
Successive Abstractions of Hybrid Automata for
Monotonic CTL Model Checking

R. Gentilini2, K. Schneider2 and B. Mishra1,3

1 Courant Institute, New York University, New York, NY, U.S.A.
2 University of Kaiserslautern, Department of Computer Science, Germany
3 NYU School of Medicine, New York University, New York, NY, U.S.A.
{gentilin, Klaus.Schneider}@informatik.uni-kl.de, mishra@nyu.edu

Abstract. Current symbolic techniques for the automated reasoning over unde-
cidable hybrid automata, force one to choose between the refinement of either an
overapproximation or an underapproximation of the set of reachable states. When
the analysis of branching time temporal properties is considered, the literature has
developed a number of abstractions techniques based on the simulation preorder,
that allow the preservation of only true universally quantified formulæ.
This paper suggests a way to surmount these difficulties by defining a succession
of abstractions of hybrid automata, which not only (1) allow the detection and the
refinement of both over- and under-approximated reachable sets symmetrically,
but also (2) preserves the full set of branching time temporal properties (when
interpreted on a dense time domain). Moreover, our approach imposes on the
corresponding set of abstractions a desirable monotonicity property with respect
to the set of model-checked formulaæ.

1 Introduction

Over the past few years, questions related to the analysis of hybrid automata [10] have
occupied a considerable amount of attention and interest within the automatic verifica-
tion research community, since the consequent models provide a high fidelity represen-
tation of real world (embedded) systems, and yet the nontrivial computational problems
they raise do not yield to the classical techniques either of applied mathematics or of
theoretical computer science.

As originally envisioned in [10, 9], hybrid automata have aspired to combine the
traditional automata tools from logic and computer science with differential equation
systems, and their long tradition in mathematics. In this respect, the enormous potentials
of hybrid automata in challenging applications fields—namely, the analysis of embed-
ded, real time, and biological systems, to cite only a few of them—were immediately
recognized. However, the trade-off between the representational fidelity of hybrid au-
tomata and the solvability of related decidability problems addressing properties such as
reachability, was also immediately apparent. Hence, the major effort of the hybrid au-
tomata research community, to date, has been devoted to the study of decidable classes
of hybrid automata, for which at least the reachability problem remains decidable [10,
9, 13, 14, 2]. Listed in their chronological order, the (main) decidable families in the
literature are the ones corresponding to timed automata [1], singular automata [10, 9],



rectangular automata [9], and o-minimal automata [13]. Unfortunately, for each one
of the above families, the sacrifice in the expressiveness of either the discrete or the
continuous dynamics [2] that has to be exacted in exchange for the decidability result,
strongly casts doubt on the possibility of faithfully capturing complex hybrid dynamics
arising, for example, in the system biology area [16, 8].

Motivated by the reasons listed above, many authors have recently focused on
developing techniques for the symbolic analysis of undecidable—and yet reasonably
expressive—hybrid automata [16, 8, 19, 6, 17]. However, any method developed so far
relies either on the definition of abstractions simulating the underlying hybrid automata
[8, 19, 17] or on symbolic bounded reachability techniques [16, 6]. In the first case, only
an overapproximation of the reachable state-space is possible. Usually, those techniques
target the proof of safety property, stating that something undesirable should never hap-
pen on any reachable state of the system. In general, the simulation preorder from the
abstraction to the hybrid automaton allows for preservation of only true formulæ in the
universal fragment of a branching time temporal logic. In the second case, only an un-
derapproximation of the reachable state-space can be explored and used for generating
counterexamples to the reactive system properties of interest (e.g. safety).

In this paper we develop a framework to both prove and disprove reactive system
properties expressed by means of CTL logic [4, 18] on (undecidable) hybrid automata.
To the best of authors’ knowledge, no other symbolic technique for the analysis of unde-
cidable hybrid automata can be claimed to preserve both true and false reactive systems
properties simultaneously. Our framework is based on the design of a succession of ab-
straction and a corresponding three valued semantics for the logic CTL, allowing for
the monotonic preservation of true/false formulæ along the succession of abstractions.
Given a structureA in our succession, we finally show that the three valued CTL model
checking problem on A is linear in the length of the formula and in the size of the
abstraction. Because of the space constraints, we omit the proofs of the results shown
here, but collect them in [7].

2 Preliminaries

In this section, we introduce the basic definitions and the notations used in the remainder
of the paper.

Definition 1 (Hybrid Automata [2]). A Hybrid Automaton is a tuple H = (L,E,X ,
Init, Inv, F, G,R) with the following components:

• a finite set of locations L
• a finite set of discrete transitions (or jumps) E ⊆ L× L
• a finite set of continuous variables X = {x1, . . . xn} that take values in R
• an initial set of conditions: Init ⊆ L× Rn

• Inv: L 7→ 2R
n

, the invariant location labeling
• F : L × Rn 7→ Rn, assigning to each location ` ∈ L a vector field F (`, ·) that

defines the evolution of continuous variables within `
• G : E 7→ 2R

n

, the guard edge labeling
• R : E × Rn 7→ 2R

n

, the reset edge labeling.



We write v to represent a valuation (v1, . . . , vn) ∈ Rn of the variables’ vector x =
(x1, . . . , xn), whereas ẋ denotes the first derivatives of the variables in x (they all de-
pend on the time, and are therefore rather functions than variables). A state in H is a
pair s = (`,v), where ` ∈ L is called the discrete component of s and v is called the
continuous component of s. A run of H = (L,E,X, Init, Inv, F, G, R), starts at any
(`,v) ∈ Init and consists of continuous evolutions (within a location) and discrete
transitions (between two locations). Formally, a run of H is a path with alternating con-
tinuous and discrete steps in the time abstract transition system of H , defined below:

Definition 2. The time abstract transition system of the hybrid automaton H = (L, E,
X, Init, Inv, F,G, R) is the transition system TH =(Q,Q0, `→,→), where:

• Q ⊆ L× Rn and (`,v) ∈ Q if and only if v ∈ Inv(`)
• Q0 ⊆ Q and (`,v) ∈ Q0 if and only if v ∈ Init(`) ∩ Inv(`)
• E ∪ {δ} is the set of edge labels, that are determined as follows:

– there is a continuous transition (`,v) δ→ (`,v′), if and only if there is a differ-
entiable function f : [0, t] → Rn, with ḟ : [0, t] → Rn such that:
1. f(0) = v and f(t) = v′

2. for all ε ∈ (0, t), f(ε) ∈ Inv(`), and ḟ(ε) = F (`, f(ε)).
– there is a discrete transition (`,v) e→ (`′,v′) if and only if there exists an edge

e = (`, `′) ∈ E, v ∈ G(`) and v′ ∈ R((`, `′),v).

