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Examining  Microarray Experiments 
 
 

Within the past decade, advances in biological technology have allowed 

researchers to penetrate the foundations of cellular biology, culminating with the 

publication of the draft sequence of the human genome.  Researchers from both 

private and public institutions have succeeded in identifying thousands of coding 

regions of genetic sequences commonly referred to as genes.  The genes of yeast and 

other simple organisms have been completely identified and an estimated two-thirds 

of the human genome has been identified.  Despite this widely heralded effort, 

sequencing the genome and identifying its coding regions are only the first steps in 

understanding the wildly turbid and complicated functions of genes at a cellular level. 

 Furthermore, gene array technologies, developed over the past six years, 

have begun to produce valuable information for understanding the functions of genes 

at a cellular level.  The arrays simultaneously measure cellular concentrations of 

thousands of messenger RNAs or mRNAs since transcription from DNA to mRNA is 

the initial step in the creation of a protein from a gene.  Measurement of mRNA 

provides a proxy for the activity level of a particular gene and is referred to as an 

expression level or gene expression.  Prior to the advent of array technologies, 

researchers could only measure expression levels for individual genes through 

techniques such as Northern blots.  Array technologies allow investigation of 

expression levels for all known genes in the cell and permit a more thorough 

characterization of the transcriptional state of the cell.  So far array technologies have 

been used to characterize functions of newly found genes, to understand the 

machinery of cell maintenance and regulation and to classify certain types of cancer.  

Insofar as this new technology has become useful, it has required a good deal of 

statistical and computational methods aimed at understanding how the technology 

both succeeds and fails at representing the state of the cell accurately. 

 There are two differnet array technologies currently used.  Both measure the 

propensity of mRNA or cDNA to hybridize with single strands of complementary 

DNA sequestered and immobilized on a solid substrate.  The technologies differ in 

the length of the sequesterd DNA strands and the number of spots used to detect the 

expression level of each gene.  In this paper the focus is on the GeneChip, developed 

by Affymetrix Inc.  It would not be an efficient use of space explaining how the 

GeneChip actually measures the expression levels of the genes. However, it is 
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necessary to explain what the output of the GeneChip looks like and how faithfully it 

represents the actual level of mRNA for each gene. 

 The GeneChip array uses 40 different oligonucleotide sequences at 40 

adjacent spots on the array to detect each type of mRNA molecule.  20 of these spots 

contain perfect match sequences that are exactly complementary to the subsequences 

of the target gene's mRNA.  The other 20 contain mismatch sequences which differ 

by a single base pair from its corresponding perfect match sequence.  Affymetrix 

measures cross-hybridization, the non-specific hybridization that can occur with 

genes of similar sequence, by subtracting the perfect match and mismatch sequences 

as the mismatch sequence is intended to represent this non-specific hybridization.  

The differences are then averaged to produce an expression level specific to each 

gene. 

 Gene array experiments make use of a large number of steps that are not 

insulated by any means from error which, in turn, lead to noise in the resulting 

expression levels.  Current practice addresses problems of noisy data heuristically but 

there has been a growing literature that deals with noise estimation specifically.  In 

this paper I follow the approaches of Wong and Li (2001) who model the distribution 

of individual perfect match – mismatch probe differences.  Once expression levels 

have been estimated from the perfect match – mistmatch values, a matrix consisting 

of gene expressions for each gene in each sample is filtered and clustered.  The 

filtering is necessary to exclude large amounts of data that remain unchanged from 

experimental condition to experimental condition.  Usually, change in expression is 

measured by that of a statistical magnitude test like that of a t-test which relies on 

estimating the distribution of expression levels across experiments for each gene.  A 

simple test like the ratio of sample standard deviation over mean expression value 

across experiments can also be used to exclude genes.  Clustering algorithms, for 

example hierarchical clustering, have been used ubiquitously to group those genes 

that are manifesting change between experiments.  Two frequently cited examples of 

clustering methods are due to Eisen (1998) who uses agglomerative hierarchical 

clustering to group genes and Tavazoie (1999) who uses k-means clustering.  

