off in
the design of robot hands?” Their answer was to focus on using
“knowledge of stable grasp poses as a cue for object localization.”
Yet, a different approach is to integrate the hand design, grasp
control algorithm and grasp selection into one framework – as
done in our work on “Reactive Robotics.”

With my students and colleagues, we invented a clever parallel-
jaw reactive gripper, and showed how to drive its grasp control
algorithm by a set of discrete rules, that simply translate cer-
tain boolean conditions determined by the sensors into immedi-
ate (“reactive”) actions of the actuators. The gripper could very
quickly grasp any convex object in just two antipodal points and
enjoys many robustness properties.

Similar ideas can be extended to three-finger-hands, such as
the commercially-available Barrett hand 28, which is stiff, not 28 B Technolgies. The Barrett Hand. http:

//www.barrett.com/robot/products-hand.

html.
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frictionless and has 7 DOFs (degrees of freedom), four of which
are active. The key idea is to use the local geometry of the object
to find a set of grip points, while solving the local motion planing
problem of getting the fingers to their grasping positions.The
object is assumed to have a smooth boundary and be convex. The
grasping algorithm can be shown to be “non-disturbing,” (i.e., it
does not affect the object’s location or motion, until it is grasped.)

The gripper consists of 3 fingers, simplified by the constraint
to have their end-points move in a plane. The fingers move ar-
bitrarily, but their order (around the triangle they form) remains
fixed. The “reactive 3-finger hand” searches for three grip points
by following the object boundary until some geometric condition
is satisfied. Each finger is equipped with simple sensors that allow
them to follow the object’s contour and can determine the angle
of the object boundary (it is close to). The sensors that may be
considered are: (1) an omni-directional distance sensor (measuring
distance to the object in any direction), and (2) an angle sensor
(measuring angle of the object boundary at the closest point).
Such sensors can be easily built using a pair of simple IR reflective
sensors.

The key idea behind the grasping algorithm is for the hand to
discover “reactively” a locally minimal area triangle that encloses
the object. The grip points can be determined from this triangle
via a theorem of Klee 29: if T has a locally minimum area among all 29 V Klee. Facet Centroids and Volume Mini-

mization. 1986.triangles containing a convex body B, then the midpoints of each side
of T touches B. It can also been shown that 30 if the midpoint of 30 J O’Rourke, A Aggarwal, S Maddila,

and M Baldwin. An optimal algorithm
for finding minimal enclosing triangles. J.
Algorithms, 7(2):258–269, 1986. ISSN 0196-
6774. doi:http://dx.doi.org/10.1016/0196-
6774(86)90007-6.

an edge e of a triangle does not touch the object then e can be
perturbed such that its midpoint after perturbation lies inside
the original triangle. This perturbation reduces the triangle area.
Thus, the grasping algorithm has two phases:

• Phase 1: Find a triangle that contains the object, by, say,
closing the fingers along three concurrent lines spaced at
equal angles (120o) from each other, until they come to
close proximity of the object boundary. If the triangle is
not “bounded,” the hand can fix it by a small perturbing
rotation.

• Phase 2: Find a locally minimal triangle enclosing the object.
The basic step requires a finger to do the following: the fin-
ger divides its triangle edge into two segments and moves in
the direction of the larger segment. Consequently, both the
ratio of the larger segment to smaller segment for each edge
will be reduced; so will the area of the enclosing triangle. It
may seem that each finger has to move one at a time syn-
chronously, but that is really not necessary, if certain care is
taken as one approaches convergence to a grasp.
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The reactive hand works (like an analog computer) by mini-
mizing a potential function defined by the triangle area, and from
this an appropriate notion of stability and robustness can be de-
rived. Once the triangle is determined, since the lines through
edge mid-points and perpendicular to the corresponding edges
are concurrent at the point which is at the center of the circum-
scribing circle of the triangle, we can use these midpoints to get
a planar (force-closure) grasp without relying on friction. If the
object and finger-tips have some static friction (which is true of
Barrett hands) then the resulting grasp also has a planar torque
closure. More details can be found in 31, 32. 31 B Mishra and M Teichmann. Reactive

Algorithms for 2 and 3 Finger Grasping. In
Proceedings of the 1994 International Workshop
on Intelligent Robots and Systems, IRS 94, 1994a.

32 B Mishra and M Teichmann. Reactive
Algorithms for Grasping Using a Modified
Parallel Jaw Gripper. In Proceedings of the 1994

IEEE International Conference on Robotics and
Automation , ICRA 94, 1994b.

What is more interesting is the way the reactive gripper may be
anthropomorphized: The corresponding reactive algorithm will
appear to have three fingers groping around an object blindly (as
they have not performed any a priori computation on a model of
the object) until deciding on a grip. What separates groping from
gripping? Isn’t groping just an analog computation performed by
the finger sensors and actuators to solve an optimization problem
(namely, the minimal point of a potential function, determined
by the area of an enclosing triangle)? So then what exactly is a
computation in robotics? How does a robotic algorithm separate
sensing, planning and actuation?

I wish I knew how Jack might have thought about these ques-
tions...

Closing

Over the last year, I have realized how much we all miss Jack, his
polymathic and eclectic conversational topics and gentle mentor-
ing. With Jack’s death, Courant seems to have lost a significant
part of its basic character.

Soon after my arrival at Courant in 1985, Jack had walked me
over to the intersection of Mercer and fourth, and given me my
first and the shortest tour of Manhattan: At the time, there was a
Swensen’s right across from Courant, a music place called Bottom
Line on fourth and a Yeshiva in the opposite corner which still
stands. He pointed out that without going too far I could now
have food, religion, music and mathematics – that was all the
Manhattan I needed. Jack never ever mentioned religion after that.

Later Jack took it upon himself to introduce me to all sorts of
exotic food and information: Alexander’s campaign route through
Bactria and Parthia to India, explained over Matzo ball soup in
Second Avenue Deli; Ferdowsi’s Shahnameh and its significance to
Persian culture over some ultra-hot vindaloo in Curry in a Hurry
and how to design a balloon robot over many many servings of
twice-cooked pork. He also told me that he considered himself a
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gourmet diner who likes to try the best and the tastiest from every
cuisine – that too was his style in science and mathematics.

Jack seemed to have found interesting mathematics in almost
everything: how to move a piano, how to grasp a greasy pig,
how to manage personal relationships, how to trade in foreign
exchange markets, how to visualize a genome, how to write music
to be read by a computer, how to use cartoons to explain special
theory, how to become immortal and a zillion other things like
that.

With Jack, everything led to voracious gourmet feasting. Jack
always skipped his appetizers, and never lingered on for the
desserts.

33 33 The paper has improved considerably
following many insightful suggestions from
several colleagues: most notably, S. Kleinberg
and E. Schonberg of NYU, M. Mason of CMU
and M. Wigler of CSHL.References
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