A region is a subset of the states Q of TH =(Q,Q0, `→, →). Given a region B and
a transition label a ∈ `→, the predecessor region Prea(B) is defined as the region
{q ∈ Q | ∃q′ ∈ B.q

a→ q′}. The bisimulation and the simulation relations are two
fundamental tools in the context of hybrid automata abstraction.

Definition 3 (Bisimulation ). Let T 1 = (Q1, Q1
0, `

1
→,→1), T 2 = (Q2, Q2

0, `
2
→,→2)

be two edge-labeled transition systems and let P be a partition on Q1 ∪Q2. A bisimu-
lation for T1, T2 is a nonempty relation on ≡B⊆ Q1 × Q2 such that, for all p ≡B q it
holds:

• p ∈ Q1
0 iff q ∈ Q2

0 and [p]P = [q]P , where [p]P denotes the class of q in P .
• for each label a ∈ `→, if there exists p′ such that p

a→ p′, then there exists q′ such
that p′ ≡B q′ and q

a→ q′.
• for each label a ∈ `→, if there exists q′ such that q

a→ q′, then there exists p′ such
that p′ ≡B q′ and p

a→ p′.

If there exists a bisimulation relation for T1, T2, then T1 and T2 are bisimilation equiv-
alent (or bisimilar), denoted T1 ≡B T2.

Definition 4 (Simulation). Let T 1 = (Q1, Q1
0, `

1
→,→1), T 2 = (Q2, Q2

0, `
2
→,→2) be

two edge-labeled transition systems and let P be a partition on Q1 ∪Q2. A simulation
from T1 to T2 is a nonempty relation on ≤S⊆ Q1 ×Q2 such that, for all p ≤S q:

• p ∈ Q1
0 iff q ∈ Q2

0 and [p]P = [q]P .
• for each label a ∈ `→, if there exists p′ such that p

a→ p′, then there exists q′ such
that p′ ≤S q′ and q

a→ q′.



If there exists a simulation from T1 to T2, then we say that T2 simulates T1, denoted
T1 ≤S T2. If T1 ≤S T2 and T2 ≤S T1, then T1 and T2 are said to be similation
equivalent (or similar) and we write T1 ≡S T2.

Definition 6 recapitulates the semantics of the temporal logic CTL (where the neXt
temporal operator is omitted because of the density of the underlying time framework)
on hybrid automata [1, 10].

Definition 5 (CTL for Hybrid Automta). Let AP be a finite set of propositional letters
and p ∈ AP. CTL is the set of formulæ defined by the following syntax:

φ ::= p | ¬φ | φ1 ∧ φ2 | Eφ1Uφ2 | Aφ1Uφ2 | Eφ1Rφ2 | Aφ1Rφ2

Definition 6 (CTL Semantics). Let H = (L,E,X , Init, Inv, F, G,R) be a hybrid
automaton, and let AP be a set of propositional letters. Consider `AP : L×X 7→ 2AP.
Given φ ∈ CTL and s ∈ Q, s |= φ is inductively defined as follows:

• s |= p if and only if p ∈ `AP(s)
• s |= ¬φ if and only if not s |= φ
• s |= φ1 ∨ φ2 if and only if s |= φ1 or s |= φ2

• s |= Eφ1Uφ2 if and only if there exists a run ρ and a time t such that:
· ρ(t) |= φ2

· ∀t′ ≤ t (ρ(t′) |= φ1 ∨ φ2)
• s |= Aφ1Uφ2 if and only if for each run ρ there exists a time t such that:

· ρ(t) |= φ2

· ∀t′ ≤ t (ρ(t′) |= φ1 ∨ φ2)
• s |= Eφ1Rφ2 iff s |= ¬(A¬φ1U¬φ2)
• s |= Aφ1Rφ2 iff s |= ¬(E¬φ1U¬φ2)

H |= φ iff for each s ∈ Q0, s |= φ.

2.1 O-Minimal Theories and O-Minimal Hybrid Automata

In this subsection, we give a brief introduction to order minimality (o-minimality) which
is used to define o-minimal hybrid automata. We refer to [21, 20, 22] for a more com-
prehensive introduction to o-minimality.

Consider a structure over the reals, M = 〈R, <, . . .〉, where the underlying lan-
guage includes at least a binary relation interpreted as the usual total order over R. The
theory Th(M) associated to M is the set of first order sentences that hold in M. A set
Y ⊆ Rn is definable inM if and only if there exists a first order formula ψ(x1, . . . , xn)
such that Y = {(a1, . . . , an)|M |= ψ(a1, . . . , an)}. A map f : A 7→ Rn with A ⊆ Rm

is definable in M if and only if its graph Γ (f) ⊆ Rm × Rn is definable in M.

Definition 7 (O-Minimal Structure). The structure M = 〈R, <, . . .〉 is o-minimal if
and only if every definable subset of R is a finite union of points and (possibly un-
bounded) intervals. In this case, the theory Th(M) is also said to be o-minimal.



Given an o-minimal structure M = 〈R, <, . . .〉, the notion of set definability is closed
under each boolean set composition operation, cartesian product, and projection. The
notion of map definability is closed under composition, cartesian product, and projec-
tion. In the following, we will use the same symbol to denote both a given o-minimal
structure and the corresponding theory, omitting the term Th(·).

The class of o-minimal structures over the reals is quite rich: both the structure
Li(R) = (R, <, +, −, 0, 1), used to express linear constraints over the reals, and the
ordered real field OF(R) = (R, <, +, −, ∗, 0, 1) are o-minimal. The extensions of
the above structures by the exponential function are also o-minimal. Another important
extension is obtained by restricted analytic functions. Further extensions are discussed
in [13]. The variety of o-minimal theories over the reals ensures that the family of o-
minimal hybrid automata as introduced in [13, 14] (cf. Definition 9, below) constitutes
a large and important family of hybrid automata, admitting powerful continuous evolu-
tions. In the following definitions, we will adopt the notation used in [13].

Definition 8. Let F : Rn 7→ Rn be a smooth vector field on Rn. For each v ∈ Rn,
let γv(t) denote the integral curve of F which passes through v at t = 0, that is
γ̇v(t) = F (γv(t)) and γv(0) = v. We say that F is complete if, for each v ∈ Rn,
γv(t) is defined for all t. For such an F , the flow of F is the function φ : Rn×R 7→ Rn

given by φ(v, t) = γv(t).

Definition 9 (O-Minimal Hybrid Automata [13]). The hybrid automaton H = (L,
E, X, Init, Inv, F, G,R) is o-minimal if the following holds:

a) for each ` ∈ L the smooth vector field F (`, ·) is complete
b) for each (`, `′) ∈ E, the reset function R : E 7→ Rn does not depend on continuous

variables (constant resets)
c) for each ` ∈ L and (`, `′) ∈ E, the sets Inv(`), R(`, `′), G(`), Init(`), and the

flow of F (`, ·) are definable in the same o-minimal structure.