Agglomerative clustering starts at the lowest level of dissimilarity of expression 

values (namely zero for each singleton cluster consisting of only one gene) and at 

each level recursively merges a selected pair of clusters into a single cluster which 

produces a grouping at the next higher level with one less cluster.  K-means works by 
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choosing K initial means for the data and moving the means around to minimize the 

variance of the mean and the points within the cluster corresponding to the particular 

mean.  Clustering is in itself a large field and there remains no consensus which 

clustering method is most suitable for gene expression data.  Suffice it to say, many 

researchers use heirarchical clustering so that the number of naturally ocurring 

clusters within the data may be inferred rather than imputed.  The technique by Eisen 

is probably the most widely used clustering method of expression data.  Thus, since 

the scope of this paper goes beyond clustering, the results presented in this paper are 

based on this widely used method. 

As stated microarray experiments require researchers to analyze large amounts of 

gene expression data.  The number of gene expressions recorded may be in the tens of 

thousands and the number of experiments may well be in the hundreds.  This approach leads 

to a disturbingly high dimension if one is interested in modeling gene to gene interactions and 

even intimidating for within sample analysis.  Even after filtering and clustering are used to 

identify tenuous groups of genes in experiments that are changing, it is instructive for the 

biologist to know not only which genes are clustering but also the effect different 

experiments and their corresponding treatment conditions have on such clusters.  This thesis 

addresses the following questions:  what are most important experiments for the inducement 

of a specific cluster?, how dissimilar are the gene expressions in this cluster compared to 

those in other clusters?  These are just some of the prevailing questions that are of significant 

importance to the researchers pursuing functional relationships of genes via clusters.  

In this thesis we approach these questions by initially filtering and clustering the data 

with the agglomerative hierarchical clustering algorithm proposed by Eisen.  For each cluster 

of data a ranking of the most informative experiments is computed so that we may query a 

given set of conditions and find the clusters whos information ranking corresponds to those 

experiments.  Principal component projections are then made to reduce the experimental 

space to an orthogonal subspace.  This has the advantage that highly correlated experiments 

will not bias the formation of possible groups of data in the subspace as it does in the 

experimental space.  Methods of unsupervised learning are then used to discern possible 

modes in the projected data so that we can compare or justify the clusters in the experimental 

space with the groups of data found in the orthogonal subspace. 
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Entropy and Mutual Information 

 

Given an n x m matrix of genome expression data consisting of k  clusters with 

1,..., ng g  genes in 1,..., ms s  experiments , biologists are interested in knowing which 

experiments could be perceived as being the most important in the inducement of the cluster.  

That is, if one were to choose one of the 1,...,k K=  clusters of genes can one estimate how 

dissimilar the gene expressions or distribution of genes expressions in cluster k  are from those 

in clusters 1,..., 1, 1,...,k k K− + .  Once this is done for each cluster over each experiment we 

have an ordinal ranking of the importance of each experiment. 

 

 
figure 1: genes in cluster and genes outside of cluster, respecitvely, 

for cluster k containing genes with indices ,..., ki i c+  

 

The question then becomes, what is an appropriate estimation of dissimilarity between 

gene expression distributions for gene expressions within a given cluster to those in the other 

clusters.  If one can estimate the distribution of the set of gene expressions exclusive of the 

genes of the cluster in question, how dissimilar will the estimated distribution be?  This 

motivates the use of information, more precisely mutual information or relative entropy 

(equivalent to the well known Kullback-Leibler distance) thoroughly presented in Cover and 

Thomas (1991) and Papoulis (1991) and derived from the work of Shannon and Weaver 

(1949).  Historically the term entropy refers to the entropy of partition U such that the entire 

experiment space will be contained in the union of the mutually exclusive Us.  Referring to 

figure 1, the union of the grey-shaded areas constitute the entirety of the experiment space ls .   
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Entropy was derived to satisfy a number of postulates based on a heuristic understanding 

of uncertainty.  If entropy of partition U is denoted ( )h U  then h  must satisfy the following 

postulates: 

1. ( )h U  is a continuous function of the probability ( )i ip P X=  of an event iX  

over partition U. 

2. If 1 1/Np p N= = =L  then ( )h U  is an increasing function of N  

3. If a new partition B is formed by subdividing one of the sets of U, then 

( ) ( )h B h U≥ . 

