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1 Truth About Polydactility

I would like to start this essay with the following story based on an essay
entitled “Eight Little Piggies” by the popular Harvard Biologist Stephen Jay
Gould [Gou93].

The fossils of the oldest tetrapods were discovered in eastern Greenland
by a Danish expedition in 1929. They date back to the very last phase of the
Devonian period (the so-called “age-of-fish”) and the two genera from that period
that have been studied extensively are Ichthyostega and Acanthostega. The
Swedish paleontologist Gunnar Save-Soderbergh collected most of the material
in 1931 and directed the project until his untimely death in 1948. One of the
greatest Swedish paleontologists Erik Jarvik took over the project and published
a thorough anatomical studies of these two genera. See Figure 1, for a picture of
the Ichthyostega taken from Erik Jarvik’s tome “Basic Structure and Evolution
of Vertebrates, Vol 1.7

Figure 1: Erik Jarvik’s rendition of Ichthyostega.



Although no specimens preserved enough of the fingers or toes for an un-
ambiguous count, Jarvik reconstructed Ichthyostega with five digits per limb.
Why?

One needs to look at the history in order to understand such an unshakable
faith in “pentadactylity” (five-fingered-ness). Richard Owen (one of England’s
greatest anatomists and a contemporary of Darwin) had actually hypothesized
an archetypical tetrapod pentadactyl vertebrate. He was so pleased with it that
he had a picture of this archetype engraved on his personal emblem. While
Darwin held on to a more worldly view, he seemed to have been impressed by
Owen’s archetype which he described as a “real representation as far as the
most consummate skill and loftiest generalization can represent the parent form
of the vertebrata.”

In light of this history, it seems hardly surprising that Jarvik would accept the
pentadactylity of vertebrates so easily, as many of my readers would. However,
Jarvik did go a few steps ahead when he equated the “human culture” to the
“basic pattern of our five-fingered hand.”

However, the picture that Jarvik drew of an Ichthyostega came to some doubt
beginning in 1984, when a soviet paleontologist O.A. Lebedev discovered a fossil
of another early tetrapod Tulerpeton and finally in 1990, a joint Copenhagen-
Cambridge team found a hind limb of Ichthyostega and a fore limb of Acan-
thostega. They wrote, reporting their disagreement with Jarvik’s construction:

“The proximal region of the hind limb of ichthyostega corresponds
closely to the published description, but the tarsus [foot] and digits
differ.”

The back leg of Ichthyostega had seven toes.

Independently, quite a different line of investigation has emerged recently
with our attempts to construct mechanized robot hands, capable of reproduc-
ing the same degree of dexterity as human hands. Notable among such hands
are the Utah/MIT dextrous hand, the Stanford/JPL hand, the NYU Four Fin-
ger Manipulator (FFM), the Okada hand, and the Asada hand. Many early
approaches had taken an anthropomorphic view and had justified the resulting
kinematic structure with the belief that human hands represent some Platonic
archetype structure. However, some rather beautiful geometric analysis of ma-
nipulative and grasping tasks have begun to seed doubts about the necessity of
pentadactylity even in this mechanical domain. This essay studies these other
hands and explores the underlying geometric and algorithmic ideas employed in
this context.

To make matters somewhat concrete, we envisage an idealized dextrous hand,
consisting of several independently movable force-sensing fingers. These fingers
move as points in three-dimensional space. Here, we focus on the problem of
grip selection for an object in the absence of static friction between the surface of
the object and the fingers. This model is justified by the argument that presence
of friction only improves the grasp and hence non-frictional grips represent in



some sense the most pathological situation. Another argument favoring this
grip model is that even when there is uncertainty about how much friction is
available, the grasps synthesized under this restricted model remain immune to
such uncertainties.

Such non-frictional grips have come to be known as positive grips. Since the
fingers are assumed to be point fingers, a finger can only apply a force on the
object along the surface-normal at the point of contact, directed inward.

If the shape of the object is precisely known then the problem of grip selection
reduces to that of choosing a set of GRIP POINTS and a set of associated FORCE
TARGETS. We then ask:

e Can an arbitrary object be gripped (positively) with a finite number of
fingers?

e If so, what are the grip points and the magnitudes of the forces exerted by
the fingers (force targets) for such a grip?