Given an o-minimal structure M, the o-minimal hybrid automata induced by M are
called o-minimal(M) hybrid automata. O-minimal hybrid automata admit a finite bisim-
ulation quotient [13]. Computability of such a bisimulation quotient (and hence decid-
ability) depends on the underlying o-minimal structure: in [14], the class of o-minimal
(OF(R)) hybrid automata and various subclasses of o-minimal (OFexp(R)) automata
were proven to be decidable with respect to reachability.

3 A Succession of Abstractions for Monotonic CTL Model
Checking on Hybrid Automata

Throughout this section and Section 4, we solve the problem of defining a succession of
abstractions for hybrid automata and a corresponding three valued semantics for CTL
formulæ with the following property: whenever a CTL formula is true (false) on a given
abstraction, its value is preserved on the hybrid automaton. Moreover, we require that
the set of formulæ evaluating to ⊥ (according to the three valued semantics over the
abstractions) decreases monotonically in its size along the succession of abstractions.



Such a requirement is reminiscent of the usual regularity property for Kleene three
valued logics [12] (and its many variants [5]), according to which the behavior of the
third value is compatible with any increase of information1.

The first idea we exploit is based on the classical notion of n-bounded bisimula-
tion. In fact, a simulation preorder relates successively finer bounded bisimulations,
thus enabling the establishment of a ”monotonic truth-preservation result” for the set
of true universally quantified formulæ along this succession of abstractions. Since the
n-bounded bisimulation is characterized by the n-bounded modal logic (where at most
n neXt operators are admitted in the formulæ), it is possible to recover preservation for
non universal CTL formulæ, by evaluating them on n-bounded paths. The preceding
ideas can be effectively developed for the analysis of infinite discrete transition systems.
However, in our context infinite transition systems represent mixed continuous/discrete
systems. Hence, first the neXt temporal operator is meaningless in the corresponding
logics. Second, a query such as s |= Eφ1Uφ2 can never be checked by considering
only a finite path departing from s in the time abstract transition system TH of a hybrid
automaton H . In fact, due to the dense nature of the underlying time framework, each
finite path of the kind z

δ→ z′ subsumes an uncountable number of continuous transi-
tions’ infinite paths in TH , on which Eφ1Uφ2 needs to be established. In other words,
while for Kripke structures modelling (infinite) discrete dynamical systems, there is a
nice correspondence between the index of the bounded bisimulation and the length of
path that can be trusted, in the case of hybrid automata this is lost. More precisely, runs
that can be trusted in successive finer bounded bisimulations could be never allowed to
traverse more than two locations, since they are abstracted by paths containing more
and more continuous transitions.

3.1 Discrete Bounded Bisimulation Abstraction

Motivated by the discussion above, we develop here a new succession of hybrid au-
tomata abstractions suitable for our purposes, and refer to them as discrete bounded
bisimulation abstractions. It is well known that the classic bisimulation equivalence can
be characterized as a coarsest partition stable with respect to a given transition relation
[11]. Bounded bisimulation imposes a bound on the number of times each edge can
be used for partition refinement purposes. For discrete bounded bisimulation, the lat-
ter bound applies only to discrete edges. Formally, our discrete bounded bisimulation
abstractions are inductively defined in Definition 10.

Definition 10 (Discrete Bounded Bisimulation (DBB)). Consider the time abstract
transition system TH = (Q,Q0, `→,→) of a hybrid automaton H , and let P be a
partition on Q:

1. ≡0∈ Q×Q is the maximum relation on Q such that for all p, q ∈ Q:
if p ≡0 q then (a) [p]P = [q]P and p ∈ Q0 iff q ∈ Q0

(b) ∀p′(p δ→ p′ ⇒ ∃q′(p′ ≡0 q′ ∧ q
δ→ q′)

(c) ∀q′(q δ→ q′ ⇒ ∃p′(p′ ≡0 q′ ∧ p
δ→ p′)

1 Note that, in our framework, the lack of information is inherent in the abstraction of the hybrid
automaton model, rather than in the (indefinite) value of some propositional letter.



2. Given n ∈ N+, ≡n is the maximum relation on Q such that for all p, q ∈ Q:
if p ≡n q then (a) p ≡n−1 q

(b) ∀p′(p δ→ p′ ⇒ ∃q′(p′ ≡n q′ ∧ q
δ→ q′)

(c) ∀q′(q δ→ q′ ⇒ ∃p′(p′ ≡n q′ ∧ p
δ→ p′)

(d) ∀p′(p e→ p′ ⇒ ∃q′(p′ ≡n−1 q′ ∧ q
e→ q′)

(e) ∀q′(q e→ q′ ⇒ ∃p′(p′ ≡n−1 q′ ∧ p
e→ p′)

Given n ∈ N, the relation ≡n will be referred to as n-DBB equivalence.

Definition 11 (Succession of DBB Abstractions ). Let TH = (Q,Q0, `→,→) be the
time abstract transition system of the hybrid automaton H , let P be a partition on Q,
and consider the n-DBB equivalence ≡n. The n-DBB abstraction structure H/≡n

=
(Q′, Q′

0, `
′
→,→) is defined as:

– Q′ = Q/≡n
, Q′0 = Q0/≡n

and `′→ = `→.
– ∀α, β ∈ Q′:

• α
e→ β iff ∃s ∈ α, ∃q ∈ β(s e→ q))

• α
δ→ β iff ∃s ∈ α, ∃q ∈ β(s δ→ q by traversing the only regions α and β)

Lemma 1 establishes some folk theorems describing few properties of discrete bounded
bisimulation, and can be easily proved using an inductive argument. Among them, we
remark the existence of a simulation preorder relating successive elements in our suc-
cession of DBB abstractions. The latter property allows one to use the succession of
DBB structures to refine an overapproximation of the underlying hybrid automaton
reachable set.

Lemma 1. Let H be a hybrid automaton, and consider the succession of n-DBB ab-
stractions 〈H/≡n

〉n∈N. For all n ∈ N:

– TH ≤S H/≡n
and H/≡n+1

≤S H/≡n
.

– If H/≡n
coincides with H/≡n+1

, then TH ≡B H/≡n
.

As a consequence of Lemma 2, it is also possible to use the succession of DBB abstrac-
tions to obtain ⊆-monotonic underapproximations of the underlying hybrid automaton
reachable set. More precisely, H/≡n

preserves the reachability of a given region of in-
terest (in the initial partition), whenever the latter can be established on H following a
path that traverses at most n locations. Given two states in a hybrid automaton H , we
use the notation q

nÃ q′ to state that q′ is reachble from q following a run that contains
at most n discrete edges (i.e. traverses at most n locations of H).

Lemma 2. Let p and q be two states in a hybrid automaton H and let≡n be the n-DBB
equivalence on TH with respect to a partition P . If p ≡n q, then for all m ≤ n it holds
that:

– For all p′ such that p
mÃ p′, there exists q′ such that p′ ≡n−m q′ and q

mÃ q′.
– For all q′ such that q

mÃ q′, there exists p′ such that p′ ≡n−m q′ and p
mÃ p′.



