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Doctoral Dissertation Abstract

This thesis focuses on three problems that reveal themselves at different stages of

genomic analysis: gene expression analysis, analysis of errors in microarray experi-

ments due to unintended probe-target interaction in a multiplexed setup, and the

design of an optimal microarray hybridization experiment for genotyping.

The problem of clustering gene expression vectors is known to be significantly

dependent on the choice of similarity metric. A mathematically rigorous corre-

lation coefficient of two gene expression vectors, based on James-Stein shrinkage

estimators, is derived; the improvement in accuracy due to shrinkage is evaluated by

conducting in silico experiments and comparing similarity metrics on a biological

example. The relative merits of clustering algorithms based on different statistical

correlation coefficients as well as the sensitivity of the clustering algorithm to small

perturbations in the correlation coefficients are studied.

A detailed physical model of hybridization is presented as a means of under-

standing probe interactions in a multiplexed reaction. The model is formulated

as a system of ordinary differential equations describing kinetic mass action, with

conservation-of-mass equations completing the system. Pairwise probe interactions

are examined in detail; a model of “competition” between the probes for the target,

especially when target is in short supply, is presented. These effects are shown to

be predictable from the affinity constants for each of the four probe sequences in-

volved, namely, the match and mismatch for both probes. Simulations based on the

competitive hybridization model explain the observed variability in the signal of a

vi



given probe when measured in parallel with different groupings of other probes or

individually. These simulation results are used for experiment design and pooling

strategies.

The problem of genotyping is examined on the example of HLA typing, which

has many biological implications; particularly, knowing the correct allele is essential

to ensure the compatibility of the donor organ with the recipient. Most of the

contemporary techniques are time-consuming and lack optimality. Here, a graph

model on the set of potential probes is presented, the HLA typing problem is

formulated mathematically as an optimization problem on the graph model, and

an algorithm for solving the optimization problem is described.
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Chapter 1

Introduction

1.1 Background

The success of the Human Genome Project has revolutionized the biological sci-

ences. Biological experiments continue to produce ever increasing amounts of data

which require a greater number of researchers and tools to help find the hidden

answers that this data contains. While the scientific, clinical, and commercial im-

plications are enormous, progress in this area requires efficient computational and

numerical tools.

In the past 5–10 years there has been a new kind of information revolution

in biology, facilitated by the availability of inexpensive microarray technology to

the research labs. This technology allows hundreds of thousands of experiments

to be done in parallel on a single chip, generating an unprecedented abundance

of data. To date, microarrays have been used to answer a variety of questions,

ranging from sequence analysis to understanding how gene expression patterns vary

under different conditions. The data generated leads to a better understanding of
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genetic diseases, mechanisms by which cells process information and communicate

with each other, and pharmaceutical applications, such as rational drug design.

Types of microarrays currently in use include spotted arrays ([43]), high density

oligonucleotide arrays ([30]), gene-chips ([24]), and cDNA microarrays ([42]). We

now see protein chips, beginning to bypass the intermediate steps of transcription

of DNA into RNA and translation of RNA into the amino acid sequences defining

proteins, allowing us to see more directly what is going on inside cells.

While the generated data lends itself to traditional analysis, it is hard to see

the forest for the proverbial trees; new, more sophisticated tools are needed to

extract meaning from the data. Traditional statistics and data analysis techniques

continue to be useful in many applications. However, their lack of mathematical

sophistication makes them fall short in the face of attributes such as small sample

sizes and high dimensionality that often characterize microarray data. As a result,

traditional techniques fail to reveal all that the data has to offer.

The unifying theme explored throughout this thesis is correcting the lack of

careful attention to the design of microarray experiments in the past, and providing

new mathematical tools to better analyze the results of these experiments. This

manuscript is an attempt to remedy the situation and, as such, addresses some of

the core issues in the proper design of experiments and the analysis of experimental

results. The three problems investigated in this thesis, which appear quite disparate

at first glance, reveal themselves at different stages of genomic analysis and follow

this underlying thread.

In the problem of gene expression analysis, one has to deal with data generated

from a small number of experiments conducted on a large number of genes; the
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presence of small-sample data necessitates the use of non-conventional algorithms

in statistics. There are many sources of error in microarray data, including (give

examples here); one of the least explored such sources stems from the presence of

large numbers of probe sequences on the chip, resulting in unintended probe-target

interactions in multiplexed reactions. Here, competitive hybridization models are

presented and analyzed in an effort to understand and, eventually, compensate for

the effect of these unintended interactions on the experimental results. Finally, the

problem of microarray experiment design is addressed most directly on the example

of HLA typing—a biological problem where a given DNA string must be classified

into one of the known existing types or identified as a representative of a new type.

1.2 Thesis Outline

This thesis is organized as follows. Chapter 2 deals with gene expression analy-

sis. It presents the details of the derivation and analysis of a metric designed to

assess the similarity of a pair of gene expression vectors. The metric is based on

James-Stein shrinkage estimators. The improvement in accuracy of cluster analysis

due to the use of the shrinkage-based metric is evaluated via in silico experiments

and a comparison with two of the currently used similarity metrics on a biological

example. The work described in chapter 2 has been published, co-authored with

Jiawu Feng, Marc Rejali, and Bud Mishra, in its entirety as a technical report

([12]), as well as in short form as a journal paper ([13]). Chapter 3 deals with the

analysis of “errors” due to unintended interactions among targets and probes in a

multiplexed hybridization experiment. While this phenomenon has been observed
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by experimentalists, it has not been adequately explained. A detailed physical

model of the probe-target hybridization process is presented, and pairwise probe

interactions are examined in detail as a means of understanding the “competitive

hybridization” phenomenon. A heuristic based on the thermodynamic parameters

of the hybridization process is presented as well. This heuristic serves to predict

the extent of the competition effects. Simulations based on the models described

explain the observed variation in the signal from a given probe when measured indi-

vidually or in parallel with groups of other probes. The work discussed in chapter 3

was previously introduced as an oral presentation at the 2003 Cold Spring Harbor

Lab Genome Informatics conference and is based on joint research with Michael

Seul, Ghazala Hashmi, and Bud Mishra. Chapter 4 focuses on the process of de-

signing a microarray hybridization experiment for the biological problem of HLA

typing. Discerning the correct HLA type of a given DNA sequence is essential for

determining the compatibility of a donor organ or bone marrow with that of the

recipient, and plays a role in many other biological applications. While contem-

porary methods occasionally employ microarray approaches, they lack optimality.

Here, a graph model on the space of potential probes is presented. The problem

of designing the “best” microarray, given a set of known HLA sequences, is then

formulated mathematically as an optimization problem on the graph model. An

algorithm for obtaining a “best” independent set of at most a specified size that

solves the optimization problem is described. The spatial arrangement of the se-

lected probe set on the chip surface is also discussed. Finally, chapter 5 summarizes

this thesis and suggests directions for future work.

It is suspected that individual chapters of this thesis will appeal to different

4



readers, based on their fields of interest. With this in mind, each main chapter of

this thesis was written to be self-contained, with its own abstract and appendix, so

that each can be read separately from the others.
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Chapter 2

Shrinkage-Based Similarity Metric

for Cluster Analysis of Microarray

Data

ABSTRACT

The current standard correlation coefficient used in the analysis of mi-

croarray data, including gene expression arrays, was introduced in [21].

Its formulation is rather arbitrary. We give a mathematically rigorous

derivation of the correlation coefficient of two gene expression vectors

based on James-Stein Shrinkage estimators. We use the background as-

sumptions described in [21], also taking into account the fact that the

data can be treated as transformed into normal distributions. While [21]

uses zero as an estimator for the expression vector mean µ, we start with

the assumption that for each gene, µ is itself a zero-mean normal random
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variable (with a priori distribution N (0, τ 2)), and use Bayesian analysis

to update that belief, to obtain a posteriori distribution of µ in terms

of the data. The estimator for µ, obtained after shrinkage towards zero,

differs from the mean of the data vectors and ultimately leads to a sta-

tistically robust estimator for correlation coefficients.

To evaluate the effectiveness of shrinkage, we conducted in silico ex-

periments and also compared similarity metrics on a biological example

using the data set from [21]. For the latter, we classified genes involved in

the regulation of yeast cell-cycle functions by computing clusters based

on various definitions of correlation coefficients, including the one using

shrinkage, and contrasting them against clusters based on the activators

known in the literature. In addition, we conducted an extensive com-

putational analysis of the data from [21], empirically testing the perfor-

mance of different values of the shrinkage factor γ and comparing them

to the values of γ corresponding to the three metrics addressed here,

namely, γ = 0 for the Eisen metric, γ = 1 for the Pearson correlation

coefficient, and γ computed from the data for the Shrinkage metric.

The estimated “false-positives” and “false-negatives” from this study

indicate the relative merits of clustering algorithms based on different

statistical correlation coefficients as well as the sensitivity of the clus-

tering algorithm to small perturbations in the correlation coefficients.

These results indicate that using the shrinkage metric improves the ac-

curacy of the analysis.

All derivation steps are described in detail; all mathematical asser-

7



tions used in the derivation are proven in the appendix.

[21] Eisen, M.B., Spellman, P.T., Brown, P.O., and Botstein, D. (1998),

PNAS USA 95, 14863–14868.

2.1 Background

Traditionally, biology has proceeded as an observational science. Robert Hooke,

whose work “Micrographia” of 1665 included the first identification of biological

cells through his microscopical investigations, had said, “The truth is, the science

of Nature has already been too long made only a work of the brain and the fancy.

It is now high time that it should return to the plainness and soundness of obser-

vations on material and obvious things.” Recently, we have seen an unprecedented

progress in our observational and experimental abilities, allowing us to understand

the structure of a largely unobservable transparent cell. The most prominent step

in this direction has been through microarray-based gene expression analysis, pro-

viding us with the ability to quantify the transcriptional states of cells.

The most interesting insight can be obtained from transcriptome abundance

data within a single cell under different experimental conditions. In the absence

of technology to provide one with such a detailed picture, we have to make do

with mRNA collected from a small population of cells, even when individual cells

within the population may not be completely synchronized. Furthermore, these

mRNAs will only give a partial picture, supported only by those genes that we are

8



already familiar with and possibly missing many crucial undiscovered genes. Of

course, without the proteomic data, transcriptomes tell less than half the story.

Nonetheless, it goes without saying that microarrays have already revolutionized

our understanding of biology even though they only provide occasional, noisy, un-

reliable, partial, and occluded snapshots of the transcriptional states of cells.

If one hypothesizes that the number of potential genes involved in cellular pro-

cesses is relatively large compared to the regulatory elements and their effective

combinations responsible for controlling these genes, then the transcriptional state-

space should be rather low-dimensional compared to its apparent dimension. As a

result, understanding this structure accurately from transcriptome data has many

non-trivial implications to functional understanding of the cell. Partitioning genes

into closely related groups has thus become the key mathematical first step in

practically all statistical analyses of microarray data.

Traditionally, algorithms for cluster analysis of genome-wide expression data

from DNA microarray hybridization are based upon statistical properties of gene

expressions and result in organizing genes according to similarity in pattern of gene

expression. These algorithms display the output graphically, often in a binary tree

form, conveying the clustering and the underlying expression data simultaneously.

If two genes belong to a cluster (or, equivalently, if they belong to a subtree of

small depth) then one may infer a common regulatory mechanism for the two genes

or interpret this information as an indication of the status of cellular processes.

Furthermore, coexpression of genes of known function with novel genes may lead

to a discovery process for characterizing unknown or poorly characterized genes. In

general, since false-negatives (where two coexpressed genes are assigned to distinct

9



clusters) may cause the discovery process to ignore useful information for certain

novel genes, and false-positives (where two independent genes are assigned to the

same cluster) may result in noise in the information provided to the subsequent

algorithms used in analyzing regulatory patterns, it is important that the statistical

algorithms for clustering be reasonably robust. Unfortunately, as the microarray

experiments that can be carried out in an academic laboratory for a reasonable cost

are small in number and suffer from experimental noise, often a statistician must

resort to unconventional algorithms to deal with small-sample data.

A popular and one of the earliest clustering algorithms reported in the literature

was introduced in [21]. In this paper, the gene-expression data were collected

on spotted DNA microarrays [43] and were based upon gene expression in the

budding yeast Saccharomyces cerevisiae during the diauxic shift [18], the mitotic

cell division cycle [47], sporulation [14], and temperature and reducing shocks. In

all experiments, RNA from experimental samples (taken at selected times during

the process) was labeled during reverse transcription with the red-fluorescent dye

Cy5 and was mixed with a reference sample labeled in parallel with the green-

fluorescent dye Cy3. After hybridization and appropriate washing steps, separate

images were acquired for each fluorophore, and fluorescence intensity ratios were

obtained for all target elements. The experimental data were given in an M ×
N matrix structure, in which the M rows represented all genes for which data

had been collected, the N columns represented individual array experiments (e.g.,

single time points or conditions), and each entry represented the measured Cy5/Cy3

fluorescence ratio at the corresponding target element on the appropriate array. All

ratio values were log transformed to treat inductions and repressions of identical
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magnitude as numerically equal but opposite in sign. It was assumed that the raw

ratio values followed log-normal distributions and hence, the log-transformed data

followed normal distributions. While our mathematical derivations will rely on this

assumption for the sake of simplicity, we note that our approach can be generalized

in a straightforward manner to deal with other situations where this assumption is

violated.

The gene similarity metric employed was a form of correlation coefficient. Let

Gi be the (log-transformed) primary data for gene G in condition i. For any two

genes X and Y observed over a series of N conditions, the classical similarity score

based upon Pearson correlation coefficient is:

S(X,Y ) =
1

N

N∑
i=1

(
Xi −Xoffset

ΦX

)(
Yi − Yoffset

ΦY

)
,

where

ΦG
2 =

N∑
i=1

(Gi −Goffset)
2

N

and Goffset is the estimated mean of the observations, i.e.,

Goffset = Ḡ =
1

N

N∑
i=1

Gi.

Note that ΦG is simply the (rescaled) estimated standard deviation of the observa-

tions. In the analysis presented in [21], “values of Goffset which are not the average

over observations on G were used when there was an assumed unchanged or ref-

erence state represented by the value of Goffset , against which changes were to be

analyzed; in all of the examples presented there, Goffset was set to 0, corresponding

to a fluorescence ratio of 1.0.” To distinguish this modified correlation coefficient

from the classical Pearson correlation coefficient, we shall refer to it as Eisen corre-

lation coefficient. Our main innovation is in suggesting a different value for Goffset ,
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namely Goffset = γḠ, where γ is allowed to take a value between 0.0 and 1.0. Note

that when γ = 1.0, we have the classical Pearson correlation coefficient and when

γ = 0.0, we have replaced it by Eisen correlation coefficient. For a non-unit value

of γ, the estimator for Goffset = γḠ can be thought of as the unbiased estimator

Ḡ being shrunk towards the believed value for Goffset = 0.0. We address the fol-

lowing questions: What is the optimal value for the shrinkage parameter γ from a

Bayesian point of view? How do the gene expression data cluster as the correlation

coefficient is modified with this optimal shrinkage parameter?

In order to achieve a consistent comparison, we leave the rest of the algorithms

undisturbed. Namely, once the similarity measure has been assumed, we cluster the

genes using the same hierarchical clustering algorithm as the one used by Eisen et

al. Their hierarchical clustering algorithm is based on the centroid-linkage method

(referred to as “average-linkage method” of Sokal and Michener [45] in [21]) and

computes a binary tree (dendrogram) that assembles all the genes at the leaves of

the tree, with each internal node representing possible clusters at different levels.

For any set of M genes, an upper-triangular similarity matrix is computed by using

a similarity metric of the type described above, which contains similarity scores for

all pairs of genes. A node is created joining the most similar pair of genes, and a

gene expression profile is computed for the node by averaging observations for the

joined genes. The similarity matrix is updated with this new node replacing the

two joined elements, and the process is repeated (M − 1) times until only a single

element remains. The modified algorithm has been implemented by the authors

within the “NYUMAD” microarray database system and can be freely downloaded

from: http://bioinformatics.cat.nyu.edu/nyumad/clustering/. As each in-
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ternal node can be labeled by a value representing the similarity between its two

children nodes (i.e., the two elements that were combined to create the internal

node), one can create a set of clusters by simply breaking the tree into subtrees by

eliminating all the internal nodes with labels below a certain predetermined thresh-

old value. The clusters created in this manner were used to compare the effects of

choosing differing similarity measures.

2.2 Model

Recall that a family of correlation coefficients parametrized by 0 ≤ γ ≤ 1 may be

defined as follows:

S(X,Y ) =
1

N

N∑
i=1

(
Xi −Xoffset

ΦX

)(
Yi − Yoffset

ΦY

)
, (2.1)

where

ΦG =

√√√√ 1

N

N∑
i=1

(Gi −Goffset)
2 and (2.2)

Goffset = γḠ for G ∈ {X,Y }

• Pearson Correlation Coefficient uses

Goffset = Ḡ =
1

N

N∑
j=1

Gi for every gene G, or γ = 1.

• Eisen et al. (in [21]) use

Goffset = 0 for every gene G, or γ = 0.

13



• We propose using the general form of equation (2.1) to derive a similarity

metric which is dictated by the data and reduces the occurrence of false-

positives (relative to the Eisen metric) and false-negatives (relative to the

Pearson correlation coefficient).

2.2.1 Motivation and Setup

As mentioned above, the metric used by Eisen et al. in [21] had the form of equation

(2.1) with Goffset set to 0 for every gene G (as a reference state against which to

measure the data). Here, we rigorously examine the mathematical validity of setting

Goffset to 0 arbitrarily. Even if it is initially assumed that each gene G has zero

mean, that assumption must be updated when data becomes available. To this

end, we derive a correlation coefficient formula which is dictated by the data, and

can be justified by a Bayesian argument.

The microarray data is given in the form of the levels of M genes expressed

under N experimental conditions. The data can be viewed as

{{Xij}N
i=1}M

j=1

where M À N and {Xij}N
i=1 is the data vector for gene j.

2.2.2 Derivation

We begin by rewriting S in our notation:

S(Xj, Xk) (2.3)

=
1

N

N∑
i=1

(
Xij − (Xj)offset

Φj

)(
Xik − (Xk)offset

Φk

)
,
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Φj
2 =

1

N

∑
i

(
Xij − (Xj)offset

)2

In the most general setting, we can make the following assumptions on the data

distribution: let all values Xij for gene j have a Normal distribution with mean θj

and standard deviation βj (variance βj
2); i.e.,

Xij ∼ N (θj, βj
2) for i = 1, . . . , N

with j fixed (1 ≤ j ≤ M), where θj is an unknown parameter (taking different

values for different j). To estimate θj, it is convenient to assume that θj is itself a

random variable taking values close to zero:

θj ∼ N (0, τ 2).

The assumed distribution aids us in obtaining the estimate of θj given in (2.14).

For convenience, let us also assume that the data are range-normalized, so that

βj
2 = β2 for every j. If this assumption does not hold on the given data set, it is

easily corrected by scaling each gene vector appropriately. Following common prac-

tice, we adjusted the range to scale to an interval of unit length, i.e., its maximum

and minimum values differ by 1. Thus,

Xij ∼ N (θj, β
2) and θj ∼ N (0, τ 2).

Replacing (Xj)offset in (2.3) by the exact value of the mean θj yields a Clairvoyant

correlation coefficient of Xj and Xk. In reality, since θj is itself a random variable,

it must be estimated from the data. Therefore, to get an explicit formula for

S(Xj, Xk) we must derive estimators θ̂j for all j.

In Pearson correlation coefficient, θj is estimated by the vector mean X ·j; Eisen

correlation coefficient corresponds to replacing θj by 0 for every j, which is equiv-
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alent to assuming θj ∼ N (0, 0) (i.e., τ 2 = 0.) We propose to find an estimate of θj

(call it θ̂j) that takes into account both the prior assumption and the data.

2.2.3 Estimation of θj

First, let us obtain the posterior distribution of θj from the prior N (0, τ 2) and the

data. This derivation can be done either from the Bayesian considerations, or via

the James-Stein Shrinkage estimators (see [25], or [23] for a recent review). Here,

we discuss the former method.

N = 1

Assume initially that N = 1, i.e., we have one data point for each gene, and denote

the variance by σ2 for the moment:

Xj ∼ N (θj, σ
2) (2.4)

θj ∼ N (0, τ 2) (2.5)

For clarity, we denote the probability density function (pdf) of θj by π(·) and the

pdf of Xj by f(·). It is immediate from (2.4) and (2.5) that

π(θj) =
1√
2πτ

exp
(−θj

2/2τ 2
)
,

f(Xj|θj) =
1√
2πσ

exp
(−(Xj − θj)

2/2σ2
)
.

By Bayes’ Rule, the joint pdf of Xj and θj is given by

f(Xj, θj) = f(Xj|θj) π(θj) (2.6)

=
1

2πστ
exp

(
−

[
θj

2

2τ 2
+

(Xj − θj)
2

2σ2

])
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Then f(Xj), the marginal pdf of Xj alone is

f(Xj) = Eθj
f(Xj|θj) =

∫ ∞

θ=−∞
f(Xj|θ)π(θ)dθ

=
1√

2π(σ2 + τ 2)
exp

(
− Xj

2

2(σ2 + τ 2)

)
, (2.7)

where the equality in equation (2.7) is written out in Appendix A.2. It follows that

the posterior distribution of θj, again by Bayes’ Theorem, is given by

π(θj|Xj) =
f(Xj, θj)

f(Xj)

=
f(Xj|θj) π(θj)

f(Xj)
by (2.6)

=
1√

2π σ2τ2

σ2+τ2

exp


−

(
θj − τ2

σ2+τ2 Xj

)2

2
(

σ2τ2

σ2+τ2

)


. (2.8)

(See Appendix A.3 for derivation of (2.8).)

Since this has Normal form, we can read off the mean and variance

E(θj|Xj) =
τ 2

σ2 + τ 2
Xj

=

(
1− σ2

σ2 + τ 2

)
Xj, (2.9)

V ar(θj|Xj) =
σ2τ 2

σ2 + τ 2
.

We can estimate θj by its mean.

N arbitrary

Now, if N > 1 is arbitrary, Xj becomes a vector X·j. It can be easily shown by

using likelihood functions that the vector of values {Xij}N
i=1, with Xij ∼ N (θj, β

2),

can be treated as a single data point Yj = X ·j =
∑N

i=1 Xij/N from the distribution

N (θj, β
2/N) (see Appendix A.4).
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Thus, following the above derivation with σ2 = β2/N , we have a Bayesian

estimator for θj given by E(θj|X·j):

θ̂j =

(
1− β2/N

β2/N + τ 2

)
Yj. (2.10)

Unfortunately, (2.10) cannot be used in (2.3) directly, because τ 2 and β2 are

unknown, so must be estimated from the data.

Estimation of 1/
(
β2/N + τ2

)

Let

W =
M − 2∑M

j=1 Yj
2
. (2.11)

The form of W comes from James-Stein estimation ([25]), but its derivation will

not be discussed here; instead we treat it as an educated guess and verify that it is

indeed an appropriate estimator for 1/ (β2/N + τ 2).

Yj ∼ θj +
β2

N
N (0, 1)

∼ τ 2N (0, 1) +
β2

N
N (0, 1)

∼
(

β2

N
+ τ 2

)
N (0, 1) ∼ N

(
0,

β2

N
+ τ 2

)
(2.12)

The transition in (2.12) is justified in Appendix A.5. Let α2 = β2/N + τ 2. Then

from (2.12) it follows that

Yj√
α2

=
Yj

α
∼ N (0, 1),

and hence
M∑

j=1

Yj
2 = α2

M∑
j=1

(
Yj

α

)2

= α2χ2
M ,
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where χ2
M is a Chi-square random variable with M degrees of freedom. By proper-

ties of the Chi-square distribution and the linearity of expectation,

E

(
α2

∑
Yj

2

)
=

1

M − 2
(see Appendix A.6)

E(W ) = E

(
M − 2∑

Yj
2

)
=

1

α2
=

1
β2

N
+ τ 2

Thus, W is an unbiased estimator of 1/ (β2/N + τ 2), and can be used to replace

1/ (β2/N + τ 2) in (2.10).

Estimation of β2

It can be shown (see Appendix A.7) that

Sj
2 =

1

N − 1

N∑
i=1

(Xij − Yj)
2

is an unbiased estimator for β2 based solely on data from gene j, and that N−1
β2 Sj

2

has Chi-square distribution with (N − 1) degrees of freedom. Since this holds for

every j, we can get a more accurate estimate for β2 by pooling all available data,

i.e., by averaging the estimates for each j:

β̂2 =
1

M

M∑
j=1

Sj
2 =

1

M

M∑
j=1

(
1

N − 1

N∑
i=1

(Xij − Yj)
2

)

=
1

M(N − 1)

M∑
j=1

N∑
i=1

(Xij − Yj)
2. (2.13)

β̂2 is an unbiased estimator for β2, since

E(β̂2) = E

(
1

M

M∑
j=1

Sj
2

)

=
1

M

M∑
j=1

E(Sj
2) =

1

M

M∑
j=1

β2 = β2.

19



Substituting the estimates (2.11) and (2.13) into (2.10), we obtain the explicit

estimate for θj:

θ̂j

=

(
1− 1̂

β2

N + τ2

β̂2

N

)
Yj

=

(
1−W · β̂2

N

)
Yj

=

(
1−

(
M − 2∑M
k=1 Yk

2

)
· 1
N
· 1
M(N − 1)

M∑

k=1

N∑

i=1

(Xik − Yk)2
)

Yj

=

(
1− M − 2

MN(N − 1)
·
∑M

k=1

∑N
i=1 (Xik − Yk)2∑M
k=1 Yk

2

)

︸ ︷︷ ︸
γ

Yj (2.14)

= γX ·j

Finally, we can substitute θ̂j from equation (2.14) into the correlation coefficient

in (2.3) wherever (Xj)offset appears to obtain an explicit formula for S(X·j, X·k).

2.3 Algorithm & Implementation

The implementation of hierarchical clustering proceeds in a greedy manner, always

choosing the most similar pair of elements (starting with genes at the bottom-most

level) and combining them to create a new element. The “expression vector” for

the new element is simply the weighted average of the expression vectors of the two

most similar elements that were combined. This structure of repeated pair-wise

combinations is conveniently represented in a binary tree, whose leaves are the set
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of genes and internal nodes are the elements constructed from the two children

nodes. The algorithm is described below in pseudocode.

2.3.1 Hierarchical clustering pseudocode

Given {{Xij}N
i=1}M

j=1:

Switch:

Pearson: γ = 1;

Eisen: γ = 0;

Shrinkage: {
Compute W = (M − 2)

/∑M
j=1 X ·j

2

Compute β̂2 =
∑M

j=1

∑N
i=1

(
Xij −X ·j

)2
/

(M(N − 1))

γ = 1−W · β̂2/N

}

While (# clusters > 1) do

¦ Compute similarity table:

S(Gj, Gk) =
P

i(Gij−(Gj)offset)(Gik−(Gk)offset)qP
i(Gij−(Gj)offset)

2·Pi(Gik−(Gk)offset)
2 ,

where (G`)offset = γG`.

¦ Find (j∗, k∗) :

S(Gj∗ , Gk∗) ≥ S(Gj, Gk) ∀ clusters j, k

¦ Create new cluster Nj∗k∗

= weighted average of Gj∗ and Gk∗.
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¦ Take out clusters j∗ and k∗.

The implementation of generalized hierarchical clustering with options to choose

different similarity measures has been incorporated into NYUMAD (NYU MicroAr-

ray Database), an integrated system to maintain and analyze biological abundance

data along with associated experimental conditions and protocols. While the ini-

tial goal was to provide a system to manage microarray data, the system has been

designed to store any type of abundance data, including protein levels. This system

uses a relational database management system for the storage of data and has a

flexible database schema that stores abundance data along with general research

data such as experimental conditions and protocols. The database schema is de-

fined using standard SQL (Structured Query Language) and is therefore portable

to any SQL database platform. To enable widespread utility, NYUMAD sup-

ports the MAGE-ML standard ([46]) for the exchange of gene expression data,

defined by the Microarray Gene Expression Data Group (MGED)—web site at

http://www.mged.org/.