It can be then shown that almost every smooth object allows a positive grip
with only a bounded (relatively small—but not five) number of fingers.

2 A Little Physics

A good starting place for us would be to understand how an object in equilib-
rium can be characterized. There are two ways of doing this: Either we can
assume that the forces and torques acting on an object are monogenic (i.e.,
force/torques are derived from the potential energy as would be the case if
the fingers are assumed to be compliant) or that the forces are polygenic (the
force/torques applied at the fingers are generated by some actuators whose me-
chanics need not concern us). In the first case, we may proceed by looking at the
local minima (stable equilibrium points) of the scalar function characterizing the
energy. In the second case, we need to understand the resultant force and torque
equation, as in the classical Newtonian mechanics. Here, our focus will be on
the models corresponding to polygenic forces, as these models demonstrate the
close connection between robotics and combinatorial geometry.

Consider a rigid body subject to a set of external polygenic forces fi, ...,
fx, applied respectively at the points p1, ..., pr, as in Figure 2. Then the
necessary and sufficient condition for the rigid body to be in equilibrium is that
the resultant force and the resultant torque must be null vectors. In mathematical
notations, this condition can be stated as follows:
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Figure 2: A planar object subject to four forces f1, f2, f3 and fa.

Ty = p:fe —pzf:, and
T: = pry_pyfa:~

Thus, in order to hold an object in equilibrium with a multi fingered hand
(say, with k fingers), we need to place these fingers at points p1, ..., pr on the
boundary of the objects and apply forces fi, ..., fr in such a manner that the
equilibrium condition is satisfied. However, in this context, we need to satisfy
two other conditions; namely,

e The normal components of the forces must be directed inward. Note that,
otherwise, the fingers cannot maintain contact with the object.

e Furthermore, if the ith force f; makes an angle 8; with the surface normal
at point p;, then in order for the finger not to slip, tan#; < p, where
coefficient of static friction between the body and the finger is denoted by
the constant p.

Going back to the concept of positive grip, we realize that in this special
case, we have no friction; the coefficient of static friction ¢ = 0 and each 8; must
be zero. Thus if we write n; for the unit normal to the surface of the body at
the point p; and directed inward, then the finger force f; must be a nonnegative
multiple of n;. Thus

fi=a;n;, and p; x fi = a;(p; x n;), where a; >0, scalar.

In order to better understand the effect of the requirements imposed by pos-
itive grip, we may consider the following somewhat easier problem:



Given: k grip points
{p11p27 .. 'apk}1
on the boundary of the body B.

Determine: If the object can be grasped (positively) by placing the fingers at
the grip points.

For example, consider a planar rectangular object with four grip points at the
mid points of the edges (shown in Figure 3.) Let the grip points be denoted as
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Figure 3: A planar rectangular object with designated grip points {p1, p2, ps,
pat.

p1, p2, p3 and py4 and the respective unit surface normals as ny, ns, ny and ny.
Then we wish to determine if there are four scalar quantities a1, as, az and ay
such that

aing + asng + agnzy +agny = 0
ai(p1 x nq) + az(ps X ny) + as(ps x n3) + as(ps xny) = 0
a1 > 0,a3>0,a5 > 0,02 >0 and not all 0.

Note that, for this example, any choice of a1 = a3 and as = a4 will satisfy the
conditions (assuming that at least two of them are nonzero and all of them are
nonnegative). In particular, we could have chosen all the a’s to be 1/4!

To make matters little more abstract, we should define a wrench map, T,
taking a point on the boundary of the object B to a point in the d-dimensional
wrench space R Note that the term wrench space is used to denote a vector
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space consisting of all the wrenches. Its dimension d is 1, 3 or 6, depending on
whether the object belongs to 1, 2 or 3-dimensional space.

r : 9B — R¢
i o= (ng,ps X ong).