3.2 Finiteness and Computability of DBB Abstractions

Figure 1 presents a semi-decision procedure to obtain the n-DBB equivalence on the
time-abstract transition system of a hybrid automaton H . Such a semi-decision proce-
dure takes as input the hybrid automaton H , the bound n, and an initial (finite) par-
tition P0 over the state-space of H . As stated in Lemma 3, it constitutes an effective
algorithm for n-DBB equivalence whenever it is computable and gets to termination.
Clearly, while computability depends on disposing of opportune symbolic techniques
to represent and manipulate sets of states, termination is related to the n-DBB quotient
finiteness.

Lemma 3. Let n ∈ N; let H be a hybrid automaton; and let P0 be a finite partition
over the state-space of H . If DBB(n,H,P0) terminates, then algorithm DBB(n,H,P0)
computes the quotient of the n-DBB equivalence with respect to P0 on TH .

Using a number of techniques developed in [13, 14], it is rather easy to obtain n-DBB
finiteness and computability results for the broad undecidable family of fully o-minimal
hybrid automata (cfr. Definition 12). The latter extends the o-minimal based systems
in [13] by admitting arbitrary o-minimal functions as resets, in place of constant func-
tions. Such a relaxation in the formulation of the discrete dynamics allows the family to
encompass several classes of hybrid automata for which the reachability problem has
been proven undecidable (e.g. the class of uninitialized rectangular automata [10, 9], or
the undecidable classes studied in [3, 15]).

Definition 12 (Fully O-Minimal Hybrid Automata). The hybrid automaton H = (L,
E, X, Init, Inv, F,G, R) is fully o-minimal iff:

a) for each ` ∈ L the smooth vector field F (`, ·) is complete
b) for each ` ∈ L and (`, `′) ∈ E, the sets Inv(`), G(`), Init(`), the reset function

R(`, `′) : R|X| 7→ R|X| and the flow of F (`, ·) are definable in the same o-minimal
structure.

Theorem 1. Let H be a fully o-minimal(M) hybrid automaton, and let P be an ini-
tial finite partition over the state-space of H definable in M. Then, the algorithm
DBB(n,H, `Q) terminates for any n ∈ N.

By Theorem 1, the whole family of fully o-minimal automata have for all n ∈ N a
finite n-DBB abstraction structure. Computability of such a finite abstraction is instead
parameterized with respect to the theory underlying fully o-minimal automata. In par-
ticular, as stated in Corollary 1, the class of fully o-minimal (OF(R)) hybrid automata
has a finite and effectively computable n-DBB abstraction. The result depends on the
fact that OF(R) is a decidable theory admitting quantifier elimination. Therefore, the
theory OF(R) provides the means for representing sets, computing post-images and
boolean compositions, as well as checking for set emptiness. Techniques similar to the
ones adopted in [13] can be used to obtain further computability results on subclasses
of o-minimal(OFexp(R)) hybrid automata.

Corollary 1. Given n ∈ N, the n-DBB abstraction on fully o-minimal (OF(R)) hybrid
automata is finite and computable.



DBB(n, H,P0)

(1) Let P be the coarsest partition refining P0 compatible with Q0

/*————–Compute 0-DBB equivalence quotient—————————————*/
(2) while (∃B, B′ ∈ P such that ∅ 6= B ∩ Preτ (B′) 6= B)
(3) B1 ← B ∩ Preτ (B′); B2 ← B \ Preτ (B′);
(4) P ← (P \ {B}) ∪ {B1, B2};
/*————–Perform n refinement steps to obtain n-DBB equivalence quotient—*/
(5) while (n > 0)
(6) n ← n− 1; Pold ← P;
(7) for each (e = (`, `′) ∈ E)
(8) for each (B′ ∈ Pold, B ∈ P such that ∅ 6= B ∩ Pree(B

′) 6= B)
(9) B1 ← B ∩ Pree(B

′); B2 ← B \ Pree(B
′);

(10) P ← (P \ {B}) ∪ {B1, B2};
(11) while (∃B, B′ ∈ P such that ∅ 6= B ∩ Preτ (B′) 6= B)
(12) B1 ← B ∩ Preτ (B′); B2 ← B \ Preτ (B′)
(13) P ← (P \ {B}) ∪ {B1, B2};
(14) return P

Fig. 1. Partition refinement algorithm for n-DBB equivalence.

Corollary 2. Let H be a fully o-minimal(OFexp(R)) hybrid automaton in which:

– for each ` ∈ L, the vector field is of the form F (`,x) = Ax, where:
1. A ∈ Q×Q is nilpotent or
2. A ∈ Q×Q is diagonalizable with rational eigenvalues or
3. A ∈ Q × Q has purely imaginary eigenvalues of the form ir, r ∈ Q, with

diagonal real Jordan form.
– for each ` ∈ L and (`, `′) ∈ E, the sets Inv(`), G(`), Init(`), and the reset

function R(`, `′) : X 7→ X are definable inside OF(R).

Then, for all n ∈ N, ≡n is finite and computable on H .

4 3-Valued CTL Semantics over DBB Abstractions

In this section we introduce a 3-valued semantics for the logic CTL on n-DBB ab-
stractions. Such a three valued semantics exploits, besides the inductive definition of
DBB abstractions, the simulation preorder relating successive DBB abstractions in the
succession 〈H/≡n

〉n∈N. The latter allows us to use unbounded runs in the evaluation
of (not purely existential) CTL properties. In other words, each CTL\ECTL formula
is not constrained to be evaluated by looking exclusively at paths in H/≡n

abstracting
bounded runs of H , to obtain a value in {tt, ff,⊥} \ {⊥}. This key point needs to be
emphasized, since it endows our framework with the abilities to handle both refutations
as well as proof of safety or liveness properties over a hybrid automaton H . In fact,
such properties intrinsically model some conditions that need to be maintained along
the whole evolution of any run in H .

Definition 13. Let H be a hybrid automaton having state space Q, let AP be a finite
set of atomic propositions, and let P be the partition on Q induced by the labelling



function `AP : Q 7→ 2|AP|. Consider the n-DBB abstraction of H with respect to P ,
H/≡n

. Given the node [s]≡n in H/≡n
, the value [[s]≡n |=3φ] ∈ {tt,ff,⊥} is inductively

defined on n as follows:

– If φ = p, then [[s]≡n |=3φ] is defined as:
{

tt iff p ∈ `AP([s]≡n
))

ff iff p /∈ `AP([s]≡n))

– If φ = ¬φ1, then [[s]≡n
|=3φ] is defined as:





tt iff [[s]≡n
|=3φ1] = ff;

ff iff [[s]≡n
|=3φ1] = tt;

⊥ otherwise.