There are several ways to access the system: using the NYUMAD Java appli-

cation, through web pages, or through custom applications (for details, see

http://bioinformatics.cat.nyu.edu/nyumad/). Data transfer is affected using

the world wide web (WWW) with the HTTP protocol. The use of the WWW for

communication ensures accessibility from any location.

The graphical user interface (GUI) provided by the Java application facilitates

easy data submission, retrieval, and analysis. The Java application presents data

in a logical manner and allows easy navigation through the data. The GUI also
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allows straightforward updating of existing data and insertion of new data.

NYUMAD supports collaborative research efforts by allowing groups to submit

data from any location (via HTTP) and to view, retrieve, or analyze each other’s

data immediately. Groups can share protocols and divide a large project covering

a wide range of experimental conditions into sub-projects performed by individual

groups.

NYUMAD is a secure repository for both public and private data. Users can

control the visibility of their data so that initially the data might be private but

after the publication of the results, the data can be marked public and made visible

to the larger research community. Public users can log in with a general login ID

without the need for a password and view and retrieve any of the public data.

The system provides a wide range of data analysis and interpretation tools and

algorithms that help in identifying patterns and relationships. A general feature of

NYUMAD is the flexibility for users to build their own queries and utilize their own

parameters, data transformations, and filters where appropriate. Users can retrieve

queried data for input to their own tools or use other tools within NYUMAD—for

example, perform a clustering of their microarray data or determine the statistical

significance of differential expression values for a specific set of genes. Data analysis

tools are supplemented with visualization tools.
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2.4 Results

2.4.1 Mathematical Simulation

To compare the performance of these algorithms, we started with a relatively simple

in silico experiment. In such an experiment, one can create two genes X and Y

and simulate N (about 100) experiments as follows:

Xi = θX + σX(αi(X, Y ) +N (0, 1)), and

Yi = θY + σY (αi(X,Y ) +N (0, 1)),

where αi, chosen from a uniform distribution over a range [L,H] (U(L,H)), is a

“bias term” introducing a correlation (or none if all α’s are zero) between X and

Y . θX ∼ N (0, τ 2) and θY ∼ N (0, τ 2) are the means of X and Y , respectively.

Similarly, σX and σY are the standard deviations for X and Y , respectively.

Note that, with this model

S(X,Y ) =
1

N

N∑
i=1

(Xi − θX)

σX

(Yi − θY )

σY

∼ 1

N

N∑
i=1

(αi +N (0, 1))(αi +N (0, 1))

∼ 1

N

[(
N∑

i=1

α2
i

)
+ χ2

N + 2N (0, 1)
N∑

i=1

αi

]

if the exact values of the mean and variance are used.

We denote the distribution of S by F(µ, δ), where µ is the mean and δ is the

standard deviation.

The model was implemented in Mathematica [48]; the following parameters

were used in the simulation: N = 100, τ ∈ {0.1, 10.0} (representing very low or
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high variability among the genes), σX = σY = 10.0, and α = 0 representing no

correlation between the genes or α ∼ U(0, 1) representing some correlation between

the genes. Once the parameters were fixed for a particular in silico experiment,

the gene-expression vectors for X and Y were generated many thousand times, and

for each pair of vectors Sc(X,Y ), Sp(X,Y ), Se(X, Y ), and Ss(X,Y ) were estimated

by four different algorithms and further examined to see how the estimators of S

varied over these trials. These four different algorithms estimated S according to

equations (2.1), (2.2) as follows: Clairvoyant estimated Sc using the true values of

θX , θY , σX , and σY ; Pearson estimated Sp using the unbiased estimators X̄ and

Ȳ of θX and θY (for Xoffset and Yoffset), respectively; Eisen estimated Se using the

value 0.0 as the estimator of both θX and θY ; and Shrinkage estimated Ss using the

shrunk biased estimators θ̂X and θ̂Y of θX and θY , respectively. In the latter three,

the standard deviation was estimated as in (2.2). The histograms corresponding

to these in silico experiments can be found in Figure 2.1. Our observations can be

summarized as follows:

• When X and Y are not correlated and the noise in the input is low (N =

100, τ = 0.1, and α = 0), Pearson does just as well as Eisen, Shrinkage, or

Clairvoyant:

Sc ∼ F(−0.000297, 0.0996), Sp ∼ F(−0.000269, 0.0999),

Se ∼ F(−0.000254, 0.0994), and Ss ∼ F(−0.000254, 0.0994).

• When X and Y are not correlated but the noise in the input is high (N = 100,

τ = 10.0, and α = 0), Pearson does just as well as Shrinkage or Clairvoyant,

but Eisen introduces far too many false-positives:
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Sc ∼ F(−0.000971, 0.0994), Sp ∼ F(−0.000939, 0.100),

Se ∼ F(−0.00119, 0.354), and Ss ∼ F(−0.000939, 0.100).

• When X and Y are correlated and the noise in the input is low (N = 100,

τ = 0.1, and α ∼ U(0, 1)), Pearson does much more poorly compared to Eisen,

Shrinkage, or Clairvoyant—these three doing equally well; Pearson introduces

too many false-negatives:

Sc ∼ F(0.331, 0.132), Sp ∼ F(0.0755, 0.0992),

Se ∼ F(0.248, 0.0915), and Ss ∼ F(0.245, 0.0915).

• Finally, when X and Y are correlated and the noise in the input is high, the

signal-to-noise ratio becomes extremely poor and all the algorithms fail, i.e.,

introduce errors:

Sc ∼ F(0.333, 0.133), Sp ∼ F(0.0762, 0.100),

Se ∼ F(0.117, 0.368), and Ss ∼ F(0.0762, 0.0999).

In summary, one can conclude that for the same clustering algorithm, Pearson

tends to introduce more false-negatives and Eisen tends to introduce more false-

positives than Shrinkage. Shrinkage, on the other hand, reduces these errors by

combining the good properties of both algorithms.

2.4.2 Biological Example

We then proceeded to test the algorithms on a biological example. We chose a

biologically well-characterized system, and analyzed the clusters of genes involved in

the yeast cell cycle. These clusters were computed using the hierarchical clustering

algorithm with the underlying similarity measure chosen from the following three:
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Figure 2.1: Histograms.

Pearson, Eisen, or Shrinkage. As a reference, the computed clusters were compared

to the ones implied by the common cell-cycle functions and regulatory systems

inferred from the roles of various transcriptional activators (see Figure 2.2).

Note that our experimental analysis is based on the assumption that the group-

ings suggested by the ChIP (Chromatin ImmunoPrecipitation) analysis are, in fact,

correct and thus, provide a direct approach to compare various correlation coeffi-

cients. It is quite likely that the ChIP-based groupings themselves contain many

false relations (both positives and negatives) and corrupt our inference in some un-

known manner. Nonetheless, we observe that the trends of reduced false positives

and negatives in shrinkage analysis with these biological data are consistent with

the analysis based on mathematical simulation and hence, reassuring.
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Figure 2.2: Regulation of cell cycle functions by the activators. [Reproduced with per-

mission from [44] (Copyright 2001, Elsevier)].

In the work of Simon et al. ([44]), genome-wide location analysis was used to

determine how the yeast cell cycle gene expression program is regulated by each

of the nine known cell cycle transcriptional activators: Ace2, Fkh1, Fkh2, Mbp1,

Mcm1, Ndd1, Swi4, Swi5, and Swi6. It was also found that cell cycle transcriptional

activators which function during one stage of the cell cycle regulate transcriptional

activators that function during the next stage. This serial regulation of transcrip-

tional activators together with various functional properties suggests a simple way

of partitioning some selected cell cycle genes into nine clusters, each one character-

ized by a group of transcriptional activators working together and their functions
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(see Table 2.1): for instance, Group 1 is characterized by the activators Swi4 and

Swi6 and the function of budding; Group 2 is characterized by the activators Swi6

and Mbp1 and the function involving DNA replication and repair at the juncture

of G1 and S phases, etc.

Table 2.1: Genes in our data set, grouped by transcriptional activators and cell-cycle

functions.

Activators Genes Functions

1 Swi4, Swi6 Cln1, Cln2, Gic1, Gic2, Msb2, Rsr1,

Bud9, Mnn1, Och1, Exg1, Kre6,

Cwp1

Budding

2 Swi6, Mbp1 Clb5, Clb6, Rnr1, Rad27, Cdc21,

Dun1, Rad51, Cdc45, Mcm2

DNA replication and repair

3 Swi4, Swi6 Htb1, Htb2, Hta1, Hta2, Hta3,

Hho1

Chromatin

4 Fkh1 Hhf1, Hht1, Tel2, Arp7 Chromatin

5 Fkh1 Tem1 Mitosis Control

6 Ndd1, Fkh2, Mcm1 Clb2, Ace2, Swi5, Cdc20 Mitosis Control

7 Ace2, Swi5 Cts1, Egt2 Cytokinesis

8 Mcm1 Mcm3, Mcm6, Cdc6, Cdc46 Pre-replication complex formation

9 Mcm1 Ste2, Far1 Mating

Our initial hypothesis can be summarized as follows: Genes expressed during the

same cell cycle stage, and regulated by the same transcriptional activators should

be in the same cluster. Below we list some of the deviations from the hypothesis

observed in the raw data.
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Possible False-Positives:

• Bud9 (Group 1: Budding) and {Cts1, Egt2} (Group 7: Cytokinesis) are placed

in the same cluster by all three metrics: P49 = S82 ' E47; however, the

Eisen metric also places Exg1 (Group 1) and Cdc6 (Group 8: Pre-replication

complex formation) in the same cluster.

• Mcm2 (Group 2: DNA replication and repair) and Mcm3 (Group 8) are placed

in the same cluster by all three metrics: P10 = S20 ' E73; however, the Eisen

metric places several more genes from different groups in the same cluster:

{Rnr1, Rad27, Cdc21, Dun1, Cdc45} (Group 2), Hta3 (Group 3: Chromatin),

and Mcm6 (Group 8) are also placed in cluster E73.

Possible False-Negatives:

• Group 1: Budding (Table 2.1) is split into four clusters by the Eisen metric:

{Cln1, Cln2, Gic2, Rsr1, Mnn1} ∈ Cluster a (E39), Gic2 ∈ Cluster b (E62),

{Bud9, Exg1} ∈ Cluster c (E47), and {Kre6, Cwp1} ∈ Cluster d (E66);

and into six clusters by both the Shrinkage and Pearson metrics:

{Cln1, Cln2, Gic2, Rsr1, Mnn1} ∈ Cluster a (S3=P66), {Gic1, Kre6} ∈ Clus-

ter b (S39=P17), Msb2 ∈ Cluster c (S24=P71), Bud9 ∈ Cluster d (S82=P49),

Exg1 ∈ Cluster e (S48=P78), and Cwp1 ∈ Cluster f (S8=P4).

Table 2.1 contains those genes from Figure 2.2 that were present in our data

set. The following tables contain these genes grouped into clusters by a hierar-

chical clustering algorithm using the three metrics (Eisen in Table 2.2, Pearson in

Table 2.3, and Shrinkage in Table 2.4) thresholded at a correlation coefficient value
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of 0.60. The choice of the threshold parameter is discussed further in section 2.5.

Genes that have not been grouped with any others at a similarity of 0.60 or higher

are absent from the tables; in the subsequent analysis they are treated as singleton

clusters.

The value γ ' 0.89 estimated from the raw yeast data was surprisingly high,

contrary to the suggestion in [21] that the value γ = 0 performed better than

γ = 1. It also did not yield as great an improvement in the yeast data clusters

as the simulations indicated. This suggested that the true value of γ is closer to

0. Upon closer examination of the data, we observed that the data in its raw

“pre-normalized” form is inconsistent with the assumptions used in deriving γ:

1. The gene vectors are not range-normalized, so βj
2 6= β2 for every j, and

2. The N experiments are not necessarily independent.

2.4.3 Corrections

We attempted to remedy the first flaw by normalizing all gene vectors with re-

spect to range (dividing each entry in gene X by (Xmax − Xmin)), recomputing

the estimated γ value, and repeating the clustering process. As normalized gene

expression data yielded the estimate γ ' 0.91, still too high a value, we conducted

an extensive computational experiment to determine the best empirical γ value by

also clustering with the shrinkage factors of 0.2, 0.4, 0.6, and 0.8. The clusters

taken at the correlation factor cut-off of 0.60, as above, are presented in Tables 2.5,

2.6, 2.7, 2.8, 2.9, 2.10, and 2.11.

To compare the resulting sets of clusters, we introduced the following notation.
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Write each cluster set as follows:

{
x → {{y1, z1}, {y2, z2}, . . . , {ynx , znx}}

}# of groups

x=1

where x denotes the group number (as described in Table 2.1), nx is the number

of clusters group x appears in, and for each cluster j ∈ {1, . . . , nx} there are yj

genes from group x and zj genes from other groups in Table 2.1. A value of “∗” for

zj denotes that cluster j contains additional genes, although none of them are cell

cycle genes; in subsequent computations, this value is treated as 0.

This notation naturally lends itself to a scoring function for measuring the num-

ber of false-positives, number of false-negatives, and total error score, which aids

in the comparison of cluster sets.

FP(γ) =
1

2

∑
x

nx∑
j=1

yj · zj (2.15)

FN(γ) =
∑

x

∑

1≤j<k≤nx

yj · yk (2.16)

Error score(γ) = FP(γ) + FN(γ) (2.17)
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In this notation, the cluster sets with their error scores can be listed as follows:

γ = 0.0(E) =⇒

{1 → {{3, ∗}, {2, 13}, {1, ∗}, {1, ∗},

{1, ∗}, {1, 4}, {1, 0}, {1, 0}, {1, 0}},

2 → {{8, 7}, {1, 1}},

3 → {{5, 2}, {1, 14}},

4 → {{2, 5}, {1, 14}, {1, ∗}},

5 → {{1, 3}},

6 → {{3, 1}, {1, 14}},

7 → {{2, 3}},

8 → {{2, 13}, {1, 1}, {1, 0}},

9 → {{2, 3}}

}

Error score(0.0) = 97 + 88 = 185
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γ = 0.2 =⇒

{1 → {{4, ∗}, {1, 7}, {1, ∗}, {1, ∗},

{1, 1}, {1, 2}, {1, 0}, {1, 0}, {1, 0}},

2 → {{7, 1}, {1, 5}, {1, 1}},

3 → {{5, 2}, {1, 5}},

4 → {{2, 5}, {1, 5}, {1, 1}},

5 → {{1, 3}},

6 → {{3, 1}, {1, 5}},

7 → {{2, 1}},

8 → {{2, 4}, {1, 1}, {1, 0}},

9 → {{1, ∗}, {1, ∗}}

}

Error score(0.2) = 38 + 94 = 132
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γ = 0.4 =⇒

{1 → {{4, ∗}, {1, 13}, {1, ∗}, {1, ∗},

{2, ∗}, {1, 2}, {1, 0}, {1, 0}},

2 → {{8, 6}, {1, 1}},

3 → {{5, 2}, {1, 13}},

4 → {{2, 5}, {1, 13}, {1, ∗}},

5 → {{1, 3}},

6 → {{3, 1}, {1, 13}},

7 → {{2, 1}},

8 → {{2, 12}, {1, ∗}, {1, 1}},

9 → {{1, ∗}, {1, ∗}}}

Error score(0.4) = 78 + 86 = 164
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γ = 0.6 =⇒

{1 → {{4, ∗}, {1, 13}, {1, ∗}, {1, ∗},

{2, ∗}, {1, 2}, {1, 0}, {1, 0}},

2 → {{8, 6}, {1, 1}},

3 → {{5, 2}, {1, 13}},

4 → {{2, 5}, {1, 13}, {1, ∗}},

5 → {{1, 0}},

6 → {{3, ∗}, {1, 13}},

7 → {{2, 1}},

8 → {{2, 12}, {1, 1}, {1, 0}},

9 → {{1, ∗}, {1, ∗}}

}

Error score(0.6) = 75 + 86 = 161
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γ = 0.8 =⇒

{1 → {{4, ∗}, {1, 13}, {1, ∗}, {1, ∗},

{1, ∗}, {2, ∗}, {1, 2}, {1, 0}},

2 → {{8, 6}, {1, 1}},

3 → {{5, 2}, {1, 13}},

4 → {{2, 5}, {1, 13}, {1, ∗}},

5 → {{1, 0}},

6 → {{3, ∗}, {1, 13}},

7 → {{2, 1}},

8 → {{2, 12}, {1, 1}, {1, 0}},

9 → {{1, ∗}, {1, ∗}}

}

Error score(0.8) = 75 + 86 = 161
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γ = 0.91(S) =⇒

{1 → {{4, ∗}, {1, 13}{1, ∗}, {1, ∗},

{1, ∗}, {2, ∗}, {1, 2}, {1, 0}},

2 → {{8, 6}, {1, 1}},

3 → {{5, 2}, {1, 13}},

4 → {{2, 5}, {1, 13}, {1, ∗}},

5 → {{1, 0}},

6 → {{3, ∗}, {1, 13}},

7 → {{2, 1}},

8 → {{2, 12}, {1, 1}, {1, 0}},

9 → {{1, ∗}, {1, ∗}}

}

Error score(0.91) = 75 + 86 = 161
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γ = 1.0(P ) =⇒

{1 → {{4, ∗}, {1, 13}, {1, ∗}, {1, ∗},

{1, ∗}, {2, ∗}, {1, 2}, {1, 0}},

2 → {{8, 6}, {1, 1}},

3 → {{5, 2}, {1, 13}},

4 → {{2, 5}, {1, 13}, {1, ∗}},

5 → {{1, 0}},

6 → {{3, ∗}, {1, 13}},

7 → {{2, 1}},

8 → {{2, 12}, {1, 1}, {1, 0}},

9 → {{1, ∗}, {1, ∗}}

}

Error score(1.0) = 75 + 86 = 161

Clearly, in this notation, γ values of 0.8, 0.91, and 1.0 give identical cluster

groupings, and the best error score is attained at γ = 0.2.

To improve the estimated value of γ, we proceeded to correct the second flaw

due to the statistical dependence among the experiments. We sought to reduce the

effective number of experiments by subsampling from the set of all (possibly corre-

lated) experiments—the candidates were chosen via clustering all the experiments,

i.e., columns of the data matrix, and then selecting one representative experiment

from each cluster of experiments. We then clustered the subsampled data, once

again using the cut-off correlation value of 0.60. The resulting cluster sets under
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the Eisen, Shrinkage, and Pearson metrics are given in Tables 2.12, 2.13, and 2.14,

respectively.

The subsampled data yielded the lower estimated value γ ' 0.66. In our set

notation, the resulting clusters with the corresponding error scores can be written

as follows:

γ = 0.0(E) =⇒

{1 → {{6, 23}, {2, ∗}, {2, 5}, {1, ∗}, {1, ∗}},

2 → {{7, 22}, {2, 5}},

3 → {{5, 24}, {1, 6}},

4 → {{3, 26}, {1, ∗}},

5 → {{1, 28}},

6 → {{3, 26}, {1, 6}},

7 → {{1, ∗}, {1, 28}},

8 → {{3, 26}, {1, 6}},

9 → {{1, ∗}, {1, ∗}}

}

Error score(0.0) = 370 + 79 = 449
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γ = 0.66(S) =⇒

{1 → {{6, 6}, {3, 2}, {2, 5}, {1, ∗}},

2 → {{6, 6}, {2, 5}, {1, 1}},

3 → {{5, 2}, {1, ∗}},

4 → {{2, 5}, {1, 3}, {1, 6}},

5 → {{1, ∗}},

6 → {{3, 1}, {1, 6}},

7 → {{1, ∗}, {1, 4}},

8 → {{1, ∗}, {1, 1}, {1, 4}, {1, 6}},

9 → {{1, ∗}, {1, ∗}}

}

Error score(0.66) = 76 + 88 = 164
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γ = 1.0(P ) =⇒

{1 → {{3, 6}, {2, ∗}, {2, 1}, {1, ∗},

{1, ∗}, {1, ∗}, {1, 5}, {1, 5}},

2 → {{5, 4}, {2, 4}, {1, 2}, {1, 7}},

3 → {{5, 3}, {1, 5}},

4 → {{2, 6}, {1, ∗}, {1, 1}},

5 → {{1, ∗}},

6 → {{3, 3}, {1, 5}},

7 → {{1, ∗}, {1, 5}},

8 → {{1, 1}, {1, 5}, {1, 5}, {1, 8}},

9 → {{1, ∗}, {1, ∗}}

}

Error score(1.0) = 69 + 107 = 176

From the tables for the range-normalized, subsampled yeast data, as well as

by comparing the error scores, one can conclude that for the same clustering al-

gorithm and threshold value, Pearson tends to introduce more false-negatives and

Eisen tends to introduce more false-positives than Shrinkage, as Shrinkage reduces

these errors by combining the good properties of both algorithms. This observa-

tion is consistent with our mathematical analysis and the simulation presented in

section 2.4.1.
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2.5 Discussion

Microarray-based genomic analysis and other similar high-throughput methods

have begun to occupy an increasingly important role in biology, as they have helped

to create a visual image of the state-space trajectories at the core of the cellular

processes. This analysis will address directly to the observational nature of the

“new” biology. As a result, we need to develop our ability to “see,” accurately

and reproducibly, the information in the massive amount of quantitative measure-

ments produced by these approaches—or be able to ascertain when what we “see”

is unreliable and forms a poor basis for proposing novel hypotheses. Our investi-

gation demonstrates the fragility of many of these analysis algorithms when used

in the context of a small number of experiments. In particular, we see that a small

perturbation of, or a small error in, the estimation of a parameter (the shrinkage

parameter) has a significant effect on the overall conclusion. The errors in the es-

timators manifest themselves by missing certain biological relations between two

genes (false-negatives) or by proposing phantom relations between two otherwise

unrelated genes (false-positives).

A global picture of these interactions can be seen in Figure 2.3, the Receiver

Operator Characteristic (ROC) figure, with each curve parametrized by the cut-off

threshold in the range of [−1, 1]. An ROC curve ([20]) for a given metric plots

sensitivity against (1−specificity), where

Sensitivity = fraction of positives detected by a metric

=
TP(γ)

TP(γ) + FN(γ)
,
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Specificity = fraction of negatives detected by a metric

=
TN(γ)

TN(γ) + FP(γ)
,

and TP(γ), FN(γ), FP(γ), and TN(γ) denote the number of True Positives, False

Negatives, False Positives, and True Negatives, respectively, arising from a metric

associated with a given γ. (Recall that γ is 0.0 for Eisen, 1.0 for Pearson, and is

computed according to (2.14) for Shrinkage, which yields 0.66 on this data set.)

For each pair of genes, {j, k}, we define these events using our hypothesis (see

section 2.4.2) as a measure of truth:

TP: {j, k} are in the same group (see Table 2.1) and {j, k} are placed in the same

cluster;

FP: {j, k} are in different groups, but {j, k} are placed in the same cluster;

TN: {j, k} are in different groups and {j, k} are placed in different clusters; and

FN: {j, k} are in the same group, but {j, k} are placed in different clusters.

FP(γ) and FN(γ) were already defined in equations (2.15) and (2.16), respectively,

and we define

TP(γ) =
∑

x

nx∑
j=1

(
yj

2

)
(2.18)

and

TN(γ) = Total− (TP(γ) + FN(γ) + FP(γ)) (2.19)

where Total=
(
44
2

)
= 946 is the total # of gene pairs {j, k} in Table 2.1.

The ROC figure suggests the best threshold to use for each metric, and can also

be used to select the best metric to use for a particular sensitivity.
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Figure 2.3: Receiver Operator Characteristic curves. Each curve is parametrized by the

cut-off value θ ∈ {1.0, 0.95, . . . ,−1.0}

The dependence of the error scores on the threshold can be more clearly seen

from Figure 2.4. It shows that the conclusions we draw in section 2.4.3 hold for a

wide range of threshold values, and hence a threshold value of 0.60 is a reasonable

representative value.

