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Abstract

We propose a novel approach for predicting protein
functions of an organism by coupling sequence homology
and PPI data between two (or more) species with multi-
functional Gene Ontology information into a single compu-
tational model. Instead of using a network of one organ-
ism in isolation, we join networks of different species by
inter-species sequence homology links of sufficient similar-
ity. As a consequence, the knowledge of a protein’s func-
tion is acquired not only from one species’ network alone,
but also through homologous links to the networks of dif-
ferent species. We apply our method to two largest pro-
tein networks, Yeast (Saccharomyces cerevisiae) and Fly
(Drosophila melanogaster). Our joint Fly-Yeast network
displays statistically significant improvements in precision,
accuracy, and false positive rate over networks that con-
sider either of the sources in isolation, while retaining the
computational efficiency of the simpler models.

1 Introduction

Proteins are the basis of life involved in many if not all
biological processes, such as energy and RNA metabolism,
translation initiation, enzymatic catalysis, and immune re-
sponse. However, for a large portion of proteins, their bi-
ological function remains unknown or incomplete. Con-
structing efficient and reliable models for predicting protein
functions remains the task of immense importance.

Recent modeling approaches, such as in [11], have
shown that the predictive power of automated annotation
systems rises significantly if they incorporate heteroge-
neous sources of data. This is particularly important as
each type of data typically captures distinct aspects of
cellular activity—PPI suggest a physical interaction be-
tween proteins, sequence similarity captures relationships
on a level of orthologs (inter-species relationship) or par-
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alogs (intra-species relationship), and gene ontology defines
term-specific dependencies. One important source of infor-
mation is, however, not typically used. Evolutionary rela-
tionships between species suggest that orthologous proteins
of different species, which share high sequence similarity
and whose functions have been established before specia-
tion, are likely to share similar protein classifications.

The use of multi-species information can become par-
ticularly important as a number of modeling methods such
as [11, 9, 4] rely on the computational power of networks to
transfer the functional information from annotated to unan-
notated proteins. In such networks there may exist proteins
with no edges connecting them to other proteins of their
own species. For example, Fly’s protein CG8793-PA has
no edges of high sequence similarity to other proteins in its
own Fly network, but it can be connected to the Yeast net-
work through a high-similarity edge to the yeast YDR108W
protein. Moreover, in a single species network, it is often
the case that proteins are surrounded only by proteins with
limited functional information. In such cases, using infor-
mation from multiple species becomes crucial.

In this work, we design and evaluate a probabilistic ap-
proach which integrates multiple sources of information:
PPIs, gene ontology, and intra as well as inter species se-
quence similarity. The approach incorporates our previous
probabilistic graphical model with Gene Ontology [2] with
information which describes evolutionary relationships be-
tween species. We demonstrate that this method can result
in significant improvements in the accuracy of functional
predictions using a probabilistic label-transfer paradigm.
We apply our method to two largest protein networks of
Yeast and Fly. The joint Fly-Yeast network outperforms
networks that consider each source in isolation, while re-
taining the computational efficiency of the simpler models.

Our expanded Gene Ontology approach can also be in-
terpreted as a special case of a new broader framework of
“probabilistic graphical model checking” resembling clas-
sical model checking algorithms [6] implemented through
message passing in a statistical graphical model. This con-



nection becomes explicit when a Gene subontology for a
protein (Figure 1) is viewed as a family of properties en-
coded through logical propositions and connectives. These
properties can be embedded and propagated in a general
graphical structure with certain logical implications—all
interpreted in a three-valued logic: True (positive), False
(negative) and Unknown.

For specific species, our framework connects subontolo-
gies of all proteins by edges. In the language of model
checking on graphical models, subontology network for
each species can be viewed as an initial labeling of “pos-
sible worlds” with certain relationships/properties. By con-
necting networks of two different species we thus connect
two neighboring “possible worlds” and try to gain some ad-
ditional information from their distances (measured by or-
thology or PPI). Theoretically, if the two possible worlds
are adjacent, they are expected to satisfy similar properties.
Considering both “worlds” simultaneously will lead to algo-
rithms with high fidelity and improved efficiency. As may
be inferred from the preceding discussion, our approach
suggests, for propositional and temporal logic, a potentially
much broader range of applications including many non-
biological problems.

2 Prior Work

One promising computational approach to protein func-
tion prediction utilizes the family of probabilistic graphical
models, such as belief networks, to infer functions over sets
of partially annotated proteins [9, 3, 4]. Using only a par-
tial knowledge of functional annotations, probabilistic in-
ference is employed to discover other proteins’ unknown
functions by passing on and accumulating uncertain infor-
mation over large sets of associated proteins while taking
into account different strengths of associations.