– If φ = φ1 ∧ φ2, then [[s]≡n
|=3φ] is defined as:





tt iff [[s]≡n
|=3φ1] = tt ∧ [[s]≡n

|=3φ2] = tt;
ff iff [[s]≡n

|=3φ1] = ff ∨ [[s]≡n
|=3φ2] = ff;

⊥ otherwise

– If φ = Eφ1Uφ2, then [[s]≡n |=3φ] is defined as:





tt iff there exists a path 〈[si]≡n〉0≤i≤k such that:

(1) ∀ i < k ([si]≡n

δ→ [si+1]≡n ∧ [[si]≡n |=3φ1 ∨ φ2] = tt)
(2) [[sk]≡n |=3φ2] = tt ∨ ([sk]≡n

e→ [sk+1]≡n ∧ [[sk+1]≡n−1 |=3φ] = tt)
ff iff for each path 〈[si]≡n〉i∈N it holds:

∀ i ∈ N ([[si]≡n |=3φ2] = tt → (∃ j < i([[sj ]≡n |=3¬φ1 ∧ ¬φ2] = tt)))
⊥ otherwise

– If φ = Aφ1Uφ2, then [[s]≡n |=3φ] is defined as:





tt iff for each path 〈[si]≡n〉i∈N there exists an index k such that:
(1) ∀ i < k ([[si]≡n |=3φ1 ∨ φ2] = tt)
(2) [[sk]≡n |=3φ2] = tt

ff iff there exists a path 〈[si]≡n〉i≤k such that:

(1) ∀ i < k ([si]≡n

δ→ [si+1]≡n ∧ [[si]≡n |=3¬φ1 ∨ ¬φ2] = tt)
(2) [[sk]≡n |=3¬φ1] = tt ∨ ([sk]≡n

e→ [sk+1]≡n ∧ [[sk+1]≡n−1 |=3φ] = ff)
⊥ otherwise

– If φ = Eφ1Rφ2, then [[s]≡n |=3φ] = [[s]≡n |=3¬(A¬φ1U¬φ2)].
– If φ = Aφ1Rφ2, then [[s]≡n |=3φ] = [[s]≡n |=3¬(E¬φ1U¬φ2)].

Finally, H/≡n
|=3φ is defined as:





tt iff ∀ [s]≡n ∈ Q0
/≡n

([[s]≡n |=3φ1] = tt);
ff iff ∃ [s]≡n ∈ Q0

/≡n
([[s]≡n |=3φ1] = ff);

⊥ otherwise



Theorem 2 (Preservation). Let H/≡n
be the n-DBB abstraction for a hybrid automa-

ton H , and let φ be a CTL formula. If [H/≡n
|=3φ] = tt, then H |= φ; If [H/≡n

|=3φ] =
ff, then ¬(H |= φ).

Theorem 3 (Monotonicity). Let 〈H/≡n
〉n∈N be the succession of DBB abstractions

for a hybrid automaton H . For any CTL formula φ, for any n ∈ N it holds:

([H/≡n
|=3φ] = b ∧ b ∈ {tt, ff}) → ∀m > n([H/≡m

|=3φ] = b)

5 A Linear Algorithm for 3-Valued CTL Model Checking on
Discrete Bounded Bisimulation Abstractions

In this Section we define an efficient algorithm for the three valued CTL model check-
ing on bounded bisimulation abstractions, assuming the latter to be finite. Classical
CTL model checking over Kripke structures is known to be linear in the size of the
structure and in the length of the formula; analogously the complexity of our three val-
ued model checking procedure is linear in the size of the abstraction and in the length
of the formula.

5.1 The case of 3-Valued ECTL∪ACTL Model Checking

We start solving a simpler problem: Namely, the definition of a procedure for the eval-
uation of [H/≡n

|=3φ], where φ is either a universal or an existential formula of CTL.
Let φ be an ACTL formula, and let α be a node in H/≡n

. According to Definition 13,
[α|=3φ] = tt iff α |= φ (with respect to the classical 2-valued semantics for CTL on
the finite transition system H/≡n

). Hence, it is sufficient to use a classical (2-valued)
CTL model checking algorithm on H/≡n

to detect those nodes in H/≡n
for which

[α|=3φ] = tt in time O(|H/≡n
| ∗ |φ|).

The problem of collecting the nodes α in H/≡n
for which [α|=3φ] = ff reduces to the

problem of (1) rewriting ¬φ as a formula γ in ECTL (2) determining the set of states α
in H/≡n

for which [α|=3γ] = tt.
Summarizing the above observations, we can derive an overall O(|H/≡n

| ∗ |φ|)
algorithm for computing H/≡n

|=3φ, if we prove that it is possible to recognize all
those nodes α for which [α|=3γ] = tt, γ ∈ECTL, in time O(|H/≡n

| ∗ |γ|).
Let γ be an ECTL formula: we solve the above subproblem by employing an ef-

ficient (O(|H/≡n
| ∗ |γ|)) strategy to distribute on the nodes in H/≡n

the set of labels
〈ψ, tt,m〉, where:

– ψ is a subformula of γ and m ≤ n.
– α = [s]n receives the label 〈ψ, tt,m〉 if and only if

[[s]m|=3ψ] = tt ∧ ∀m′ < m([[s]m′ |=3ψ] = ⊥)

Our strategy uses a structural induction on γ. The cases in which γ is either a propo-
sitional letter or a boolean composition of subformulæ are easily dealt with (cfr. lines
(1.1)–(2.4) of the procedure PROCESSE in Figure 2).



ALGO1(H/≡n
, n, φ)

Input: n ∈ N, the discrete n-bounded bisimulation abstraction H/≡n
for a hybrid automaton H ,

a formula φ ∈ ECTL ∪ ACTL
Output: [H/≡n

|=3φ] ∈ {tt, ff,⊥}

(1) Let γ ≡ ¬φ, where γ is in negation normal form
(2) if (φ ∈ ACTL) then PROCESSA(H/≡n

, n, φ); PROCESSE(H/≡n
, n, γ)

(3) else PROCESSE(H/≡n
, n, φ); PROCESSA(H/≡n

, n, γ)
(4) If (∀α ∈ Init(H/≡n

) (〈φ, tt,−〉 ∈ `(α))) then return tt
(5) If (∃α ∈ Init(H/≡n

) (〈φ, ff,−〉 ∈ `(α))) then return ff else return⊥

PROCESSE(H/≡n
, n, φ)