As a result, in order to study the clustering algorithms and their effectiveness,

one may ask the following questions. If one must err, is it better to err on the

side of more false-positives or more false-negatives? What are the relative costs of

these two kinds of errors? In general, since false-negatives may cause the inference

process to ignore useful information for certain novel genes, and since false-positives

may result in noise in the information provided to the algorithms used in analyzing

regulatory patterns, intelligent answers to our questions depend crucially on how
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Figure 2.4: FN and FP curves, plotted as functions of θ.

the cluster information is used in the subsequent discovery processes.
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Table 2.2: Eisen Clusters

E39 Swi4/Swi6 Cln1, Cln2, Gic2, Rsr1, Mnn1

E62 Swi4/Swi6 Gic1

E47 Swi4/Swi6 Bud9, Exg1

Ace2/Swi5 Cts1, Egt2

Mcm1 Cdc6

E66 Swi4/Swi6 Kre6, Cwp1

E71 Swi6/Mbp1 Clb5, Clb6, Rad51

Fkh1 Tel2

Ndd1/Fkh2/Mcm1 Cdc20

Mcm1 Cdc46

E73 Swi6/Mbp1 Rnr1, Rad27, Cdc21, Dun1, Cdc45, Mcm2

Swi4/Swi6 Hta3

Mcm1 Mcm3, Mcm6

E63 Swi4/Swi6 Htb1, Htb2, Hta1, Hta2, Hho1

Fkh1 Hhf1, Hht1

E32 Fkh1 Arp7

E38 Fkh1 Tem1

Ndd1/Fkh2/Mcm1 Clb2, Ace2, Swi5

E51 Mcm1 Ste2, Far1
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Table 2.3: Pearson Clusters

P66 Swi4/Swi6 Cln1, Cln2, Gic2, Rsr1, Mnn1

P17 Swi4/Swi6 Gic1, Kre6

P71 Swi4/Swi6 Msb2

P49 Swi4/Swi6 Bud9

Ace2/Swi5 Cts1, Egt2

P78 Swi4/Swi6 Exg1

P4 Swi4/Swi6 Cwp1

P12 Swi6/Mbp1 Clb5, Clb6, Rnr1, Cdc21, Dun1, Rad51, Cdc45

Swi4/Swi6 Hta3

Fkh1 Tel2

Ndd1/Fkh2/Mcm1 Cdc20

Mcm1 Mcm6, Cdc46

P10 Swi6/Mbp1 Mcm2

Mcm1 Mcm3

P54 Swi4/Swi6 Htb1, Htb2, Hta1, Hta2, Hho1

Fkh1 Hhf1, Hht1

P37 Fkh1 Arp7

P16 Ndd1/Fkh2/Mcm1 Clb2, Ace2, Swi5

P50 Mcm1 Ste2, Far1
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Table 2.4: Shrinkage Clusters

S3 Swi4/Swi6 Cln1, Cln2, Gic2, Rsr1, Mnn1

S39 Swi4/Swi6 Gic1, Kre6

S24 Swi4/Swi6 Msb2

S82 Swi4/Swi6 Bud9

Ace2/Swi5 Cts1, Egt2

S48 Swi4/Swi6 Exg1

S8 Swi4/Swi6 Cwp1

S14 Swi6/Mbp1 Clb5, Clb6, Rnr1, Cdc21, Dun1, Rad51, Cdc45

Fkh1 Tel2

Ndd1/Fkh2/Mcm1 Cdc20

Mcm1 Mcm6, Cdc46

S20 Swi6/Mbp1 Mcm2

Mcm1 Mcm3

S4 Swi4/Swi6 Htb1, Htb2, Hta1, Hta2, Hho1

Fkh1 Hhf1, Hht1

S13 Swi4/Swi6 Hta3

S63 Fkh1 Arp7

S22 Ndd1/Fkh2/Mcm1 Clb2, Ace2, Swi5

S83 Mcm1 Ste2, Far1
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Table 2.5: RN Data, γ = 0.0 (Eisen Clusters)

E8 Swi4/Swi6 Cln1, Msb2, Mnn1

E71 Swi4/Swi6 Cln2, Rsr1

Swi6/Mbp1 Clb5, Clb6, Rnr1, Rad27, Cdc21, Dun1, Rad51, Cdc45

Swi4/Swi6 Hta3

Fkh1 Tel2

Ndd1/Fkh2/Mcm1 Cdc20

Mcm1 Mcm6, Cdc46

E14 Swi4/Swi6 Gic1

E17 Swi4/Swi6 Bud9

Ace2/Swi5 Cts1, Egt2

Mcm1 Ste2, Far1

E16 Swi4/Swi6 Exg1

E59 Swi4/Swi6 Kre6

E18 Swi6/Mbp1 Mcm2

Mcm1 Mcm3

E86 Swi4/Swi6 Htb1, Htb2, Hta1, Hta2, Hho1

Fkh1 Hhf1, Hht1

E10 Fkh1 Arp7

E19 Fkh1 Tem1

Ndd1/Fkh2/Mcm1 Clb2, Ace2, Swi5

E11 Mcm1 Cdc6
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Table 2.6: Range-normalized data, γ = 0.2

S0.259 Swi4/Swi6 Cln1, Gic2, Rsr1, Mnn1

S0.226 Swi4/Swi6 Cln2

Swi6/Mbp1 Clb6, Rnr1, Rad27, Cdc21, Dun1, Rad51, Cdc45

S0.223 Swi4/Swi6 Gic1

S0.258 Swi4/Swi6 Bud9

Ace2/Swi5 Cts1, Egt2

S0.257 Swi4/Swi6 Exg1

Fkh1 Arp7

S0.261 Swi4/Swi6 Kre6

S0.218 Swi6/Mbp1 Clb5

Swi4/Swi6 Hta3

Fkh1 Tel2

Ndd1/Fkh2/Mcm1 Cdc20

Mcm1 Mcm6, Cdc46

S0.228 Swi6/Mbp1 Mcm2

Mcm1 Mcm3

S0.225 Swi4/Swi6 Htb1, Htb2, Hta1, Hta2, Hho1

Fkh1 Hhf1, Hht1

S0.229 Fkh1 Tem1

Ndd1/Fkh2/Mcm1 Clb2, Ace2, Swi5

S0.24 Mcm1 Ste2

S0.255 Mcm1 Far1

51



Table 2.7: Range-normalized data, γ = 0.4

S0.464 Swi4/Swi6 Cln1, Gic2, Rsr1, Mnn1

S0.413 Swi4/Swi6 Cln2

Swi6/Mbp1 Clb5, Clb6, Rnr1, Rad27, Cdc21, Dun1, Rad51, Cdc45

Swi4/Swi6 Hta3

Fkh1 Tel2

Ndd1/Fkh2/Mcm1 Cdc20

Mcm1 Mcm6, Cdc46

S0.444 Swi4/Swi6 Gic1, Kre6

S0.427 Swi4/Swi6 Msb2

S0.446 Swi4/Swi6 Bud9

Ace2/Swi5 Cts1, Egt2

S0.473 Swi4/Swi6 Exg1

S0.42 Swi6/Mbp1 Mcm2

Mcm1 Mcm3

S0.448 Swi4/Swi6 Htb1, Htb2, Hta1, Hta2, Hho1

Fkh1 Hhf1, Hht1

S0.426 Fkh1 Arp7

S0.425 Fkh1 Tem1

Ndd1/Fkh2/Mcm1 Clb2, Ace2, Swi5

S0.416 Mcm1 Cdc6

S0.447 Mcm1 Ste2

S0.458 Mcm1 Far1
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Table 2.8: Range-normalized data, γ = 0.6

S0.634 Swi4/Swi6 Cln1, Gic2, Rsr1, Mnn1

S0.677 Swi4/Swi6 Cln2

Swi6/Mbp1 Clb5, Clb6, Rnr1, Rad27, Cdc21, Dun1, Rad51, Cdc45

Swi4/Swi6 Hta3

Fkh1 Tel2

Ndd1/Fkh2/Mcm1 Cdc20

Mcm1 Mcm6, Cdc46

S0.635 Swi4/Swi6 Gic1, Kre6

S0.647 Swi4/Swi6 Msb2

S0.662 Swi4/Swi6 Bud9

Ace2/Swi5 Cts1, Egt2

S0.620 Swi4/Swi6 Exg1

S0.673 Swi6/Mbp1 Mcm2

Mcm1 Mcm3

S0.691 Swi4/Swi6 Htb1, Htb2, Hta1, Hta2, Hho1

Fkh1 Hhf1, Hht1

S0.648 Fkh1 Arp7

S0.637 Ndd1/Fkh2/Mcm1 Clb2, Ace2, Swi5

S0.664 Mcm1 Ste2

S0.663 Mcm1 Far1
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Table 2.9: Range-normalized data, γ = 0.8

S0.851 Swi4/Swi6 Cln1, Gic2, Rsr1, Mnn1

S0.87 Swi4/Swi6 Cln2

Swi6/Mbp1 Clb5, Clb6, Rnr1, Rad27, Cdc21, Dun1, Rad51, Cdc45

Swi4/Swi6 Hta3

Fkh1 Tel2

Ndd1/Fkh2/Mcm1 Cdc20

Mcm1 Mcm6, Cdc46

S0.864 Swi4/Swi6 Gic1, Kre6

S0.890 Swi4/Swi6 Msb2

S0.831 Swi4/Swi6 Bud9

Ace2/Swi5 Cts1, Egt2

S0.843 Swi4/Swi6 Exg1

S0.865 Swi4/Swi6 Cwp1

S0.813 Swi6/Mbp1 Mcm2

Mcm1 Mcm3

S0.817 Swi4/Swi6 Htb1, Htb2, Hta1, Hta2, Hho1

Fkh1 Hhf1, Hht1

S0.876 Fkh1 Arp7

S0.874 Ndd1/Fkh2/Mcm1 Clb2, Ace2, Swi5

S0.833 Mcm1 Ste2

S0.832 Mcm1 Far1
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Table 2.10: RN Data, γ = 0.91 (Shrinkage Clusters)

S49 Swi4/Swi6 Cln1, Gic2, Rsr1, Mnn1

S73 Swi4/Swi6 Cln2

Swi6/Mbp1 Clb5, Clb6, Rnr1, Rad27, Cdc21, Dun1, Rad51, Cdc45

Swi4/Swi6 Hta3

Fkh1 Tel2

Ndd1/Fkh2/Mcm1 Cdc20

Mcm1 Mcm6, Cdc46

S45 Swi4/Swi6 Gic1, Kre6

S15 Swi4/Swi6 Msb2

S90 Swi4/Swi6 Bud9

Ace2/Swi5 Cts1, Egt2

S56 Swi4/Swi6 Exg1

S46 Swi4/Swi6 Cwp1

S71 Swi6/Mbp1 Mcm2

Mcm1 Mcm3

S61 Swi4/Swi6 Htb1, Htb2, Hta1, Hta2, Hho1

Fkh1 Hhf1, Hht1

S37 Fkh1 Arp7

S7 Ndd1/Fkh2/Mcm1 Clb2, Ace2, Swi5

S91 Mcm1 Ste2

S92 Mcm1 Far1
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Table 2.11: RN Data, γ = 1.0 (Pearson Clusters)

P10 Swi4/Swi6 Cln1, Gic2, Rsr1, Mnn1

P68 Swi4/Swi6 Cln2

Swi6/Mbp1 Clb5, Clb6, Rnr1, Rad27, Cdc21, Dun1, Rad51, Cdc45

Swi4/Swi6 Hta3

Fkh1 Tel2

Ndd1/Fkh2/Mcm1 Cdc20

Mcm1 Mcm6, Cdc46

P1 Swi4/Swi6 Gic1, Kre6

P39 Swi4/Swi6 Msb2

P66 Swi4/Swi6 Bud9

Ace2/Swi5 Cts1, Egt2

P20 Swi4/Swi6 Exg1

P2 Swi4/Swi6 Cwp1

P72 Swi6/Mbp1 Mcm2

Mcm1 Mcm3

P53 Swi4/Swi6 Htb1, Htb2, Hta1, Hta2, Hho1

Fkh1 Hhf1, Hht1

P12 Fkh1 Arp7

P46 Ndd1/Fkh2/Mcm1 Clb2, Ace2, Swi5

P64 Mcm1 Ste2

P65 Mcm1 Far1
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Table 2.12: RN Subsampled Data, γ = 0.0 (Eisen)

E58 Swi4/Swi6 Cln1, Och1

E68 Swi4/Swi6 Cln2, Msb2, Rsr1, Bud9, Mnn1, Exg1

Swi6/Mbp1 Rnr1, Rad27, Cdc21, Dun1, Rad51, Cdc45, Mcm2

Swi4/Swi6 Htb1, Htb2, Hta1, Hta2, Hho1

Fkh1 Hhf1, Hht1, Arp7

Fkh1 Tem1

Ndd1/Fkh2/Mcm1 Clb2, Ace2, Swi5

Ace2/Swi5 Egt2

Mcm1 Mcm3, Mcm6, Cdc6

E29 Swi4/Swi6 Gic1

E64 Swi4/Swi6 Gic2

E33 Swi4/Swi6 Kre6, Cwp1

Swi6/Mbp1 Clb5, Clb6

Swi4/Swi6 Hta3

Ndd1/Fkh2/Mcm1 Cdc20

Mcm1 Cdc46

E73 Fkh1 Tel2

E23 Ace2/Swi5 Cts1

E43 Mcm1 Ste2

E66 Mcm1 Far1
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Table 2.13: RN Subsampled Data, γ = 0.66 (Shrinkage)

S49 Swi4/Swi6 Cln1, Bud9, Och1

Ace2/Swi5 Egt2

Mcm1 Cdc6

S6 Swi4/Swi6 Cln2, Gic2, Msb2, Rsr1, Mnn1, Exg1

Swi6/Mbp1 Rnr1, Rad27, Cdc21, Dun1, Rad51, Cdc45

S32 Swi4/Swi6 Gic1

S65 Swi4/Swi6 Kre6, Cwp1

Swi6/Mbp1 Clb5, Clb6

Fkh1 Tel2

Ndd1/Fkh2/Mcm1 Cdc20

Mcm1 Cdc46

S15 Swi6/Mbp1 Mcm2

Mcm1 Mcm3

S11 Swi4/Swi6 Htb1, Htb2, Hta1, Hta2, Hho1

Fkh1 Hhf1, Hht1

S60 Swi4/Swi6 Hta3

S30 Fkh1 Arp7

Ndd1/Fkh2/Mcm1 Clb2, Ace2, Swi5

S62 Fkh1 Tem1

S53 Ace2/Swi5 Cts1

S14 Mcm1 Mcm6

S35 Mcm1 Ste2

S36 Mcm1 Far1
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Table 2.14: RN Subsampled Data, γ = 1.0 (Pearson)

P1 Swi4/Swi6 Cln1, Och1

P15 Swi4/Swi6 Cln2, Rsr1, Mnn1

Swi6/Mbp1 Cdc21, Dun1, Rad51, Cdc45, Mcm2

Mcm1 Mcm3

P29 Swi4/Swi6 Gic1

P2 Swi4/Swi6 Gic2

P3 Swi4/Swi6 Msb2, Exg1

Swi6/Mbp1 Rnr1

P51 Swi4/Swi6 Bud9

Ndd1/Fkh2/Mcm1 Clb2, Ace2, Swi5

Ace2/Swi5 Egt2

Mcm1 Cdc6

P11 Swi4/Swi6 Kre6

P62 Swi4/Swi6 Cwp1

Swi6/Mbp1 Clb5, Clb6

Swi4/Swi6 Hta3

Ndd1/Fkh2/Mcm1 Cdc20

Mcm1 Cdc46

P49 Swi6/Mbp1 Rad27

Swi4/Swi6 Htb1, Htb2, Hta1, Hta2, Hho1

Fkh1 Hhf1, Hht1

P10 Fkh1 Tel2

Mcm1 Mcm6

P23 Fkh1 Arp7

P50 Fkh1 Tem1

P69 Ace2/Swi5 Cts1

P42 Mcm1 Ste2

P13 Mcm1 Far1
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Chapter 3

Hybridization Models

ABSTRACT

Microarray technology, in its simplest form, allows one to gather

abundance data for target DNA molecules, associated with genomes or

gene-expressions, and relies on hybridizing the target to many short

probe oligonucleotides arrayed on a surface. While for such multiplexed

reactions conditions are optimized to make the most of each individ-

ual probe-target interaction, subsequent analysis of these experiments

is based on the implicit assumption that a given experiment gives the

same result regardless of whether it was conducted in isolation or in

parallel with many others. It has been discussed in the literature that

this assumption is frequently false, and its validity depends on the types

of probes and their interactions with each other. We present a detailed

physical model of hybridization as a means of understanding probe inter-

actions in a multiplexed reaction. The model is formulated as a system
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of ordinary differential equations (ODE’s) describing kinetic mass action

and conservation-of-mass equations completing the system.

We examine pair-wise probe interactions in detail and present a model

of “competition” between the probes for the target—especially, when

target is in short supply. These effects are shown to be predictable

from the affinity constants for each of the four probe sequences involved,

namely, the match and mismatch for both probes. These affinity con-

stants are calculated from the thermodynamic parameters such as the

free energy of hybridization, which are in turn computed according to

the nearest neighbor (NN) model for each probe and target sequence.

Simulations based on the competitive hybridization model explain the

observed variability in the signal of a given probe when measured in par-

allel with different groupings of other probes or individually. The results

of the simulations are used for experiment design and pooling strategies,

based on which probes have been shown to have a strong effect on each

other’s signal in the in silico experiment. These results are aimed at bet-

ter design of multiplexed reactions on arrays used in genotyping (e.g.,

HLA typing) and mutation analysis (e.g., cystic fibrosis).

3.1 Preliminary

Recognition of a target nucleic acid and analysis of its composition can be carried

out by hybridization based on complementary base pairing with a suitably designed
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much shorter probe oligonucleotide. In essence, the presence of one of several

possible known “messages” in the target is detected by checking if a population of

identical targets in solution binds, under suitable thermodynamic conditions, to the

probe molecules encoding a sequence, designed to be complementary to a message.

Furthermore, a more precise quantitative answer can be obtained if other “control”

probes are also mixed in with the designed probe in a well-controlled proportion

and sharing similar thermodynamic properties.

Many recent advances in genome analysis, detection of polymorphisms, molec-

ular karyotyping, and gene-expression analysis have relied on our abilities to con-

duct high-throughput multiplexed hybridization involving thousands or millions of

probes on a surface (e.g., gene-chips and microarrays) and then, interpret the result-

ing assay readings. Thus, the reliability of the final computational interpretation

of the data depends on understanding the errors due to unintended interactions

among targets and probes, as probes and targets are multiplexed.

In particular, we focus on a mathematical analysis of “competitive hybridiza-

tion,” a phenomenon that has been observed in experimental data, but not ade-

quately explained. In the following simple example of this phenomenon, a target

consisting of possibly two distinct messages mA and mB can be characterized by

separately hybridizing the target with either a mixture of specific probes pmA and

control probes mmA or a mixture of specific probes pmB and control probes mmB,

respectively. In either case the ratio of specific signal to the control signal, obtained

from each separate experiment, indicates how often either message is present. On

the other hand, contrary to one’s expectations, if the two messages were queried

by ratios of the respective signals in a multiplexed experiment consisting of all four
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probes pmA, mmA, pmB, and mmB, one finds these ratios to differ from their val-

ues in the earlier experiments and by amounts that cannot simply be explained

by the statistical noise. In particular, if one of the ratio values decreases severely,

the resulting false negative errors will yield a catastrophic failure of the entire

multiplexed assay. Clearly, the situation worsens precipitously as the number of

multiplexed probes is increased to any realistic number. Furthermore, it becomes

important to ask whether such a multiplexed assay can be rescued by judicious

choice of the selected probes and the thermodynamic parameters.

3.2 Setup

More specifically, we consider the following experimental setup: Probes are bound

to encoded microparticles (e.g., “beads”) whose sizes are relatively large compared

to the size of the probes. We assume that there are thousands of copies of the same

probe attached to a single bead, and that the beads are spaced on a planar surface

far enough apart in order to ensure that a single target strand may only hybridize

to probes on a single bead. Thus, for all intends and purposes, this assumption

implies that the only possible complexes involve one target and one probe. The

targets are obtained from a longer DNA, by PCR amplification with two primers

to select clones of a region that are subjected to further characterization.

Let T be a target with a single region perfectly complementary to probe P11

and another region perfectly complementary to probe P12.

T
P̃11 P̃12

Let P01 differ from P11 in one base (i.e, the Hamming distance between P01 and
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P11 equals to 1, H(P01, P11) = 1). If P11 and P01 are the only probes present, we

can expect that when we compare the concentration of the P11 probes bound to

T (denoted [TP11]) to the concentration of the P01 probes bound to T (denoted

[TP01]) the resulting ratio to be large, i.e.,

[TP11]

[TP01]
À 1,

since their free energies are chosen to satisfy ∆G(P01) < ∆G(P11). P01 clearly

“competes” with P11 for the target T .

Consider yet another probe, P02, that differs from P11 in one base as well

(H(P11, P02) = 1), but at a location different from the one in P01 (H(P01, P02) = 2).

Then P02 also competes with P11, but not as much with P01, since H(P01, P02) = 2.

Thus, in the presence of P02, we expect [TP11]
[TP01]

to decrease, since [TP01] does not de-

crease much, but [TP11] does. However, in the presence of all four probes P11, P01,

P12, and P02, the analysis of the resulting “mutual competitions” poses a non-trivial

problem.

3.3 Dynamics

A mathematical model to analyze the dynamics involved in a setup like the earlier

one is described below. As before, we assume that the steric effects prevent multiple

probes from hybridizing to a single target strand (as probes are bound to large

beads).
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3.3.1 Full Model

We may observe a target strand T in one of the following nine possible states :

(1) T (Target is unbound.)

(2) TP11
1, (3) TP01

1, (4) TP12
2, (5) TP02

2

(Target is bound by “specific” hybridization.)

(8) TP11
2, (9) TP01

2, (6) TP12
1, (7) TP02

1

(Target is bound by “non-specific” hybridization.)

Bound target states have form TPij
k, where j ∈ {1, 2} is the probe index,

i =





1 for matched probe,

0 for mismatch probe,

and k ∈ {1, 2} is the binding site. States within each category are numbered

“left-to-right” w.r.t. location on the target.

State Transition Diagram
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The set of reversible reactions operating between unbound and bound states

can be written as shown below, where the forward and backward reaction rates are

indicated with ki,j and kj,i, respectively. While the reaction rates themselves are

difficult to compute, the ratios (affinity constants, Kj
i = ki,j/kj,i) may be computed

from purely thermodynamic considerations, and are sufficient for the “equilibrium

analysis.”

T + P11

k1,2−−→←−−
k2,1

TP11
1 T + P12

k1,6−−→←−−
k6,1

TP12
1

T + P01

k1,3−−→←−−
k3,1

TP01
1 T + P02

k1,7−−→←−−
k7,1

TP02
1

T + P12

k1,4−−→←−−
k4,1

TP12
2 T + P11

k1,8−−→←−−
k8,1

TP11
2

T + P02

k1,5−−→←−−
k5,1

TP02
2 T + P01

k1,9−−→←−−
k9,1

TP01
2

We wish to perform a stationary analysis, where these reactions are allowed

to run to equilibrium. We begin by assuming that all complexes can be distin-

guished and writing down the ODE’s (ordinary differential equations) describing

the dynamics of the system as follows.

d[T ]

dt
= k2,1[TP11

1] + k3,1[TP01
1] + k4,1[TP12

2] + k5,1[TP02
2]

+ k6,1[TP12
1] + k7,1[TP02

1] + k8,1[TP11
2] + k9,1[TP01

2]

− k1,2[T ][P11]− k1,3[T ][P01]− k1,4[T ][P12]− k1,5[T ][P02]

− k1,6[T ][P12]− k1,7[T ][P02]− k1,8[T ][P11]− k1,9[T ][P01] (3.1)
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d[TP11
1]

dt
= k1,2[T ][P11]− k2,1[TP11

1] (3.2)

d[TP01
1]

dt
= k1,3[T ][P01]− k3,1[TP01

1] (3.3)

d[TP12
2]

dt
= k1,4[T ][P12]− k4,1[TP12

2] (3.4)

d[TP02
2]

dt
= k1,5[T ][P02]− k5,1[TP02

2] (3.5)

d[TP12
1]

dt
= k1,6[T ][P12]− k6,1[TP12

1] (3.6)

d[TP02
1]

dt
= k1,7[T ][P02]− k7,1[TP02

1] (3.7)

d[TP11
2]

dt
= k1,8[T ][P11]− k8,1[TP11

2] (3.8)

d[TP01
2]

dt
= k1,9[T ][P01]− k9,1[TP01

2] (3.9)

Let

~X = (X1, X2, X3, X4, X5, X6, X7, X8, X9)
T (3.10)

=

(
[T ],

[TP11
1], [TP01

1], [TP12
2], [TP02

2],

[TP12
1], [TP02

1], [TP11
2], [TP01

2]

)T

Note that at equilibrium,

d ~X

dt
= ~0. (3.11)
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Applying (3.11) to equations (3.2) – (3.9) yields

k1,2[T ][P11] = k2,1[TP11
1]

=⇒ K2
1 ≡

k1,2

k2,1

=
[TP11

1]

[T ][P11]
(3.12)

k1,3[T ][P01] = k3,1[TP01
1]

=⇒ K3
1 ≡

k1,3

k3,1

=
[TP01

1]

[T ][P01]
(3.13)

k1,4[T ][P12] = k4,1[TP12
2]

=⇒ K4
1 ≡

k1,4

k4,1

=
[TP12

2]

[T ][P12]
(3.14)

k1,5[T ][P02] = k5,1[TP02
2]

=⇒ K5
1 ≡

k1,5

k5,1

=
[TP02

2]

[T ][P02]
(3.15)

k1,6[T ][P12] = k6,1[TP12
1]

=⇒ K6
1 ≡

k1,6

k6,1

=
[TP12

1]

[T ][P12]
(3.16)

k1,7[T ][P02] = k7,1[TP02
1]

=⇒ K7
1 ≡

k1,7

k7,1

=
[TP02

1]

[T ][P02]
(3.17)
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k1,8[T ][P11] = k8,1[TP11
2]

=⇒ K8
1 ≡

k1,8

k8,1

=
[TP11

2]

[T ][P11]
(3.18)

k1,9[T ][P01] = k9,1[TP01
1]

=⇒ K9
1 ≡

k1,9

k9,1

=
[TP01

1]

[T ][P01]
(3.19)

and applying it to equation (3.1) yields

k2,1[TP11
1] + k3,1[TP01

1] + k4,1[TP12
2] + k5,1[TP02

2]

+ k6,1[TP12
1] + k7,1[TP02

1] + k8,1[TP11
2] + k9,1[TP01

2]

= [T ]
(
k1,2[P11] + k1,3[P01] + k1,4[P12] + k1,5[P02]

+ k1,6[P12] + k1,7[P02] + k1,8[P11] + k1,9[P01]
)

(3.20)

Equation (3.20) is a linear combination of (3.12), . . . , (3.19), and hence provides

no additional information. Observe that

d[T ]

dt
= − d

dt

{
[TP11

1] + [TP01
1] + [TP12

2] + [TP02
2]

+[TP12
1] + [TP02

1] + [TP11
2] + [TP01

2]
}

or (3.1) = −
(3.9)∑

j=(3.2)

{equation j}

The constants Kj
1 for j ∈ {2, . . . , 9}, appearing in equations (3.12)–(3.19), can be

computed from probe sequence data. For each j,

∆Gtotal = −RT ln Kj
1 ,
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where R is the gas constant and T is the temperature (in degrees Kelvin). Thus,

we have

Kj
1 = exp [−∆Gtotal/RT ] , (3.21)

where

∆Gtotal = −( ∆gi︸︷︷︸
initiation

+ ∆gsymm︸ ︷︷ ︸
symmetry

) +
∑

x

∆gx︸︷︷︸
sequence data

.

This notation and form follows [9]. Since a more recent paper by SantaLucia

[40] presents the calculation of ∆Gtotal in a slightly different format (see equa-

tion (3.131)), both versions are available in the implementation of our model.

The described model can now be used to predict equilibrium concentrations of

complexes TPij {i ∈ {0, 1}, j ∈ {1, 2}}:

• Kj
1 can be computed from (3.21), where ∆Gtotal is computed based on sequence

information.

• The following conservation rules must hold:

[P11]0 = [P11] + [TP11
1] + [TP11

2] (3.22)

[P01]0 = [P01] + [TP01
1] + [TP01

2] (3.23)

[P12]0 = [P12] + [TP12
1] + [TP12

2] (3.24)

[P02]0 = [P02] + [TP02
1] + [TP02

2] (3.25)

[T ]0 = [T ] + [TP11
1] + [TP01

1] + [TP12
2] + [TP02

2]

+ [TP11
2] + [TP01

2] + [TP12
1] + [TP02

1] (3.26)

= [T ] + ([P11]0 − [P11]) + ([P01]0 − [P01])

+ ([P12]0 − [P12]) + ([P02]0 − [P02])
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Note that in these expressions [X]0 denotes initial concentration of X, which

is a free parameter, and [X] denotes its equilibrium concentration.

Consider the system consisting of equations (3.12)–(3.19) and the conservation rule

equations (3.22)–(3.26). We have a system of

• 13 polynomial equations (some quadratic, others linear) in

• 13 unknowns: X1, . . . , X9 (see (3.10)) and [P11], [P01], [P12], [P02], with

• 5 free parameters: [P11]0, [P01]0, [P12]0, [P02]0, and [T ]0.

Therefore, this algebraic system, when solved, yields the equilibrium concentrations.

From these computed concentrations, we can evaluate the “match-to-mismatch

ratio” for each probe: (
[TP11

1] + [TP11
2]

[TP01
1] + [TP01

2]

)

full model

and (
[TP12

2] + [TP12
1]

[TP02
2] + [TP02

1]

)

full model

In order to examine the effects of competition between probes P11 and P12 on

the signals for each of them, we should now compare this situation with the one

where only P11 and P01 are present without P12 or P02, and vice versa. In the rest

of the paper, we will refer to the model introduced in this section as the Full Model

and will compare its performance with the other two partial models, one consisting

of P11, P01, and T only (referred to as Model I ) and the other consisting of P12,

P02, and T only (referred to as Model II ).
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3.3.2 Partial Model — Model I

This model consists of two probes P11, P01, and the target T only. We proceed as

before by solving the algebraic system of equations to evaluate:
(

[TP11
1] + [TP11

2]

[TP01
1] + [TP01

2]

)

I

Possible States

We consider the following states:

(1) T

(Target is unbound.)

(2) TP11
1, (3) TP01

1

(Target is bound by “specific” hybridization.)

(8) TP11
2, (9) TP01

2

(Target is bound by “non-specific” hybridization.)

State Transition Diagram

The set of reversible reactions operating between unbound and bound states can

be written as shown below.
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T + P11

k1,2−−→←−−
k2,1

TP11
1 T + P11

k1,8−−→←−−
k8,1

TP11
2

T + P01

k1,3−−→←−−
k3,1

TP01
1 T + P01

k1,9−−→←−−
k9,1

TP01
2

Dynamics

The following are the ODE’s describing the dynamics of the system.

d[T ]

dt
= k2,1[TP11

1]− k1,2[T ][P11]

+ k3,1[TP01
1]− k1,3[T ][P01]

+ k8,1[TP11
2]− k1,8[T ][P11]

+ k9,1[TP01
2]− k1,9[T ][P01] (3.27)

d[TP11
1]

dt
= k1,2[T ][P11]− k2,1[TP11

1] (3.28)

d[TP01
1]

dt
= k1,3[T ][P01]− k3,1[TP01

1] (3.29)

d[TP11
2]

dt
= k1,8[T ][P11]− k8,1[TP11

2] (3.30)

d[TP01
2]

dt
= k1,9[T ][P01]− k9,1[TP01

2] (3.31)

Note that equations (3.28)–(3.31) are the same as equations (3.2), (3.3), (3.8), and

(3.9) in the original system in section 3.3.1, while equation (3.27) differs from (3.1),

since it now involves only the states with probes P11 and P01.

