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C O V E R  F E A T U R E

A Random Walk Down
the Genomes: DNA
Evolution in Valis

W hile chemistry and physics are the
substrate of biology, researchers now
believe that a better understanding of
biology will come through informa-
tion-theoretic studies of genomes,

providing new insights into DNA’s role in govern-
ing metabolic and regulatory pathways. Conse-
quently, the mathematical approaches derived from
systems sciences—dynamical systems, control the-
ory, game theory, information and decision theory,
and mathematical logic—are playing increasingly
important roles in biological research. 

Understanding the evolutionary processes that
act on these “codes of life”—including point muta-
tion, recombination, gene conversion, replication
slippage, DNA repair, translocation, imprinting,
and horizontal transfer—requires the ability to ana-
lyze vast amounts of continually generated genomic
data. The challenges, intrigues, and excitement that
these genomic sequences have come to symbolize
have catapulted the embryonic field of bioinfor-
matics to the forefront. 

Bioinformatics currently consists of a set of tools
to “contig” genomic sequences and organize, anno-
tate, and search sequence databases and generate
computationally or statistically intriguing problems.
However, researchers in this emerging discipline
require more complex mechanisms to investigate
the full ensemble of available biological facts.

VALIS
To meet this challenge, New York University’s

Bioinformatics Group is creating a computational

environment—the vast active living intelligent sys-
tem—designed to solve the immediate genomic and
proteomic problems that the biological community
currently faces but flexible enough to adapt to the
maturing bioinformatics field. Inspired by Philip 
K. Dick’s 1981 science fiction novel, Valis (http://
bioinformatics.cat.nyu.edu/valis/) envisions a mod-
ern biology driven by large-scale processing of het-
erogeneous data from diverse sources as well as
sophisticated algorithms to extract meaningful
information and suggest new experiments, either
to validate old data or resolve ambiguities. 

Individual researchers have already written some
of these algorithms, but the resulting tools usually
depend on many specifics of internal data repre-
sentation, different assumptions about the nature
of the data, and idiosyncratic visualization and
manipulation schemes. Current data sources range
from GenBank genomic sequences to results of indi-
vidual microarray experiments. Interfaces to these
data sources vary widely as well, with a concomi-
tant increase in complexity. Further, the present
trend of ad hoc algorithm development leads to lit-
tle code sharing.

Valis is a language-independent environment for
prototyping bioinformatics applications that pro-
vides 

• a set of libraries to read input data stored in
relational databases or standard file formats, 

• efficient implementations of algorithms useful
to genomics, and 

• numerous visualization tools. 

The authors propose a new software system, Valis, that incorporates
biological data and domain-specific knowledge and show how biologists
can use it to model, analyze, and experiment with genomic evolutionary
processes.
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Instead of developing each tool anew, Valis
defines low-level building blocks and uniform APIs
invoked using high-level scripting languages. This
flexibility lets biologists write simple scripts to per-
form fairly involved bioinformatic processing.

SYSTEM ARCHITECTURE
As Figure 1 shows, Valis consists of three basic

layers. The bottom layer consists of data-access rou-
tines, libraries that provide efficient algorithms for
data-analysis tasks, and visualization components.
The libraries are written in multiple languages and
can be executed on remote servers, thus requiring a
middle layer to wrap the code into reusable com-
ponents with a standard interface. This middle layer
exposes the Valis object model to the supported
scripting engines. The top layer, where higher-level
scripts are interpreted, provides the Valis user inter-
face and development environment. 

Valis currently supports JavaScript, VBScript,
Python, Perl, and SETL. The syntax of scripts writ-
ten in these languages varies, but all scripts use the
same class hierarchy. For example, upon learning
that a Valis Sequence object has a method called
Input that will read a file’s sequence, users can
subsequently take this same primitive from all five
languages.

To deal with the proliferation of incompatible
and proprietary file formats in the genomics com-
munity, Valis provides data input objects that can
read sequences, maps, tables, annotations, microar-
ray data, and so on from disparate sources. Once
the data is loaded, Valis presents it uniformly to the
computational layer.

Valis includes extensive computational facilities
to process genomic data: numerical algorithms,
string-processing routines, alignment tools,
sequence and map assembly facilities, and statisti-

cal analysis algorithms. Although researchers can
prototype a given algorithm in any supported script-
ing language, Valis provides efficient implementa-
tions of the basic building blocks for processing data
in quasi-real time. For example, it’s possible to
extend the system without recompilation as well as
dynamically load new native libraries into it.

Although designed for workstations, Valis can
run computation-intensive processes on computer
clusters. The current implementation runs on a
Beowulf cluster, which we plan to enhance period-
ically. Once processing is completed, it’s important
to be able to quickly view the results. Valis thus
provides numerous visualization tools that let users
display sequences, maps, microarray data, tables,
graphs, and annotations. Users can customize the
widgets from the scripts.