Input: n ∈ N, the discrete n-bounded bisimulation abstraction H/≡n
for a hybrid automaton H ,

a formula φ ∈ ECTL
Output: ∀ [s]ninH/≡n

, [s]n is labeled 〈φ, tt, m〉 iff [[s]m|=3φ] = tt ∧ ∀k < m [[s]k|=3φ] = ⊥

case φ of
(1.1) p : for each α ∈ Q/≡n

such that labp(α) = tt do `(α) ← `(α) ∪ 〈p, tt, 0〉
(1.2) ¬p : for each α ∈ Q/≡n

such that labp(α) = ff do `(α) ← `(α) ∪ 〈¬p, tt, 0〉

(2.1) φ1♦φ2 : for each α ∈ Q/≡n
do

(2.2)♦ ∈ {∨∧} if [〈φ1, tt, m1〉 ∈ `(α)]♦[〈φ2, tt, m2〉 ∈ `(α)] then
(2.4) `(α) ← `(α) ∪ {〈φ, tt, max(m1, m2)〉}

(3.1) Eφ1Uφ2 : / ∗ Initialization ∗ /
(3.2) N ← |H/≡n

|; S0 ← ∅; . . . ; Sn ← ∅; for each (α ∈ Q/≡n
) color(α) ← green

(3.3) Let A1[0 . . . N ], A2[0 . . . N ] be two array of lists of nodes in Q/≡n
, such that α

belongs to the list Aj [i] iff 〈φj , tt, i〉 ∈ `(α)
/ ∗ For i = 0 . . . n, build the set Si of nodes α = [s]≡n such that [[s]≡i |=3φ] = tt and ∗ /
/ ∗ ∀j < i[[s]≡j |=3φ] = ⊥ ∗ /

(3.4) for each (node α in the list A2[0]) do S0 ← S0 ∪ {α}
(3.5) Use a breadth-first search like algorithm to discover and color red each node α such that

α
0Ã S0 ∧ 〈φ1, tt, 0〉 and augment S0 with the nodes discovered.

(3.6) for each (α ∈ pre(S0)) if (color(α) = green) then color(α) ← yellow
(3.7) for (i = 1 . . . n) do
(3.8) for each (not red α in the list A2[0], yellow β in the list A1[i]) do Si ← Si ∪ α;
(3.9) Use a breadth-first search like algorithm to discover and color red each α such that

α
1Ã (Si ∪ Si−1) ∧ 〈φ1, tt,−〉 ∈ `(α). Augment Si with the nodes discovered.

(3.10) for each (α ∈ pre(Si)) if (color(α) = green) then color(α) ← yellow
/ ∗ Assign the labels ∗ /

(3.11) for (i = 1 . . . n) do
(3.12) Assign the label 〈φ, tt, i〉 to each node in Si

(4.1) Eφ1Rφ2 : Rewrite φ as Eφ2Uφ1 and use the rules for case (2)

PROCESSA(H/≡n
, n, φ)

Input: n ∈ N, the discrete n-bounded bisimulation abstraction H/≡n
for a hybrid automaton H ,

a formula φ ∈ ACTL
Output: ∀ [s]ninH/≡n

, [s]n is labeled 〈φ, tt,⊥〉 iff [[s]m|=3φ] = tt

/ ∗ Use a 2-valued model checking procedure to process the formula φ on H/≡n
∗ /

(1.1) for each (α ∈ H/≡n
) do

(1.3) if α |= Aφ1Uφ2 then `(α) ← `(α) ∪ {〈φ, tt,⊥〉}

Fig. 2. The linear algoithm for ACTL∪ECTL 3-valued Model Checking on H/≡n
.



The case for which γ = Eγ1Uγ2 requires instead more attention. As illustrated in
Figure 2 (cfr. lines (3.1)–(3.12) of the procedure PROCESSE), given N = |H/≡n

|,
we first build the two vectors A1[1, . . . , N ], A2[1, . . . , N ] of lists of nodes in H/≡n

,
where α ∈ Aj [i] iff the label 〈γj , tt, i〉 has been inductively associated to α. Note that,
A1[1 . . . N ] (resp. A2[1 . . . N ]) requires spaceO(|H/≡n

|), since the lists in each slot of
the array A are disjoint. Then, by induction on i = 0 . . . n, we build the sets S0, . . . , Sn,
where Si contains all the nodes of H/≡n

that need to be labeled with 〈γ, tt, i〉. More
precisely, such a building process is supported by a coloring marking in which a node
is red if it has been already assigned to some Sj<i; A node is yellow if it admits a
transition to a red node; A node is green otherwise. Given the above coloring we let Si

to contain:

– Each not red node in the list A2[i].
– Each yellow node in the list A1[i].
– Each node β ∈ H/≡n

admitting a path p to Si−1 such that:
1. p contains at most one edge labeled e
2. the label 〈γ1 ∨ γ2, tt, i〉 is associated to each node of p.

Finally, if γ = Eγ1Rγ2, we can reduce to process the formula γ′ = Eγ2Uγ1 according
to the three-valued CTL semantics in Definition 13. The pseudocode of the overall
algorithm above sketched for determining [H/≡n

|=3φ], φ ∈ ECTL∪ACTL, is reported
in Figure 2. Given the formula φ ∈ ECTL ∪ ACTL in negation normal form, Theorem
4 states that our procedure ALGO1(H/≡n

, φ) computes the value [H/≡n
|=3φ] in time

O(|H/≡n
| ∗ |φ|) and space O(|H/≡n

|).
Theorem 4. The algorithm ALGO1(H/≡n

, n, φ) computes [H/≡n
|=3φ] ∈ {tt, ff⊥} in

time O(|H/≡n
| ∗ |φ|) and space O(|H/≡n

|).

5.2 3-Valued CTL Model Checking

In this Subsection we extend the techniques outlined in Subsection 5.1 to design a
O(|H/≡n

|∗|φ|) algorithm for computing H/≡n
|=3φ, where φ is a general CTL formula.

We start with some preliminary observations to illustrate the bottlenecks related to the
above extension. Let φ1 = EpUq, let φ2 = ApUq, and consider the two formulæ
belonging to CTL \ (ECTL ∪ ACTL): ψ1 = ArUφ1 and ψ2 = ErUφ2.
Since φ1, φ2, and r belong to ECTL ∪ ACTL, we can assume to have determined with
ALGO1 the set of nodes α in H/≡n

for which [α|=3ς] = tt, ς ∈ {φ1, φ2, r}. Then, the
task of processing the formula ψ1 = ArUφ1 according to Definition 13 does not present
any problem. In fact, determining each node β for which [β|=3φ] = tt boils down to
applying a classical model checking subprocedure targeting the operator AU (where
the precomputed labelling is interpreted in a 2-valued fashion and ⊥ corresponds to ff,
according to a ’pessimistic view’).
Instead, we face the following problem in processing the formula ψ2 = ErUφ2 above,
according to the 3-valued semantics in Definition 13. Namely, for each α = [s]≡n such
that [α|=3φ2] = tt, we need to know the least m ≤ n for which [[s]≡m |=3φ2] = tt. If
φ2 were a formula having an existential main path quantifier, say φ2 = ∃φ3Uφ4, then
such minimum indexes would have been dependent on the number of discrete edges