At equilibrium, d[·]
dt

= 0 for all substances, i.e., T , TP11
1, TP11

2, TP01
1, and TP01

2,
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yielding:

K2
1 =

[TP11
1]

[T ][P11]
(3.32)

K3
1 =

[TP01
1]

[T ][P01]
(3.33)

K8
1 =

[TP11
2]

[T ][P11]
(3.34)

K9
1 =

[TP01
1]

[T ][P01]
(3.35)

Since nothing else has changed in the thermodynamics, Kj
1 computed from (3.21)

are the same as before for j ∈ {2, 3, 8, 9}, and we have the following conservation

rules:

[P11]0 = [P11] + [TP11
1] + [TP11

2] (3.36)

[P01]0 = [P01] + [TP01
1] + [TP01

2] (3.37)

[T ]0 = [T ] + [TP11
1] + [TP01

1] + [TP11
2] + [TP01

2] (3.38)

= [T ] + ([P11]0 − [P11]) + ([P01]0 − [P01])

In this case, we have

• 7 variables (unknowns): [TP11
1], [TP11

2], [TP01
1], [TP01

2], [P11], [P01], and [T ];

and

• 7 polynomial equations: (3.32)–(3.35), (3.36), (3.37), and (3.38), with

• 3 free parameters [P11]0, [P01]0, and [T ]0.

Note that, for comparison with full model, the free parameters will need to be

scaled to retain the same initial target-to-probe ratio.
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3.3.3 Partial Model — Model II

This model consists of two probes P12, P02, and the target T only. We proceed as

before by solving the algebraic system of equations to evaluate:
(

[TP12
2] + [TP12

1]

[TP02
2] + [TP02

1]

)

II

Possible States

We consider the following states:

(1) T

(Target is unbound.)

(4) TP12
2, (5) TP02

2

(Target is bound by “specific” hybridization.)

(6) TP12
1, (7) TP02

1

(Target is bound by “non-specific” hybridization.)

State Transition Diagram

The set of reversible reactions operating between unbound and bound states can

be written as shown below.
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T + P12

k1,4−−→←−−
k4,1

TP12
2 T + P12

k1,6−−→←−−
k6,1

TP12
1

T + P02

k1,5−−→←−−
k5,1

TP02
2 T + P02

k1,7−−→←−−
k7,1

TP02
1

Dynamics

The following are the ODE’s describing the dynamics of the system.

d[T ]

dt
= k4,1[TP12

2]− k1,4[T ][P12]

+ k5,1[TP02
2]− k1,5[T ][P02]

+ k6,1[TP12
1]− k1,6[T ][P12]

+ k7,1[TP02
1]− k1,7[T ][P02] (3.39)

d[TP12
2]

dt
= k1,4[T ][P12]− k4,1[TP12

2] (3.40)

d[TP02
2]

dt
= k1,5[T ][P02]− k5,1[TP02

2] (3.41)

d[TP12
1]

dt
= k1,6[T ][P12]− k6,1[TP12

1] (3.42)

d[TP02
1]

dt
= k1,7[T ][P02]− k7,1[TP02

1] (3.43)

(3.44)

Note that equations (3.40)–(3.43) are the same as equations (3.4), (3.5), (3.6), and

(3.7) in the original system in section 3.3.1, while equation (3.39) differs from (3.1),

since it now involves only the states with probes P12 and P02.

At equilibrium, d[·]
dt

= 0 for all substances, i.e., T , TP12
2, TP12

1, TP02
2, and TP02

1,
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yielding:

K4
1 =

[TP12
2]

[T ][P12]
(3.45)

K5
1 =

[TP02
2]

[T ][P02]
(3.46)

K6
1 =

[TP12
1]

[T ][P12]
(3.47)

K7
1 =

[TP02
1]

[T ][P02]
(3.48)

Again, since nothing else has changed in the thermodynamics, Kj
1 computed

from (3.21) are the same as before for j ∈ {4, 5, 6, 7}, and we have the following

conservation rules:

[P12]0 = [P12] + [TP12
2] + [TP12

1] (3.49)

[P02]0 = [P02] + [TP02
2] + [TP02

1] (3.50)

[T ]0 = [T ] + [TP12
2] + [TP02

2] + [TP12
1] + [TP02

1] (3.51)

= [T ] + ([P12]0 − [P12]) + ([P02]0 − [P02])

In this case, we also have

• 7 variables: [TP12
2], [TP12

1], [TP02
2], [TP02

1], [P12], [P02], and [T ]; and

• 7 equations: (3.45)–(3.48), (3.49), (3.50), and (3.51), with

• 3 free parameters [P12]0, [P02]0, and [T ]0.

As above (section 3.3.2), the parameters will need to be scaled.

In practice, once the exact nucleotide sequences of T , P11, P01, P12, and P02 are

determined from the needs of the biological assay, we can compute Kj
1 explicitly,

and then solve for the unknowns in all three setups:

77



• Full Model,

• Model I, and

• Model II.

With these computed ratio values, we are ready to evaluate and compare the models

in order to discern the effects of competition:

(
P11

P01

)

full

vs.

(
P11

P01

)

I

and (
P12

P02

)

full

vs.

(
P12

P02

)

II

3.4 Change of Variables

3.4.1 Full Model

In order to simplify the algebraic system of equation, we rename the unknown

variables as follows:

X1 = [T ]

X2 = [TP11
1] X6 = [TP12

1] Y1 = [P11]

X3 = [TP01
1] X7 = [TP02

1] Y2 = [P01]

X4 = [TP12
2] X8 = [TP11

2] Y3 = [P12]

X5 = [TP02
2] X9 = [TP01

2] Y4 = [P02]
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The constant parameters in the system are initially left in their symbolic forms.

K2
1 , K3

1 , K4
1 , K5

1 , K6
1 , K7

1 , K8
1 , K9

1 ,

a0 = [P11]0, b0 = [P01]0,

c0 = [P12]0, d0 = [P02]0,

e0 = [T ]0.

Equations (3.12)–(3.19) and (3.22)–(3.26) can now be rewritten in terms of {Xi, Yj}
as follows.

[TP11
1] = K2

1 [T ][P11] =⇒ X2 = K2
1X1Y1

[TP01
1] = K3

1 [T ][P01] =⇒ X3 = K3
1X1Y2

[TP12
2] = K4

1 [T ][P12] =⇒ X4 = K4
1X1Y3

[TP02
2] = K5

1 [T ][P02] =⇒ X5 = K5
1X1Y4

[TP12
1] = K6

1 [T ][P12] =⇒ X6 = K6
1X1Y3

[TP02
1] = K7

1 [T ][P02] =⇒ X7 = K7
1X1Y4

[TP11
2] = K8

1 [T ][P11] =⇒ X8 = K8
1X1Y1

[TP01
2] = K9

1 [T ][P01] =⇒ X9 = K9
1X1Y2

[P11]0 = [P11] + [TP11
1] + [TP11

2] =⇒ a0 = X2 + X8 + Y1

[P01]0 = [P01] + [TP01
1] + [TP01

2] =⇒ b0 = X3 + X9 + Y2

[P12]0 = [P12] + [TP12
1] + [TP12

2] =⇒ c0 = X4 + X6 + Y3

[P02]0 = [P02] + [TP02
1] + [TP02

2] =⇒ d0 = X5 + X7 + Y4

[T ]0 = [T ] + [TP11
1] + [TP01

1] =⇒ e0 = X1 + X2 + X3

+ [TP12
2] + [TP02

2] + X4 + X5

+ [TP11
2] + [TP01

2] + X6 + X7

+ [TP12
1] + [TP02

1] + X8 + X9





(3.52)
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3.4.2 Model I

Now, we consider a system of algebraic equations representing the concentrations

at equilibrium and involving unknown variables X1, X2, X3, X8, X9, Y1, and Y2,

and constant parameters K2
1 , K3

1 , K8
1 , K9

1 , a0, b0, and e0. Thus, in a manner

analogous to that derived for the full model in the previous section, we may rewrite

the equations (3.32), (3.33), (3.34), (3.35), (3.36), (3.37), and (3.38) in terms of

{Xi, Yj}, as shown below.

X2 = K2
1X1Y1

X3 = K3
1X1Y2

X8 = K8
1X1Y1

X9 = K9
1X1Y2

a0 = [P11]0 = X2 + X8 + Y1

b0 = [P01]0 = X3 + X9 + Y2

e0 = [T ]0 = X1 + X2 + X3 + X8 + X9





(3.53)

3.4.3 Model II

Next, we consider a system of algebraic equations representing the concentrations

at equilibrium and involving unknown variables X1, X4, X5, X6, X7, Y3, and Y4, and

constant parameters K4
1 , K5

1 , K6
1 , K7

1 , c0, d0, and e0. Once again we may rewrite

the equations (3.45), (3.46), (3.47), (3.48), (3.49), (3.50), and (3.51) in terms of
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{Xi, Yj}, as shown below.

X4 = K4
1X1Y3

X5 = K5
1X1Y4

X6 = K6
1X1Y3

X7 = K7
1X1Y4

c0 = [P12]0 = X4 + X6 + Y3

d0 = [P02]0 = X5 + X7 + Y4

e0 = [T ]0 = X1 + X4 + X5 + X6 + X7





(3.54)

Note that with the exception of the conservation rules for [T ] (i.e., the last

equations in (3.52), (3.53), and (3.54)) under the different models, we have

(3.52) = (3.53) ∪ (3.54).

3.5 System Reduction

3.5.1 Model I

Starting with (3.53), we may obtain the following linear equalities:

Y1 = a0 −X2 −X8 (3.55)

Y2 = b0 −X3 −X9 (3.56)

Furthermore, since

X2

X8

=
K2

1X1Y1

K8
1X1Y1

=
K2

1

K8
1

=⇒ X8 =
K8

1

K2
1

X2 (3.57)

X3

X9

=
K3

1X1Y2

K9
1X1Y2

=
K3

1

K9
1

=⇒ X9 =
K9

1

K3
1

X3 (3.58)
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we may simplify to obtain

X2 = K2
1X1Y1 = K2

1X1(a0 −X2 −X8)

= K2
1X1

(
a0 −X2 − K8

1

K2
1

X2

)

= K2
1X1

(
a0 −X2

[
1 +

K8
1

K2
1

])

= K2
1X1a0 −K2

1X1X2

[
1 +

K8
1

K2
1

]

= K2
1X1a0 −X1X2

[
K2

1 + K8
1

]

X2 + X1X2

[
K2

1 + K8
1

]
= a0K

2
1X1

∴ X2 =
a0K

2
1X1

1 + X1 (K2
1 + K8

1)
(3.59)

and

X3 = K3
1X1Y2 = K3

1X1(b0 −X3 −X9)

= K3
1X1

(
b0 −X3 − K9

1

K3
1

X3

)

= K3
1X1

(
b0 −X3

[
1 +

K9
1

K3
1

])

= K3
1X1b0 −K3

1X1X3

[
1 +

K9
1

K3
1

]

= K3
1X1b0 −X1X3

[
K3

1 + K9
1

]

X3 + X1X3

[
K3

1 + K9
1

]
= b0K

3
1X1

∴ X3 =
b0K

3
1X1

1 + X1 (K3
1 + K9

1)
(3.60)

We also obtain, from (3.57),

X8 =
K8

1

K2
1

X2 =
K8

1

K2
1

a0K
2
1X1

1 + X1 (K2
1 + K8

1)

=
a0K

8
1X1

1 + X1 (K2
1 + K8

1)
= X8 (3.61)
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and from (3.58),

X9 =
K9

1

K3
1

X3 =
K9

1

K3
1

b0K
3
1X1

1 + X1 (K3
1 + K9

1)

=
b0K

9
1X1

1 + X1 (K3
1 + K9

1)
= X9 (3.62)

Finally, equations (3.59), (3.60), (3.61), and (3.62) can be solved to express X2, X3,

X8, and X9, respectively, in terms of X1.

Now, from (3.55), (3.57), and (3.59), we derive

Y1 = a0 −X2 −X8 = a0 −X2

(
1 +

K8
1

K2
1

)

= a0 − a0K
2
1X1

1 + X1 (K2
1 + K8

1)

(
1 +

K8
1

K2
1

)

= a0 − a0X1 (K2
1 + K8

1)

1 + X1 (K2
1 + K8

1)

= a0

[
1 + X1 (K2

1 + K8
1)−X1 (K2

1 + K8
1)

1 + X1 (K2
1 + K8

1)

]

=
a0

1 + X1 (K2
1 + K8

1)

∴ Y1 =
a0

1 + X1 (K2
1 + K8

1)
(3.63)
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Similarly, we derive

Y2 = b0 −X3 −X9 = b0 −X3

(
1 +

K9
1

K3
1

)

= b0 − b0K
3
1X1

1 + X1 (K3
1 + K9

1)

(
1 +

K9
1

K3
1

)

= b0 − b0X1 (K3
1 + K9

1)

1 + X1 (K3
1 + K9

1)

= b0

[
1 + X1 (K3

1 + K9
1)−X1 (K3

1 + K9
1)

1 + X1 (K3
1 + K9

1)

]

=
b0

1 + X1 (K3
1 + K9

1)

∴ Y2 =
b0

1 + X1 (K3
1 + K9

1)
(3.64)

A final simplification yields a univariate rational function only in X1 equating to a

constant e0:

e0 = X1 + X2 + X3 + X8 + X9 (by (3.53))

= X1 + X1
a0K

2
1

1 + X1 (K2
1 + K8

1)

+ X1
b0K

3
1

1 + X1 (K3
1 + K9

1)
(by (3.59),(3.60))

+ X1
a0K

8
1

1 + X1 (K2
1 + K8

1)

+ X1
b0K

9
1

1 + X1 (K3
1 + K9

1)
(by (3.61),(3.62))

or

e0 = X1

[
1 + a0

K2
1 + K8

1

1 + X1 (K2
1 + K8

1)

+ b0
K3

1 + K9
1

1 + X1 (K3
1 + K9

1)

]
(3.65)

Since the terms (K2
1 +K8

1) and (K3
1 +K9

1) appear frequently, in order to express the

preceding equations in a simpler form, we introduce short-hand notations shown

84



below. Let

s28 ≡ K2
1 + K8

1 , s39 ≡ K3
1 + K9

1 , and x ≡ X1.

In the simplified from, the equation (3.65) becomes

x

(
1 + a0

s28

1 + s28x
+ b0

s39

1 + s39x

)
= e0

x

(
(1 + s28x)(1 + s39x) + a0s28(1 + s39x) + b0s39(1 + s28x)

(1 + s28x)(1 + s39x)

)
= e0

x ((1 + s28x)(1 + s39x) + a0s28(1 + s39x) + b0s39(1 + s28x))

= e0(1 + s28x)(1 + s39x),

or

(s28s39)x
3 + (s28 + s39 + s28s39[a0 + b0 − e0]) x2

+ (1 + s28[a0 − e0] + s39[b0 − e0]) x− e0 = 0 (3.66)

Now the cubic polynomial equation (3.66) must be solved for the unknown x = X1,

and then the solution can be substituted into (3.59)–(3.64) in order to solve for

the rest of the variables. We may obtain the solutions in their symbolic form using

Mathematica ([48]) as the three possible roots may be easily expressed in radicals.

More to the point, we only need to solve for

(
P11

P01

)

I

=

(
[TP11

1] + [TP11
2]

[TP01
1] + [TP01

2]

)

I

=
X2 + X8

X3 + X9

=

(
a0K

2
1x

1 + s28x
+

a0K
8
1x

1 + s28x

)/ (
b0K

3
1x

1 + s39x
+

b0K
9
1x

1 + s39x

)
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or

(
P11

P01

)

I

=

(
a0s28x

1 + s28x

)/(
b0s39x

1 + s39x

)

=
a0

b0

s28

s39

1 + s39x

1 + s28x
(3.67)

=
a0

b0

s28

s39

s39 + 1/x

s28 + 1/x

where x is a solution of (3.66).

3.5.2 Model II

As before, starting with (3.54), we may obtain the following linear equalities:

Y3 = c0 −X4 −X6 (3.68)

Y4 = d0 −X5 −X7 (3.69)

Since

X4

X6

=
K4

1X1Y3

K6
1X1Y3

=
K4

1

K6
1

=⇒ X6 =
K6

1

K4
1

X4 (3.70)

X5

X7

=
K5

1X1Y4

K7
1X1Y4

=
K5

1

K7
1

=⇒ X7 =
K7

1

K5
1

X5 (3.71)

we obtain

X4 = K4
1X1Y3 = K4

1X1

(
c0 −X4

[
1 +

K6
1

K4
1

])

= K4
1X1c0 −X1X4

(
K4

1 + K6
1

)

∴ X4 =
c0K

4
1X1

1 + X1 (K4
1 + K6

1)
(3.72)
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and

X5 = K5
1X1Y4 = K5

1X1

(
d0 −X5

[
1 +

K7
1

K5
1

])

= K5
1X1d0 −X1X5

(
K5

1 + K7
1

)

∴ X5 =
d0K

5
1X1

1 + X1 (K5
1 + K7

1)
(3.73)

Furthermore, from (3.70) and (3.72), we obtain

X6 =
K6

1

K4
1

X4 =
K6

1

K4
1

c0K
4
1X1

1 + X1 (K4
1 + K6

1)

=
c0K

6
1X1

1 + X1 (K4
1 + K6

1)
= X6 (3.74)

and from (3.71) and (3.73),

X7 =
K7

1

K5
1

X5 =
K7

1

K5
1

d0K
5
1X1

1 + X1 (K5
1 + K7

1)

=
d0K

7
1X1

1 + X1 (K5
1 + K7

1)
= X7 (3.75)

Finally, equations (3.72), (3.73), (3.74), and (3.75) can be solved to express X4, X5,

X6, and X7, respectively, in terms of X1.

From (3.68), (3.70), and (3.72), we derive

Y3 = c0 −X4 −X6 = c0 −X4

(
1 +

K6
1

K4
1

)

= c0 − c0K
4
1X1

1 + X1 (K4
1 + K6

1)

(
1 +

K6
1

K4
1

)

= c0 − c0X1 (K4
1 + K6

1)

1 + X1 (K4
1 + K6

1)

= c0

[
1 + X1 (K4

1 + K6
1)−X1 (K4

1 + K6
1)

1 + X1 (K4
1 + K6

1)

]

=
c0

1 + X1 (K4
1 + K6

1)

∴ Y3 =
c0

1 + X1 (K4
1 + K6

1)
(3.76)
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Similarly, we derive

Y4 = d0 −X5 −X7 = d0 −X5

(
1 +

K7
1

K5
1

)

= d0 − d0K
5
1X1

1 + X1 (K5
1 + K7

1)

(
1 +

K7
1

K5
1

)

= d0 − d0X1 (K5
1 + K7

1)

1 + X1 (K5
1 + K7

1)

= d0

[
1 + X1 (K5

1 + K7
1)−X1 (K5

1 + K7
1)

1 + X1 (K5
1 + K7

1)

]

=
d0

1 + X1 (K5
1 + K7

1)

∴ Y4 =
d0

1 + X1 (K5
1 + K7

1)
(3.77)

Putting it all together, we derive the univariate rational equation for X1.

e0 = X1 + X4 + X5 + X6 + X7 (by (3.54))

= X1 + X1
c0K

4
1

1 + X1 (K4
1 + K6

1)

+ X1
d0K

5
1

1 + X1 (K5
1 + K7

1)
(by (3.72),(3.73))

+ X1
c0K

6
1

1 + X1 (K4
1 + K6

1)

+ X1
d0K

7
1

1 + X1 (K5
1 + K7

1)
(by (3.74),(3.75))

or

e0 = X1

[
1 + c0

K4
1 + K6

1

1 + X1 (K4
1 + K6

1)

+ d0
K5

1 + K7
1

1 + X1 (K5
1 + K7

1)

]
(3.78)

As before, we abbreviate the terms (K4
1+K6

1) and (K5
1+K7

1) by short-hand notation,

shown below. Let

s46 ≡ K4
1 + K6

1 , s57 ≡ K5
1 + K7

1 , and y ≡ X1.
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Note that, in order to avoid confusion, we have introduced a different abbreviation

for X1 (i.e., y) intentionally since the equation to be solved in this case differs from

(3.66). Then (3.78) can be expressed as

y

(
1 + c0

s46

1 + s46y
+ d0

s57

1 + s57y

)
= e0

y

(
(1 + s46y)(1 + s57y) + c0s46(1 + s57y) + d0s57(1 + s46y)

(1 + s46y)(1 + s57y)

)
= e0

y ((1 + s46y)(1 + s57y) + c0s46(1 + s57y) + d0s57(1 + s46y))

= e0(1 + s46y)(1 + s57y),

or

(s46s57)y
3 + (s46 + s57 + s46s57[c0 + d0 − e0]) y2

+ (1 + s46[c0 − e0] + s57[d0 − e0]) y − e0 = 0 (3.79)

Again, the cubic polynomial equation (3.79) must be solved for y = X1, and then

the solution can be substituted into (3.72)–(3.77) for the rest of the variables.

Actually, we only need

(
P12

P02

)

II

=

(
[TP12

2] + [TP12
1]

[TP02
2] + [TP02

1]

)

II

=
X4 + X6

X5 + X7

=

(
c0K

4
1y

1 + s46y
+

c0K
6
1y

1 + s46y

)/ (
d0K

5
1y

1 + s57y
+

d0K
7
1y

1 + s57y

)

or
(

P12

P02

)

II

=

(
c0s46y

1 + s46y

)/(
d0s57y

1 + s57y

)

=
c0

d0

s46

s57

1 + s57y

1 + s46y
(3.80)

=
c0

d0

s46

s57

s57 + 1/y

s46 + 1/y

where y solves (3.79).
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3.5.3 Full Model

As noted in section 3.4, the system (3.52) of equations for the Full Model is simply

the union of the systems (3.53) and (3.54) for models I and II, respectively, with

the exception of the conservation rule for [T ], i.e., the equation for X1. Therefore,

while the equation for X1 itself must be handled separately, the derivations from

sections 3.5.1 and 3.5.2 can be duplicated to obtain equations for all the variables

in terms of X1. For convenience, we gather the resulting equations in one place, as

shown below.

X2 =
a0K

2
1X1

1 + X1 (K2
1 + K8

1)
(see (3.59)) (3.81)

X3 =
b0K

3
1X1

1 + X1 (K3
1 + K9

1)
(see (3.60)) (3.82)

X4 =
c0K

4
1X1

1 + X1 (K4
1 + K6

1)
(see (3.72)) (3.83)

X5 =
d0K

5
1X1

1 + X1 (K5
1 + K7

1)
(see (3.73)) (3.84)

X6 =
c0K

6
1X1

1 + X1 (K4
1 + K6

1)
(see (3.74)) (3.85)

X7 =
d0K

7
1X1

1 + X1 (K5
1 + K7

1)
(see (3.75)) (3.86)

X8 =
a0K

8
1X1

1 + X1 (K2
1 + K8

1)
(see (3.61)) (3.87)

X9 =
b0K

9
1X1

1 + X1 (K3
1 + K9

1)
(see (3.62)) (3.88)
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Y1 =
a0

1 + X1 (K2
1 + K8

1)
(see (3.63)) (3.89)

Y2 =
b0

1 + X1 (K3
1 + K9

1)
(see (3.64)) (3.90)

Y3 =
c0

1 + X1 (K4
1 + K6

1)
(see (3.76)) (3.91)

Y4 =
d0

1 + X1 (K5
1 + K7

1)
(see (3.77)) (3.92)

It remains to derive the univariate equation in X1. Since the terms (K2
1 + K8

1),

(K3
1 + K9

1), (K4
1 + K6

1), and (K5
1 + K7

1) appears frequently in the following deriva-

tion, as in the previous sections, we abbreviate these terms with the short-hand

notation given below. As we did in sections 3.5.1, and 3.5.2, let

s28 ≡ K2
1 + K8

1 , s39 ≡ K3
1 + K9

1 ,

s46 ≡ K4
1 + K6

1 , s57 ≡ K5
1 + K7

1 ,

and let

z ≡ X1.

Note again that a different symbol for X1 has to be employed to avoid confusion

with the variables used in equations (3.66) and (3.79).
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e0 = X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 (by (3.52))

= z + z
a0K

2
1

1 + s28z
+ z

b0K
3
1

1 + s39z

+ z
c0K

4
1

1 + s46z
+ z

d0K
5
1

1 + s57z
(by (3.81)–(3.84))

+z
c0K

6
1

1 + s46z
+ z

d0K
7
1

1 + s57z

+ z
a0K

8
1

1 + zs28

+ z
b0K

9
1

1 + zs39

(by (3.85)–(3.88))

= z

[
1 + a0

K2
1 + K8

1

1 + s28z
+ b0

K3
1 + K9

1

1 + s39z

+ c0
K4

1 + K6
1

1 + s46z
+ d0

K5
1 + K7

1

1 + s57z

]
(3.93)

or

e0 = z

[
1 +

a0s28

1 + s28z
+

b0s39

1 + s39z

+
c0s46

1 + s46z
+

d0s57

1 + s57z

]
(3.94)

or

(1 + s28z)(1 + s39z)(1 + s46z)(1 + s57z)e0 =

= z[(1 + s28z)(1 + s39z)(1 + s46z)(1 + s57z) +

+ a0s28(1 + s39z)(1 + s46z)(1 + s57z) +

+ b0s39(1 + s28z)(1 + s46z)(1 + s57z) +

+ c0s46(1 + s28z)(1 + s39z)(1 + s57z) +

+ d0s57(1 + s28z)(1 + s39z)(1 + s46z)] (3.95)

Since we now have a 5th order polynomial equation in z to solve, and since its

roots cannot be expressed symbolically in a closed form, we must resort to a purely
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numerical approach. Nonetheless, the match-to-mismatch ratio signals can be ob-

tained in terms of z.

(
P11

P01

)

full

=

(
[TP11

1] + [TP01
2]

[TP01
1] + [TP01

2]

)

full

=
X2 + X8

X3 + X9

=
a0

b0

s28

s39

1 + s39z

1 + s28z
=

a0

b0

s28

s39

s39 + 1/z

s28 + 1/z
(see (3.67)) (3.96)

and

(
P12

P02

)

full

=

(
[TP12

2] + [TP12
1]

[TP02
2] + [TP02

1]

)

full

=
X4 + X6

X5 + X7

=
c0

d0

s46

s57

1 + s57z

1 + s46z
=

c0

d0

s46

s57

s57 + 1/z

s46 + 1/z
(see (3.80)), (3.97)

where z solves (3.95).

3.6 Additional Models

Next, for the purpose of comparison, we will consider two additional models: Simple

Model, where the target has exactly one region for the probe to hybridize with,

and Extended Full Model, where the target has three regions for hybridization and

the multiplexed assay involves three pairs of “match” and “mismatch” probes. In

particular, while the simple model allows us to understand how just the mismatch

probe should be designed optimally, the extended full model gives us insight into the

extent to which a system of three or more multiplexed probe pairs can be designed

by considering only two probe pairs at a time.
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3.6.1 Simple Model

We consider a situation where the target has exactly one region for the probe

to hybridize with. Thus, we have three possible states to model: unbound targets,

targets bound to “match” probes in the region of interest, and lastly, targets bound

to “mismatch” probes in the region of interest—all other possible hybridization

states are ignored.

Possible States

We consider the following three states:

(1) T

(Target is unbound.)

(2) TP11
1, (3) TP01

1

(Target is bound by “specific” hybridization.)

State Transition Diagram

The set of reversible reactions operating between unbound and bound states can

be written as shown below.

T + P11

k1,2−−→←−−
k2,1

TP11
1

T + P01

k1,3−−→←−−
k3,1

TP01
1
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Dynamics

The following are the ODE’s (ordinary differential equations) describing the dy-

namics of the system.

d[T ]

dt
= k2,1[TP11

1]− k1,2[T ][P11]

+ k3,1[TP01
1]− k1,3[T ][P01] (3.98)

d[TP11
1]

dt
= k1,2[T ][P11]− k2,1[TP11

1] = 0 (at equilibrium) (3.99)

d[TP01
1]

dt
= k1,3[T ][P01]− k3,1[TP01

1] = 0 (at equilibrium) (3.100)

Thus at equilibrium, the ODE’s yield the following algebraic equations.

k1,2[T ][P11] = k2,1[TP11
1]

=⇒ X2 = [TP11
1] =

k1,2

k2,1

[T ][P11] = K2
1 [T ][P11]

k1,3[T ][P01] = k3,1[TP01
1]

=⇒ X3 = [TP01
1] =

k1,3

k3,1

[T ][P01] = K3
1 [T ][P01]

ratio1 =
K2

1 [T ][P11]

K3
1 [T ][P01]

=
X2

X3

(3.101)

We augment the above equations with the linear constraints corresponding to the

conservation rules.