Thus the wrench map T' maps a point p; € 9B on the boundary of the body B to
a wrench (a force/torque combination) that would be created if we apply a unit
normal force directed inward at the point p;. Then the feasibility of a positive
grip can be expressed in terms of the existence of a solution of the following
system of linear equations and inequalities:

k
Z a;il'(pi) = 0
i=1

a > 0,i=1,... k,
k
Zai = 1.
i=1

The last condition is added only for convenience, since if other a;’s were used,
one could simply normalize their sum by dividing all the terms by a suitable
denominator.

Geometrically, we are asking if some convex combination of the T'(p;)’s would
yield the null vector. More compactly, we ask

0 € convex hull (T'(p1),...,T(px))?
If the answer to the preceding question is yes, then we can hold the object in
equilibrium with the given grip points by applying forces whose magnitudes

simply correspond to the coefficients used in the convex combination to express
the null vector.

3 A Little Geometry

In this section, we shall provide some definitions, in order to discuss the geometry
of wrench space in terms of the standard geometric vocabulary.

A d-dimensional space, R?, equipped with the standard linear operations, is
said to be a linear space.

1. A linear combination of vectors p1, ..., p, from R%is a vector of the form
aipr + -+ appp,

where aq, ..., a, are in R.



2. An affine combination of vectors p1, ..., pn from R?is a vector of the form

ai1p1+ -+ appn,
where a1, ..., a, are in R, with ay + -+ 4+, = 1.

3. A positive (linear) combination of vectors py, ..., p, from R?is a vector
of the form
a1p1 + -+ Qnpn,

where aq, ..., a, are in R, the set of nonnegative real numbers.

4. A conver combination of vectors p1, ..., p, from R%is a vector of the form
a1p1 + -+ Qnpn,
where a1, ..., a, are in Ryo with ay +--- 4+ 0, = 1.

By convention, we allow the empty linear combination (with n = 0) to take
the value 0. We also assume that the empty linear combination is neither an
affine combination nor a convex combination. Note that affine, positive and
convex combinations are all linear combinations, and a convex combination is
both affine and positive combinations.

A nonempty subset L C R% is said to be a

1. linear subspace: if it is closed under linear combinations;

2. affine subspace (or, flat): if it is closed under affine combinations;

3. positive set (or, cone): if it is closed under positive combinations; and
4. convex set: if it 1s closed under convex combinations.

The intersection of any family of linear subspaces of R? is again a linear
subspace of R?. For any subset M of R¢, the intersection of all linear subspaces
containing M (i.e. the smallest linear subspace containing M) is called the linear
hull of M (or, the linear subspace spanned by M), and is denoted by lin M.

Similarly, the intersection of any family of affine subspaces, or positive sets
or convex sets of R? is again, respectively, an affine subspace or positive set or
convex set. Thus for any subset M of R? we can define

1. the affine hull (denoted by aff M) to be the smallest affine subspace con-
taining M,

2. the positive hull (denoted by pos M) to be the smallest positive set con-
taining M, and

3. the convez hull (denoted by conv M) to be the smallest convex set con-
taining M.



They are also called, respectively, the affine subspace, positive set and convex
set spanned by M.

Equivalently, the linear hull lin M can be defined to be the set of all linear
combinations of vectors from M. Similarly, the affine hull aff M (respectively,
the positive hull pos M, the convex hull conv M) can be defined to be the set
of all affine (respectively, positive, convex) combinations of vectors from M.

A set p1, ..., pp of n vectors from R? is said to be linearly independent if a
linear combination

aipr + -+ appy

can have the value 0, only when a1 = - - - = «, = 0; otherwise, the set is said to
be linearly dependent.

A set p1, ..., pn of n vectors from R is said to be affinely independent if a
linear combination

aip1+ -+ appn with oy +--+a, =0

can have the value 0, only when a1 = - - - = «;, = 0; otherwise, the set is said to
be affinely dependent.

A linear basis of a linear subspace L of R?is a set M of linearly independent
vectors from L such that I, = lin M. The dimension dim L of a linear subspace
L 1s the cardinality of any of its linear basis.

An affine basis of an affine subspace A of R%is a set M of affinely independent
vectors from L such that A = aff M. The dimension dim A of an affine subspace
A is one less than the cardinality of any of its affine basis.