ALGO2(H/≡n
, Tn, n, φ, γ)

Input: n ∈ N, the discrete n-bounded bisimulation abstraction H/≡n
, the compact partition tree Tn

associated to ≡n, φ, γ ≡ ¬φ ∈ CTL , where φ and γ are in negation normal form
Output: [H/≡n

|=3φ] ∈ {tt, ff⊥}

(1.1) if (φ ∈ {p,¬p} for some p ∈ AP) then
(1.2) for each α ∈ Q/≡n

do
(1.3) if `p(α) = tt then `(α) ← `(α) ∪ {〈p, tt, 0〉} else `(α) ← `(α) ∪ {〈¬p, tt, 0〉}

(2.1) if (φ = φ1♦φ2,♦ ∈ {∨∧}) then
(2.2) for each α ∈ Q/≡n

do
(2.3) if [〈φ1, tt, m1〉 ∈ `(α)]♦[〈φ2, tt, m2〉 ∈ `(α)] then
(2.4) `(α) ← `(α) ∪ {〈φ, tt, max(m1, m2)〉}

(3.1) if (φ = Eφ1Uφ2 ∧ γ = Aγ1Rγ2) then
(3.2) ALGO2(H/≡n

, Tn, n, φ1, γ1); ALGO2(H/≡n
, Tn, n, φ2, γ2)

(3.3) PROCESSEU(H/≡n
, Tn, n, φ1, φ2); PROCESSAR(H/≡n

, Tn, n, γ1, γ2)

(4.1) if (φ = Aφ1Uφ2 ∧ γ = Eγ1Rγ2) then
(4.2) ALGO2(H/≡n

, Tn, n, φ1, γ1); ALGO2(H/≡n
, Tn, n, φ2, γ2)

(4.3) PROCESSAU(H/≡n
, Tn, n, φ1, φ2); PROCESSER(H/≡n

, Tn, n, γ1, γ2)

(5.1) if (φ = Eφ1Rφ2 ∧ γ = Aγ1Eγ2) then
(5.2) ALGO2(H/≡n

, Tn, n, φ1, γ1); ALGO2(H/≡n
, Tn, n, φ2, γ2)

(5.3) PROCESSER(H/≡n
, Tn, n, φ1, φ2); PROCESSAU(H/≡n

, Tn, n, γ1, γ2)

(6.1) if (φ = Aφ1Rφ2 ∧ γ = Eγ1Uγ2) then
(6.2) ALGO2(H/≡n

, Tn, n, φ1, γ1); ALGO2(H/≡n
, Tn, n, φ2, γ2)

(6.3) PROCESSAR(H/≡n
, Tn, n, φ1, φ2); PROCESSEU(H/≡n

, Tn, n, γ1, γ2)

(7.1) If (∀α ∈ Init(Q/≡n
) (〈φ, tt,−〉 ∈ `(α))) then return tt

(7.2) If (∃α ∈ Init(Q/≡n
) (〈γ, tt,−〉 ∈ `(α))) then return ff else return⊥

Fig. 3. The linear CTL 3-valued Model Checking on H/≡n
.

that one needs to traverse to evaluate φ2 (assuming a previous labeling relative to φ3

and φ4
2). However, formulæ having a main universal path quantifier are evaluated by

considering any path in H/≡n
, regardless of the number of discrete edges traversed.

Our solution to recover the required minimum indexes for formulæ having a main uni-
versal path quantifier, is that of disposing of a data structure that we call compact par-
tition tree, requiring space O(|H/≡n

|). The formal description of a compact partition
tree is given in Definition 14.

Definition 14 (Compact Partition Tree associated to H/≡n
). Let H be a hybrid au-

tomaton. The compact partition tree Tn associated to H/≡n
is inductively defined as:

– T0 is a tree of depth one in which each leaf f is associated to a distinct node
α ∈ H/≡n

and is labeled with the triple `(f) = 〈0, 0, α〉.
2 In fact, the indices m are determined ’on the fly’ in our procedure PROCESSE for ECTL.



– Tn+1 is obtained from Tn processing each leaf f in Tn according to the following
procedure:
• If f is labeled with the triple 〈m, n− 1, α〉, and α is a class of H/≡n

, then let
`(f) = 〈m,n, α〉.

• Otherwise, substitute the label of f with the pair `(f) = 〈m, n− 1〉. For each
αi ⊆ α, αi ∈ H/≡n

, create a new successor of f , fi, and associate to fi the
label 〈n, n, αi〉.

Lemma 4. Let H be a hybrid automaton. The space complexity of the compact parti-
tion tree associated to H/≡n

is O(|H/≡n
|).

Compact partition trees can be easily computed along discrete bounded bisimulations.
Let φ ∈ CTL, and assume that the main path quantifier in φ is universal. Suppose having
determined the set of nodes S = {[s]≡n

∈ H/≡n
|[[s]≡n

|=3φ] = tt}. Then, the compact
partition tree Tn can be used as follows to associate to each node α = [[s]≡n

∈ S (in
timeO(|H/≡n

|)) the required label 〈φ, tt, m〉, where m is the minimum index such that
[[s]≡m

|=3φ] = tt. First we use a depth first search-like algorithm to discover each node
k of Tn satisfying the two conditions listed below:

1. any leaf of Tn which is a descendant of the node k is associated to a class α ∈ H/≡n

for which α|=3φ] = tt
2. k is a node of minimal depth having property 1.

If [m,m′] is the interval labeling k, then each class α associated to a leaf-descendant of
k needs to be labeled by the triple 〈φ, tt,m〉.

The ideas sketched above lead to the final algorithm3 reported in Figure 3, which
computes [H/≡n

|=3φ], where φ ∈ CTL, in timeO(|H/≡n
|∗ |φ|) and spaceO(|H/≡n

|).
Theorem 5. The algorithm ALGO2(H/≡n

, Tn, n, φ, γ) computes [H/≡n
|=3φ] ∈ {tt,ff⊥}

in time O(|H/≡n
| ∗ |φ|) and space O(|H/≡n

|).

6 Conclusions

This paper has proposed a novel framework to extend the power of automated reasoning
over hybrid automata, even when those automata are undecidable in classical CTL. In
this framework, it is possible to both prove and disprove reactive system properties
expressed by means of CTL logic on (undecidable) hybrid automata. To the best of
authors’ knowledge, this research is novel and points to a fresh approach, as no other
currently available symbolic technique analyzing undecidable hybrid automata can cope
with both proofs and refutations of such general reactive systems properties as safety
or liveness. The key ingredients of this innovative framework consist of proof systems,
built upon a succession of abstractions and a corresponding three valued semantics for
the CTL logic, which in turn allows for the monotonic preservation of true and false
properties along these successive abstractions. This paper further proves that the new
three valued model checking problem is not only decidable on our DBB abstractions,
but is as efficient as the classical model checking of discrete Kripke structures, as it is
linear in the length of the formula and in the size of the abstraction.

