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1 Introduction & Background

Complex Systems are often characterized by agents capable of interacting with
each other dynamically, often in non-linear and non-intuitive ways. Trying to
characterize their dynamics often results in partial differential equations that
are difficult, if not impossible, to solve. A large city or a city-state is an exam-
ple of such an evolving and self-organizing complex environment that efficiently
adapts to different and numerous incremental changes to its social, cultural and
technological infrastructure [2]. One powerful technique for analyzing such com-
plex systems is Agent-Based Modeling (ABM) [11], which has seen an increasing
number of applications in social science, economics and also biology. The agent-
based paradigm facilitates easier transfer of domain specific knowledge into a
model. ABM provides a natural way to describe systems in which the over-
all dynamics can be described as the result of the behavior of populations of
autonomous components: agents, with a fixed set of rules based on local infor-
mation and possible central control. As part of the NYU Center for Catastrophe
Preparedness and Response (CCPR1), we have been exploring how ABM can

1visit: www.nyu.edu/ccpr
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serve as a powerful simulation technique for analyzing large-scale urban disas-
ters. The central problem in Disaster Management is that it is not immediately
apparent whether the current urban emergency plans are robust against such
sudden, rare and punctuated catastrophic events. An agent-based emergency
response model can utilize the large amount of information about the possible
rules of behavior for people, hospitals, on-site responders and ambulances, with-
out depending on the scarce knowledge about the efficacy of those rules or the
global dynamics.

We have been striving towards a methodical and algorithmic approach for
both preparedness and response, by combining powerful ideas from model-
checking, simulation and multi-objective optimization, in order that a large
urban structure can recover from the effects of a disastrous event quickly and
efficiently. Recently, game theoretic paradigms have also influenced the analy-
sis of complex systems. In our models, persons play “games” with each other
for the medical resources; persons and hospitals interact to minimize several
factors like number of fatalities, average waiting time, average ill-health, cost,
etc. Likewise, the heuristics people employ to choose the hospital they should
head to, based on prior knowledge about their size and location and real-time
knowledge about current occupancies, can be seen as an extension of the Santa
Fe bar problem [4]. Game theory also discusses different kinds of strategies that
can effectively describe different personality, cultural and social traits governing
panic behavior: some people imitate their neighbors, some are contrarian, some
are rational, some are irrational, some employ a random strategy, etc.

Disaster planning is often based on assumptions derived from a conventional
wisdom that is at variance with empirical field disaster research studies [3].
Our efforts to avert this error have resulted in a new system, called PLAN C
(Planning with Large Agent-Networks against Catastrophes) [6, 7, 9, 12, 8], with
well-identified, validated, simple rules with minimal number of parameters to
avoid modeler bias and unnecessary complexity. The persons, hospitals, on-site
responders, ambulances and disease prognosis follow deterministic rules with
probabilistic parameters that can be modified by the user. A more detailed
description of our system can be found in [7], where the Sarin gas exposure
scenario is investigated in the constraints defined by Manhattan, New York, in
[6], where the Brazilian food poisoning scenario is recreated and in [8] where
various dynamics for different subpopulations and hospitals configurations are
analyzed.

The system is implemented in Repast 3.1 [10], a popular and versatile Java-
Based software toolkit that has been used to model such diverse concepts like
intracellular processes and business strategies. We have also integrated ProAc-
tive 2 with RePast, in order to use the computational power of a cluster of
computers to explore the parameter space of the system. Rather than focusing
on the intricacies of the modeling problem, in this paper, we delve into the na-
ture and sources of complexity in the dynamics of different kinds of catastrophes
and various urban topologies.

2http://www-sop.inria.fr/oasis/proactive/
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2 Experimental results

In disaster management, it has been established that “Planning should take
into consideration how people and organizations are likely to act, rather than
expecting them to change their behavior to conform to the plan” [3]. ABM
serves as a means of describing the behavior of medical facilities (controllable)
and evaluating their performance in different disease scenarios for people with
different personality and health profiles. Unless stated otherwise, results are
carried out using the same values for the parameters as described in table 1 of
the supplementary material3 and each plot is averaged on 10 independent runs.