T : [T ] + [TP11
1] + [TP01

1] = [T ]0 = e0

P11 : [P11] + [TP11
1] = [P11]0 = a0

P01 : [P01] + [TP01
1] = [P01]0 = b0
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Finally, we gather the system of equations to be solved, with the appropriate change

of variables.

X1 = [T ] X1 + X2 + X3 = e0

X2 = [TP11
1] X2 = K2

1X1Y1

X3 = [TP01
1] X3 = K3

1X1Y2

Y1 = [P11] X2 + Y1 = a0

Y2 = [P01] X3 + Y2 = b0

After simplification, we have

Y1 = a0 −X2

Y2 = b0 −X3

X2 = K2
1X1(a0 −X2) = K2

1X1a0 −K2
1X1X2

=⇒ X2 =
a0K

2
1X1

1 + K2
1X1

=
a0K

2
1

K2
1 + 1

X1

X3 = K3
1X1(b0 −X3) = K3

1X1b0 −K3
1X1X3

=⇒ X3 =
b0K

3
1X1

1 + K3
1X1

=
b0K

3
1

K3
1 + 1

X1

Finally, we get the following equation involving rational functions in one variable

X1.

X1 = e0 −X2 −X3 = e0 − a0
K2

1X1

1 + K2
1X1

− b0
K3

1X1

1 + K3
1X1

(3.102)

Simplifying equation (3.102) for X1, we have the following equation with w ≡ X1.

e0 = w + a0
K2

1

1 + K2
1w

w + b0
K3

1

1 + K3
1w

w

= w

(
1 + a0

K2
1

1 + K2
1w

+ b0
K3

1

1 + K3
1w

)
= e0 (3.103)
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We may solve (3.103) for w numerically or symbolically (e.g., in Mathematica).

Writing ratio1 in terms of the roots of the above equation, we get

ratio1 =
X2

X3

=
a0K

2
1X1

1 + K2
1X1

1 + K3
1X1

b0K3
1X1

=
a0K

2
1

K2
1 + 1

X1

K3
1 + 1

X1

b0K3
1

=
a0

b0

· K2
1

K3
1

· K3
1 + 1

X1

K2
1 + 1

X1

(3.104)

=
a0

b0

· K2
1

K3
1

·
1 + 1

X1K3
1

K2
1

K3
1

+ 1
X1K3

1

. (3.105)

According to (3.104), if X1 À 1 then we have ratio1 ≡ (a0/b0). On the other

hand, if K2
1/K

3
1 ∼ 1

X1K3
1
, i.e., K2

1 ∼ 1
X1

, then the ratio simplifies to the following,

indicating that the ratio depends on the initial concentration of the probes and

their thermodynamic parameters.

ratio1 ∼ a0

b0

K2
1

K3
1

(X1K
3
1 + 1)/X1K

3
1

2/X1K3
1

=
1

2

a0

b0

1

X1K3
1

(
X1K

3
1 + 1

)
(3.106)

=
1

2

a0

b0

(
1 +

1

X1K3
1

)

=
1

2

a0

b0

(
1 +

K2
1

K3
1

)
(3.107)

We need to further investigate what the proper initial target concentration [T ]0 = e0

must be to optimize the expected observation of competition:

• If the initial target concentration is too dense then the expected ratio ≡ a0

b0
,

where a0 = the initial concentration of the matched probe and b0 = the
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initial concentration of the mismatched probe. As discussed in section B.1.1,

these two parameters are usually set to be equal, i.e., a0 = b0. Thus, in this

situation, we cannot distinguish pm from mm.

• If the initial target concentration is too diluted then the expected ratio can

distinguish pm and mm, but signal strength is so low that the detected inten-

sities “drown” in noise.

3.6.2 Extended Full Model

The final mathematical model (Extended Full Model) involves multiplexed hy-

bridization of a single target with three different probes and can be used to verify

that the effects suggested by pairwise probe analysis extend to probe triples cor-

rectly.

T
P̃11 P̃12 P̃13

In this scheme, we will consider one target, three possible binding sites and three

probe pairs, one for each binding site, as shown in the figure.
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Possible States

We consider the following states:

(1) T (Target is unbound.)

(2) TP11
1, (3) TP01

1, (4) TP12
2, (5) TP02

2, (6) TP13
3, (7) TP03

3

(Target is bound by “specific” hybridization;

Pij hybridizes to site j.)

(8) TP11
2, (9) TP01

2, (10) TP11
3, (11) TP01

3, (12) TP12
1, (13) TP02

1,

(14) TP12
3, (15) TP02

3, (16) TP13
1, (17) TP03

1, (18) TP13
2, (19) TP03

2

(Target is bound by “cross-hybridization”;

Pij hybridizes to site k, j 6= k.)

State Transition Diagram

The state transition diagram for this model is not shown, as it involves 19 states

and is cumbersome to display. The state interaction can be easily inferred from

(3.108).

The set of reversible reactions operating between unbound and bound states can

be written as shown below, where Kj
i denotes the affinity constant for going from
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state i(= 1) to state j ∈ {2, 3, . . . , 19}.





T + P11 À TP11
k

T + P01 À TP01
k

T + P12 À TP12
k

T + P02 À TP02
k

T + P13 À TP13
k

T + P03 À TP03
k

Site k 1 2 3

States l: (2) (8) (10)

(3) (9) (11)

(12) (4) (14)

(13) (5) (15)

(16) (18) (6)

(17) (19) (7)

(3.108)

Dynamics

The following ODE’s describe the dynamics of the system.

d[TPij
k]

dt
= k1,l[T ][Pij]− kl,1[TPij

k] (3.109)

(18 eqns)

where

i ∈ {0, 1}, probe j ∈ {1, 2, 3},

site k ∈ {1, 2, 3}, and l(i, j, k) is given in (3.108).

d[T ]

dt
= −

1∑
i=0

3∑
j=1

3∑

k=1

k1,l(i,j,k)[T ][Pij] +
∑

i,j,k

kl,1[TPij
k]

=
1∑

i=0

3∑
j=1

3∑

k=1

{
kl,1[TPij

k]− k1,l[T ][Pij]
}

(3.110)
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At equilibrium, d[ ~X]
dt

= 0, where ~X = (X1, . . . , X19)
T and

X1 = [T ]

X2 = [TP11
1] X8 = [TP11

2] X14 = [TP12
3]

X3 = [TP01
1] X9 = [TP01

2] X15 = [TP02
3]

X4 = [TP12
2] X10 = [TP11

3] X16 = [TP13
1]

X5 = [TP02
2] X11 = [TP01

3] X17 = [TP03
1]

X6 = [TP13
3] X12 = [TP12

1] X18 = [TP13
2]

X7 = [TP03
3] X13 = [TP02

1] X19 = [TP03
2]

Applying this equilibrium condition to (3.109) yields

k1,l[T ][Pij] = kl,1[TPij
k]

or

K l
1 ≡

k1,l

kl,1

=
[TPij

k]

[T ][Pij]
(3.111)

while (3.110) becomes the sum of the previous 18 equations and thus provides no

additional information.

Mass conservation rules add the following linear constraints:

[Pij]0 = [Pij] +
3∑

k=1

[TPij
k] (3.112)

for i ∈ {0, 1}, j ∈ {1, 2, 3}

[T ]0 = [T ] +
∑

i,j,k

[TPij
k] (3.113)
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For simplification, we rename the variables as follows:

X1 = [T ]

X2 = [TP11
1] X8 = [TP11

2] X14 = [TP12
3] Y1 = [P11]

X3 = [TP01
1] X9 = [TP01

2] X15 = [TP02
3] Y2 = [P01]

X4 = [TP12
2] X10 = [TP11

3] X16 = [TP13
1] Y3 = [P12]

X5 = [TP02
2] X11 = [TP01

3] X17 = [TP03
1] Y4 = [P02]

X6 = [TP13
3] X12 = [TP12

1] X18 = [TP13
2] Y5 = [P13]

X7 = [TP03
3] X13 = [TP02

1] X19 = [TP03
2] Y6 = [P03]

We rename the constant parameters as follows:

K l
1, l = 2, . . . , 19

a0 = [P11]0, b0 = [P01]0,

c0 = [P12]0, d0 = [P02]0,

e0 = [P13]0, f0 = [P03]0,

g0 = [T ]0.

And finally, obtain the following simplified equations:

K l
1[T ][Pij] = [TPij

k]

=⇒ Xl = K l
1X1Yn ,

where n depends on l(i, j, k)

Y 0
n = Yn +

∑
l∈f−1(n) Xl

=⇒ Yn = Y 0
n −

∑

l∈f−1(n)

Xl (probe conservation)

X0
1 =

19∑

l=1

Xl (target conservation)
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In these equations we have written f−1(n) to denote the set of states involving

probe Yn, so that, according to (3.108), we have

f−1(1) = {2, 8, 10} f−1(4) = {5, 13, 15}
f−1(2) = {3, 9, 11} f−1(5) = {6, 16, 18}
f−1(3) = {4, 12, 14} f−1(6) = {7, 17, 19}

Reducing the equations further, we get:

n = 1





X2 = K2
1X1Y1

X8 = K8
1X1Y1 =

K8
1

K2
1

X2

X10 =
K10

1

K2
1

X2

n = 4





X5 = K5
1X1Y4

X13 =
K13

1

K2
1

X5

X15 =
K15

1

K2
1

X5

n = 2





X3 = K3
1X1Y2

X9 =
K9

1

K3
1

X3

X11 =
K11

1

K3
1

X3

n = 5





X6 = K6
1X1Y5

X16 =
K16

1

K6
1

X6

X18 =
K18

1

K6
1

X6

n = 3





X4 = K4
1X1Y3

X12 =
K12

1

K4
1

X4

X14 =
K14

1

K4
1

X4

n = 6





X7 = K7
1X1Y6

X17 =
K17

1

K7
1

X7

X19 =
K19

1

K7
1

X7
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Now, we consider the equations where l ∈ {2, 8, 10} and n = 1:

Y1 = Y 0
1 − (X2 + X8 + X10)

X2 = K2
1X1Y1 = K2

1X1

{
Y 0

1 − (X2 + X8 + X10︸ ︷︷ ︸)
}




X2 + X8 + X10

= X2 + K8
1

K2
1
X2 + K10

1
K2

1
X2

= X2
K2

1
[K2

1 + K8
1 + K10

1 ]

= X2s2,8,10/K2
1 ,

where si,j,k = Ki
1 + Kj

1 + Kk
1




= K2
1X1Y

0
1 −K2

1X1
X2

K2
1

s2,8,10

= K2
1X1Y

0
1 −X1X2s2,8,10

X2 + X1X2s2,8,10 = K2
1X1Y

0
1

=⇒ X2

(
1 + X1s2,8,10

)
= K2

1X1Y
0
1

∴ X2 = K2
1Y

0
1

X1

1 + s2,8,10X1

Let

t(2, 8, 10) =
Y 0

1

1 + s2,8,10X1

Then, we have

X2 = K2
1X1t(2, 8, 10) (3.114)

X8 = K8
1X1t(2, 8, 10) (3.115)

X10 = K10
1 X1t(2, 8, 10) (3.116)
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Similarly, we obtain




X3

X9

X11




=




K3
1

K9
1

K11
1




X1t(3, 9, 11) (3.117)

where t(3, 9, 11) =
Y 0

2

1 + s3,9,11X1




X4

X12

X14




=




K4
1

K12
1

K14
1




X1t(4, 12, 14) (3.118)

where t(4, 12, 14) =
Y 0

3

1 + s4,12,14X1




X5

X13

X15




=




K5
1

K13
1

K15
1




X1t(5, 13, 15) (3.119)

where t(5, 13, 15) =
Y 0

4

1 + s5,13,15X1




X6

X16

X18




=




K6
1

K16
1

K18
1




X1t(6, 16, 18) (3.120)

where t(6, 16, 18) =
Y 0

5

1 + s6,16,18X1
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and




X7

X17

X19




=




K7
1

K17
1

K19
1




X1t(7, 17, 19) (3.121)

where t(7, 17, 19) =
Y 0

6

1 + s7,17,19X1

After this manipulation we have equations for all Xj’s in terms of X1, j 6= 1. Next,

we obtain equilibrium probe concentrations:

Y1 = Y 0
1 − (X2 + X8 + X10)

= Y 0
1 − s2,8,10Y

0
1 X1

1

1 + s2,8,10X1

= Y 0
1

{
1− X1s2,8,10

1 + s2,8,10X1

}
= Y 0

1

1

1 + s2,8,10X1

∴ Y1 =
Y 0

1

1 + s2,8,10X1

= t(2, 8, 10) (3.122)

Similarly, we have

Y2 = t(3, 9, 11) (3.123)

Y3 = t(4, 12, 14) (3.124)

Y4 = t(5, 13, 15) (3.125)

Y5 = t(6, 16, 18) (3.126)

Y6 = t(7, 17, 19) (3.127)
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It remains to get the univariate polynomial equation for X1—“the main equation.”

X0
1 =

19∑

l=1

Xl

= X1 + (X2 + X8 + X10) + (X3 + X9 + X11) + (X4 + X12 + X14)

(X5 + X13 + X15) + (X6 + X16 + X18) + (X7 + X17 + X19)

= X1 + (K2
1 + K8

1 + K10
1 )X1t(2, 8, 10)

+(K3
1 + K9

1 + K11
1 )X1t(3, 9, 11)

+(K4
1 + K12

1 + K14
1 )X1t(4, 12, 14)

+(K5
1 + K13

1 + K15
1 )X1t(5, 13, 15)

+(K6
1 + K16

1 + K18
1 )X1t(6, 16, 18)

+(K7
1 + K17

1 + K19
1 )X1t(7, 17, 19)

= X1

(
1 + s2,8,10t(2, 8, 10) + s3,9,11t(3, 9, 11) + s4,12,14t(4, 12, 14)

+s5,13,15t(5, 13, 15) + s6,16,18t(6, 16, 18) + s7,17,19t(7, 17, 19)
)

Therefore,

X0
1 = X1

{
1 + Y 0

1

s2,8,10

1 + s2,8,10X1

+ Y 0
2

s3,9,11

1 + s3,9,11X1

+Y 0
3

s4,12,14

1 + s4,12,14X1

+ Y 0
4

s5,13,15

1 + s5,13,15X1

+Y 0
5

s6,16,18

1 + s6,16,18X1

+ Y 0
6

s7,17,19

1 + s7,17,19X1

}
(3.128)

which is a 7th order polynomial in X1. As in other models, (3.128) can be solved

for X1 numerically (e.g., in Mathematica).
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3.7 Obtaining Thermodynamic Parameters

3.7.1 Nearest-Neighbor Model

The model of hybridization discussed so far treats the dynamics in terms of ki-

netic mass-action reactions and ignores both the mixing properties of the molecules

and the exact physics of hybridization except for simply acknowledging that the

thermodynamics parameters depend on base-pair composition. Recall that the pro-

cess of hybridization involves the formation of base pairs between Watson-Crick–

complementary bases. Namely, base pairing of two single stranded DNA molecules

is determined by the fact that A (adenine) is complementary to T (thymine), and

C (cytosine) is complementary to G (guanine). Such base pairing is due to the for-

mation of hydrogen bonds between the complementary bases; thus, this interaction

is characterized primarily by the composition of the interacting strands. Another

physical interaction, base stacking, characterizes the hybridization process, and it

has been shown to depend on the sequence rather than the composition of the

strands. As base stacking depends on the short-range interactions, it is thought to

be adequately described by the Nearest-Neighbor (NN) model.

In the NN model, it is assumed that the stability of a given base pair is deter-

mined by the identity and orientation of the neighboring base pairs. Thus, each

thermodynamic parameter of the hybridization process, such as the change in en-

thalpy (∆H), entropy (∆S), and free energy (∆G), is calculated as a sum of the

contributions from each nearest-neighbor pair along a strand, corrected by some

symmetry and initiation parameters. As the enthalpy and entropy terms may be

assumed to be independent of temperature, they can be computed as follows ([9],
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[40]):

∆H =
∑

x

∆Hx + ∆H(init) + ∆H(sym) (3.129)

∆S =
∑

x

∆Sx + ∆S(init) + ∆S(sym) (3.130)

where the terms ∆Hx and ∆Sx are tabulated for all ten possible NN dimer du-

plexes, as are the initiation and symmetry terms. The free energy computation is

analogous:

∆G =
∑

x

∆Gx + ∆G(init) + ∆G(sym) (3.131)

with the initiation and symmetry terms tabulated. The values ∆Gx for the dimer

duplexes have been tabulated at 25◦C ([9]) and at 37◦C ([40]). Since ∆G depends

on the temperature, the values ∆Gx for the dimer duplexes can be easily calculated

from the corresponding ∆Hx and ∆Sx parameters by

∆Gx(T ) = ∆Hx − T∆Sx (3.132)

The ten distinct dimer duplexes arise as follows. Following the notation of

Breslauer et al. ([9]), we denote each dimer duplex with a “slash-sign” separating

antiparallel strands, e.g., AG/TC denotes 5’-AG-3’ Watson-Crick base-paired with

3’-TC-5’. Alternately,
AG

TC
is equivalent to AG/TC. The table below lists all
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sixteen (= |{A, T, C,G}|2 = 42) possible dimers, identifying the equivalent ones.

AA

TT

AC

TG
≡ GT

CA

AG

TC
≡ CT

GA

AT

TA

CA

GT

CC

GG
≡ GG

CC

CG

GC

CT

GA

GA

CT

GC

CG

GG

CC

GT

CA

TA

AT

TC

AG
≡ GA

CT

TG

AC
≡ CA

GT

TT

AA
≡ AA

TT

Since our simulations involve oligonucleotide probes, we used the parameters

for the initiation of duplex formation drawn from the results in the 1998 paper of

SantaLucia ([40]). There, two different initiation parameters were introduced to

account for the differences between duplexes with terminal A ·T and duplexes with

terminal G·C. The additional “symmetry” parameter accounts for the maintenance

of the C2 symmetry of self-complementary duplexes ([10]).

The table of parameters used in our simulations, drawn from [40], is duplicated

in Table 3.1 for convenience. The following example illustrates how the free energy

can be computed according to (3.131) using the values from Table 3.1.

Example

5’ C-G-A-A-G-T 3’

* * * * * *

3’ G-C-T-T-C-A 5’
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Table 3.1: Unified oligonucleotide ∆H, ∆S, and ∆G NN parameters in 1M NaCl. [Re-

produced with permission from [40] (Copyright 1998, National Academy of Sciences,

U.S.A.)]. ∆G is computed at 37◦C.

∆H ∆S ∆G

Interaction kcal/mol cal/K·mol kcal/mol

AA/TT -7.9 -22.2 -1.00

AT/TA -7.2 -20.4 -0.88

TA/AT -7.2 -21.3 -0.58

CA/GT -8.5 -22.7 -1.45

GT/CA -8.4 -22.4 -1.44

CT/GA -7.8 -21.0 -1.28

GA/CT -8.2 -22.2 -1.30

CG/GC -10.6 -27.2 -2.17

GC/CG -9.8 -24.4 -2.24

GG/CC -8.0 -19.9 -1.84

Init. w/term. G · C 0.1 -2.8 0.98

Init. w/term. A · T 2.3 4.1 1.03

Symmetry correction 0 -1.4 0.43

∆G = ∆G(CG/GC) + ∆G(GA/CT ) + ∆G(AA/TT ) + ∆G(AG/TC)

+∆G(GT/CA) + ∆G(init. w/G · C) + ∆G(init. w/A · T ) + 0

= −2.17− 1.30− 1.00− 1.28− 1.44 + 0.98 + 1.03

= −5.18 kcal/mol

Since the duplex is not self-complementary, ∆G(sym) = 0.
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3.7.2 Affinity Constants

We further recall that at equilibrium, the affinity constants Kj
1 are given by (3.21),

replicated here for convenience, as described in section 3.3.1:

Kj
1 = exp [−∆G/RT ] ,

and ∆G due to stacking interactions is calculated as above. Also, we note that with

the affinity constant values computed, we are ready to compute the “ratios of perfect

match to mismatch values” for a particular initial target and probe concentrations.

3.8 Observed Competition among Probes

As discussed in sections 3.3.1, 3.3.2, and 3.3.3, we can compute the equilibrium TP

concentrations from the initial target and probe concentrations. We have compu-

tationally simulated the hybridization process for a large number of target/probe

sequences used in practice, and observed a difference in pm/mm ratio for probe 1

under Partial Model (P1 + T ) vs. Full Model (P1 + P2 + T ). A similar effect was

observed for probe 2. These experiments indicated that the direction of the shift

depends on the affinity constants and can be empirically characterized to be a func-

tion of the products of the affinity constants of the perfect match and mismatch

probes.

For instance, we examined the behaviors of exon 11 probes A and B (treated

as probes 1 and 2, respectively) under the full hybridization model, discussed in

section 3.3.1, as well as under partial hybridization models (sections 3.3.2 and 3.3.3),

to observe the following:
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1. Ratio [TPA,pm]/[TPA,mm] for A (i.e., probe pair {PA,pm, PA,mm}) shifts up in

the presence of probe B (i.e., probe pair {PB,pm, PB,mm}).

2. Symmetrically, ratio [TPB,pm]/[TPB,mm] for B shifts down in the presence of A.

3. We address the following questions: How can the shift direction be predicted?

How does it depend on the sequences of the probe pairs in question?

3.8.1 Heuristic Development

Our empirical study was conducted as follows. Let us consider two probes, each

having associated with it the pair {P·,pm, P·,mm}. For each probe, the pm/mm ratio

shifts up or down in the presence of the other probe. The direction of the shift was

determined to be a function of the relative sizes of the affinity constants K, where

cross-bound states can be neglected. For a given probe, let K
Tpm, KTmm denote

the affinity constants for This probe’s binding site with pm and mm, respectively;

let K
Opm, KOmm be the Other probe’s affinity constants with pm and mm.

Let us view the competition effect as a binary function on the space of affinity

constants (+1 for up, −1 for down shift) and consider the projection of the affinity

constant space

R4 = {K
Tpm , KTmm , K

Opm , KOmm}

onto the plane L with axes log(K
Tpm/K

Opm) and log(KTmm/KOmm). On this

plane, the competition effect function values can be clearly separated by the line

x+y = 0. This condition holds for physical exon 11 probes, as shown in Figures 3.2

and 3.3.

The empirically determined condition can be described by the following logically
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equivalent statements:

pm/mm ratio shifts up

⇐⇒ y < −x

⇐⇒ log(KTmm/KOmm) < − log(K
Tpm/K

Opm)

⇐⇒ K
TpmKTmm < K

OpmKOmm (3.133)

Thus, the signal for This probe improves whenever (3.133) holds.

In order to test the heuristic computationally, we generated more points for

the competition effect function by perturbing existing probe sequences in one base

and pairing one actual exon 11 probe with one perturbed probe. The results of this

empirical investigation of the competition effect on these probe pairs are graphically

presented in Figure 3.4.

3.9 Experimental Validation

In order to further verify the performance of our heuristic, we proposed the following

experiments. The pm/mm ratios should be measured for the probes as listed below

under Partial model (i.e., the probe and its alternate are present alone with the

target) and Full model (i.e., the specified probes, each with an alternate, are present

with the target) for:

• Actual probe pairs:

– AB, AC, AD, BC, BD, CD

– In each case, both probes should be used alternately as This and as Other

probe.

114



• Actual/Perturbed probe pairs that show a change of shift direction in simu-

lation:

This Other

A D 5A D 5T

D A 2G A 6G A 8G A 14C

• Actual/Perturbed probe pairs (to be used as controls) that do not show

change:

This Other

A D 5C D 6T

D A 2C A 2T

The remarkable consistency with which our heuristic conforms with the results

of the simulation suggests that the heuristic can be used reliably in place of the

simulation to predict the competition effect, i.e., the direction of the shift. This

predictive power can be used in experiment design (e.g., for HLA typing).

Example

Let A = C381, B = A327, and C = D359 from exon 11, with the alternates

used in the experiments. Pairwise computational analysis indicated that: A327

improves the signal for C381 and D359 improves the signal for A327. Our heuristic

implies that D359 automatically improves the signal for C381. This conclusion was

tested using the extended model, as described in detail in section 3.6.2. Recall that

the setup for this model includes three probes (each with an alternate) and three

possible binding sites on the target for each probe; the “perfect match” for each
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probe is designed to match the corresponding binding site on the target. In this

example, we compared the ratio curves for the first probe from the Full and Partial

models with the curve from the Extended model, as shown in Figure 3.5.

Note that, in Figure 3.5, the pm/mm ratio curve for C381 in the presence of

both A327 and D359 (the blue curve) lies above both the red curve (the ratio for

C381 in the presence of A327 alone) and the green curve (the ratio for C381 alone

with the target). This indicates that for a given initial target concentration, i.e., a

given point on the x−axis, the pm/mm ratio for C381 goes up in the presence of

A327, which is consistent with pairwise analysis; the ratio increases further when

D359 is added to the mix, confirming the heuristic prediction.

3.10 Conclusion

In this chapter we present mathematical models of the competitive probe-target

hybridization process. Simulations based on the implementations of these models

and the heuristic developed and presented in section 3.8.1 generate results that are

in agreement with experimental results observed in the laboratory. Prediction of

competition effects based on in silico experiments can be used for the design of

better biological experiments. Possible applications include experiment design for

genotyping and mutation analysis.

116



Figure 3.1: pm/mm ratios for probe A (top graph) and probe B (bottom graph), plotted

against scaled initial target concentration.
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Figure 3.2: Competition effect binary function on exon 11 probes.
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Figure 3.3: Competition effect binary function on exon 11 probes, shown with the sepa-

ratrix y = −x.
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Figure 3.4: Testing the heuristic computationally: each probe pair contains one actual

exon 11 probe and one perturbed probe.
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Figure 3.5: Example: pm/mm ratios for three probes
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Chapter 4

HLA Typing

ABSTRACT

The problem of HLA typing has many biological implications; partic-

ularly, knowing the correct allele is essential to ensure the compatibility

of the donor organ with the recipient. Most of the currently used tech-

niques are time-consuming and lack optimality.

We present a graph model on the set of potential probes, formulate

the HLA typing problem mathematically as an optimization problem on

our graph model, and present an algorithm for solving the optimization

problem. The processes of translating the typing problem to the graph

model and the optimizing probe set back to the experiment design for

HLA typing are described in detail.

Some experimental results on a simple example problem are pre-

sented. Extensions of our graph model to more detailed physical models

are discussed.
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4.1 Problem Definition

Human leukocyte antigen (HLA) region on chromosome 6 (e.g., [15]) is highly

polymorphic—the sequence of this region varies from person to person. Many

different possible sequences, or “alleles,” are known. (Currently, close to 1,100 alle-

les are known.) Given a DNA sequence, the biological problem lies in determining

which allele, or “HLA type,” it contains.

The biological implications are many: the allele may predict the presence or

absence of diseases, dictate the course of treatment for a patient, or, most notably,

determine the compatibility of a potential transplant recipient with the donor or-

gan or bone marrow. One of the approaches to finding the right allele is to design

a microarray experiment that gives the allele as an answer. In fact, HLA typing

by sequence hybridization with sequence-specific oligonucleotide probes (SSOP) is

currently practiced by the National Marrow Donor Program (NMDP) for donor-

recipient matching ([34]), alongside with the more traditional serology method ([35],

[11]). In many current methods utilizing a popular test format, the DNA samples to

be classified are amplified with locus specific primers and spotted onto the microar-

ray chips, resulting in multiple copies of identical chips; each chip is then hybridized

to a different probe ([6], [15]). This methodology necessitates a new design process

every time a new set of patient samples must be classified. Some of the recent work

done in this area is described in [36], [17], [22], and [15].