Let C be any convex set. Then by d-interior of C, denoted inty C, we
mean the set of points p such that, for some d-dimensional affine subspace, A,
p is interior to C'N A relative to A. If ¢ is the dim aff C'| then by an abuse of
notation, we write int C' to mean int. C.

q= (p+r)/2

r
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Figure 4: Convex and non convex planar sets.

Equivalently, we could have defined a convex set as follows:

A subset of a linear space is conver if it contains with any two of its
points the line segment defined by them. (See Figure 4.)



Examples of convex sets include: a point, a line segment, a simplex, a cone,
a half space, an affine subspace or a linear subspace. Note that a closed half
space can be defined to be the set of points

{p:(rl,...,rd)E}Rd:alxl—}—~~-—|—admd2b}.

Thus if p and p’ are two points in the closed half space then clearly every point
on the line segment pp’ also belongs to the closed half space. Note that since
intersection of a family of convex sets 1s a convex set, we can also define convex
hull of a subset M C R? to be the intersection of the family of all closed subsets
containing M.

Thus, given a finite set of points M C R? we can enumerate the family of
closed half spaces containing M and bounded by the affine hull of some subset
of d points in M and then take their intersection to generate the convex hull of
M. Such an algorithm would have a time complexity of O(|M|?¢). This naive
algorithm can be improved significantly; techniques employed to construct con-
vex hull efficiently occupy a central place in the nascent field of Computational

Geometry [Ede87, O’Ro94].

3.1 Two Theorems from Convexity Theory

Following two theorems (Carathéodory’s and Steintz’s Theorems) from convexity
theory have interesting implications to the theory of grasping. Subsequently, we
will see how some of the most important results about grasping can be derived
as simple consequences of these theorems. Proofs of these theorems can be found
in any book on convexity theory [Eck93, Val64].

Carathéodory’s Theorem: Let
X CR? and p€convX.
Then there exists some subset Y C X such that
Y| <d+1 and p€convY. O

For example, if d = 1, then Carathéodory’s theorem implies that a point in
the convex hull of a set of points on a line belongs to a line segment defined by
some two points from the set. Similarly, for d = 2, if p € conv X then p belongs
to the triangle formed by some three points of X (see Figure. 5), i.e.,

3{1!/1,2‘/2,?/3} g Xap € COUV{ylay%yS}-

Steinitz’s Theorem: Let

X CR? and p €int conv X.



Figure 5: Example of Carathéodory’s Theorem for d = 2.

Then there exists some subset Y C X such that
Y| <2d and p€int convY. O

Both Carathéodory’s and Steinitz’s theorems are examples of a general family
of theorems, related to Helly’s Theorem.

Helly’s Theorem: Suppose K is a family of at least d + 1 convex sets in R%
and K is finite or each member of K is compact. Then if each d + 1 members
have a common point, there is a point common to all members of X. O

A

C
Helly’'sTheorem (d=2)

Figure 6: Example of Helly’s Theorem for d = 2.

It is not hard to derive Carathéodory’s theorem from Helly’s theorem (us-
ing polar duals) and it can also be shown that Carathéodory’s theorem implies
Helly’s theorem [Eck93]. Other members of the family of so-called Helly-type
theorems include Radon’s theorem, Tverberg’s theorem, theorems of Kirchberger
and Krasnosd’skii, etc. Radon’s theorem states that each set of d + 2 or more
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points in R? can be expressed as the union of two disjoint sets whose convex
hulls have a common point.

or

Radon’s Theorem (d = 2)
Figure 7: Example of Radon’s Theorem for d = 2.

The proof of Carathéodory and Steinitz’s theorems are not that involved. In
order just to get a flavor of the techniques employed in combinatorial discrete
geometry, we shall describe the proofs for the cases where X C R? is a finite set
of points in the plane.