It can be shown in Papoulis (1991) that 
1

( ) ( ) log
N

X i i
i

h X h U p p
=

= = −∑  satisfies the 

above postulates for discrete random variable X over partition U and  

( ) ( )ln ( )h X f x f x dx
∞

−∞

= − ∫  where ( ) ( )P X f x dx
∞

−∞

−∞≤ < ∞ = ∫  for continous 

random variable X.   Similarily, if X and Y are two discrete type random variables such 

that ( , )i j ijP X x Y y p= = =  then the joint entropy is defined by the entropy of the 

product of their respective partitions, that is { , }X y i jU U X x Y y⋅ = = =  so that 

[ ]( , ) ( , ) ln ln ( , )X y ij ij
i j

h X Y h U U p p E p X Y= = − = −∑∑  in the discrete case and  

[ ]( , ) ( , )ln ( , ) ln ( , )h X Y f x y f x y E f X Y
∞ ∞

−∞−∞

= − = −∫ ∫  for the continuous case, where 

[ ]E ⋅  represents the expected value of the term in brackets.  Conditional entropy, as 

expected, works analogously.  However the probability of one random variable will be 

conditioned on the assumption that either jY y=  or YU  is known.  The former condition 

yields 

( | ) ( / )ln( / )j ji j ji j
i

h X Y y p p p p= = −∑  and the latter condition 

( | ) ( | ) ln( / )j j j ji j
i i

h X Y p h X Y y p p p= − = = −∑ ∑  for the discrete case.  The 

continuous case yields 

[ ]( | ) ( | )ln ( | ) ln ( | ) |jh X Y y f x y f x y dx E f X Y Y y
∞

−∞

= = − = − =∫  and 
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[ ] [ ]

( | ) ( )ln ( | ) ( , )ln ( | )

ln ( | ) ln ( | ) |

h X Y f y h X y dy f x y f x y dxdy

E f X Y E E f X Y Y y

∞ ∞ ∞

−∞ −∞−∞

= − = −

 = − = − = 

∫ ∫ ∫  

Mutual Information is now almost trivially defined as  the entropy over the  partition  

\X Y X YU U U U∪ ∩  ,  

( , ) ( \ ) ( ) ( ) ( )

( ) ( ) ( , )
( ) ( | )

X Y X Y X Y X Y x yI U U h U U U U h U h U h U U

h X h Y h X Y
h X h X Y

= ∪ ∩ = + − ⋅

= + −
= −

 

since ( , ) ( | ) ( )f X Y f X Y f Y= .  In terms of expectations, the mutual information can 

be written 
( , )

( , ) ln
( ) ( )
f X Y

I X Y E
f X f Y

 
=  

 
, the discrete case yields a similar expression.  

Thus, if continuous random variables X and Y are independent then 

( , ) ( ) ( )f X Y f X f Y=  so that their shared or mutual information is zero.  In the 

parlance of our experiments, the more the independent the random variable whos 

distribution is estimated from genes ,...,
ki i cg g + is from the random variable whos 

distribution is estimated from genes 1 1 1,..., , ,...,
ki i c ng g g g− + +  the less the information 

shared between the two random variables. Below is a depiction of the data transformation 

from an Kxm mutual information matrix to an Kx1 mutual information ranking. 

 

 
figure 2 K x m matrix of information on the left leads two a ranking of the experiments by taking the 

minimum information over all experiments for each cluster 
 

In figure 2, ,kclus lX  represents the random variable of gene expressions in cluster k  of 

experiment l and ,kclus lX  the random variable of gene expressions not in cluster k of 
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experiment l.  ( )krank clus  is the minimum of the mutual information for cluster k  across 

all experiments l = 1,…,m.  rank(   ) can either represent the one experiment of lowest 

information content or can just sort the experiments l = 1,…,m in ascending order of 

mutual information. 