Single event scenario As a first scenario, we consider a possible terrorist
attack with a chemical warfare agent at Port Authority Bus Terminal in midtown
Manhattan. In order to understand the complexity of the system dynamics, in
Fig. 1, we monitor different statistics for the affected population. The left plot
in Fig. 1 shows the evolution curves for the average waiting time of the affected
population at the hospitals. The presence of three jumps is visible in the first
400 ticks of the curves, corresponding to the crowding effect of the flux of people
at the three nearest hospitals to the site of the attack. Each climb phase is a
consequence of the hospital state changing rapidly from ”available” to ”critical,”
with a resulting increase in the number of waiting non-critical persons. The flat
phase that ensues is due to the state change from “critical” to “full”, where all
waiting persons are instructed to head to another hospital. It is interesting to
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Figure 1: Left plot: evolution curves for the percentage of waiting persons at the
hospitals and the average waiting time of the population with population size 500,
1000 and 2000. Right plot: evolution curves for the percentage of active and admitted
persons with population size 500, 1000 and 2000.

note how the population size of 500 persons seems to produce a more complex
scenario as compared to a large size of 1000, as evident in the higher waiting time
at the hospitals. This unforeseen outcome can be explained by observing that
after the nearest hospital becomes full, the remaining waiting population that
heads to another hospital is unable to fill up the new one. The new hospital

3available at www.bioinformatics.nyu.edu/Projects/planc/appendix iccs06.pdf
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remains in a critical state for more time causing an increased waiting time.
This effect is visible in the inset plot on the left of Fig. 1, where the curve for
the population size of 500 produces the highest percentage of waiting persons
around 400 ticks. A similar behavior is produced by an affected population of
2000 individuals, but in this case the scenario unfolded after the three nearest
hospitals became full.

The right plot of Fig. 1 shows the percentage of active and admitted persons.
The term active denotes a person who has decided to head to a hospital. As
expected, immediately after the attack, both the number of active and admitted
persons quickly increases, but then different courses are produced by the different
population sizes. Another unexpected behavior emerges in the right inset plot of
Fig. 1: an affected population of 1000 individuals produces a higher percentage
of admitted persons than that of 2000. A possible explanation can be found by
observing that the resources of each hospital are the same for both population
sizes, but the number of persons with lethal and severe injuries increases with
the population size. These are persons who need more treatment producing a
longer hospitalization time and higher demand of resources. At the same time,
there are also many persons, some lightly and others severely injured, who are
awaiting admission.

Multiple event scenario As a second scenario, we consider a possible terror-
ist attack involving multiple explosions – in particular, caused by three bombs
located respectively in Union Square, Times Square and Central Park. The ex-
plosions are simulated to occur after 10, 120 and 300 minutes respectively. A
population of 5000 persons is involved and initialized to random positions on
the map at the beginning of the simulation. The left plot of Fig. 2 shows the
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Figure 2: Left plot: evolution curves for active and waiting persons. Right plot:
evolution curve for the percentage of admitted persons in the hospitals.

expected increase in the number of active persons after each of the three explo-
sions. It is interesting to note the presence of an unpredictable fourth but less
rapid increase after 1000 ticks. The waiting curve instead follows a completely
different path because of the different spatial positions of the hospitals with re-
spect to the sites of the explosions and their different resource levels. The right
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plot of Fig. 2 shows the curve for the percentage of admitted persons in the hos-
pitals. As expected, after each explosion we have an increase in the number of
admissions, but most of them are probably persons who do not need long-term
hospitalization and hence, are discharged soon. However, the percentage of ad-
mitted persons never becomes zero; random fluctuations after the 700th tick are
visible due to the probabilistic personality factors (irrationality and compliance)
of each person.

2.1 Urban topologies and transportation

The behavior of complex systems is strongly affected by the topology of the
environment. This dependence has been observed in different domains (Biol-
ogy, Social Science, Economy) and remains particularly true in the context of
emergency response for a large urban environment. Location and distribution
of the available resources can make the difference in the way a city responds
to an attack. The topology of the streets and the transportation system af-
fect how people make decisions as they travel to to their destination. Each city
has different topological constraints and resource distributions, and a simulation
framework needs to be flexible enough to be easily portable to different locations.

Figure 3: Warfare agent attack in 4 different U.S. cities (snapshots): left-top: New
York City, NY; left-bottom: Boston, MA; right-top: San Francisco, CA; right-bottom:
Philadelphia, PA.

Publicly available Geographic Information Systems (GIS) data about roads
and transportation system of different cities was converted into a graph, where
nodes are intersections and edges are streets. We have performed this conversion
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for 4 major cities in U.S.: Manhattan island (NYC), Boston (MA), San Francisco
(CA) and Philadelphia in (PA). We have populated the model with hospital
resources according to the data already included in the GIS source (if available)
or according to publicly available web sites describing the hospital facilities.
Agents are constrained to move only along the edges of the graph, with the
effective speed at each time-step depending on the health level and probabilistic
terms to simulate congestion effects. A simple variant of the LRTA∗[5] algorithm
for route computation is used to model a person’s panic behavior.