Assume that P = conv X is a bounded polygon and p, a point of P. Let v
(# p) be a vertex of the polygon and let vj be the ray originating from the vertex
v and passing through p. Let 7w = PNup be the line segment with the end points
v and w € OP on the boundary of P. There are two cases to consider: either w
is a vertex of P or w € st belongs to an edge st of P. In the first case, let y; = v
and y, = w and in the later case, let y; = v, y2 = s and y3 = ¢. By construction,
p € conv {v, w} and in the second case w € conv {s,t} = p € conv {v, s,t}. Now
let Y = {y1,y2} or = {y1,y2,ys}, as the case may be. In either case, Y C X
and |Y| < d+ 1 = 3. Similar constructive proofs for Carathéodory’s theorem
can be provided for higher dimension.

Now the proof of Steinitz’s theorem can be given with a slight modification
to the preceding argument. Let P = conv X be as before and p, a point in the
interior of P. Now construct a ray vp as before, except that v is now chosen to
be an interior point on an edge ab of P. Let 7w = P N vp be the line segment
as before with w on the boundary of P. Again there are two cases to consider:
either w is a vertex of P or w € st belongs to interior of an edge st of P. In
the first case, let y1 = a, ys = b and y3 = w and in the later case, let y; = a,
y2="b,ys =sand ys =¢. Now let Y = {y1,y2,y3} or = {y1,42,y3,ya}, as the
case may be. In either case, Y C X and |Y| < 2d =4 and p € int convY. The
extension to higher dimension is also fairly straightforward. The fact that the
bound 2d is tight for Steinitz’s theorem can be seen from the two dimensional
example shown in Figure 8.

4 A Little Robotics

Equipped with our understanding of the geometric structures in convexity theory,
we are now ready to tackle one of the simplest (but rather interesting) problems
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(b) Steinitz's Theorem (c) Example

Figure 8: Proof sketches.

in grasping theory:

Existence of Positive Grips:
Given: An arbitrary rigid 3-dimensional object B and some number k.

Determine: Whether one can choose k (finite) grip points, {p1, p2, ..., pr} C
B on the boundary of B such that the object can be grasped (positively)
by placing fingers at those grip points.

(3?{]31, P} C 33) [0 € conv (I'(p1),...,T(pk))|-

Surprisingly, the answer to the problem turns out to be “yes” and the nec-
essary number of fingers is 7. That is, there is a “universal hand” with seven
fingers that can grasp any rigid object by judiciously choosing the grip points.
Of course when we say any, we actually make some reasonable assumptions

12



about the object. Namely, we assume that B s a closed bounded connected
object with piece-wise smooth boundary OB.
The proof proceeds in three simple steps:

STEP 1: Show that
0 € conv T'(9B),

where T:9B — R® : p s (n,p x n). This is a simple consequence of the
fact that an object under uniform pressure remains in equilibrium. The
proof of this claim can be given rigorously using the Divergence theorem

of Gauss.

STEP 2: By Carathéodory’s theorem

(3 (C(p1),....T(pe)} C r(aB)) [k < 7and 0 € conv (T(p1), ..., T(pe))].

Hence there are positive nonnegative scalar quantities o, . . ., aj such that:

ang + - +agng = 0,

ai(pr X n) + -+ ap(py X ng) =

STEP 3: The positive grip is then selected by choosing as grip points

Grip Points = {p1,...,pr} C 9B,

Force Magnitudes = ag,..., ag,

with k£ no larger than 7.

4.1 Problems with Equilibrium Grasps

Similar arguments in the plane implies that any' planar object can be grasped
by at most four fingers. The number four is arrived at by taking the dimension
of the wrench space and adding one to it, as implied by the Carathéodory’s
theorem. It is also instructive to examine a set of equilibrium grasps for three
planar objects: arectangle, a triangle and a disc. First consider the grasps for the
rectangle. Clearly, the grasps (a) and (d) are not as secure as (g)—a horizontal
external force will break the grasp (a) and an external torque about the center of
the rectangle will break the grasp (d). In comparison, the grasp (g) is immune
to such external disturbances, provided of course that such disturbances are
relatively small in magnitude. Similar examination will show that the grasp
(h) is the most secure for a triangle. However, in the case of the disc, while the
grasps (f) and (i) are better than (c), there is simply no way to resist an external
torque about the center irrespective of how many fingers are used.