ANALYZING DATA FROM DIVERSE SOURCES
Valis makes it possible to analyze genomic

sequences in novel ways to uncover the footprints
of evolutionary processes that have acted on DNA
sequences. Our approach deviates significantly
from the current practice of data mining for “inter-
esting features” by using statistical algorithms built
upon biological insights. The “Valis in Action:
Analyzing a Human Chromosome” sidebar pro-
vides an example of how we use the system to ana-
lyze large-scale genomic structures.

Long-range correlation
We base our analysis on fractional Brownian

motion, a non-stationary stochastic process (but
with stationary increments) that displays statisti-
cal self-similarity—that is, it’s the same as a scaled
version of itself. fBm is a generalization of the clas-
sical Brownian motion process, characterized by a
random variable S(t) parameterized by time t,
where S(t) represents the cumulative effect of many
small fluctuations over the time interval from 0 to
t. One interesting property displayed by fBms is
that for any positive scaling parameter r and time
instances t > u, [S(rt) – S(ru)] / rH and S(t) – S(u) are
statistically indistinguishable. Intuitively, speeding
up the time by a factor r has the effect of scaling
the fBm process by a power H of the scaling fac-
tor—the fBm’s Hurst exponent.

These mathematical properties render an fBm
particularly useful as a model of genomic se-
quences. For example, using H we can look for sub-
tle changes in long-range correlations (LRCs) in a
genomic sequence and thus hypothesize about the
effects of various evolutionary processes.

When H is equal to 0.5, an fBm reduces to the

Valis
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Database
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Computing
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Components

Databases
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Figure 1. Valis
architecture. User-
written scripts
manipulate objects,
which Valis exports
to scripting engines
from the low-level
libraries. 
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The following example, written in JavaScript, illustrates how
we use Valis to analyze large-scale genomic structures—in this
case, the DNA sequence of human chromosome 22, the first to
be decoded by the international Human Genome Project. 

We first load the chromosome’s data set into the system from
a fasta file. Then, we annotate the sequence with data from a
GoldenPath mirror site (http://genome.ucsc.edu/). These pre-
defined annotations, commonly accepted by the biological com-
munity, provide rudimentary meanings to various genomic
regions that Valis will analyze further. Finally, we run a word fre-
quency analysis algorithm to find the probability distribution
of all words of length k within the chromosome.

The script starts by selecting the language and clearing the
output window:

#language JSCRIPT
Valis.Clear();

Next, we create a Structured Query Language (SQL) data
access object, and connect to one of our databases:

sql = Valis.CreateObject(“Sql”);
sql.Connect(“DSN = mysql; UID = someuser;
PWD = somepwd”);

This creates a DNA sequence object—DNASeq, a string of A, T,
C, and G—called seq and inputs its data from a fasta file. 

Most complex objects in Valis have a Display method.
Invoking the seq.Display() method results in:

seq = Valis.CreateObject(“DNASeq”);
seq.Input(“C:\\GoldenPath\\chr22.fasta”);
seq.SelectSequence(1);
seq.Display();

We then run an SQL query on the interface object, which
returns a Valis table. This is a flexible object, in which each col-
umn can have a different type—string, integer, double,
and so on. The ExecSQL method automatically generates the
table’s columns and types and fills it up with the query results.
Again, we can display the table with the corresponding
Display method.

table = sql.ExecSQL(“select name,strand,
cdsStart,cdsEnd from genscan
where chrom = ‘chr22’”); 
table.Display();

The last step involves creating a scrollable Bander widget. We
use this widget to display a sequence along the x-axis and
numerous bands along the y-axis. We then load the sequence in

the widget at position zero and create some bands: b1 and b2
are Boolean bands, which will be true when the sequence is
either A or T, or G or C; bl1 is a block band that will contain
the results of the SQL query; and freq will obtain the word
frequency of this particular sequence.

a = Valis.CreateObject(“Bander”);
a.LoadSequence(seq,0);

b1 = a.AddBand(1,”AT”);
b2 = a.AddBand(1,”GC”);
m=a.AddBand(1,”Masked”);
bl1 = a.AddBand(5,”GenScan”);
freq = a.AddBand(4,”Freq”);

Now we can perform the necessary computations to change
band colors and sizes. CharBand will create a band for true
values when Valis finds one of the designated characters in a
genome sequence—for example, AT designates the pattern “A
or T.”

a.CharBand(b1,”AT”);
a.SetColor(b1,RGB(100,0,0));  //Red

a.CharBand(b2,”GC”);
a.SetColor(b2,RGB(0,100,0));  //Green

a.CharBand(m,”N”);
//Either of the match fails
a.SetColor(bl1,RGB(0,200,200));  //Cyan