 Many researchers take natural or base-2 log transfroms of the raw expression data to 

impose normality on expression levels since all expression levels are greater than zero 

and assumed to have a lognormal distribution.  If expression levels can indeed be 

imputed to be lognormal (normal after log-transforms) than the mutual information 

content , ,( , )
k kclus l clus lI X X  becomes extremely simple to compute.  For continuous 

random variables X and Y we can remove the mean and compute 

( , ) ( ) ( ) ( , )I X Y h X h Y h X Y= + −  

by [ ] [ ] [ ]ln ( ) ln ( ) ln ( , )E f X E f X E f X Y− + − − −  where 

[ ]

( )

( )
( )

2 2
2 1/2

2 2 2

2 2 2
2 1/2

2 2 2

2 1/2

2 2 2 2

21
ln ( , ) ln2 (1 )

2(1 )

21
ln 2 (1 )

2(1 )

ln 2 (1 ) 1

1
ln (2 ) (1 )

2

X Y
X Y

X X Y Y

X X Y Y
X Y

X X Y Y

X Y

X Y

X X
E f X Y E E

e

ρσ
πσ σ ρ

ρ σ σ σ σ

σ ρ σ σ σ
πσ σ ρ

ρ σ σ σ σ

πσ σ ρ

π σ σ ρ

 
 − = − + − +   −   

 
= − + − +  −  

= − +

= −

 

where X Y X Yσ ρσ σ=  for correlation ρ .  It is worthwhile to notice that 2 2 2(1 )X Yσ σ ρ−  is 

the determinant of the 2x2 covariance matrix for X and Y  if we substitute the off-diagonal 

X Yσ  terms with the equivalent X Yρσ σ  terms .  In fact, the general form for entropy 

1( ,.., )nh X X  of stationary random variables 1{ ,..., }nX X  can be written ( )1
ln (2 )

2
neπ ∆  

where ∆  is the determinant of the nxn covariance matrix with off-diagonal substitutions 

, 1,..,
i jij X X i j nρ σ σ =  Papoulis (1991).  Now the mutual information is 

2
,

1 1 1
( , ) ln(2 ) ln(2 ) ln((2 ) )

2 2 2X Y X YI X Y e e eπ σ π σ π= + − ∆ .  Since the number 

expression values from kclus  will not be equal in number to those of kclus , to compute the 
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sample covariance matrix one must resample the cluster with the fewer number of expression 

values via the nonparametric bootstrap (Efron 1993). 

 There is no dearth of literature disputing the most appropriate distribution of gene 

expressions.  Mutual information is most easily computed for normal data but we can 

compute the mutual information between two random variables with any parametric or non-

parametric distribution by using numerical quadrature.  Silverman (1982) presents a very 

efficient method for non-parametric density estimation which reduces to binning the raw data 

and convolving the binned data with a gaussian kernel by using a fast fourier transform. In 

practice, some of the clusters that need to be evaluated have not more than a few data points 

so parametric assumptions are necessary.  Figure 3 represents the diagram of a non-

parametric estimate using Silverman's algorithm together with a maximum-likelihood fitted 

gaussian distribution.  There seems to be not much difference in appearance thus justifying a  

gaussian distribution to represent the log-transformed data.  

 
figure 3 solid curve represents non-parametric fit to data 

dotted curve represents best gaussian fit  
 

Using the gaussian estimation for the distribution, the mutual information matrix is 

. 
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Now we have a way of determining which experiments most likely induce any 

particular cluster of the expression data.  If one experiment seems to induce most or all of the 

clusters then it can likely be inferred that this specific experiment and corresponding 

treatment conditions tend to overshadow the effects of the other experiments and their 

corresponding treatment conditions.  Removal of this experiment may result in finding 

different rankings of the experiments with more subtle effects for different clusters and thus a 

possible causal relationship between the set of genes in the cluster and the experiment with its 

coinciding treatment conditions.  Rankings of experiments in this way may also suggest 

which treatments researchers should include or exclude in an experiment to obtain clusters of 

genes that reflect more subtle regulations of genes by treatment conditions.  It is sometimes 

the case that two or more experiments are highly correlated because of one or the confluence 

of two treatments shared by all.  Thus the added cost and laboratory time is lost because the 

data from this experiment sheds little new light.  From this perspective, it may be instructive 

to take the nxm matrix of gene expressions and map it to an nxp matrix in a p-dimensional 

orthogonal subspace, p m≤ .  This motivates the use of principal component projection.  