We have compared the emergency dynamics of the same warfare agent attack
with 5000 casualties in the downtown locations of each city. Fig. 3 shows a
snapshot of the emergency scenario for each city analyzed, while Fig. 4 shows
the dynamics of percentage of deceased and waiting persons for each city. Results
show that San Francisco performs the worst among all the cities studied under
almost identical attack scenario. This discrepancy is most likely due to the
distribution of the hospitals, as in fact the majority of them are located far
away from the downtown area. On the other hand, Philadelphia and Boston
exhibit comparable performance in terms of fatalities, waiting and admissions
to hospitals.
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Figure 4: Left plot: percentage of deceased persons (by city). Right plot: percentage
of people waiting for treatment at the hospitals (by city).

2.2 ABM model-checking

Unlike statistical analysis of metrics averaged over multiple agents and simula-
tions, the model-checking approach focuses on individual agents’ traces. Com-
plex temporal properties may be described in Linear Temporal Logic (LTL) and
then model-checked in a model-checker such as XSSYS[1]. The XSSYS system
was originally developed for simulating and analyzing biochemical pathways.
The agents’ traces produced in output by the system can be read using XSSYS.
To demonstrate the technique, we consider an intensive toxic agent exposure in
downtown Manhattan and monitor a person and a hospital.

Fig. 5 shows two examples of queries that can be expressed in LTL
for one of the hospital traces. For example, the query “EVENTU-
ALLY(NUMBERADMITTED = 1)” returned TRUE, which means that there
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was a point in time when only one person was admitted inside hospital number
2. Clearly, very complex questions can be expressed in XSSYS and the trace
analysis can help discover finer aspects about the underlying system dynamics.

Figure 5: Temporal Logic Analysis in XSSYS. Left plot: Time-Trace of a Person.
Right plot: Time-Trace of a Hospital.

3 Multi-Objective Optimization for Planning

Response plans involve different, often conflicting, criteria that must be satisfied
and optimized in parallel – number of fatalities, average population health, time
taken to succumb, waiting time at the hospital, life expectancy, economic cost,
etc. In our framework, a response plan is expressed in terms of the system rules
and parameters, producing a gargantuan strategy space that should be explored
in order to find “optimal” plans. Moreover, the input parameters typically in-
teract in a non-linear fashion. We have been exploring the use of multi-objective
evolutionary algorithms (MOEAs) in order to devise plans that optimize multi-
ple objective functions in terms of their Pareto frontier in the high-dimensional
space defined by the system [9]. Over the last decade MOEAs have shown to
have many of the properties needed to effectively tackle this challenging compu-
tational problems, such as their ability to: (i) generate multiple Pareto optimal
solutions in a single run, (ii) handle a large search space, and (iii) provide ro-
bustness against the effects of noise. The PLAN C model produces, as part of its
output, several of the relevant objectives/criteria involved in response planning
in the form of statistical results of the global system behavior. In this con-
text, a possible multi-objective formulation of the emergency response planning
problem may be defined as follows: the selected input parameters of the model
are the decision variables, the criteria for plan evaluation are the objectives,
the parameter ranges are the variable bounds, and the mutual relations between
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the set of parameters are the constraints. In [9] we employed two well-known
MOEAs, the Non-dominated Sorting Genetic Algorithm II (NSGA-II) and the
Pareto Archived Evolution Strategy (PAES), and calibrated their performance
for different pairs of objectives in the context of plan evaluation using PLAN C.

4 Conclusions and future investigations

The complex interactions between the affected population and the available re-
sources of a response plan have remained poorly understood, are still beyond
the analytical capability of traditional modeling tools, and have resisted any
systematic investigation. In this research work we have shown that a deep anal-
ysis of the source of complexity generated by the simulation of different kind of
urban emergency scenarios is effectively possible. This finer analysis has been
accomplished using large-scale simulation with a novel Agent-Based Model sim-
ulation tool, PLAN C, addressing disasters in urban settings. Simple rules of
behavior are seen to produce uncanny emergent dynamics with unpredictable
interdependencies, which, with the help of the statistical analysis and optimiza-
tion features of the system, can be inspected in order to refine existing plans
and policies. Currently, we are extending the model in order to simulate not just
immediate one-time events, e.g., attack with a chemical agent, bomb explosion,
etc., but also long-lasting slowly-unfolding scenarios such as those resulting from
an infectious disease, e.g., Smallpox.

Our efforts aim to demonstrate that the ABM paradigm, in conjunction
with statistical analysis, multi-objective optimization, game theory and model-
checking of agent-traces, offers a novel way to understand, plan and control
the unwieldy dynamics of a large-scale urban emergency response. The same
empirical approach to mechanism design and selection in a complex repeated
game will very likely find other applications: namely, (1) Social Networks, (2)
Swarm robots, (3) Power systems design, (4) Synthetic and systems biology, etc.
We are also exploring various research questions that these novel applications
bring to the forefront.
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