The next step involves loading a block band with rows from
a table. The parameters are the table containing the data to be
accessed, the destination band, and the columns containing the
starting position, ending position, strand, and description.
Finally, we run an efficient word frequency analysis algorithm
that will fill the frequency band with the occurrences of the sub-
strings of length 15 starting at each position.

a.LoadBlocksFromTable(table,bl1,2,3,1,0);
a.SetColor(freq,RGB(100,0,100));
a.SetSize(freq,200);
a.FindRepeats(freq,14);

a.Display();

As shown by this simple protocol—which lets users visually
examine a DNA sequence for biological insights correlating
annotated genes, repeats, and conserved regions with computer
graphic richness, word frequency, and highly repeated words—
Valis enables effortless exploration of long genomic sequences.

Valis in Action: Analyzing a Human Chromosome
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familiar Brownian motion—an independent ran-
dom sequence—and there is no long-range corre-
lation. When H is not equal to 0.5, the successive
increments are Gaussian but because of the corre-
lation are not independent of one another.

When H is greater than 0.5, the correlation
between increments is positive, and the values tend
to cluster together, a phenomenon called persis-
tence. Likewise, when H is less than 0.5, the process
is antipersistent—increments are negatively corre-
lated and the values do not cluster together. 

For the purpose of modeling a DNA sequence as
an fBm, we think of the sequence as a string com-
posed of four letters: A (adenine), T (thymine), C
(cytosine), G (guanine). Not all parts of the genomic
code are for proteins, however, and it seems likely
that multiple processes operate on various DNA
regions. Because different characteristic length scales
are associated with these processes, we expect LRC
levels to vary. Indeed, one group of researchers has
found a statistical association between the letters at
long distances on the same string, with the LRC
level depending on the genomic region.1

DNA walks
The class of fBm models that results from these

analyses is a DNA walk, which is similar but not
identical to a random walk model. For example,
consider the nucleotide base pairs A/G (purine) and
C/T (pyrimidine). Although we could synthesize a
DNA sequence by randomly and independently
choosing either A or G, or C or T, and incorporat-
ing the chosen base at the end of a growing string,

such a random walk is not likely to have produced
genomic sequences occurring in nature. 

As Figure 2 shows, every DNA sequence can form
a DNA walk depending on the rule used to binarize
the sequence. In this case, using the purine-pyrimi-
dine rule, Valis denotes every encounter with A/G
as Xi = +1 and every encounter with C/T as Xi = –1.
The trajectory of the partial sum Sn = Σn

i = 1 Xi along
a DNA sequence gives a DNA walk landscape.

The LRC level in various DNA walks can be mea-
sured by their Hurst exponents. Valis’s modular
architecture makes it possible to test these models
easily without worrying about database access and
data representation details. We implemented many
algorithms in Valis to estimate H.

We have used Valis to analyze the genomes of
bacteria, invertebrates, and vertebrates. All the
DNA sequences and annotations are available for
downloading from the National Center for Bio-
technology Information’s GenBank database
(http://www.ncbi.nlm.nih.gov/Genbank/). 

First, we separated each organism’s genomic se-
quence into two subsequences: one from the coding
sequences, the other from the noncoding sequences—
introns (within genes) and intergenic (between genes)
regions. For each of these separated sequences, we
then estimated the Hurst exponent using various
methods such as rescaled range analysis2 and de-
trended fluctuation analysis.3 Finally, we compared
H values in the DNA walks with that of a random
sequence generated from Brownian motion. 

Table 1 shows the estimated Hurst exponents for
the entire genomic sequence of a bacterium
(Escherichia coli K12), a unicellular eukaryote
(Saccharomyces cerevisiae, baking yeast), an inver-
tebrate (Drosophila melanogaster, fruit fly), and a
vertebrate (Homo sapiens). Note that H values
tend to be higher in the noncoding regions than in
the coding ones. Further, the estimated H values
tend to be higher for more complex organisms. The
DNA walk down the coding region sequences thus
behaves more like a Brownian motion, while the
noncoding regions exhibit persistent LRC. 

IN SILICO EVOLUTION
What accounts for the variation in LRC levels

between different regions? A natural explanation is

Table1. Estimated Hurst exponents in different organisms and regions of genomic sequences. 

Organism Escherichia coli K12 Saccharomyces cerevisiae Drosophila melanogaster Homo sapiens 
Region Coding Noncoding Coding Noncoding Coding Coding  
H value 0.5199 0.5676 0.5644 0.6522 0.5843 0.6060  
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Figure 2. Sample
DNA walk land-
scape. In this exam-
ple, Valis uses the
purine-pyrimidine
rule to map a DNA
sequence onto a
DNA walk.
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that this correlation is attributable to the slow accu-
mulation of random mutations in the genomic
sequence. Also, various repair mechanisms likely
operate in the coding regions to lessen the muta-
tions’ impact. To test how these and other processes
influence LRC, we can model their dynamics to
determine whether in silico—computer-simu-
lated—genomes have the same statistical structures
as in vivo genomes at every scale.