A critical factor that impacts performance of network
models is the choice of functional association between pro-
teins. The most established methods are based on sequence
similarity using BLAST. A large set of methods relies on the
fact that similar proteins are likely to share common func-
tions, subcellular location, or protein-protein interactions
(PPIs). Such similarity-based methods include sequence
homology [10, 16, 12], similarity in short signaling motifs,
amino acid composition and expression data [13, 15, 5].
Using PPI data to ascertain protein function within a net-
work has been studied extensively. For example, methods
in [9, 3, 4] used the PPI to define a Markov Random Field
over the entire set of proteins. These methods are based on
the notion that interacting neighbors in networks might also
share a function [9, 7, 14].

More recently, the approach of incorporating Gene On-
tology structure into probabilistic graphical models [2] has
shown promising results for predicting protein functions.

The approach considers multiple functional categories in
the Gene Ontology (GO) simultaneously. In this model,
each protein is represented by its own annotation space -
the GO structure. The information is passed within the on-
tology structure as well as between neighboring proteins,
leading to an added ability of the model to explain poten-
tially uncertain single term predictions.

3 Methods
3.1 Single Species Model

We use the idea of probabilistic chain graphs with incor-
porated GO [2] to build protein network for each specie. In
the model, each protein is represented not by a single node,
but by a replicate of a Gene Ontology or subontology (see
Figure 1). GO is a directed acyclic graph which describes
a parent-children relationship among functional terms. The
child term either IS A special case of the parent or is a PART
OF the parent’s process or its component. Every protein
has its own annotation to each of the GO functional terms:
it can be assigned one of three categorical values, namely,
positive, negative or unknown.
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Figure 1. An ontology structure for a single (hypotheti-
cal) protein i: positive annotation (grey) to GO term 43565
and, thus, also to its parent - 3677 , and further up the tree
to the parent’s parent, term 3676. Darker shade indicates
negative annotation (term 3700). Its child, term 3705, in-
herits this negative annotation. The protein is unknown at
the three unshaded (white) terms.

The GO information is modeled as a Bayesian Network
(BN), a directed graph where the child-parent relationships
are defined in terms of conditional probability distributions.
Proteins are then connected to each other by different mea-
sures of functional similarity (such as protein-protein inter-
actions, sequence homology, etc) encoded in a Markov Ran-
dom Field (MRF), an undirected probabilistic model. For
each measure of similarity a potential function is defined,
which corresponds to the probability of joint annotation of
two proteins at a term given that the proteins are similar.
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Figure 2. A chain graph model with three proteins. Each
protein is represented by GO subontology of size eight, with
different annotations at each protein. Some model elements,
P and potential function 1, are shown.

The similarity-based potential for proteins ¢ and j (in a sin-
gle network) at term c is defined as ¥(+, +) = ¥(—, —) =
s and (4, =) = ¢(—,+) = 1 — sy, for simi-
larity measure s; ; .. For example, homology information
is encoded as 5“’}“““ = 1 — p;; where p;; is a pairwise
p-value determined by BLAST. The MRF and the BN are
finally combined into a single graphical chain model [8], an
example of which is shown in Figure 2. This model also
includes the evidential function ¢, as shown in Figure 1 that
indicates the presence/absence of known annotations.

The flow of information is modeled using a message-
passing mechanism for chain graphs. Messages are passed
until the state of convergence is reached. At that point, pos-
terior probabilities of membership in the classes defined by
GO are calculated at the target proteins. The predictions are
made by comparing those probabilities with a fixed thresh-
old (0.8, as suggested in [9]). See [2] for a detailed descrip-
tion of this model.

3.2 Connecting the networks

In this work, we use inter-species sequence homology
information to connect the chain graphs of multiple but re-
lated species. During the MRF building stage, we combine
the individually constructed networks of two species, Yeast
and Fly, through sequence similarity edges.

An edge is introduced between corresponding terms of
two species based on similarity measured using BLAST
scores (p-value below 0.5, similarly to [2]). In a two-
species setting, we define a similarity measure between pro-
tein ¢ in Yeast network and protein j in Fly network, at
term c, as s??t‘c"’ccn = 1 — p;;, where p;; is the pairwise
p-value. Edges are not introduced when the similarity is
less than 0.5 (p-value above 0.5), since dissimilar proteins
may or may not be involved in the same biological process.

This similarity measure then translates into the potential
function v in a manner analogous to the similar potential
within one species: ¥(+,+) = ¥(—, —) = 250" and
Yt =) = (=, 4) = 1 — spgreen.