Other projection methods such as exploratory projection pursuit and independent component 

analysis are also used  to find "interesting" projections of the data (projections that yield 

highly irregular patterns that deviate severly from normality) but are much more sophisticated 

and may not be necessary if the relatively simple principal component projection produces 

desirable results.  Finally methods in pattern classification can be used to find distinctions in 

the projected data.  All this is to say that it may be more useful to examine projections of the 

data instead of the experimental data itself – especially when the data form different 

experiments is highly correlated. 

 

Principal Component Analysis 

 

Principal components analysis involves the spectral decomposition of the symmetric 

covariance matrix tADAΣ =  where D is the diagonal matrix of eigenvalues and A the 

corresponding orthogonal matrix of eigenvectors.  If the eigenvalues are distinct and ordered 

1 20 ... mλ λ λ≤ ≤ ≤ ≤ , then the columns 1 ,.., mA A  of A are unique up to sign.  The random 

variables , 1,..,t
j jV A X j m= =  have covariance matrix tA A DΣ =  .  These random variables 

are called principal components.  They are uncorrelated and increase in variance from 1V  to 
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mV .  It may be of interest to compute the correlation of the jth principal component with that 

of the ith experiment in order to ascribe experimental meaning to the jth principal component.  

Consider the jth component t
j jV A X=  and  nxn nxncov( X, )j j j j jI V I A A Aλ= Σ = Σ =  since 

jA is the eigenvector of sample covariance matrix Σ  and nxnI  the nxn identity matrix.  The 

covariance of iX  and jV  is the ith element of j jAλ , namely j ijAλ .  The standard deviation 

of iX  is 2
iiσ  and that of jA  is jλ  so that the correlation between the ith experiment and 

jth principal component  is 
2 2i j

jj ij
X V ij

ii j ii

A
r A

λλ

σ λ σ
= = .  The univariate measure 2

iXR  

depicting how each experiment iX  alone relates to each 1 ,.., pV V  can be computed 

2 2

1
i i j

p

X X V
j

R r
=

= ∑ .   

 

 The p of the p-dimensional principal component subspace is chosen such that some 

threshold of variation in the data is accounted for by these p m≤  principal component 

vectors.  For visualization purposes one can choose p = 2 or p = 3.  In most of the microarray 

experiments, almost 98 percent of variation in the data is accounted for by the first two 

principal components.  After choosing p and making the projection, the question reduces to 

unsupervised learning of structure within this new space.  Clustering itself lies within the 

realm of unsupervised learning techniques.  One may also consider to another such instance 

of unsupervised learning – that of non-parametrically estimating the density of log-

transformed data developed by Silverman.  If principal component projection is successful 

then hopes to distinguish associations among the experiments and whether or not they can be 

considered as functions of a smaller set of latent variables evinced by the modality of the 

data.  Thus, perhaps it is possible to represent the distribution of data by a mixture of simpler 

densities representing types or classes of observations.  To this, the EM algorithm approach 

may be use [Dempster (1977)] to distinguish the possible classes of observations and then 

draw boundaries, when appropriate, to denote these possible classes. 

 

The EM Algorithm  
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 The Expectation Maximization or EM algorithm is less an algorithm than a 

prescription for an algorithm.  It is a numerically stable tool for simplifying difficult 

maximum likelihood problems and can easily be understood in the context of a simple 

mixture model.  Perhaps we have reason to believe, by insight or observation, that the 

experimental data in consideration is bimodal so that estimating the distribution with a single 

Gaussian distribution would not be sufficient.  Instead we could model the data X as a 

mixture of two Gaussian distributions: 

1 1 1

2 2 2

1 2

~ ( , )

~ ( , )

(1 )

p

p

X N

X N

X X X

µ

µ

θ θ

Σ

Σ

= − +

 

for {0,1}iθ ∈ , Pr( 1)θ π= =  and pN  denotes the p-dimensional normal distribution .  If 

( )
i

xηφ  is the p-dimensional normal density with parameters { , }i i iη µ= Σ  then the density of 

X is 
1 2

( ) (1 ) ( ) ( )Xf x x xη ηπ φ πφ= − +  and the parameters to be estimated are 1 2{ , , }π η η .  