In the approach proposed here, the sequence-specific probes will be placed on
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the microarray chip, and each patient sample will be applied to the chip to allow

hybridization with some of the chip-bound probes. With properly selected probes,

the same chip can be used for all classifications. Thus, we must design a set of

probes to be used in a series of hybridization experiments on the target sequence.

How many probes to use, and what their sequences should be, are design questions.

Of course, a general solution should be one that allows us to “recognize” all

existing alleles, or decide that the given DNA sequence contains an allele that is

not in the “known” list. Such an allele may be a new, previously unknown allele, or

one of the very rare alleles that occur so infrequently that they are not considered

HLA types.

4.1.1 Mathematical Formulation

Definitions

Let us denote the different HLA types, or alleles, by Tj, j = 1, . . . , N . (Here, we set

N = 1100.) Let a given microarray be denoted by µAk, k ∈ N, where a microarray

is defined by a set of hybridization probes and their two-dimensional arrangement

on the chip surface. The process of querying the given DNA sequence (hereafter

referred to as a “target” sequence) by a hybridization experiment can be denoted

by the expression

(Tj, µAk) −→ D −→ T̂j, (4.1)

where Tj is the true allele contained in the target sequence, µAk is the microarray

used in the query, D is the data output of the hybridization experiment, and T̂j is

the allele inferred from the data. Both processes in (4.1) are described below.
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The problem of HLA typing can then be formulated as that of designing the

best microarray, namely, the set and arrangement of probes, which “works” for all

known HLA types (i.e., ∀j). In our notation, this means finding µAk which solves

the optimization problem

min
∑

type j

wj E
[
ITj 6=cTj

]
(4.2)

⇐⇒ min
∑

type j

wj Pr
(
Tj 6= T̂j

)
.

Here, IX is the indicator function

IX =





1, if X is true

0, otherwise

and wj is the weight assigned to type j. Initially, we set wj = 1 ∀j. Later, it may

be desirable to weigh different HLA types differently, based on the frequency of

their occurrence in human population or some other criteria.

There are several processes that need to be considered and described in de-

tail: obtaining data D from an experiment based on allele Tj and microarray µAk,

inferring allele T̂j from the data, generating potential microarrays for the typing

experiments, and selecting the optimal microarray.

(Tj, µAk) −→ D

Consider the set of probes {P1,k, . . . , Pn(k),k} constituting microarray µAk, neglect-

ing their arrangement for the moment. Ideally, the outcome of the hybridization of

the target sequence with each probe P would be binary: 1, if the target contains

a subsequence complementary to P , and 0, otherwise. Using n = n(k) probes then
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yields a binary string of length n, or, alternately, a vector of length n, as a code for

the target sequence.

In practice, hybridization results are not binary; rather, the measurements are

the analog intensity values corresponding to the amount of formed probe-target

complex for each probe. In addition, in an attempt to “factor out” the non-specific

signal, each probe is often present in two versions: one (perfect match, or “pm”)

perfectly complementary to a region on the target, and the other (mismatch, or

“mm”) slightly mismatched, the latter usually containing a single base mismatch

near the center of the probe. This is the case, for example, in Affymetrix GeneChips

([24]). In such a setup, the signal from probe P is the match-to-mismatch ratio: the

ratio of the intensities corresponding to the matched and mismatched probe-target

complexes. Furthermore, the signal is log-transformed, so that the hybridization

outcome for probe P is really the value of

log

(
TPpm

TPmm

)
.

The situation is further complicated by the fact that probes may hybridize to

positions on the target other than those they were designed to detect—this is known

as “cross-hybridization.” In addition, the fact that many probes are present in the

system may cause the signal (i.e., hybridization outcome) from a given probe to

differ from the signal of the same probe in the absence of other probes. This topic

was addressed in more detail in Chapter 3.

Thus, the actual result of a hybridization experiment is a vector of n measure-

ments, D ∈ Rn.
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D −→ T̂j

The next question is, how can this n-vector be used to infer the allele?

First, let us return to the ideal process, where the outcome is D ∈ {0, 1}n. If the

probes were chosen in such a way as to give a distinct binary string for each known

allele (so that the Hamming distance dH between any pair of data vectors Di,Dk

is at least 1), then these n probes are sufficient to identify the allele of the target

sequence. All one has to do is query the sequence with the n probes and read off

which allele the pattern corresponds to. Furthermore, if we require dH(Di,Dk) ≥ α

for some α > 1, the discrimination power can be increased and error-correction is

possible. This issue is discussed in more detail in section 4.2.2.

In the practical setting, D ∈ Rn. Thus, as a first step, some thresholding process

must be applied to D to reduce it to a binary string.

Generating Potential Microarrays

Choosing Informative Probes We must provide a set of n probes, each of length

L, that are at least d letters apart (pairwise), for optimal discrimination among the

allele sequences.

If L is not specified, we can choose it arbitrarily (say, 20), or allow it to vary

from probe to probe.

With no restrictions, we could choose a very large n: for example, why not

use every possible 20-mer as a probe? This would result in 420 = 240 = (210)4 >

(103)4 = 1012, or over a trillion, probes. Such a large set is not desirable, since many

of these probes would give the same results, and it is too expensive to produce all

of them. Allowing both n and L to vary would give us an even larger number of
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potential probe sequences.

The essence of the probe design problem lies in choosing which of the probes

are most useful in discriminating among the given allele sequences, and how many

(or rather, how few) we can get away with using.

Arranging Probes on the Chip Once a set of probes has been selected using

techniques described in earlier sections, there is still a question of how to arrange

these probes on the microarray chip. Several studies indicate that the patterns

observed in the results of chip experiments may be due to the arrangement of

probes on the chip (see [27], [49], and [38]). Specifically, it has been observed that

probes are arranged on a chip based on the labels of the genes they represent, and

a gene label is often related to the function and/or disorder the gene is involved

in. As a result, genes of shared function have similar labels and are coexpressed,

generating monochromatic bands on microarray chip scans.

These studies suggest that more thought should be given to the arrangement

of probes on the chip, based on some “conceptual” measure of probe distance.

The “conceptual” probe distance can use available biological knowledge about the

portions of the genome containing the probes in question, as well as a measure of

competition between these probes, as discussed in section 3.8. The following re-

cursive technique, described in [32], can ensure that the “nearest” probe pairs are

separated by at least a specified minimum physical distance on the chip. It is de-

signed to be disruptive to neighborhoods, defined with respect to the “conceptual”

probe distance; thus, it places conceptually nearby probes far apart on the surface.
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Introduction Consider a bijective function

f : {0, . . . , N2 − 1} → {0, . . . , N − 1} × {0, . . . , N − 1}

that maps every pair of “nearby” points in the domain space to a pair of “distant”

points in the range space. In particular, we devise a function f with the following

property: For every x, y, if |x − y| ≤ 4α, then ‖f(x) − f(y)‖1 ≥ N/(2α+1). We

conjecture (but do not have a proof) that this function gives an optimal placement.

If the elements of the domain space satisfy other distance properties, this method

can be suitably generalized to handle similar properties with respect to the new

distance metric.

This function plays an important role in determining how to place a set of

oligonucleotide probes on a microarray surface in such a manner that if two probes

are close to each other in their genome locations then they are reasonably far apart

on the array. Thus, a placement determined by the function minimizes competition

among the probes for the genomic targets as well as the systematic biases in the

error processes.

Function Definition Inductively, we define a uniform family of functions fk

as follows. Let k < lg N .

fk+1 : {0, . . . , N2 − 1} → {0, . . . , N − 1} × {0, . . . , N − 1}

: x 7→ 〈i, j〉.

fk+1 is defined in terms of fk

fk : {0, . . . , N2/4− 1} → {0, . . . , N/2− 1} × {0, . . . , N/2− 1}
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as follows:

fk+1(x) =





fk(bx
4
c), if x ≡ 0 mod 4;

fk(bx
4
c) + 〈0, N

2
〉, if x ≡ 1 mod 4;

fk(bx
4
c) + 〈N

2
, 0〉, if x ≡ 2 mod 4;

fk(bx
4
c) + 〈N

2
, N

2
〉, if x ≡ 3 mod 4.

(4.3)

This function can be generalized, without its general properties being affected,

by simply including a random permutation πk+1 : {0, . . . , 3} → {0, . . . , 3} as follows:

fk+1(x) =





fk(bx
4
c), if x ≡ πk+1(0) mod 4;

fk(bx
4
c) + 〈0, N

2
〉, if x ≡ πk+1(1) mod 4;

fk(bx
4
c) + 〈N

2
, 0〉, if x ≡ πk+1(2) mod 4;

fk(bx
4
c) + 〈N

2
, N

2
〉, if x ≡ πk+1(3) mod 4.

Hereafter, k takes the value (lg N−1) and the base case is given by the function

f2 : {0, . . . , 15} → {0, . . . , 3} × {0, . . . , 3}

where

0 7→ 〈0, 0〉, 1 7→ 〈0, 2〉, 2 7→ 〈2, 0〉, 3 7→ 〈2, 2〉
4 7→ 〈0, 1〉, 5 7→ 〈0, 3〉, 6 7→ 〈2, 1〉, 7 7→ 〈2, 3〉
8 7→ 〈1, 0〉, 9 7→ 〈1, 2〉, 10 7→ 〈3, 0〉, 11 7→ 〈3, 2〉
12 7→ 〈1, 1〉, 13 7→ 〈1, 3〉, 14 7→ 〈3, 1〉, 15 7→ 〈3, 3〉

(4.4)

This base map1 can be described in matrix format as follows:



0 4 1 5

8 12 9 13

2 6 3 7

10 14 11 15




(4.5)

1Suggested by Iuliana Ionita.
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Taking N = 2`, we can place N2 = 4` probes by applying f` : {0, . . . , 4`−1}, which

after (`−2) recursive steps, defined in (4.3), reduces to the base case f2 : {0, . . . , 15}
shown in (4.4), (4.5).

Function Properties Function f` has the following distance properties. Let

D(i, j) be the distance between probes pi and pj, when arrayed on a line (by re-

labeling the probes, we can view this as the index separation |i − j|). Let d(i, j)

be their distance when arrayed on the surface. Then the mapping f` guarantees

that for all pi, pj for which D(i, j) ≤ 4k, d(i, j) ≥ 2`−k−1, where k = 0, . . . , ` − 1.

Furthermore, if d(i, j) = 1, that is, pi is placed next to pj on the surface, then

D(i, j) ≥ 3 · 4`−2.

Example:




0 16 4 20 1 17 5 21

32 48 36 52 33 49 37 53

8 24 12 28 9 25 13 29

40 56 44 60 41 57 45 61

2 18 6 22 3 19 7 23

34 50 38 54 35 51 39 55

10 26 14 30 11 27 15 31

42 58 46 62 43 59 47 63




Here, ` = 3, so we have

N2 = 4` = 64 probes to place.

k D d

0 1 4

1 4 2

2 16 1

If D = 4k, then d = N/2k+1 = 2`−k−1.

4.1.2 Related Problems

Some other biological problems, such as identifying an unknown pathogen as a

member of a list of known pathogens, be they viral ([39]) or bacterial ([8]), have the
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same mathematical formulation as the problem of HLA typing discussed here. We

believe that those applications can also benefit from the improvements to existing

approaches provided by the work presented here.

The problem of automatic generation of probe sets for DNA microarrays was

also addressed recently in [28]. However, the work described in [28] aims for a probe

set that is, even in ideal circumstances, asymptotically much larger than the one

generated by our approach.

4.2 Optimization Problem on a Graph Model

We now address the problem of selecting the optimal microarray. The problem

of choosing the constituent probes can be reduced to a “best independent set”

problem. The following sections define the graph model we use, as well as the

meaning of the term “best independent set,” and describe the optimizing algorithm.

4.2.1 Graph Model Definitions

Notation

Let us begin by introducing the notation. Recall that there are N known alleles,

and suppose we have n potential probes. Each probe is described by a “response

vector” ~vj ∈ {0, 1}N , j = 1, . . . , n. The response vector data can be represented in
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tabular form:

~v1 ~v2 · · · ~vn

HLA1 1 0 · · · 1

HLA2 1 1 · · · 0

...
...

...
...

HLAN 0 0 · · · 1

(4.6)

Here, column j is the response vector for probe ~vj:

~vj = (vj[1], vj[2], . . . , vj[N ])T , (4.7)

and row i is the code for allele i, which we will call HLAi:

HLAi = (v1[i], v2[i], . . . , vn[i]). (4.8)

Original Graph

Let each potential probe form a vertex in the graph. Conceptually, an edge in the

graph should connect two probes with shared characteristics.

We start with essentially a complete edge- and vertex-weighted undirected graph

G = (V,E) on n vertices, where n is the number of potential probes. In the most

general problem formulation, n can be very large: for each probe length L, there

are 4L possible probes. (For instance, as shown in section 4.1.1, there are over a

trillion possible probes of length 20.) Thus, the graph in our probe interaction

model can be very large.

We assign weights to each vertex v and to each edge e, 0 ≤ w(v), w(e) ≤ 1. The

weight of a vertex is initially set to the “information content”2 of the corresponding

2The term “information content” is used here differently than defined in information theory, where it

means the minimum amount of information needed to send a string (e.g., [16]).
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probe response vector with respect to the HLA typing problem:

w(v) = min{%0’s, %1’s}/100. (4.9)

Ideally, if possible, we would like all vertices to have weight 0.5; a vertex with weight

too close to zero is uninformative, and the corresponding probe should only be used

if it serves to differentiate an allele that is not distinguishable by using other, more

informative probes.

The weight of an edge is initially set to the scaled Hamming distance of the

probe response vectors represented by its endpoints:

w(e) = Hamming distance/vector length, (4.10)

with values close to zero corresponding to sequence-similar probes.

Thresholded Graph

Next, we transform our graph G by thresholding the edges. We select a threshold

ρ, the choice of which is discussed in more detail in section 4.2.3, and generate a

modified graph Gmod = (V, Emod), where

Emod = {e ∈ E : w(e) ≤ ρ}

is a set of unweighted edges, and the set of weighted vertices V is unchanged.

Hereafter, we work with this modified vertex-weighted graph and denote it by G.

It now makes sense to define an independent set on our graph. An independent

set is defined as a set of vertices such that for any pair of vertices, there is no edge

between them ([19]). More formally, a set of vertices V ′ ⊂ V is an independent set

if (u ∈ V ′ and v ∈ V ′) implies that {u, v} 6∈ E.
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Goal

In section 4.1.1, we defined the best microarray. Now we formulate the correspond-

ing concept on our graph model. We define the best independent set as a maximum

weight yet minimum size independent set. Thus, such a set S ⊂ V must be an

independent set, have maximum weight w(S) =
∑

v∈S w(v), and minimum cardi-

nality |S|. The condition of independence is meant to preclude any unintended

interaction among the chosen probes. Maximum weight will provide S with max-

imum discrimination power. Minimum size will ensure that we use the smallest

collection of probes that does the job.

Since all vertex weights are nonnegative, the requirements of maximum weight

and minimum cardinality are clearly contradictory. We can relax the definition

somewhat by specifying a priori the desired size M of the set, and look instead for

the maximum weight independent set of size ≤ M .

4.2.2 Optimization Algorithm

To achieve this goal, we used a modification of a Maximal Independent Set algo-

rithm, described in a classic paper by Luby ([31]).

Algorithm Pseudocode

Given graph G and set size M :

1. Initialization:

(a) Initialize a “current-best” list of independent sets, with associated infor-

mation weights. It will store a list of the best, say, 20, independent sets
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seen so far, sorted by information weight.

2. Restart Loop: Execute at least minRestartNum times; if the “current-best”

list is not full (i.e., does not have 20 independent sets) by then, keep repeating

until the list is filled.

(a) Initialize boosting weights; we accomplish this by setting the boosting

weights to the information weights of the vertices:

∀v ∈ V, wb(v) ← w(v).

(b) Boosting Loop: Repeat until no improvements have been made to the

“current-best” list for a fixed number of iterations (say, 5 iterations).

i. Choose a set S of M vertices randomly from V , with

P (v ∈ S) =
wb(v)∑

u∈V wb(u)
.

ii. For each edge {u, v} in G|S (the induced subgraph on S), eliminate

one of the endpoint vertices. This leaves a set, S1, of K ≤ M inde-

pendent vertices.

iii. Adjust the boosting weights of vertices in S; namely, increase the

boosting weights of the vertices in S1:

wb(v) ← awb(v) ∀v ∈ S1

and decrease the boosting weights of the vertices in S − S1:

wb(v) ← 1

a
wb(v) ∀v ∈ S − S1,

where a ≥ 1 is some previously selected constant.
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iv. If S1 is not already in the “current-best” list and provides an improve-

ment over some current member of the list, reset the noImprovements

counter, find the appropriate location for S1 in the list, and update

the list. Otherwise, make a note that no changes to “current-best”

list were made on this iteration (i.e., increment the noImprovements

counter).

(c) If the condition for continuing the restart loop holds (namely, minRestart-

Num restarts have not yet been executed or the “current-best” list is not

yet full), reset the noImprovements counter and repeat step 2.

Algorithm Description

Our algorithm uses vertex boosting weights (initially set to probe information

weights) to define a probability distribution on the vertex set. On each itera-

tion of the boosting loop (step 2b), a random subset of a specified size is chosen

according to the current probability distribution (step 2(b)i). All edges in the in-

duced subgraph on this random subset are broken, with one of the terminal vertices

thrown out (step 2(b)ii). The boosting weights of the elements of the subset are

then modified (step 2(b)iii), so that the vertices that stayed in the subset are more

likely, and the vertices that were thrown out are less likely to be chosen on the next

iteration. The boosting loop terminates after a certain number of iterations with

no improvement to the list of top independent sets (to allow some flexibility, the

algorithm keeps track of several of the top independent sets instead of only storing

the best one seen so far).

The algorithm also restarts the boosting loop several times with original probe
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information weights. This feature has been incorporated to prevent convergence to

a local optimum, which is possible for high values of the boosting factor.

What Does It Mean?

We can think of the boosting algorithm (as a whole) as operating on the probability

space of all subsets of our graph. Note that step 2(b)ii guarantees that the selected

subset is independent, so that the probability distribution is only supported on

independent sets (i.e., the distribution is zero on all non-independent sets). In

this view, we can expect the algorithm to converge to a probability distribution

where the best independent set has the highest probability. Each iteration of the

boosting loop adjusts the probabilities associated with each vertex in the graph.

The subset of interest is always drawn randomly according to the current probability

distribution.

If the solution S∗ were known a priori, its selection by the algorithm could be

guaranteed by initializing the boosting weights is step 2a to be

∀v ∈ S∗, wb(v) ← 1,

∀v ∈ V − S∗, wb(v) ← 0.

In other words, the associated probability distribution would have a probability of 1

for each vertex v ∈ S∗, and a probability of 0 for each remaining vertex v ∈ V −S∗.

Given unlimited time for obtaining a solution (and an appropriate set of parame-

ters), we would expect the boosting algorithm to converge to this ideal distribution.

However, when time is limited, a “good” (i.e., informative) independent set of size

≤ M is only “more likely” than other independent sets of similar size. The algo-
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rithm presented here was designed to give a “pretty good” solution in limited time,

yet be able to improve on it iteratively when more time is permitted (with minimal

modifications to the loop terminating conditions).

Another way to think about it is that the best independent set is, ideally, a

fixed point for our algorithm, in the sense that if the algorithm starts at a perturbed

location in the subset probability space, it should converge to the optimal set. That

is, if the initial probability distribution is heavily favored towards a set that doesn’t

differ from the best set in many vertices, the algorithm should converge to the best

set.

Breaking Edges

In step 2(b)ii of the boosting algorithm, the mechanism for breaking the edge {u, v}
was not specified. The implemented approach was the following: choose to keep the

vertex that has the higher boosting weight; if vertices have equal boosting weights,

choose one at random (with probability 1
2
).

Choosing Scaling Factor a

In step 2(b)iii of the boosting algorithm, the weights of those vertices that were

selected and kept are boosted (scaled up) by a factor of a ≥ 1, while the weights of

discarded vertices are scaled down by the same factor. This has the effect of noting

which vertices were chosen for membership in the independent set and increasing

the likelihood that these vertices will be chosen in the future, with the reverse effect

on the discarded vertices. Here, we discuss how the value of the scaling factor a

affects the “memory” of the probability space evolution. Let us examine a single
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“restart” of the algorithm (namely, step 2b).

Extreme cases:

• a = 1: No memory of previous selections. Ignore the current selection, and

choose anew on the next iteration. The boosting algorithm performs an ex-

haustive search.

• a = ∞: Perfect memory. Once a set S of vertices is selected and pruned, and

its elements’ boosting weights are modified, each of the vertices remaining in

the independent set S1 will have a boosting weight of ∞ and each of those

thrown out of the independent set due to conflicts will have a boosting weight

of 0. Thereafter, the boosting algorithm will always choose the independent

set selected on the first run.

Real values:

The boosting algorithm was executed on the same graph model with several

values of a ∈ {2, 1.5, 1.2, 1.1}. The executions with higher values of a were observed

to terminate a single “restart” after a smaller number of iterations than those with

lower values of a.

Choosing M : the Maximum Size of the Independent Set

This section contains a probabilistic analysis of the answer to the following question:

What are the bounds on the number of probes, k, that is sufficient to distinguish

N known alleles? In order to answer this question, certain assumptions are made

on the random distribution from which the known alleles are assumed to be drawn.
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Independent Probes Recall the notation introduced in section 4.2.1. Assume

that each probe, at each index i = 1, . . . , N , assumes values 0 and 1 independently

and with equal probability. Consider k such probes and two alleles (HLAl and

HLAm). Thus, if HLAl is fixed:

HLAl = (HLAl[1], . . . , HLAl[k]),

then for each j we have

Pr (HLAm[j] = HLAl[j]) =
1

2

Pr (HLAm[j] 6= HLAl[j]) =
1

2

Then for these two HLA vectors,

Pr (The Hamming dist bet’n 2 HLA vectors = x) =

(
k

x

)
2−k, (4.11)

which can easily be seen as follows:

Pr (The Hamming dist bet’n 2 HLA vectors = x)

= Pr (HLA vectors differ in exactly x positions)

= Pr




x successes in k Bernoulli trials,

where

success = {HLAm[j] 6= HLAl[j]}
and p = Pr (success) = 1

2




=

(
k

x

)(
1

2

)x (
1

2

)k−x

=

(
k

x

)
2−k

Thus, for a fixed pair of alleles,

Pr (x ≥ 1) = 1− Pr (x = 0) = 1−
(

k

0

)
2−k (by (4.11))

= 1− 2−k, (4.12)
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and

Pr (∀pairs x ≥ 1) =
∏
pairs

Pr (x ≥ 1) (by independence)

=
∏
pairs

(1− 2−k) = (1− 2−k)# pairs (by (4.12))

= (1− 2−k)(
N
2 ) (4.13)

since there are N distinct allele vectors and pairs are unordered.

We wish this probability to be bigger than (1−ε) for some fixed small 0 < ε ¿ 1,

i.e.,

(1− 2−k)(
N
2 )

want
> 1− ε. (4.14)

First, let us bound the left-hand side term:

(1− 2−k)(
N
2 ) =

[(
1− 2−k

)2k
](N

2 )2−k

>

(
e
−1−2−k

)(N
2 )2−k

= e
−(N

2 ) (1+2−k) 2−k

where the inequality comes from the bound (appendix C.1)

(
1− 1

n

)n

> e
−1− 1

n
for large n. (4.15)

For the inequality in (4.14) to work, the bound (4.15) has to be in the correct

direction. Suppose we want a > b. If we show instead a > c and then choose the

parameter so that c > b, we can conclude by a > c > b that a > b. Therefore, the

above inequality chain will work if (4.15) holds.

Hereafter, we will use the symbol ⇐= to indicate steps in the inequality reduc-

tion that will satisfy the previous statements whenever the parameter in question

is chosen to satisfy the current statement.
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Thus, we reduced inequality (4.14) to the following:

e
−(N

2 ) (1+2−k) 2−k

> 1− ε

⇐⇒ −
(

N

2

)
(1 + 2−k) 2−k > ln(1− ε) (4.16)

Next, consider the right-hand term: ln(1− x) < −x for 0 < x < 1. Again, we want

a > b. If we show b < d and then choose the parameter so that a > d, we can

conclude by a > d > b that a > b. This allows us to reduce inequality (4.16) to the

following:

−
(

N

2

)
(1 + 2−k) 2−k > −ε (4.17)

⇐⇒ ε >

(
N

2

)
(1 + 2−k) 2−k

⇐⇒ 4k

2k + 1
> (1/ε)

(
N

2

)
, (4.18)

since

(1 + 2−k) 2−k = (2k + 1) 2−2k = (2k + 1) 4−k. (4.19)

Furthermore,

β2

β + 1
=

β2 + β − β − 1 + 1

β + 1
= β − 1 +

1

β
> β − 1 ∀β > 0. (4.20)

Hence, taking β = 2k yields

4k

2k + 1
> 2k − 1 (4.21)

Thus, (4.18) follows if k is chosen to satisfy

2k − 1 > (1/ε)

(
N

2

)

⇐⇒ 2k > (1/ε)

(
N

2

)
+ 1 (4.22)
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We can now verify the remaining chain of inequalities, from “desired” to “ob-

tained”: inequality (4.17) can be extended

−
(

N

2

)
(1 + 2−k) 2−k > −ε > ln(1− ε)

=⇒ e
−(N

2 ) (1+2−k) 2−k

> 1− ε,

which in turn can be extended

(1− 2−k)(
N
2 ) > e

−(N
2 ) (1+2−k) 2−k

> 1− ε

=⇒ (1− 2−k)(
N
2 ) > 1− ε, as desired.

Therefore, we must choose k (given ε, N) to satisfy (4.22):

2k > (1/ε)

(
N

2

)
+ 1

A simpler bound on k can be obtained by imposing a stronger condition

2k want
> (2/ε)

(
N

2

)
, (4.23)

which implies (4.22) since (1/ε)
(

N
2

)
> 1. The right-hand side of (4.23) simplifies to

(2/ε)

(
N

2

)
= (2/ε)

N(N − 1)

2
= (1/ε)N(N − 1),

so that

k > lg N + lg(N − 1) + lg(1/ε) (4.24)

is equivalent to (4.23). Furthermore, since 2 lg N > lg N + lg(N − 1), choosing

k > 2 lg N + lg(1/ε)

certainly gives us a value of k that satisfies (4.23). Therefore, requiring

k > 2 lg N + lg(1/ε) (4.25)
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imposes the strongest condition of those listed above. Hence, a value of k that sat-

isfies (4.25) also satisfies (4.22), and therefore the original desired inequality (4.14).

Dependent Probes Since the independence assumptions may be violated, we

model this by an error term δ. Suppose a probe fails to contribute to a Hamming

distance with probability (1+δ)/2. As before, we consider each position of the HLA

code vector as a Bernoulli trial, where success is defined as the event that jth entry

of a code vector contributes to the Hamming distance, i.e., {HLAm[j] 6= HLAl[j]},
so that

q = Pr (failure) = (1 + δ)/2

p = Pr (success) = (1− δ)/2

Therefore,

Pr (The Hamm dist = x)

=

(
k

x

)(
1− δ

2

)x (
1 + δ

2

)k−x

=

(
k

x

)
(1− δ)x(1 + δ)k−x2−k (4.26)

Continuing as before, we derive the condition.