3 The subprocedures used in the main algorithm ALGO2 are illustrated in the Appendix.
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7 Appendix



PROCESSAU(H/≡n
, Tn, n, φ1, φ2)

Input: For ψ ∈ {φ1, φ2}, each node α = [s]n in H/≡n
is assumed to be labeled with 〈ψ, tt, m〉

if [[s]m|=3ψ] = tt ∧ ∀k < m [[s]k|=3ψ] = ⊥
Out: ∀ [s]ninH/≡n

, [s]n is labeled 〈φ = Aφ1Uφ2, tt, m〉 iff [[s]m|=3φ] = tt ∧ ∀k < m [[s]k|=3φ] = ⊥

/ ∗ Use a 2-valued model checking procedure targeting the AU operator to process the formula Aφ1Uφ2 ∗ /
/ ∗ assuming, for ψ ∈ {φ1, φ2}, that α |= ψ iff 〈ψ, tt,−〉 ∈ `(α) ∗ /
(1.1) for each (α ∈ H/≡n

) do
(1.3) if α |= Aφ1Uφ2 then `(α) ← `(α) ∪ {〈Aφ1Uφ2, tt,−〉}
/ ∗ Use a depth first search like algorithm on Tn to determine the set of Tn nodes S ∗ /
(1.4) S ← {k ∈ Tn | any α ∈ H/≡n

associated to a leaf descending from k is labeled
〈Aφ1Uφ2, tt,−〉, and k is a node of minimal depth having the above property}

(1.5) for each (〈k ∈ S, leaf f descending from k〉) do
(1.6) if (`(f) = 〈−,−, α〉 ∧ `(k) = 〈m,−〉)
(1.7) then `(α) ← (`(α) \ {〈Aφ1Uφ2, tt, n〉}) ∪ {〈Aφ1Uφ2, tt, m〉}
PROCESSEU(H/≡n

, Tn, n, φ1, φ2)
Input: For ψ ∈ {φ1, φ2}, each node α = [s]n in H/≡n

is assumed to be labeled with 〈ψ, tt, m〉
if [[s]m|=3ψ] = tt ∧ ∀k < m [[s]k|=3ψ] = ⊥

Out: ∀ [s]ninH/≡n
, [s]n is labeled 〈φ = Eφ1Uφ2, tt, m〉 iff [[s]m|=3φ] = tt ∧ ∀k < m [[s]k|=3φ] = ⊥

/ ∗ Initialization ∗ /
(1.1) N ← |H/≡n

|; S0 ← ∅; . . . ; Sn ← ∅; for each (α ∈ Q/≡n
) color(α) ← green

(1.2) Let A1[0 . . . N ], A2[0 . . . N ] be two array of lists of nodes in Q/≡n
, such that α belongs to the list

Aj [i] iff 〈φj , tt, i〉 ∈ `(α)
/ ∗ For i = 0 . . . n, build the set Si of nodes [s]≡n such that [[s]≡i |=3φ] = tt and ∀j < i[[s]≡j |=3φ] = ⊥ ∗ /
(1.3) for each (α in the list A2[0]) do S0 ← S0 ∪ α endfor
(1.4) Use a breadth-first search like algorithm to discover and mark each node α such that

α
0Ã S0 ∧ 〈φ1, tt, 0〉 ∈ `(α) and augment S0 with the nodes discovered.

(1.5) for each (α ∈ pre(S0)) if (color(α) = green) then color(α) ← yellow
(1.6) for (i = 1 . . . n) do
(1.7) for each (not red α in A2[i], yellow β in A1[i]) do Si ← Si ∪ {α, β} endfor
(1.8) Use a breadth-first search like algorithm to discover and color red each α such that

α
1Ã (Si ∪ Si−1) ∧ 〈φ1, tt, i〉 ∈ `(α). Augment Si with the nodes discovered.

(1.9) for each (α ∈ pre(Si)) if (color(α) = green) then color(α) ← yellow
/ ∗ Assign the labels ∗ /
(1.10) for (i = 1 . . . n) do Assign the label 〈φ, tt, i〉 to each node in Si endfor
PROCESSAR(H/≡n

, Tn, n, φ1, φ2)
Input: For ψ ∈ {φ1, φ2}, each node α = [s]n in H/≡n

is assumed to be labeled with 〈ψ, tt, m〉
if [[s]m|=3ψ] = tt ∧ ∀k < m [[s]k|=3ψ] = ⊥

Out: ∀ [s]ninH/≡n
, [s]n is labeled 〈φ = Aφ1Rφ2, tt, m〉 iff [[s]m|=3φ] = tt ∧ ∀k < m [[s]k|=3φ] = ⊥

/ ∗ Use a 2-valued model checking procedure targeting the AR operator to process the formula Aφ1Rφ2 ∗ /
/ ∗ assuming, for ψ ∈ {φ1, φ2}, that α |= ψ iff 〈ψ, tt,−〉 ∈ `(α) ∗ /
(1.1) for each (α ∈ H/≡n

) do
(1.3) if α |= Aφ1Rφ2 then `(α) ← `(α) ∪ {〈Aφ1Rφ2, tt, n〉}
/ ∗ Use a depth first search like algorithm on Tn to determine the set of Tn nodes S ∗ /
(1.4) S ← {k ∈ Tn | any α ∈ H/≡n

associated to a leaf descending from k is labeled
〈Aφ1Rφ2, tt,−〉, and k is a node of minimal depth having the above property}

(1.5) for each (〈k ∈ S, leaf f descending from k〉) do
(1.6) if (`(f) = 〈−,−, α〉 ∧ `(k) = 〈m,−〉)
(1.7) then `(α) ← (`(α) \ {〈Aφ1Rφ2, tt, n〉}) ∪ {〈Aφ1Rφ2, tt, m〉}
PROCESSER(H/≡n

, Tn, n, φ1, φ2)
Input: For ψ ∈ {φ1, φ2}, each node α = [s]n in H/≡n

is assumed to be labeled with 〈ψ, tt, m〉
if [[s]m|=3ψ] = tt ∧ ∀k < m [[s]k|=3ψ] = ⊥

Out: ∀ [s]ninH/≡n
, [s]n is labeled 〈φ = Eφ1Rφ2, tt, m〉 iff [[s]m|=3φ] = tt ∧ ∀k < m [[s]k|=3φ] = ⊥

(1.1) PROCESSEU(H/≡n
, Tn, n, φ2, φ1)

(1.2) for each (α ∈ H/≡n
) do

(1.3) if 〈Eφ2Uφ1, tt, m〉 ∈ `(α) then `(α) ← `(α) ∪ {〈Eφ1Rφ2, tt, m〉}

Fig. 4. The four subrocedures used within the algorithm ALGO2, in Figure 3.