1Closed, connected and bounded with piece wise smooth boundary.
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Figure 9: Grasping planar objects.

The kinds of secure grasps described in the preceding paragraph have been
characterized as closure grasps. Furthermore, exactly those objects that do not
allow closure grasps can also be characterized in purely geometric terms, and
are referred to as exceptional objects. While we shall not go into a detailed
description of the exceptional objects (see [MSS87]), it should suffice for the
present purpose to say that the only planar bounded exceptional object i1s a
disc and the only spatial bounded exceptional object is an object bounded by a
surface of revolution?.

Closure Grasps: A set of grip points on an object B is said to constitute
a closure grasp if and only if any arbitrary external force/torque combination
acting on the object can be balanced by simply pressing the fingertips against
this object at the selected fized grip points.

2If one allows unbounded objects then in 3-D, we have to include unbounded prisms and
helical objects and in 2-D an unbounded strip of constant width. These objects in 3-D describe
the so-called Reuleux pairs, studied almost a century ago.

14



Thus our job is to

Given: An arbitrary non-exceptional rigid 3-dimensional object B and some
number k.

Determine: If one can choose k (finite) grip points, {p1, p2, ..., pr} € IB on
the boundary of B such that the object can be grasped (with closure) by
placing fingers at those grip points.

In other words, we must have for every g € RS (—g is the external wrench),
a set of nonnegative force magnitudes

{aq, ..., ax} a; >0
arl'(p)+ -+ axl'(pr)) = g

Equivalently, ﬂ
pos (F(p1), -+, T(pe)) = R

T'(p1), ..., T(pk) positively span the entire wrench space. Since this is also
equivalent to the following condition

(36 >0Vyg € RG) [eg = ZaiF(Pi)7Eai =1,a; > 0},

we can also express this problem as asking
(EI‘?{pl, Pk} C 83) [0 € int conv (T'(p1), .. ., F(pk))]

Note that the first condition implies that a sufficiently small 6-dimensional ball
(of radius €) can fit in the convex hull of the wrenches and hence leads to the
second condition.

The answer to the problem turns out to be “yes” (for all non-exceptional
objects) and the necessary number of fingers is 12 (twice the dimension of the
wrench space).

The proof proceeds again in three simple steps:

STEP 1: Show that, if B is non-exceptional
0 € int conv I'(0B),

where T:9B — R® : p — (n,p x n). This is only true if B is non-
exceptional, as otherwise I'(0B) spans only a low-dimensional subspace.

STEP 2: By Steinitz’s theorem

(3 (C(p1),....T(pe)} C r(aB)) [k <12 and 0 € int conv (T(p1), ..., T(px))].
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STEP 3: The closure grasp is then selected by choosing as grip points
Grip Points = {p1,...,px} C 9B,

with & no larger than 12.

Some of the results about grasping (including the ones discussed earlier) has
been summarized in the following table:

2D Objects 3D Objects
Equilibrium Grasps
Piecewise Smooth 4 7
Smooth 3 5
Convex, Smooth 2 2
Closure Grasps
6 12
Piecewise Smooth (excluding disks) | (excluding objects
with a surface of
revolution)

Table 1: Summary of Results. The numbers in the table are upper bounds on
the required number of fingers.

5 A Simple Algorithm

At this point, it is natural for a roboticist to ask how one (a robot) can construct
a grasp for a specific object and what sorts of computation this may entail. The
answer turns out to be very interesting and shows a close connection of this
problem to a classical algorithm, “the simplex method,” used for solving linear
programming problems.

Thus, suppose we have a polyhedral object with n faces. Since this object
is “non-exceptional,” in principle, we should be able to grasp it by a closure
grasp using no more than twelve fingers. In our terminology, we wish to simply
identify no more than twelve grip points on the faces of the polyhedron—but we
wish to do so constructively, and furthermore, as quickly as possible.

We proceed in a manner not very dissimilar from the ways we proved the
existences of such a grasp. We first create a closure grasp with extremely large
number of fingers: about 15n grip points, where n is the number of faces of the
polyhedron. Of course, this is all done by our imagination (or by a mathematical
model in the computer memory); we don’t need to physically construct a hand
with 15n fingers! Next, step by step, we can eliminate one finger in each step
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while maintaining closure grasp as long as the number of grip points at the
beginning of that step is strictly larger than twelve. The algorithm terminates
when we are left with no more than twelve grip points.