The log-likelihood using the n data points is 

1 2
1

( ; ) log[(1 ) ( ) ( )]
n

i i
i

l X x xη ηη π φ πφ
=

= − +∑  and the conventional maximum likelihood 

method would require maximization of ( ; )l Xη  (here X is fixed and the parameters 

1 2{ , , }π η η  variables). The sum of terms inside the logarithm makes maximization 

numerically challenging.  However, if one considers the latent variables iθ  such that when  

iθ =1  iX  comes from 
1ηφ  and  when iθ =0 iX  comes from  

2ηφ  .  The new log-likelihood is 

1 2
1

( ; , ) log[(1 ) ( ) ( )]
n

i i i i
i

l X x xη ηη θ θ φ θ φ
=

= − +∑ .  The maximum likelihood parameter 

estimates for this log-likelihood would be the sample mean vector 1µ  and sample covariance 

matrix  1Σ  when iθ = 0 and sample mean vector 2µ  and sample covariance matrix when 2Σ  

when iθ = 1.  The values of iθ  are unknown so one must proceed iteratively substituting the 

conditional expectation [ | , ] Pr( 1| , )i iE X Xθ η θ η= =  at each observation.  Thus in the 

so-called Expectation step Pr( 1 | , )i i Xω θ η= =   and in the Maximization step 
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1 1
1 1

1 1

1 1

2 2
1 1

2 2

1 1

ˆ ˆ ˆ ˆ(1 ) ( )(1 )( ) '
ˆˆ ,

ˆ ˆ(1 ) (1 )

ˆ ˆ ˆ ˆ( ) ( ) '
ˆˆ ,

ˆ ˆ

n n

i i i i i
i i

n n

i i
i i

n n

i i i i i
i i

n n

i i
i i

x x x

x x x

ω µ ω µ
µ

ω ω

ω µ ω µ
µ

ω ω

= =

= =

= =

= =

− − − −
= Σ =

− −

− −
= Σ =

∑ ∑

∑ ∑

∑ ∑

∑ ∑

 

with mixing parameters 
1

1
ˆ

n

i
in

π ω
=

= ∑ .  Initial parameter guesses may be chosen at random 

and it is often advised to use multiple starting points as the EM cannot distinguish local from 

global maximum points. 

 Interestingly, the ascent properties of the EM can be explained using the 

ideas of entropy and relative entropy.  Say the EM is used to classify observations of the 

random variable iX x=  into one of M classes by maximizing the likelihood estimate of the 

model parameters η  and the probability p that iX x=  belongs to class  iz .  By Baye's 

formula and using logarithms 

log ( , | ) log ( | , ) log ( | )i i i i ip x z p z x p xη η η= + .  For unknown parameters let ( | , )i ip z x θ  

denote the probability of the class iz  given observation ix  under the unknown parameter set.  

Multiplying log ( , | ) log ( | , ) log ( | )i i i i ip x z p z x p xη η η= +  by ( | , )i ip z x θ , summing 

over iz  and i = 1,…,n and using the fact that ( | , ) 1
i

i i
z

p z x η =∑  then the log-likelihood for 

η  is 

 

( ; ) log ( | )

( | , )log ( , | ) ( | , )log ( | , ).
i i

i
i

i i i i i i i i
i z i z

l X p x

p z x p x z p z x p z x

η θ

θ η θ η

=

= −

∑

∑∑ ∑∑
 

The entropy of  the hidden parameterθ  is 

( | , )log ( | , )
i

i i i i
i z

h p z x p z xθ θ θ= ∑∑ .  Define 

( , ) ( | , )log ( , | )

( | , )log( ( | , ) ( | ) )
i

i

i i i i
i z

i i i i i
i z

f p z x p x z h

p z x p x z p z h

θ

θ

θ η θ η

θ η η

= −

= −

∑∑

∑∑
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and the relative entropy 

( | , )
( , ) ( | , )log

( | , )

( | , )log ( | , ) ( | , )log ( | , )