Pr (x ≥ 1) = 1− Pr (x = 0)

= 1−
(

k

0

)
(1− δ)0(1 + δ)k−02−k

= 1− (1 + δ)k2−k, (4.27)

and

Pr (∀pairs x ≥ 1) =
(
1− (1 + δ)k2−k

)(N
2 ) .
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We wish this probability to be bigger than (1− ε). In other words,

(
1− (1 + δ)k2−k

)(N
2 ) want

> 1− ε (4.28)

• LHS(4.28) > e
−(N

2 ) (1+((1+δ)/2)k) ((1+δ)/2)k

by (4.15)

⇐=
want
> 1− ε (4.29)

⇐⇒ −
(

N

2

) [
1 +

(
1 + δ

2

)k
] (

1 + δ

2

)k

> ln(1− ε)

⇐= −
(

N

2

) [
1 +

(
1 + δ

2

)k
] (

1 + δ

2

)k
want
> −ε

⇐⇒ ε >

(
N

2

) [
1 +

(
1 + δ

2

)k
] (

1 + δ

2

)k

⇐⇒
(

2
1+δ

)2k

(
2

1+δ

)k
+ 1

> (1/ε)

(
N

2

)
, (4.30)

where the last transformation is obtained as in (4.19), replacing 2 by 2/(1+δ). The

same substitution in (4.21) (i.e., taking β = (2/(1 + δ))k in (4.20)) yields

(
2

1+δ

)2k

(
2

1+δ

)k
+ 1

>

(
2

1 + δ

)k

− 1 ∀k ∈ N (4.31)

Thus, (4.30) follows if k is chosen to satisfy

(
2

1 + δ

)k

− 1 > (1/ε)

(
N

2

)

⇐⇒
(

2

1 + δ

)k

> (1/ε)

(
N

2

)
+ 1 (4.32)

Again, a simpler bound on k can be obtained by imposing a stronger condition

(
2

1 + δ

)k
want
> (2/ε)

(
N

2

)
= (1/ε)N(N − 1) (4.33)
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so that

lg

[(
2

1 + δ

)k
]

= k(1− lg(1 + δ))

want
> lg N + lg(N − 1) + lg(1/ε) (4.34)

⇐= k (1− lg(1 + δ)) > 2 lg N + lg(1/ε).

k >
1

(1− lg(1 + δ))
lg N +

1

(1− lg(1 + δ))
lg(1/ε) (4.35)

Non-unit Minimum Hamming Distance Finally, we can estimate the necessary

size k for (almost) any desired minimum Hamming distance between allele code

vectors. We saw above that the Hamming distance between a pair of HLA vectors

is a binomial random variable x ∼ S(n, p) where # trials ≡ n = k, Pr (success) ≡
p = (1− δ)/2, and Pr (failure) ≡ q = (1 + δ)/2:

Pr (x) =

(
k

x

)
(1− δ)x(1 + δ)k−x2−k

Its mean is np = k(1 − δ)/2 and variance is npq = k(1 − δ2)/4. One can then get

the following estimate (using Chernoff bounds):

Pr (x ≤ k(1− δ)/4) ≤ e
−k(1−δ)/16

(4.36)

Chernoff inequality states (see Appendix C.2 for the proof):

Pr (S(n, p) ≤ (1− ε)np) ≤ e
− ε2

2
np

(4.37)

We have n = k, p = (1− δ)/2, and let ε = 1
2
. Then by (4.37),

Pr (x ≤ k(1− δ)/4) ≤ e
−( 1

2)
2

2
k 1−δ

2

= e
−1

8
k 1−δ

2 = e
−k(1−δ)/16
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Thus, we can estimate for which k

Pr (∀pairs x ≥ k(1− δ)/4) ≥ 1− ε (4.38)

From (4.36), we obtain

Pr (x ≥ k(1− δ)/4) ≥ 1− e
−k(1−δ)/16

and hence,

Pr (∀pairs x ≥ k(1− δ)/4)

= Pr (x ≥ k(1− δ)/4)(
N
2 )

≥
(

1− e
−k(1−δ)/16

)(N
2 )

(4.39)

want
> 1− ε

⇐= (expression (4.39)) > exp

{
−

(
N

2

) (
1 + e

−k(1−δ)/16
)

e
−k(1−δ)/16

}

want
> 1− ε

⇐⇒ −
(

N

2

)(
1 + e

−k(1−δ)/16
)

e
−k(1−δ)/16

> ln(1− ε)

⇐= −
(

N

2

)(
1 + e

−k(1−δ)/16
)

e
−k(1−δ)/16

> −ε (see (4.17))

⇐⇒ ε >

(
N

2

)(
1 + e

−k(1−δ)/16
)

e
−k(1−δ)/16

⇐⇒ e
k(1−δ)/8

e
k(1−δ)/16

+ 1
> (1/ε)

(
N

2

)

⇐= e
k(1−δ)/16 − 1 > (1/ε)

(
N

2

)
(by (4.20))

⇐⇒ e
k(1−δ)/16

> (1/ε)

(
N

2

)
+ 1
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⇐= e
k(1−δ)/16

> (2/ε)

(
N

2

)
= (1/ε)N(N − 1) (see (4.23))

⇐⇒ k(1− δ)/16 > ln(1/ε) + ln N + ln(N − 1)

⇐= k(1− δ)/16 > ln(1/ε) + 2 ln N

⇐⇒ k >
32

1− δ
ln N +

16

1− δ
ln(1/ε)

Therefore, if

k >
32

(1− δ)
ln N +

16

(1− δ)
ln(1/ε) (4.40)

then

Pr (∀pairs x ≥ k(1− δ)/4) ≥ 1− ε

For this probe set (with k = k(ε,N, δ)), we can obtain arbitrarily high probability

(by our choice of ε in (4.38)) that all HLA coding vectors have pairwise Hamming

distance of at least k(1−δ)/4. Thus, this probe set will be able to correct k(1−δ)/8

errors (by choosing the coding vector closest to that obtained).

It remains to estimate the error term δ. This can be accomplished on a given

set S of probes by sampling pairs {l, m} of indices on probes from S and examining

the resulting 2-vectors on {0, 1}. We can then estimate the probability of failure

to contribute to the Hamming distance (given by (1 + δ)/2) by the frequency f=

of observing equal entries in the 2-vector (since each probe with equal entries in

the 2-vector fails to contribute to the Hamming distance between alleles l and m).

Therefore,

δ̂ = 2f= − 1 (4.41)

Let f 6= denote the frequency of observing unequal entries in the same setting.
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Clearly, f= + f 6= = 1, so we can obtain

1− δ = 1− (2f= − 1) = 2(1− f=) = 2f 6=. (4.42)

The bound in (4.40) becomes

k >
32

2f 6=
ln N +

16

2f 6=
ln(1/ε)

=
16

f6=
ln N +

8

f 6=
ln(1/ε) (4.43)

Thus, to generate distinct coding vectors for all alleles (namely, to guarantee a

Hamming distance dH(ci, cj) ≥ 1 w.p. > 1− ε), we should choose M > k, where k

satisfies (4.35) with δ estimated as in (4.41). We can also select M to allow for error

correction of up to D/2 errors (guaranteeing w.p. > (1− ε) a minimum Hamming

distance dH(ci, cj) ≥ D): set

D = k(1− δ)/4 = kf 6=/2

in (4.38), so that k = 2D/f 6= must satisfy (4.40), and, again, choose M > k.

4.2.3 Pre-processing

Initial Probe Selection

In section 4.2.1, we stated that starting with all possible probes results in a graph

that has too many vertices. This section discusses some pre-processing steps that

allow us to eliminate a large portion of this probe set.

Probes that don’t hit the HLA region on any allele Many of the possible

length-L probes will not provide sequence-specific information about the target.
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As such, they may be safely left out of our probe selection process. This will allow

us to reduce the starting (perfectly matched) probe set to those probes that are

complementary to a subsequence of at least one of the alleles. A simple way to

obtain such a set is as follows. Let us assume that the allele sequences are given in

the 5’ to 3’ orientation.

Consider a window of length L along allele T1. Let us denote the length of the

allelic sequence by len(T1), and index elements of the sequence starting with 1, so

that the entire allele sequence can be denoted by

T1[1] . . . T1[len(T1)].

We can construct a probe complementary to the allele subsequence seen through the

window [1 . . . L], place the probe in our set, and shift the window by one nucleotide

in the direction of the 3’-end. This process can be repeated until the last window

[k . . . (L + k − 1)] reaches the end of the target sequence:

L + k − 1 = len(T1)

k = len(T1)− L + 1,

generating a set of (len(T1)− L + 1) probes, each perfectly complementary to T1.

The process described generates all probes of length L that are perfectly comple-

mentary to a length-L subsequence of the target (i.e., allele) sequence. Depending

on the form in which the allele sequences are given, it may also be desirable to

include probes corresponding to windows that are partially shifted off the allele,

i.e., windows showing a portion of the given allele sequence together with the cor-

responding 5’-tail of the sequence, if the window is shifted off to the left, or the
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3’-tail, if the window is shifted off to the right. There are 2(L − 1) such probes,

corresponding to indices

[(len(T1)− L + 2) . . . (len(T1) + 1)], . . . , [len(T1) . . . (len(T1) + L− 1)]

for the right-shifted windows and “indices”

[0 . . . (L− 1)], . . . , [(2− L) . . . 1]

for the left-shifted windows.

This process should be repeated for the other alleles T2, . . . , TN . To avoid placing

duplicate probes in our set, a generated probe should only be added to the set if

its sequence is not already present. Alternately, the duplicates can be weeded

out subsequently. It should be noted that this may have the added advantage of

eliminating probes hitting sequence repeats.

While described in a constructive fashion, the above process has the effect of

eliminating probes that hit genomic sequences outside the target region, including

probes that hit introns (if allelic sequences are provided in genomic DNA form)

from the original collection of all possible probes of length L. We end up with only

those probes complementary to subsequences of the HLA region, or sub-words of

the pool of all allele sequences.

Non-informative probes In the set created as described in the previous section,

some (perhaps many) of the probes will not be able to give any information useful

for distinguishing among the alleles. These are the probes drawn from windows

that are shared among the alleles: they hybridize to a common subsequence of the

alleles. Any such probe will be useless for discriminating alleles—to such a probe,
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all alleles will look alike. Therefore, these probes can be safely eliminated from our

potential probe set.

To find all such probes, we need only find the common subsequences of length

≥ L of all the alleles, identify the probes complementary to these subsequences,

and remove these probes from the set. This can be done as the next step in the

“refinement” of our starting probe set, or included as a condition in the process for

probe addition specified in the previous section.

Potential for cross-hybridization Probes that are likely to hit multiple sites on

the target sequence(s), such as those hitting a repeated region, should be eliminated,

as is usually done in microarray design, as their use is likely to produce a high level

of noise. Each probe is usually expected to have a unique site on the target. (See,

for example, [30], [26], or [29].)

Graph Generation

Generating Probe Response Vectors Once a set of initial probes is selected, as

described above, we must generate a probe response vector (4.7) for each of these

probes. To do that, given probe j, we run string-matching on each of the N alleles

for the Watson-Crick complement (defined in section 3.7.1) of probe j, and set

vj[i] =





1, if there is a match with allele HLAi

0, otherwise

Choice of Edge Threshold The edge threshold parameter ρ was used in sec-

tion 4.2.1 to transform the initial complete edge-weighted graph. Its value deter-

mines how many edges remain in the graph, as well as how “independent” each

153



independent set on the graph really is.

• If ρ is too small, there will be very few edges in the graph. Most of the

random sets selected by the boosting algorithm will prove to be independent.

However, upon examination in post-processing, described in section 4.2.4, we

may find that many of these sets do not possess enough discrimination power

to discern all N known alleles.

• If, on the other hand, ρ is too large (e.g., ρ > 0.5), the graph will be very dense

(i.e., have a lot of edges). The algorithm will then have a much harder time

finding an independent set of large enough size. The output sets will likely

contain much fewer than M vertices, and there may not be enough probes in

the candidate sets to discern all N alleles.

• A reasonable value of ρ is obtained by trial and error on a given set of potential

probes.

4.2.4 Post-processing: Ensuring Discrimination

The algorithm (section 4.2.2) returns a list of 20 best independent sets, sorted

by the total information weight of the constituent vertices. Each set is made up

of at most M vertices (probes). While the independence and maximum weight

conditions were chosen to steer each selected set towards maximum discrimination

power, this desired outcome is not guaranteed. Thus, each of these best independent

sets has to be checked for redundancy of the allele coding vectors. Given a set S

of probe response vectors, we can extract the N allele coding vectors generated

by S (the rows in (4.6)) and compute their pairwise Hamming distances dH(ci, cj),
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1 ≤ i < j ≤ |S|. If min{i,j} dH(ci, cj) == 0, the set lacks discrimination power:

at least two of the codes are the same, so the set will not be able to discern all

known alleles. Such a set cannot be used “as is”, and must either be discarded

or supplemented by additional probes. This may indicate that the set is not truly

independent, so our choice of edge threshold ρ, discussed in section 4.2.3, was

inappropriate.

It is possible to make the testing more stringent, in order to allow for up to D/2

errors in the data, as discussed in section 4.2.2. Those independent sets of the list of

best sets that pass the redundancy testing (by satisfying min{i,j} dH(ci, cj) ≥ D), in

fact satisfy a definition stronger than that formulated for the best independent set.

Let us denote by D-best independent set a best independent set with the additional

condition min{i,j} dH(ci, cj) ≥ D.

Those sets that pass the redundancy test can be reordered by aveHamDist

= ave{i,j}dH(ci, cj): once the minimum allele code separation is guaranteed, the

usefulness of a probe set to the HLA typing problem can be judged by the metric

aveHamDist.

4.3 Interpreting Results

Given the best independent set generated by the above described algorithm, how

do we turn it into a microarray for the HLA typing experiments?

In order to generate the microarray corresponding to an independent set of vec-

tors yielded by the algorithm (followed by post-processing steps from section 4.2.4),

we must retrace our steps and recall the DNA sequence for each probe—the se-
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quence that was used to generate the probe response vector used in the analysis.

A set of vertices in the graph corresponds to a set of probe sequences. The spatial

arrangement of these probes on the chip surface can be decided as discussed in

section 4.1.1.

4.4 Future Directions

4.4.1 Open problems

Many extensions of the material discussed in this chapter are possible. Two of the

most interesting ones are discussed here.

Extending weight functions in the graph model

The graph model discussed here relies entirely on the characteristics of the probe

response vectors to define the weights of vertices and edges. While even this simple

model generates interesting results, it can be extended to a much more meaningful

model by incorporating the physical properties of the probe sequences and their

interactions, some of which were analyzed in chapter 3. In particular, annotation

of all potential probes with physical properties, such as melting temperature, free

energy, entropy, and enthalpy of hybridization, for perfect matches and for closest

matches in other alleles can be used to define cost functions that determine the

weights. While the vertex weight provides a measure of the performance of the

corresponding probe in discriminating among known alleles, the pairwise probe

interaction and the resulting competition effects, as described in chapter 3, can be

reflected in the edge weights.
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Pooling real data from previously tested chips

Another important extension of the method discussed in this chapter involves the

use of data from microarray chips used for HLA typing by different companies.

Many biotechnology companies are working on the HLA typing problem, in the

hope of designing probe sets that give the answer quicker and with more accuracy.

The sequences of the probes are generally considered to be proprietary information

and thus not shared. As a result, the collection of experimental data from testing

the various probes in different combinations and arrangements on the microarray

chips generated by different companies is almost never examined as a whole.

We believe that it is possible to employ our probe interaction model to make

use of the aggregate experimental data. Suppose the following information can be

obtained: a set of microarray chips along with some identifiers, if not the actual

sequences, of the probes comprising each chip, and values measuring the perfor-

mance of each chip in all previously conducted HLA typing experiments. That is,

for each chip, there is a list of unique probe identifiers and some measure of how

well this chip performed in HLA typing. It is not necessary to know the sequence

of each probe, as long as the uniqueness of the identifiers can be verified by the

company providing the data. We propose to combine the information from a large

number of such previously tested chips to generate a plan for a new microarray

chip (i.e., a collection of probe identifiers and their spatial arrangement) with a

performance value higher than that of all “input” chips by the following process.

The probe content and arrangement for each chip, together with its performance

value, can be used to build the graph model. Vertex weights can be inferred from

chip membership information. Edge weights can be estimated from conditional
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probabilities using pairwise membership information—that is, by considering two

chips at a time, quantities such as the conditional probability that probe Pi was

used on chip Cj, given that it was used on chip Ck, can be estimated. Once the

graph is constructed, the boosting algorithm can be used to generate the best set

of probes, as discussed in section 4.2.2.
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Chapter 5

Conclusions

In this manuscript, careful attention has been paid to the myriad details of the

design of microarray experiments and the analysis of the outcomes; all the work

described here has found its way into the experimental work of life scientists. Nev-

ertheless, it is but a single step in the right direction. Many more problems in

genomics, as well as other areas of mathematical biology, need careful mathemati-

cal treatment and analysis.

The work described in this thesis can be furthered on many fronts; they are:

1. Shrinkage-based similarity metric: The shrinkage metric appears useful in

Monte Carlo Markov Chain simulations, for improving the accuracy of the

results. This was found in a currently ongoing project with Marc Sobel at

Temple University. The same technique, described in chapter 2, will be applied

to a new project: to correlate patients’ metabolite levels. Here, data has the

same relative dimensionality, i.e., M À N , but instead of measuring the

response of many (M) genes under a few (N) experimental conditions, the
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levels of a few (N) metabolites in the blood of many (M) patients would need

to be correlated. The data comes from spectroscopic measurements; hence,

careful analysis will have to be made to understand and compensate for the

contribution of potential error sources.

2. Hybridization Models: The material presented in chapter 3 was tested on small

examples. The models must be tested more extensively to compare model

predictions with real experimental data. This comes in addition to the future

work outlined at the end of chapter 3, e.g., generalizing thermodynamic pa-

rameter computations to treat mismatches more carefully. Simulations based

on these models may also be used in probe design to define weight functions,

as described in the chapter on HLA typing.

3. HLA typing/Probe design/Graph optimization problem: A lot more remains

to be done on this problem. While the model definitions have been well

thought through and described in detail in chapter 4, they have been tested

only on a small example set so far. To demonstrate the usefulness of this

approach to probe design, it must be tested on real sequence data with very

large numbers of probes and long probe response vectors, corresponding to

on the order of 103 alleles. Heuristics described in chapter 4 work well for

the small test problem. However, better theory needs to be developed, to

allow analytical results, which, in turn, may also lead to better heuristics

in the future. The predictive, or allele-identifying, power of the algorithm

presented should be tested on unknown alleles. Furthermore, the algorithm

was designed to work on a probability space of alleles, and assumes that all
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polymorphisms in the HLA region are combinations of polymorphisms drawn

from some (unknown) distribution. Thus, we believe that this method has an

advantage over existing methods that tend to overfit to sample data.
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Appendix A

Appendices for Chapter 2

A.1 Receiver Operator Characteristic Curves

(More Details)

A.1.1 Definitions

As a measure of truth, we take our working hypothesis, namely, the transcriptional

activator table (Table 2.1). Thus, if two genes are in the same group, they “belong

in the same cluster”, and if they are in different groups, they “belong in different

clusters”. We will generate an ROC curve for each metric used (i.e., one for Eisen,

one for Pearson, and one for Shrinkage).

Event: grouping of (cell cycle) genes into clusters;

Threshold: cut-off similarity value at which the hierarchy tree is cut into clusters.

Our cell-cycle gene table consists of 44 genes, which gives us C(44, 2) = 946

gene pairs. For each (unordered) gene pair {j, k}, we define the following events:
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TP: {j, k} are in the same group and {j, k} are placed in the same cluster;

FP: {j, k} are in different groups, but {j, k} are placed in the same cluster;

TN: {j, k} are in different groups and {j, k} are placed in different clusters; and

FN: {j, k} are in the same group, but {j, k} are placed in different clusters.

Thus,

TP(γ) =
∑

{j,k}
TP({j, k})

FP(γ) =
∑

{j,k}
FP({j, k})

TN(γ) =
∑

{j,k}
TN({j, k})

FN(γ) =
∑

{j,k}
FN({j, k})

where the sums are taken over all 946 unordered pairs of genes.

Two other quantities involved in ROC curve generation are

Sensitivity = fraction of positives detected by a metric

=
TP(γ)

TP(γ) + FN(γ)
. (A.1)

Specificity = fraction of negatives detected by a metric

=
TN(γ)

TN(γ) + FP(γ)
. (A.2)

An ROC curve plots sensitivity, on the y-axis, as a function of (1− specificity), on

the x-axis, with each point on the plot corresponding to a different cut-off value.

We create a different curve for each of the three metrics.
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The following sections describe how the quantities TP(γ), FN(γ), FP(γ), and

TN(γ) can be computed using our set notation for clusters. Recall from sec-

tion 2.4.3:
{

x → {{y1, z1}, {y2, z2}, . . . , {ynx , znx}}
}# of groups

x=1

A.1.2 Computation

TP

TP(γ) =
∑

{j,k}
TP({j, k}) =

# gene pairs that were placed in the same

cluster and belong in the same group.

For each group x given in set notation as

x → {{y1, z1}, . . . , {ynx , znx}},

we count pairs from each yj, i.e.,

TP(x) =

(
y1

2

)
+ · · ·+

(
ynx

2

)
=

nx∑
j=1

(
yj

2

)

Totaling over all groups yields

TP(γ) =

# groups∑
x=1

TP(x) =
∑

x

nx∑
j=1

(
yj

2

)

FN

FN(γ) =
∑

{j,k}
FN({j, k}) =

# gene pairs that belong in the same group

but were placed into different clusters.
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We must count every pair that got separated.

FN(x) =





nx∑
j=1

nx∑

k=j+1

yj · yk if nx ≥ 2, or

0, if nx = 1.

However, when nx = 1, there is no pair {j, k} that satisfies the triple inequality

1 ≤ j < k ≤ nx, and hence, we do not have to treat it as a special case.

∴ FN(γ) =

# groups∑
x=1

FN(x) =
∑

x

∑

1≤j<k≤nx

yj · yk

FP

FP(γ) =
∑

{j,k}
FP({j, k}) =

# gene pairs that belong in different groups

but got placed in the same cluster.

The expression
∑

x

nx∑
j=1

yj · zj

counts every false-positive pair {j, k} twice: first, when looking at j’s group, and

again, when looking at k’s group.

∴ FP(γ) =
1

2

∑
x

nx∑
j=1

yj · zj

TN

TN(γ) =
∑

{j,k}
TN({j, k}) =

# gene pairs that belong in different groups

and got placed in different clusters.

165



Instead of counting true-negatives from our notation, we use the fact that we know

the other three scores and the total they all add up to.

Complementarity Given a gene pair {j, k}, exactly one of the events

{TP({j, k}), FN({j, k}), FP({j, k}), TN({j, k})} is true, i.e., exactly one of them

= 1, while the rest = 0. This implies

∑

{j,k}
TP({j, k}) +

∑

{j,k}
FN({j, k})+

+
∑

{j,k}
FP({j, k}) +

∑

{j,k}
TN({j, k}) =

= TP(γ) + FN(γ) + FP(γ) + TN(γ) =

=

(
44

2

)
=

44 · 43

2
= 946 = Total

∴ TN(γ) = Total− (TP(γ) + FN(γ) + FP(γ))

A.1.3 Plotting ROC curves

For each cut-off value θ, we can compute TP(γ), FN(γ), FP(γ), and TN(γ) as

described in the previous section, with γ ∈ {0.0, 0.66, 1.0} corresponding to Eisen,

Shrinkage, and Pearson, respectively. Then, the sensitivity and specificity are com-

puted from equations (A.1) and (A.2), and we can plot sensitivity vs (1− speci-

ficity), as shown in Figure 2.3.

We can also examine the effect of the cut-off threshold θ on the FN and FP

scores individually, as shown in Figure 2.4.

A 3-dimensional plot of (1− specificity) on the x−axis, sensitivity on the y−axis,

and threshold on the z−axis offers an interesting view, as shown in Figure A.1.
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Figure A.1: ROC curves, with threshold plotted on the z−axis.

A.2 Computing the Marginal PDF for Xj

f(Xj) = Eθj
f(Xj|θj) =

∫ ∞

−∞
f(Xj|θ)π(θ)dθ

=

∫ ∞

−∞

1√
2πσ

e
− (Xj−θ)2

2σ2 · 1√
2πτ

e
− θ2

2τ2

dθ

=
1

2πστ

∫ ∞

−∞
e
−1

2

(
(Xj−θ)2

σ2 + θ2

τ2

)

dθ (A.3)
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First, rewrite the exponent as a complete square:

(Xj − θ)2

σ2
+

θ2

τ 2
=

1

σ2τ 2

[
τ 2(Xj − θ)2 + σ2θ2

]

=
1

σ2τ 2

[
τ 2Xj

2 − 2τ 2Xjθ + τ 2θ2 + σ2θ2
]

=
1

σ2τ 2

[
(σ2 + τ 2)θ2 − 2τ 2Xjθ + τ 2Xj

2
]

=
σ2 + τ 2

σ2τ 2

[
θ2 − 2

τ 2

σ2 + τ 2
Xjθ +

τ 2

σ2 + τ 2
Xj

2

]

=
σ2 + τ 2

σ2τ 2

[(
θ − τ 2

σ2 + τ 2
Xj

)2

−
(

τ 2

σ2 + τ 2
Xj

)2

+
τ 2

σ2 + τ 2
Xj

2

︸ ︷︷ ︸

]
(A.4)

• τ 2

σ2 + τ 2
Xj

2 −
(

τ 2

σ2 + τ 2
Xj

)2

= Xj
2

(
τ 2

σ2 + τ 2

)(
1− τ 2

σ2 + τ 2

)

= Xj
2

(
τ 2

σ2 + τ 2

)(
σ2

σ2 + τ 2

)

= Xj
2 σ2τ 2

(σ2 + τ 2)2 (A.5)

Substituting (A.5) into (A.4) yields

(Xj − θ)2

σ2
+

θ2

τ 2
=

=
σ2 + τ 2

σ2τ 2

(
θ − τ 2

σ2 + τ 2
Xj

)2

+
σ2 + τ 2

σ2τ 2
Xj

2 σ2τ 2

(σ2 + τ 2)2

=
σ2 + τ 2

σ2τ 2

(
θ − τ 2

σ2 + τ 2
Xj

)2

+
Xj

2

σ2 + τ 2
(A.6)

168



Now use the completed square in (A.6) to continue the computation in (A.3).

f(Xj)

=
1

2πστ

∫ ∞

−∞
e
−1

2
σ2+τ2

σ2τ2

(
θ − τ2

σ2+τ2 Xj

)2

e
−1

2

Xj
2

σ2+τ2

dθ

=
e
− Xj

2

2(σ2+τ2)

2πστ

∫ ∞

−∞
exp


−


θ − τ2

σ2+τ2 Xj√
2σ2τ2

σ2+τ2




2
 dθ

Make the substitution

ϕ =

(
θ − τ 2

σ2 + τ 2
Xj

) /√
2σ2τ 2

σ2 + τ 2

Then

dϕ = dθ

/√
2σ2τ 2

σ2 + τ 2

dθ =

√
2σ2τ 2

σ2 + τ 2
dϕ

θ = ±∞ =⇒ ϕ = ±∞

and

f(Xj) =
e
− Xj

2

2(σ2+τ2)

2πστ

∫ ∞

−∞
e
−ϕ2

√
2σ2τ 2

σ2 + τ 2
dϕ

=
e
− Xj

2

2(σ2+τ2)

π
√

2(σ2 + τ 2)

∫ ∞

−∞
e
−ϕ2

dϕ

︸ ︷︷ ︸√
π

=
1√

2π(σ2 + τ 2)
e
− Xj

2

2(σ2+τ2)
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Therefore

f(Xj) =
1√

2π(σ2 + τ 2)
e
− Xj

2

2(σ2+τ2)
(A.7)

A.3 Calculation of the Posterior Distribution of θj

Since the subscript j remains constant throughout the calculation, it will be dropped

in this appendix. Herein, θj will be replaced by θ, and Xj by X.