5.1 Algorithmic Preliminaries

In order to understand the process by which the fingers are eliminated, we shall
digress to consider an algorithmic approach to algebraic manipulation with pos-
itwe linear combinations.

Given: A set of vectors {Vi, Vo, ..., Vi} CR%and V € R? such that
aVi+-+aVi = oV
a; >0,a>0,V #0.
Find: A subset m < d vectors
Vil Vig, .., Vi, 1 C{V1,...Vi} and o >0
such that
Vi, +- - +al Vi, = oV
al >0,(a" >0,V #0).

The problem can be solved by the algorithm described below. If you are
already familiar with the simplex algorithm for linear programming problems,
then you should realize that the basic step of the algorithm shown resembles the
“pivot step” of the simplex algorithm.

Reduction Algorithm

if [ <d then HALT;
else repeat

Choose d vectors from {Vi,...,Vi}
(Say, the first d): {V4,...,V4}
There are two cases to consider, depending on whether the vectors
Vi, ..., Vg are linearly dependent or not.

Case 1: Vi, ..., V4 are linearly dependent.
We can write
BiVi+- 4 BaVy =0,

not all ; = 0.

Assume that at least one f; < 0 (otherwise, replace each 3; by —p;
in the equation to satisfy the condition.)
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Le‘
) = min| oy 7 < 0

(For specificity, we may assume v = a1//.)

Put o} = a; —yf; for 1 <i<d.

Hence by adding the equation (Zi.:l a;V; = aV) to (—y Zle GV =
0), we get

ayVo+ -+ ayVi+ agyr Vagr + -+ Vi = aV

and by construction o, ..., af > 0.

Case 2 Vi, ..., V4 are linearly independent.

We can write

V4 4+ BaVy =V,

Assume that at least one §; < 0 (otherwise, we have nothing more to
do!)
Let
¥ = min(ai/f;) <0.
(For specificity, we may assume v = a1//1.)
Put o) = a; —yf; for 1 <i<d,and o’ = a —v > 0.
Hence by adding the equation (2221 a;V; = aV) to (—y Zle G;Vi =
—~V), we get

agVo+ - agVa+ agpiVapr + -+ Vi = 'V,
and by construction o, ..., of > 0.

Note that this process terminates after at most (I — d) repetitions of the
basic step and each basic step involves some matrix operations involving d x d
matrices, thus using in each basic step amount of computer time that is cubic in
d. [In algorithmic terminology, we would write that “the reduction algorithm has
a time complexity of O(ld®).”] In our grasping application, d will turn out to be
a constant (= 6) and [/ no more than 15n. Thus we will see that this algorithm
will give us a grasping algorithm whose time complexity will be proportional to
n, the number of faces of the polyhedron it is trying to grasp.

—The end of digression.

5.2 Grasping Algorithms

Let us get back to our original question about grasping a polyhedron B with
n faces. As hinted earlier, we shall start with a closure grasp of B using no more
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than 15n grip points. Assume that B is provided with a triangulation of each
face, and

t1,t2,...,IN

is the set of triangles partitioning dB. For each triangle ¢;, choose three non-
collinear grip points p;,, p;, and p;, € t; such that (p;; + pi, + pi,)/3 is the
centroid of ¢;. In totality they will give us the initial 3N grip points. Using
Euler’s formula and some simple combinatorics, one can show that N < 5n— 12
and the total number of grip points is no more than 15n — 36 (see [MSS87]).