( | , )log ( | , )

i

i

i

i i
i i

i z i i

i i i i i i i i
i z

i i i i
i z

p z x
d p z x

p z x

p z x p z x p z x p z x

h p z x p z xθ

θ
θ η θ

η

θ θ θ η

θ η

 
=  

 
= −

= −

∑∑

∑∑

∑∑

  

so that the log-likelihood can now be written  ( ; ) ( , ) ( , ).l X f dη θ η θ η= +   Now the ascent 

properties of the EM become manifest.  ( , )d θ η  is nonnegative for all η  and zero when 

η =θ  so that ( , )f θ η  < ( ; )l Xη  for all η  and equal when η =θ .   Now, if 

( , )f θ η > ( , )f θ θ  then ( ; )l Xη  > ( ; )l Xθ .  If the relative entropy term ( , )d θ η  has a 

minimum at η =θ  then ( ) / | ( , ) / |l fη θ η θη η θ η η= =∂ ∂ = ∂ ∂  so if η =θ is not a critical point 

for ( ; )l Xη  then it is not for ( , )f θ η .  Thus, starting with arbitrary parameter θ  = 0θ  and 

iterating the E step and M step, ( ; )l Xη  is guaranteed to converge. 

 

 

Results Using Data  
 

We use data generated for the purpose of understanding the gene funcions in   

a plant called Arabidopsis thaliana studied by a group of NYU biologists under the 

direction of Dr Gloria Coruzzi.  The data consists of 21 replicated experiments and a 

total of 10 unreplicated experiments.  There are 8297 probes in each experiment 

making for a gene expression matrix of 8297 X 10.  Filtering removes up to 80% - 

90% of the gene probes that are considered unchanged across all experiments by 

using a statistical t-test.  The genes that are considered duly changed are clustered 

together.  A correlation threshold of 0.85 is used to pick the clusters. 

We have broken the complete list of experiments into one of two types.  The 

first type makes no distinction and uses all 10 experiments.  The second type uses 

only those experiments that are not deprived of light.  For each type we use the 

methods presented in this thesis in order of their appearance.  We start by ranking the 

importance of each experiment in the inducement of each cluster found.  The gene 

expressions for each cluster are projected on to a two-dimensional rank 2 space.  We 
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execute the EM algorithm choosing several different modes to describe the 

distribution of data in this space.  Finally We draw posterior boundary conditions 

when the modes in the projected space are quite distinguishable.  In the following 

charts, ExpJ represents experiment J and CI cluster number I.  Experiment list names 

the actual experiments used to cluster the data.  Each name in the list denotes a 

treatment condition of either depriving or providing the plant with a light source,  

nutrient source, nitrogen source or carbon source .  It is not important to know which 

names correspond to what treatment conditions, one need know only that none of the 

treatment conditions are the same. 

Finally, in the principal component projection plots, I have estimated the 

mixture of bivariate normal distributions corresponding to the data.  The black 

crosses denote the covariance estimates of the distributions while the red ellipses 

signify one std deviation from the means of the estimated distributions. 

 
 
 
 
 
 
 
 

All Experiments (Type 1): 
 
Experiment List: 

'tAndrew117a'    't138'    't182T'    't188T'    't153-Control'    't0.1XN'    't184T'    't190T'  't154-Sucrose'    t275' 
 

 
 

Mutual Information matrix: 
 

     Exp1    Exp2      Exp3      Exp4      Exp5       Exp6      Exp7  Exp8      Exp9     Exp10 
  
  C1   2.2122    1.6958    1.6551    1.7319    1.7518    1.7586    1.6724    1.6624    1.7330    1.7287 
  C2      2.1377    1.7966    1.7744    1.8253    1.9108    1.9109    1.9132    1.9044    1.9265    1.9201 
  C3 2.1116    1.7557    1.7575    1.8183    1.8692    1.8996    1.9005    1.8933    1.9377    1.9194 
  C4   1.9691    1.8064    1.7392    1.7584    1.9708    1.9681    1.7717    1.7768    1.8511    1.8493 
  C5  2.1516    1.8026    1.7744    1.8147    1.9230    1.9282    1.8937    1.8810    1.9349    1.9168 
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Information rank: 
 

1     2     3     4    5      6     7     8     9     10 
 

C1   3     8     7     2    10     4     9     5     6     1 
C2     3     2     4     8     5     6     7    10     9     1 
C3      2     3     4     5     8     6     7    10     9     1 
C4     3     4     7     8     2    10     9     6     1     5 
C5     3     2     4     8     7    10     5     6     9     1 