π (θ|X) =
f (X|θ) π(θ)

f(X)
=

f (X, θ)

f(X)

=
(1 /2πστ ) exp

[
−

(
θ2

2τ2 + (X−θ)2

2σ2

)]
(
1
/√

2π(σ2 + τ 2)
)

exp
[
− X2

2(σ2+τ2)

]

=
1√

2π σ2τ2

σ2+τ2

exp


−1

2

(
θ2

τ 2
+

(X − θ)2

σ2
− X2

σ2 + τ 2

)

︸ ︷︷ ︸
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• θ2

τ 2
+

(X − θ)2

σ2
− X2

σ2 + τ 2
=

=
1

σ2τ 2(σ2 + τ 2)

[
σ2(σ2 + τ 2)θ2

+ τ 2(σ2 + τ 2)

X2−2Xθ+θ2︷ ︸︸ ︷
(X − θ)2 −σ2τ 2X2

]

=
1

σ2τ 2(σ2 + τ 2)

[
θ2

(
σ2(σ2 + τ 2) + τ 2(σ2 + τ 2)

)

− 2τ 2(σ2 + τ 2)Xθ

+ X2
(
τ 2(σ2 + τ 2)− σ2τ 2

) ]

=
1

σ2τ 2(σ2 + τ 2)

[
θ2(σ2 + τ 2)2

− 2(σ2 + τ 2)θ · τ 2X + τ 4X2

]

=
1

σ2τ 2(σ2 + τ 2)

(
(σ2 + τ 2)θ − τ 2X

)2

=
1

σ2τ 2(σ2 + τ 2)
(σ2 + τ 2)2

(
θ − τ 2

σ2 + τ 2
X

)2

=

(
θ − τ 2

σ2 + τ 2
X

)2 /
σ2τ 2

σ2 + τ 2

Therefore,

π (θ|X) =
1√

2π σ2τ2

σ2+τ2

exp


−

(
θ − τ2

σ2+τ2 X
)2

2
(

σ2τ2

σ2+τ2

)


 (A.8)
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A.4 Proof of the fact that n independent observations from

the Normal population N (θ, σ2) can be treated as a

single observation from N (θ, σ2/n)

Given the data y, f(y|θ) can be viewed as a function of θ. We then call it the

likelihood function of θ for given y, and write

l(θ|y) ∝ f(y|θ).

When y is a single data point from N (θ, σ2),

l(θ|y) ∝ exp

[
−1

2

(
θ − x

σ

)2
]

= exp

[
− 1

2σ2
(θ − x)2

]
, (A.9)

where x is some function of y.

Now, suppose that ~y = (y1, . . . , yn) represents a vector of n independent obser-

vations from N (θ, σ2). We can denote the sample mean by

ȳ =
1

n

n∑
i=1

yi.

The likelihood function of θ given such n independent observations from N (θ, σ2)

is

l(θ|~y) ∝
∏

i

exp

[
− 1

2σ2
(yi − θ)2

]
= exp

[
− 1

2σ2

∑
i

(yi − θ)2

]
.

Also, since
n∑

i=1

(yi − θ)2 =
n∑

i=1

(yi − ȳ)2 + n(ȳ − θ)2, (A.10)
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it follows that

l(θ|~y) ∝ exp

[
− 1

2σ2

∑
i

(yi − ȳ)2

]

︸ ︷︷ ︸
const w.r.t. θ

exp

[
− 1

2σ2
n(ȳ − θ)2

]

∝ exp

[
− 1

2(σ2/n)
(θ − ȳ)2

]
, (A.11)

which is a Normal function with mean ȳ and variance σ2/n. Comparing with (A.9),

we can recognize that this is equivalent to treating the data ~y as a single observation

ȳ with mean θ and variance σ2/n, i.e.,

ȳ ∼ N (θ, σ2/n). (A.12)

Proof of (A.10):

n∑
i=1

(yi − θ)2 =
∑

i

(yi − ȳ + ȳ − θ)2

=
∑

i

[
(yi − ȳ)2 + 2(yi − ȳ)(ȳ − θ) + (ȳ − θ)2

]

=
∑

i

(yi − ȳ)2 + 2(ȳ − θ)
∑

i

(yi − ȳ) +
∑

i

(ȳ − θ)2

=
∑

i

(yi − ȳ)2 + 2(ȳ − θ)

(∑
i

yi −
∑

i

ȳ

)

︸ ︷︷ ︸
nȳ − nȳ = 0

+n(ȳ − θ)2

=
∑

i

(yi − ȳ)2 + n(ȳ − θ)2
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A.5 Distribution of the Sum of Two Independent Normal

Random Variables

Let

X ∼ N (0, α2)

Y ∼ N (0, β2)

be two independent random variables.

Claim: X + Y ∼ N (0, α2 + β2)

(We are only using this result for mean-0 Normal r.v.’s, although a more general

result can be proven.)

Proof: (use moment generating functions)

mX(t) = E

(
e
tX

)
=

∫ ∞

−∞
e
tx · 1√

2πα
e
− 1

2α2 (x− 0)2

dx

=
1√
2πα

∫ ∞

−∞
e

− 1
2α2 [x2 − 2α2tx]︸ ︷︷ ︸

dx (A.13)

Completing the square, we obtain

x2 − 2α2tx = x2 − 2(α2t)x + (α2t)2 − (α2t)2

= (x− α2t)2 − (α4t2)

1

α2
(x2 − 2α2tx) =

(
(x− α2t)/α

)2 − (α4t2)/α2

=

(
x− α2t

α

)2

− α2t2 (A.14)
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Using the result of (A.14) in (A.13) yields

mX(t) =
e
−1

2
(−α2t2)

√
2πα

∫ ∞

−∞
e
−1

2

(
x−α2t

α

)2

dx

Let y =
x− α2t

α

dy =
dx

α
=⇒ dx = α dy

With this substitution, we obtain

mX(t) =
e

1
2

α2t2

√
2πα

· α
∫ ∞

y=−∞
e
−1

2
y2

dy

︸ ︷︷ ︸√
2π

or

mX(t) = e
1
2

α2t2
(A.15)

Similarly

mY (t) = e
1
2

β2t2
(A.16)

To obtain the distribution of X + Y , it suffices to compute the corresponding

moment generating function:

mX+Y (t) = E

(
e
t(X + Y )

)
= E

(
e
tX

e
tY

)

= E

(
e
tX

)
E

(
e
tY

)
by independence of X and Y

= mX(t) ·mY (t)

= e
1
2

α2t2 · e
1
2

β2t2
by (A.15) and (A.16)

= e
1
2
(α2 + β2)t2

,
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which is a moment generating function of a Normal random variable with mean 0

and variance α2 + β2. Therefore,

X + Y ∼ N (0, α2 + β2). (A.17)

A.6 Properties of the Chi-square Distribution

Let X1, X2, . . . , Xk be i.i.d.r.v.’s from standard Normal distribution, i.e.,

Xj ∼ N (0, 1) ∀j.

Then

χ2
k = X2

1 + X2
2 + · · ·+ X2

k =
k∑

j=1

Xj
2

is a random variable from Chi-square distribution with k degrees of freedom, de-

noted

χ2
k ∼ χ2

(k).

It has the probability density function

f(x) =





1

2k/2Γ (k/2)
xk/2−1e−x/2 for x > 0

0 otherwise

where

Γ(k) =

∫ ∞

0

tk−1e−t dt. (A.18)

The result we are using is

E

(
1

χ2
k

)
=

1

k − 2
for k > 2,
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which can be obtained as follows:

E

(
1

χ2
k

)
=

∫

R

1

x
f(x) dx

=
1

2k/2Γ (k/2)

∫ ∞

0

1

x
xk/2−1e−x/2 dx

=
1

2k/2Γ (k/2)

∫ ∞

0

xk/2−2e−x/2 dx (A.19)

Let

t = x/2 =⇒ x = 2t

dx = 2dt

x = 0 =⇒ t = 0

x = ∞ =⇒ t = ∞

∫ ∞

0

xk/2−2e−x/2 dx

=

∫ ∞

t=0

(2t)k/2−2 e−t 2 dt

= 2k/2−2 · 2
∫ ∞

0

tk/2−2e−t dt. (A.20)

Let

u = e−t dv = tk/2−2 dt

du = −e−t dt v = tk/2−1

k/2−1
for k > 2

Integration by parts transforms (A.20) into

= 2k/2−1


 1

k/2− 1
e−ttk/2−1

∣∣∞
0︸ ︷︷ ︸

−→0

−
∫ ∞

0

1

k/2− 1
tk/2−1

(−e−t
)

dt




=
2k/2−1

k/2− 1

∫ ∞

0

tk/2−1e−t dt

︸ ︷︷ ︸
Γ(k/2), by (A.18)

=
2k/2−1

k/2− 1
Γ(k/2)
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Substituting this result in (A.19) yields

E

(
1

χ2
k

)
=

1

2k/2Γ(k/2)
· 2k/2−1Γ(k/2)

k/2− 1

=
1

2 (k/2− 1)

=
1

k − 2
for k > 2. (A.21)

A.7 Distribution of Sample Variance s2

Let Xj ∼ N (µ, σ2) for j = 1, . . . , n be independent r.v.’s. We’ll derive the joint

distribution of √
n (X̄ − µ)

σ
and

(n− 1) s2

σ2
.

s2 =
1

n− 1

n∑
j=1

(
Xj − X̄

)2

(n− 1) s2

σ2
=

n− 1

σ2
· 1

n− 1

n∑
j=1

(
Xj − X̄

)2

=
n∑

j=1

(
Xj − X̄

σ

)2

W.L.O.G. can reduce the problem to the case N (0, 1), i.e., µ = 0, σ2 = 1: Let

Zj = (Xj − µ) /σ . Then

Z̄ =
1

n

∑
Zj =

1

n

∑(
Xj − µ

σ

)
=

1

n

(∑
Xj

σ
−

∑
µ

σ

)

=
1

n

(∑
Xj

σ
− nµ

σ

)
=

1

σ

(∑
Xj

n
− µ

)
=

X̄ − µ

σ

and hence √
n

(
X̄ − µ

)

σ
=
√

n Z̄. (A.22)
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Also,

(n− 1) s2

σ2
=

1

σ2

∑(
Xj − X̄

)2

=
1

σ2

∑(
(Xj − µ) +

(
µ− X̄

))2

=
∑[

Xj − µ

σ
− X̄ − µ

σ

]2

=
∑ (

Zj − Z̄
)2

(A.23)

By (A.22) and (A.23), it suffices to derive the joint distribution of
√

n Z̄ and
∑n

j=1

(
Zj − Z̄

)2
, where Z1, . . . , Zn are i.i.d. from N (0, 1).

Let

P =




p1

p2

...

pn




be an n× n orthogonal matrix where

p1 =

(
1√
n

, . . . ,
1√
n

)

and the remaining rows pj are obtained by, say, applying Gramm-Schmidt to

{p1, e2, e3, . . . , en}, where ej is a standard unit vector in jth direction in Rn. Let

~Y = P ~Z

=




1√
n

1√
n

· · · 1√
n

...







Z1

Z2

...

Zn




=




Y1

Y2

...

Yn




Then

Y1 =
1√
n

(
n∑

j=1

Zj

)
=

1√
n

nZ̄ =
√

n Z̄. (A.24)

179



Since P is orthogonal, it preserves vector lengths:

‖~Y ‖2 = ‖~Z‖2

n∑
j=1

Yj
2 =

n∑
j=1

Zj
2

=⇒
(

n∑
j=1

Yj
2

)
− Y 2

1 =
n∑

j=1

Zj
2 − (√

n Z̄
)2

by (A.24)

Hence

n∑
j=2

Yj
2 =

n∑
j=1

Zj
2 − nZ̄2 =

n∑
j=1

Zj
2 − 2nZ̄2 + nZ̄2

=
n∑

j=1

Zj
2 − 2Z̄(nZ̄) + nZ̄2

=
n∑

j=1

Zj
2 − 2Z̄

(
n∑

j=1

Zj

)
+

n∑
j=1

Z̄2

=
n∑

j=1

(
Zj − Z̄

)2
(A.25)

Since the Yj’s are mutually independent (by orthogonality of P ), we can conclude

that
n∑

j=2

Yj
2 =

n∑
j=1

(
Zj − Z̄

)2

is independent of

Y1 =
√

n Z̄.

Also by orthogonality of P , Yj ∼ N (0, 1) for j = 1, . . . , n, so
(

n∑
j=2

Yj
2

)
∼ χ2

(n−1) (See Appendix A.6)

and hence, by (A.23) and (A.25),

(n− 1) s2

σ2
∼ χ2

(n−1) (A.26)
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Since E (χ2
k) = k, for χ2

k ∼ χ2
(k), we can see that

E

(
(n− 1) s2

σ2

)
= n− 1.

Also, since

E

(
(n− 1) s2

σ2

)
=

n− 1

σ2
E

(
s2

)
,

we can conclude that

E
(
s2

)
=

σ2

n− 1
· n− 1

σ2
E

(
s2

)
=

σ2

n− 1
· (n− 1) = σ2, (A.27)

i.e., s2 is an unbiased estimator of the variance σ2.
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Appendix B

Appendices for Chapter 3

B.1 Details of Model Implementation

B.1.1 Choice of initial concentration parameters

The pm/mm ratios at equilibrium are computed from systems of equations corre-

sponding to a particular model (equations (3.12)–(3.19) and (3.22)–(3.26) for Full

Model; equations (3.32)–(3.35) and (3.36)–(3.38) for Model I; and equations (3.45)–

(3.48) and (3.49)–(3.51) for Model II). In all these systems, the second set, made up

of conservation equations, involves the initial concentration constants. The solu-

tions will depend on the initial probe and target concentrations. There are several

complications that stem from the choice of these parameters.

Initial probe concentrations

To measure competition effects inherent to the probes, the initial probe concentra-

tions must be equal for different probes. If that is not the case, the observed results
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will be biased by the unequal starting amounts of probe material.

Initial target concentration

The choice of the initial target concentration must be made carefully as well. If

[T ]0 >
∑

[Pij]0, no competition effect will be observed since there is plenty of target

to go around—each probe will get as much target as it needs.

The idea of “competition” described in this manuscript (see section 3.2 for the

initial discussion) is based on the fact that a given target molecule, which can

hybridize to either probe 1 or probe 2, or to a variant (alternate) of either of

the probes, is more likely at equilibrium to end up hybridized to the probe that

“holds it the strongest,” i.e., the one with the most negative ∆G of hybridization.

On the mass-action scale, this means that a higher proportion of the total target

concentration will end up in a complex with the most “attractive” probe, or the

best matching probe. However, this argument implicitly assumes that the targets

are in short supply and the probes are competing for them.

Initial conditions for actual experiments performed in the lab frequently use a

different setup: the initial amount of the target is in huge excess over the probes.

This appears to imply that under such conditions no competition effects should be

observed—target-probe complexes should be formed for each of the probes, as there

is plenty of target to go around! The affinity of the target to a particular probe does

not enter the equation. And yet, experiments reveal the presence of competition.

For a discussion of how this apparent paradox is resolved, see section B.1.2.

183



Scaling initial concentrations for comparison

To allow meaningful comparison among match-to-mismatch ratios for a given probe

under different models, the initial concentration parameters must be scaled. If that

is not done, much more sophisticated post-processing will be required to interpret

the differences in the pm/mm ratio values. Scaling the parameters a priori also

allows for the ratio curves to be plotted on the same set of axes and for the changes

to be interpreted as “shifts” of the ratio curves.

B.1.2 Accuracy of entered parameters

The amount of target initially placed in the reaction chamber, together with cham-

ber volume, is usually used to compute the initial target concentration. However,

the value of [T ]0 computed in this manner may not be accurate. There are steric

hindrances in the system. Probes are physically attached to large (relative to probe

size) beads, and placed in the reaction chamber. The target molecules, which are

much longer than probes, are free to float around the chamber. In order to inter-

act with the probes, the target molecules must diffuse through the chamber. Only

a small fraction of the target molecules placed in the reaction chamber end up

close enough to the probe molecules to interact (i.e., hybridize) with them. Thus,

while the amount of target the experimenter places in the reaction chamber may

significantly exceed the total amount of probes, the constraint

([T ]0)effective <
∑

[Pij]0

frequently holds for the effective initial target concentration, that is, the concen-

tration of target molecules that diffused sufficiently far to reach the probes and
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participate in the hybridization reaction. This explains why competition effects,

which are observed in the model only when [T ]0 <
∑

[Pij]0, are also observed in

practice.

Theoretically, one can compute the effective initial target concentration from

the initial probe concentration, temperature, and measured pm/mm ratio. If the

ratios are obtained for each probe separately, no competition effects will be present;

hence the simple model of hybridization, described in section 3.6.1 can be used.

Furthermore, if this data is obtained for a sequence of physical [T ]0’s, it may also

be possible to observe a functional relationship between the physical [T ]0 and the

effective [T ]0.

Suppose that for a given probe, a hybridization experiment is performed involv-

ing that probe, its alternate, and the target, and the concentrations of the matched

probe-target complex (denoted by X2) and the mismatched probe-target complex

(denoted by X3) at equilibrium are measured; the pm/mm ratio at equilibrium can

be computed from the values of X2 and X3. The outcome of the experiment can

be predicted in silico by the simple model. Recall that during the discussion of

the dynamics of the simple model in section 3.6.1, equation (3.104) for the pm/mm

ratio was obtained; this equation is repeated here for convenience:

ratio1 =
a0

b0

· K2
1

K3
1

· K3
1 + 1

X1

K2
1 + 1

X1

Equation (3.104) can be used to solve for the equilibrium concentration of the free

target (denoted by X1) in terms of ratio1, which is, in turn, given in terms of the
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measured quantities X2 and X3:

ratio1 =
X2

X3

(B.1)

X1 =
ratio1− (a0/b0) · (K2

1/K
3
1)

K2
1 ((a0/b0)− ratio1)

(B.2)

Finally, the effective initial target concentration can be obtained from the conser-

vation rule

e0 = ([T ]0)effective = X1 + X2 + X3, (B.3)

where X1 is given in (B.2). It is worth noting that this computation requires the

values of X2 and X3, and not just their ratio (i.e., ratio1). This brings up the

additional complication of converting the measured quantities (intensities) into the

same units as the computed quantities (concentrations), which is discussed in detail

in section B.1.3.

B.1.3 Interpreting the results

In the laboratory, to obtain the concentration of a particular complex, one measures

instead the total intensity of the fluorophores attached to the molecules of the

complex. This intensity is a function of the concentration of the substance in

question. The form of this function is generally assumed to be linear in a certain

range, growing nonlinear outside the said range. Since the lab measurements are in

the units of intensity, and the model predicts concentrations of the substances at

equilibrium, direct comparison of the in silico and laboratory data does not make

sense. However, one can make the argument that since the primary interest is not in

the concentrations of individual substances but rather in their ratios (the pm/mm
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ratios), the intensity-to-concentration scaling factor cancels out. The investigation

described in this manuscript has relied on this assumption.

Nevertheless, one should be careful to verify that the quantities in question do

indeed fall into the “linear” range of the intensity function. Should that prove not to

be the case, it would no longer be appropriate to treat intensities and concentrations

interchangeably; a more careful analysis of this “unit translation” would be prudent.

Furthermore, some of the analysis discussed here, in particular in section B.1.2,

requires individual concentration values, making it necessary to formulate the re-

lationship between intensity and concentration explicitly. Information required to

obtain the function in question includes the intensity of a single fluor, the number

of fluors attached to each target molecule, and the details of how the experimentally

measured results are scaled (i.e., the post-processing of the scanned data).

B.2 Future Improvements

B.2.1 Choice of alternate sites

All models discussed in chapter 3, with the exception of Simple Model, allow alter-

nate binding sites for each probe. In the current formulation, those alternate sites

are hard-wired to be the matching sites for the other probes involved. This choice

of alternate sites fits in with the idea of how competition between probes works,

and was convenient to implement, since the portions of the target in question were

already stored as the complementary sequences for the other probes. As an added

convenience, it also allowed the implementation to avoid string matching, since all

the necessary string matching was done as a pre-processing step.
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However, it would be more realistic to choose the alternate binding site(s) for

each probe based on the sequence of that probe as well as that of the target. One

possible approach to selecting potential “alternate sites” for a given probe could be

the following. One could generate a landscape of affinity constants (K12) and/or

melting temperatures (Tm) by convolving the given probe with the long target,

i.e., by shifting the probe along the target and computing the quantity of interest

at each such alignment, and then threshold it, only keeping the “peaks” as the

alternate sites.

B.2.2 Thermodynamics of mismatches

The current implementation of all hybridization models discussed in chapter 3 com-

putes the thermodynamic parameters of hybridization based on the NN model, mak-

ing use of the parameters for all possible matching dimer duplexes, as described in

section 3.7.1. Recall that in all these hybridization models, for each probe there

is an alternate probe, almost identical to the matching one (in all examples con-

sidered, the alternate (mismatching) probe differs from the matching one in only

one base). Thus, it is necessary to make regular computations of thermodynamic

parameters for target-probe pairs where mismatches occur. Further, more severe

mismatches occur when “cross-terms” are considered, where a probe hybridizes to

the “wrong” location on the target.

Current implementation

The simplest way to deal with such mismatches, and the one used in the current

implementation, is to “lose” the contributions of all mismatched dimers to the

188



summation term (recall equation (3.131) for ∆G) when the mismatch occurs in

the middle of the probe, and to lose the helix initiation parameter contribution if

the mismatch occurs on the end of the probe. A single base mismatch in a probe

automatically guarantees that the probe is not self-complementary (in the Watson-

Crick sense); thus, if the original probe was self-complementary, the contribution

from the symmetry term is lost as well.

One should also consider the situation where a matching probe P is almost self-

complementary, with only one base violating the property. In that case, replacing

the offending base appropriately would generate a self-complementary mismatch

probe P ’. In the computation of ∆G for the hybridization of P ’ with the target

T , the mismatched dimer contributions will be lost, as discussed above, but the

contribution of the symmetry term will be gained.

It is also possible for two strategically placed mismatches to turn a matching

self-complementary probe into a mismatched self-complementary probe. Thus, the

test for self-complementarity should be performed on each probe sequence from

scratch, rather than being inferred from the self-complementarity status of the

original probe and the editing changes.

More detailed treatment of mismatches

Thermodynamic contributions of different mismatched dimers have been studied

as well (see [7], [37], [2], [4], [1], and [3]). These studies showed that different

internal mismatches have different effects on the thermodynamic parameters of

hybridization—some even stabilize the resulting duplex. One can make use of these

available parameters to treat mismatches in much more detail. However, one must
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be careful to keep in mind that the parameters for the internal (and some terminal)

mismatches were derived using the stabilizing effect of neighboring matching base-

pairs. As a result, these parameters may not have the same additive properties as

the parameters for matching NN dimers. In any case, potential improvements in

the accuracy of the resulting thermodynamic parameters must be weighed against

the loss of speed due to more involved computations.
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Appendix C

Appendices for Chapter 4

C.1 Exponential Limit Inequality: Proof

Claim: For large n, (
1− 1

n

)n

> e
−1− 1

n
. (C.1)

Proof:

Inequality (C.1) is equivalent to

ln

[(
1− 1

n

)n]
want
> −1− 1

n
. (C.2)

Since the series expansion of the logarithm is given by

ln(1− x) = −
∞∑

j=1

xj

j
= −x− x2

2
− x3

3
− · · · for |x| < 1, (C.3)

we can expand the left-hand side of (C.2) as follows:

ln

[(
1− 1

n

)n]
= n ln

(
1− 1

n

)
= n

{
−

∞∑
j=1

(
1
n

)j

j

}
(by (C.3))

= −n

{ ∞∑
j=1

1

jnj

}
= −

∞∑
j=1

1

jnj−1
= −1− 1

2n
− 1

3n2
− 1

4n3
− · · · (C.4)
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Thus, inequality (C.2) reduces to

−1− 1

2n
− 1

3n2
− 1

4n3
− · · · want

> −1− 1

n
(C.5)

⇐⇒ 1

3n2
+

1

4n3
+

1

5n4
+ · · · want

< − 1

2n
+

1

n
=

1

2n
(C.6)

Now,

1

3n2
+

1

4n3
+

1

5n4
+ · · · <

1

3n2
+

1

3n3
+

1

3n4
+ · · ·

=
1

3n2

(
1 +

1

n
+

1

n2
+ · · ·

)
=

1

3n2
· 1

1− 1
n

(geometric sum)

=
1

3n
· 1

n− 1

want
<

1

2n
(by (C.6))

Simplifying yields

⇐⇒ 1

3(n− 1)

want
<

1

2

⇐⇒ 2 < 3(n− 1) = 3n− 3

⇐⇒ 5 < 3n,

which holds for every n ≥ 2. Retracing the chain of inequalities, we obtain

(
1− 1

n

)n

> e
−1− 1

n ∀n ≥ 2 (C.7)

as desired.
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C.2 Chernoff’s Inequality: Proof

Claim:

Pr (S(n, p) ≤ (1− ε)np) ≤ e
− ε2

2
np

, ε ∈ (0, 1). (C.8)

Proof:

S is a Binomial random variable:

S(n, p) = X1 + · · ·+ Xn, (C.9)

where Xi are i.i.d.r.v.’s with

Xi =





1 w.p. p

0 w.p. (1− p)
, i = 1, . . . , n (C.10)

Therefore,

E(S) =
n∑

i=1

E(Xi) =
n∑

i=1

p = np. (C.11)

Since

S ≤ (1− ε)np (C.12)

⇐⇒ S − np ≤ −εnp

⇐⇒ λ(S − np) ≤ −λεnp ∀λ > 0

⇐⇒ −λ(S − np) ≥ λεnp ∀λ > 0

⇐⇒ e
−λ(S−np) ≥ e

λεnp ∀λ > 0,

it follows that

Pr (S ≤ (1− ε)np) = Pr

(
e
−λ(S−np) ≥ e

λεnp
)

(C.13)

≤
E

[
e
−λ(S−np)

]

e
λεnp

(by Markov’s inequality) (C.14)
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For a proof of Markov’s inequality, see, e.g., [5].

From (C.9) and (C.10), we know that

S − np =
n∑

i=1

Xi − np =
n∑

i=1

(Xi − p). (C.15)

Therefore,

E

[
e
−λ(S−np)

]
= E

[
e
−λ
P

i(Xi−p)
]

(C.16)

= E

[
n∏

i=1

e
−λ(Xi−p)

]
=

n∏
i=1

E

[
e
−λ(Xi−p)

]
(by independence)

=

{
E

[
e
−λ(X1−p)

]}n

(by (C.10))

• E

[
e
−λ(X1−p)

]
= p e

−λ(1−p)
+ (1− p) e

−λ(−p)
(C.17)

= e
λp

(
p e

−λ
+ (1− p)

)
= e

λp(
1 + p( e

−λ − 1)︸ ︷︷ ︸
u

)

≤ e
λp

(
e

p(e−λ−1)
)

(since 1 + u ≤ eu ∀u)

= e
p(e−λ−1+λ) ≤ e

p λ2

2
, (C.18)

where the last inequality follows from

e−λ ≤ 1− λ +
λ2

2
∀λ > 0

=⇒ e−λ − 1 + λ ≤ λ2

2
(C.19)

Therefore, by (C.16) and (C.18),

E

[
e
−λ(S−np)

]
≤

(
e

p λ2

2

)n

= e
λ2

2
np

(C.20)
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and

Pr (S ≤ (1− ε)np) ≤ e
−λεnp

E

[
e
−λ(S−np)

]

≤ e
−λεnp

e
λ2

2
np

= e
np
�

λ2

2
−λε

�
∀λ > 0 (C.21)

Since (C.21) holds for all λ > 0, it certainly holds for λ = λ∗ which minimizes

the expression. Let

f(λ) = e
np
�

λ2

2
−λε

�

Optimizing over λ we find:

f ′(λ) = f(λ) · np(λ− ε) = 0 (C.22)

⇐⇒ λ∗ = ε,

so that

f(λ∗) = e
np
�

ε2

2
−ε2

�
= e

− ε2

2
np

and, from (C.21),

Pr (S ≤ (1− ε)np) ≤ e
− ε2

2
np ∀ε ∈ (0, 1) (C.23)

as desired.

It remains to check that the optimizing λ = λ∗ is a minimum of f(λ), that is,

f ′′(λ∗) > 0. By (C.22),

f ′′(λ∗) = f ′((λ) · np(λ− ε) + f(λ) · np |λ=λ∗

= f ′(λ∗)︸ ︷︷ ︸
0

·np(0) + f(λ∗) · np

= np e
− ε2

2
np

> 0.

∴ λ∗ = ε is a minimum.
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