Modeling genomic events
Because this approach requires far more mem-

ory than current computer systems can realistically
provide, most population evolution studies use
compact genomic representations instead of actual
sequences. However, calculating quantities such as
H demands maintaining the sequences in all inter-
mediate populations. 

As Figure 3 shows, Valis solves this problem by
formalizing the classes of possible transformations
that can act on genomes as algebraic datatypes. Each
line represents a DNA molecule. Fragments marked
by the same number/letter are homologous—for
example, 2 and 2′. These representations track the
transformations that accumulate in different
sequences. This leads naturally to a data structure
for sequences that maximizes data sharing while
automatically maintaining data consistency. 

DNA replication slippage can result in deletions
and duplications of the daughter strand (pink lines).
During recombination, when the crossing over
occurs unequally between two homologous DNA
regions (pink 2 � brown 2′), one homologous
region may be deleted and another duplicated.
Translocations are usually caused by double-break-
ages in the DNA. If the broken ends religate to each
other (no homology is required), as Figure 3 shows,
a reciprocal transposition occurs that changes the
positions of some DNA fragments. During trans-
position, a transposon (φ) can cut itself out of the
DNA sequence and cause a deletion, or it can repli-
cate itself (φ′) and insert into another DNA
sequence and cause duplication.

Genome grammar
In Valis, direct concatenation of sequences still

remains computationally expensive and is imple-
mented via logical operators that “remember” the
concatenation of two sequences. Such operators are
available to a higher-level garbage-collector-like sub-
system that hides the implementation details. This
library frees biologists from choosing particular com-
pact representations of sequences suitable for the evo-
lutionary simulation in which they’re interested.

We can extend such a scheme to represent the
probabilistic processes of generating a genomic
sequence. This leads to tools for synthesizing arti-
ficial sequences with statistical properties close to
those of natural DNA sequences. These tools are
structured around a genome grammar, a set of
libraries for creating and manipulating stochastic
grammars with primitives for many kinds of math-
ematical probability distributions.

Using stochastic grammars to generate genomic
sequences is not new,4,5 but integrating the gram-
matical structure and memory manager results in
a novel, efficient runtime system that facilitates
quick evolutionary experiments in silico.

Generic modeling process
Other Valis modules can model the vast number of

cellular mechanisms that an action on the genomic
sequence triggers. A process that models biological
machinery generically describes entities such as a pro-
tein complex or an enzyme, walking along the DNA
and modifying it under local scrutiny: 

• The machinery looks for a certain initiation
recognition site on the DNA sequence—as
determined by the DNA’s constituent bases,
physical or chemical properties, and so on.
The initiation site also depends on the prop-
erties associated with the machinery itself. 

• After recognizing the site, the machinery starts
to walk along the DNA sequence, changing its
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own state if necessary and the DNA sequence
it passes over.
• At some point—typically when the termi-
nating site is encountered—the process halts.

This process can model how a transcrip-
tion factor associates itself to a regulatory
sequence. Depending on the distribution of
the initiation sites and the relative distribu-
tions of the corresponding termination sites,
we can associate an effective radius as well
as a probability distribution with each of the
events that this machinery can mediate. We

have implemented just such a linear automaton as
a general-purpose machine.

Debugging in silico experiments
Biologists must be able to use real organisms to

statistically recreate in silico evolution. Various
mutant organisms that differ from their related wild
type exhibit significant changes in the occurrence
probabilities of genomic evolution events. These
organisms are natural candidates for “debugging”
our in silico experiments. One candidate is pol3-t,
a temperature-sensitive mutant in yeast DNA poly-
merase that, under nonpermissive temperatures,
increases the rate of small deletions by up to 100
fold.6

Another example is the DNA mismatch repair
system in eukaryotes. This system contains two
subsystems correcting the mismatched DNA frag-
ments of different sizes—one favors small mistakes
(one to two bases), the other favors bigger deletions
or insertions (more than five bases).7 The mutations
in each of the two subsystems diminish the cell’s
ability to correct DNA sequence mismatches and
significantly increase the rate of sequence changes.

R esearchers have traced more than 10,000 gen-
erations of E. coli in laboratory evolution.8

Similar experiments can explore eukaryotic
sequence evolution in budding yeast. We can track
the changes in these mutants’ genomic sequences
and observe how they differ from the wild types.
Tracing these changes helps to gather information
about how these processes shape genomic
sequences. In silico evolution will ultimately help
us devise the most efficient in vivo experiments,
which in turn will validate and further improve our
in silico model. �
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