Similar to the single-specie model, we connect two pro-
teins at all GO terms so that sp5'we°" = sPSiveen for all
terms c. While using same potential for all terms may not
be optimal, it was shown to improve the annotation perfor-
mance. Heterogeneous values of similarity sﬁ‘,}twee“ at each
term ¢ may lead to additional improvements, but also a more
complex and demanding parameter estimation process.

This model directly generalizes to scenarios with multi-
ple species and types of associations. Even though chain
graphs can suffer from increased time and space in the
multi-species networks, they are amenable to distributed
implementations and often lead to significant improvements
in predictive accuracy not observed in other approaches.

3.3 Protein classification

When predicting multiple protein functions, it is impor-
tant to elucidate both the “negative” as well ”positive” an-
notations for the proteins of interest. This task is rarely un-
dertaken in practice, in part due to the lack of data and the
accompanying computational methods.

Our choice of the GO subontology was driven by the task
of predicting both types of annotations. The chosen subon-
tology contains terms with negative as well as positive GO
annotations for both Yeast and Fly. The subontology is de-
picted in Figure 1 and consists of eight terms: nucleic acid
binding (3676), DNA binding (3677), sequence-specific
DNA binding (43565), methyl-CpG binding (8327), DNA
replication of origin binding (3688), centromeric DNA
binding (19237), transcription factor activity (3700), and
RNA polymerase II transcription factor activity, enhancer
binding (3705). However, only a small fraction of proteins
contains negative annotations. One reason for this asymme-
try is the need for comprehensive tests in order to ensure
that a certain protein cannot perform a specific function.

The leaves in the GO subontology represent the leaves
in the entire GO structure implying very specific functional
terms. To perform one of such functions, a protein should
have specific binding motifs and configurations, suggesting
that it cannot be involved in more than one function. In par-
ticular, if a protein is positively assigned to a certain GO
term, we assume that it is negatively annotated to all of its
siblings. 1256 out of 7260 Fly proteins and 503 out of 5298
Yeast proteins are positively annotated to one or more terms
of the used subontology. After we assign possible negative
annotations, there are 305 Fly and 91 Yeast proteins with at
least one negative annotation. Other proteins are unanno-
tated and are used as information conduits.

Our method can be applied to the entire GO, at the ex-



pense of time and space complexity. However, specific, rel-
atively small, subontologies can be of particular interests to
biochemists. For instance, vaccine targets are usually the
proteins with very particular functions, represented by spe-
cific subontologies.

4 Results and Discussion
4.1 Experiments

Our experiments focused on inferring functional annota-
tions in a combined Yeast-Fly network. The GO structure
was obtained from the Gene Ontology database. We expand
GO hierarchy up for positively annotated proteins and down
for negatively annotated proteins. Saccharomyces genome
Database for Yeast and FlyBase for Fly were used as the
sources of the sequence and annotation data. The PPI data
were obtained from GRID [1]. This resulted in a combined
set of 7260 Fly and 5298 Yeast proteins that were used to
construct the joint belief networks.

To ensure that both PPI and the homology measures are
available for MRF potential esitmation on all proteins we
restricted the study to the data with available PPI informa-
tion. Predictive performance of our models is evaluated in
a cross-validation setting. The test set consists of a random
20% of annotated proteins, with the same proportion of neg-
atively and positively annotated proteins as the remaining
80% for training the model. For each randomly chosen test
protein, its GO structure remains in place but all of its an-
notations are left out and are listed as unknown. In the case
of the joint Fly-Yeast network (JN), we eliminate annota-
tions of 20% of annotated proteins from each network. In
the testing phase, upon convergence of the message-passing
process, predictions at terms whose annotations were left
out are tested against the known eliminated annotations.

We conduct a total of ten experimental rounds using the
random splitting process. In each round, we compared re-
sults of runs on single networks (without joining) to that
of the joint network. Individual and joint networks were
trained and evaluated on the same training/testing data.

A typical run of the model with GO on the JN took ap-
proximately 28 min (4 iterations of message passing). Cor-
responding individual network runs took 59 min for Fly and
35 min for Yeast. Faster convergence rates in JN can be con-
tributed to the “denser” sources of evidence in networks of
multiple species compared to that of the isolated runs.

4.2 Results

For our model, we calculate five measures of perfor-

mance: recall = gy, precision = b,
— ____TP4+TN = EP _
accuracy = TprTN{FPIFN’ FPr = TNLFP" where

negatives are as defined in 3.3.