Now, it can be shown that if one chooses p;;’s, 1 < i < N, j =1, 2, 3,
as the grip points then they give rise to a closure grasp. In particular, we can
see [MSS87] (by using linear algebraic manipulations) that

Area (1)
3

Area (t1)
3

[(p1,) + [(p1,) + Ar%(tl)r(ma)

Area (1 Area (t Area (t
+-+ %F(PNJ + %F(PM) + %F(PM) =0,

and that
pos (F(pll), T(p1,), .-, F(pN3)) — RS,

Henceforth, rewriting these grip points as {p1, pa2, ..., pi}, and the “area
terms” as magnitude of coefficients: a1, ay, ..., a;, we have

a1l(p1) + asl'(p2) + -+ al'(p) = 0, (1)

where a; > 0. Furthermore, since

lin (T(p1), T(pa), ., T(p) ) = R,

without loss of generality, assume that the first six wrenches are linearly inde-
pendent, thus spanning the entire wrench space, i.e.,

1m@@¢“wmmnzkﬁ

Synthesizing a Equilibrium Grasp with Seven Fingers Let us now see
how we can go from here to get a simple equilibrium grasp with no more than
seven fingers. Note first that we can rewrite our equation 1 (for [-fingered grip)
as

aq a1

a—lr(m) +--+ o [(pi-1) = =T(p),

where a; > 0 and T'(p;) € RS Now, we can use the “Reduction Algorithm” to
find

{pilapiga . 'apim} g {pla .. 'apl—l}
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satisfying the conditions below:
ayT(pi,) + -+ ap,L(pi,,) = —a'T(pr),
and m < 6. Thus we have
AT (pi) + -+ apT(pi,) +a'T(p) =0,

with o} >0, ..., al, > 0 and o’ > 0. Of course, this is our equilibrium grasp
using no more than m+1 < 7 fingers, placed at grip points p;,, ..., p;i,., pi With

associated force magnitudes o, ..., al,, o'

Synthesizing a Closure Grasp with Twelve Fingers Recall that the ini-
tial [ grip points are so chosen that

lin (F(pl), . ..,F(p6)) = RS,

Let
V=—T({p1)+...+T(ps))-

Express V using all the wrenches as follows
a1l (p1) + asl(p2) + -+ T (pr) =V,

which exploits the fact that the original set of [ grip points form a closure grasp
(i.e., T'(p;)’s positively span the entire wrench space).
Now, we can again use the “Reduction Algorithm” to find

{piv,Pizy - i} CAPL - o1}
satisfying the conditions below:
a4 T(piy) + -+ apT(pi,) =V,
and m < 6. We now choose as the desired grip points

{piupiz’ e 'inm} U {p1: . ~ap6}a

numbering no more than m 4 6 < 12. We claim that these give rise to a closure

grasp.
To see why, consider some arbitrary external wrench f € R®. We wish to
show that this f can be expressed as a positive linear combination of

{T@i), - T(pi,)} UL (p1), - Tlps) }-

First, note that we can write f as a linear combination of T'(p;), i =1, ..., 6:
6
=Y BT(p),
i=1
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and suppose that not all 3; > 0, since otherwise we have nothing more to prove.
Now let
= min B <0.
Y=o, Bi

Thus

fo= Y BT(m)
i=1

= Z(ﬁz —)l(pi) + (—=7) Z —T(p;)
= Y (B —NT@p:) + (Vv
= Z(ﬂi — )L (pi) + Z(—ya;)r(pij).

Since —7v is positive and v < f; and since a;»’s are positive, all the coefficients
in the above equation are nonnegative.
Thus, we have

pos ({F(pil), L T(pi)U{T(), ..,r(pg)}) = RS,

which means we have shown that the chosen grip points {p;,, ..., pi,.} U {p1,
..., ps} indeed form a closure grasp.

6 Final Remarks

Most of the questions dealt here come from one of the first papers I wrote in
this area about ten years ago with Jack Schwartz and Micha Sharir. Since then
the area has grown substantially and researchers have addressed many more
interesting questions dealing with different finger models, different concepts of
closure, various measures of goodness of a grasp, regrasping (also called finger-
gaiting), fixturing and workholding. Of course, it is not possible to go into all
these topics here. The readers wishing to learn more about these topics must
consult the references given at the end of the paper. Also, a web-site designed
by Ken Goldberg (FixtureNet, URL http://teamster.usc.edu/fixture/) at
University of Southern California can automatically find for you how a polygonal
(2D) object can be fixtured. You may want to check it out to sharpen your
intuition.
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