 
 

All experiments in the first two rankings of the information rank matrix, with the 

exception of experiment #8, have been deprived of light.  Light or the absesnce of 

light can be inferred to be an overwhelming condition that has large effects on the 

gene expressions in each experiment 

 
 

 
 

Principal Component projection 
 

 
figure 3:  PC projection, Type 1 experiment, EM with 2 modes 

 
 

For experiment type 1, it does not look like there exist any naturally ocurring 

distinguishable modes in the principal component projection of the data.  I have used 

a mixture of two Gaussians to represent the data but probably only one is necessary.  

One can note however that clusters 4 and 5 are mostly positive for the 2nd principal 

component while the others are negative.  Correlating the principal components with 
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the experiments one finds that all those experiments deprived of light have negative 

correlation to the 2nd principal component while those that were treated with 

sufficient light correlated positively to the 2nd principal component. 

 
 

 
 

All Experiments with light (Type 2): 
 

Experiment list 
't153-Control'    't0.1XN'    't184T'    't190T'    't154-Sucrose'    't275' 

 
 

Mutual Information matrix: 
 

Exp1    Exp2      Exp3      Exp4      Exp5       Exp6 
 

C1   1.7213    1.7344    1.7422    1.7522    1.7884    1.7591 
C2  1.9643    1.9971    1.9071    1.9073    1.9237    1.9174 
C3   1.9556    1.9540    1.9053    1.9067    1.9189    1.9001 
C4   2.0179    2.0272    1.9254    1.9256    1.9597    1.9498 
C5  1.9349    1.9570    1.8970    1.8949    1.9359    1.9132 

 
 

 
Information rank: 

 
1     2     3     4    5      6 

 
C1 1     2     3     4     6     5 
C2 3     4     6     5     1     2 
C3     6     3     4     5     2     1 
C4     3     4     6     5     1     2 
C5      4     3     6     1     5     2 

 
 
This experiment yields a more varied selection of experiments that are the most 

important for the inducement of these clusters.   
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Principal Component projection 
 

 
figure 4:  PC projection, Type 2 Experiment, EM with 2 modes and Decision Boundary 

 
 

Figure 4 shows a nice separation between the sets of clusters.  The separation relies 

on the 2nd principal component as clusters 4 and 5 are mostly above zero and the 

others mostly below.  A decision boundary is shown which divides the space into 

regions where it is most probable that the data is engendered from either one of the 

two modes.  Correlating principal components to experiments one finds that all 

experiments that included a carbon source correlated positively to principal 

component two while those without a carbon source correlated negatively to the 

second principal component.  Thus the groupings of data here may have something to 

do with the inclusion or exclusion of a carbon source. 
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figure 5:  Estimated Surface probability plots for figure 4 

 
 

 
Finally, figure 5 represents the mixed Gaussian probability distribution of the data in figure 4.   

 

 

Concluding Remarks 

 

 Microarrays and gene expression data present researchers with a powerful tool to 

examine the function of known genes at the cellular level.  Discriminating biochemical 

pathways, identifying genes responsible for a particular phenotype or regulation of  a set of 

functionally similar genes, classifying healthy cells from tumor cells, and distinguishing 

different types of tumors - each are applications of microarray technology.  Using 

unsupervised learning procedures such as clustering to identify functional families of genes 

has been a widely used and putatively successful technique thus far.  The goal of this thesis 

was to identify ways to find the salient experiments of each cluster and the possibility of 

distinguishing patterns of the data in an orthogonal subspace.  Insofar as this is concerned, 

one needs a way of estimating such distributions which may be multi-modal.  The EM 

method is a good way of doing this.  It can also be used in conjunction with more 

sophisticated methods such as neural networks and projection pursuit to determine patterns in 

data or the best (or, most interesting insofar as the projections deviation from Gaussian) linear 

projections of the data, respectively. Such methods may be found in Friedman (2001) and 

Duda (2000). In the end, the analysis reduces to how quantitively we can state the effect 

subsets of treatments have on certain groups of genes and the precision of how quantitatively 

such effects can be determined.  
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