Table 1. Comparison of average statistics (%) in joint and
individual networks, over 10 runs.

networks | precision | recall | accuracy | FP rate
Fly 97.94 98.41 97.62 3.83
Fly | IN 98.71 97.98 97.87 2.35
Yeast 94.82 93.48 91.74 12.86

Yeast | IN 97.56 96.58 95.82 6.20
JN, overall 98.49 97.76 97.54 2.88

The calculations are done separately for the Yeast net-
work, the Fly network and the joint Fly-Yeast network. In
the joint network, we first calculate the overall performance
(ignoring the differentiation of species), and then the per-
formance of Fly and Yeast in the joint network separately.

Table 1 shows the average precision, recall, accuracy and
FP rate for four cases: Fly network, Fly in Fly-Yeast net-
work, Yeast network, and Yeast in Fly-Yeast network. The
Fly-Yeast JN shows a clear improvement in all of the above
measures. Most importantly, it significantly decreases the
FP rate for both Fly and Yeast, compared to their isolated
networks. In particular, FP rate for Fly decreases by 48%),
and for Yeast by 52 %. For Fly, the increase in precision is
1%, in accuracy is 0.4%; for Yeast, the increase in precision
is 3%, in recall is 3.3%, and in accuracy is 4.5 %. Fly does
not show improvements for recall in the JN.

4.3 Statistical analysis

Statistical analysis of significance of the aforementioned
performance scores was done using the t-test. The tests
were conducted separately for each species and each per-
formance measure: single Fly network is compared with
the performance on the Fly in the joint Fly-Yeast network;
similarly for Yeast. For comparison to be sound, the evalua-
tions on single and joint networks were done using the same
random samples (splits for testing and training sets).

The joint Fly-Yeast network shows significant improve-
ment in performances for both Fly and Yeast (p — value <
0.05 ), as seen in Table 2(degree of freedom = 9). For
example, for Fly the joint Fly-Yeast network shows a sig-
nificant improvements compared to the Fly network alone,
with respect to precision (p=0.0056)and false positive rate
(p=0.0082). At the same time, for Yeast the joint network
shows a significant improvement for all four measures: pre-
cision ( p=0.0162), recall (p=0.0096), accuracy (p=0.0093),
and false positive rate (p=0.0132).

4.4 GO vs single-term predictions

As a baseline test, we apply our method to networks
without GO in place, similarly to [2], where the whole net-



Table 2. T-test p-values for precision, recall, accuracy,
and FP rate.

precis. | recall accur. | FPrate
Fly, t-test | 0.0056 - 0.2523 | 0.0082
Yeast, t-test | 0.0162 | 0.0096 | 0.0093 | 0.0132

work of proteins is tested on a single ontology term. As be-
fore, in ten trials, we choose at random 20% of the network
as a testing set and learn the parameters on the remaining
80%. The results shown in Table 3 indicate the superiority
of the network with built-in Gene Ontology over the single-
term network even in the case of multiple species networks

Table 3. Comparison of results for the network with GO
and without GO

networks precision | recall | accuracy | FP rate
Fly w/o GO 89.97 98.37 88.67 98.57
GO 97.94 98.41 97.62 3.83
Fly | IN | w/o GO 90.51 96.80 87.97 91.56
GO 98.72 97.98 97.87 2.35
Yeast w/o GO - 0 42.62 0
GO 94.83 93.48 91.74 12.86
Yeast | IN | w/o GO 57.38 1 57.38 1
GO 97.56 96.58 95.82 6.20
JN overall | w/o GO 86.90 97.04 84.75 94.35
GO 98.49 97.76 97.54 2.88

The model with GO makes a TP prediction, where the
model without it commits a FN error. This result is not sur-
prising as there is only one term with one protein annotated
to it. In general, similar to [2], incorporating the ontology
structure, along with the dependencies among its functional
terms, considerably improves performance over that of tra-
ditional models that consider each term in isolation.

5 Conclusions

In this work we presented a new approach that uses inter-
species information and the GO to simultaneously consider
multiple functional categories connected in networks of two
(or more) species in order to improve the predictive ability
for protein classification. We show statistically significant
improvements in performance of the joint model over the
prediction runs on isolated species/category networks.

While in single species proteins may exist that have no
annotated partners, they have the potential to acquire anno-
tated interacting partners-homologs in a two-species setting.
Additional benefits emerge for species with poorly defined
protein functions and/or protein interactions. The use of the

GO enables simultaneous consideration of multiple but re-
lated functional categories, opening information paths for
further improvements to the model’s predictive ability.

Our method readily extends to multiple species settings,
and is likely to produce similar improvements. The pres-
ence of multiple interacting networks may further enable
integration of additional sources of evidence, thus contribut-
ing to increased accuracy in functional predictions.
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