Examining Microarray Experiments

Within the past decade, advancesin biologica technology have allowed
researchers to penetrate the foundations of cellular biology, culminating with the
publication of the draft sequence of the human genome. Researchers from both
private and public ingtitutions have succeeded in identifying thousands of coding
regions of genetic sequences commonly referred to as genes. The genes of yeast and
other smple organisms have been completely identified and an estimated two-thirds
of the human genome has been identified. Despite thiswiddly heralded effort,
sequencing the genome and identifying its coding regions are only the first stepsin
understanding the wildly turbid and complicated functions of genes at a cellular level.

Furthermore, gene array technologies, developed over the past Six years,
have begun to produce valuable information for understanding the functions of genes
at acdlular level. The arrays smultaneoudy measure cellular concentrations of
thousands of messenger RNAs or mRNASs since transcription from DNA to mRNA is
theinitid step in the creation of a protein from a gene. Measurement of mRNA
provides a proxy for the activity level of a particular gene and is referred to as an
expression level or gene expression. Prior to the advent of array technologies,
researchers could only measure expression levels for individua genes through
techniques such as Northern blots. Array technologies alow investigation of
expression levels for adl known genes in the cell and permit a more thorough
characterization of the transcriptional state of the cell. So far array technologies have
been used to characterize functions of newly found genes, to understand the
machinery of cell maintenance and regulation and to classify certain types of cancer.
Insofar as this new technology has become useful, it has required a good dedl of
statistical and computational methods aimed at understanding how the technology
both succeeds and fails at representing the state of the cell accurately.

There are two differnet array technologies currently used. Both measure the
propensity of mRNA or cDNA to hybridize with single strands of complementary
DNA sequestered and immobilized on a solid substrate. The technologies differ in
the length of the sequesterd DNA strands and the number of spots used to detect the
expression level of each gene. In this paper the focus is on the GeneChip, developed
by Affymetrix Inc. It would not be an efficient use of space explaining how the
GeneChip actualy measures the expression levels of the genes. However, it is



necessary to explain what the output of the GeneChip looks like and how faithfully it
represents the actual level of mMRNA for each gene.

The GeneChip array uses 40 different oligonucleotide sequences at 40
adjacent spots on the array to detect each type of mMRNA molecule. 20 of these spots
contain perfect match sequences that are exactly complementary to the subsequences
of the target gene's MRNA. The other 20 contain mismatch sequences which differ
by asingle base pair from its corresponding perfect match sequence. Affymetrix
measures cross-hybridization, the non-specific hybridization that can occur with
genes of similar sequence, by subtracting the perfect match and mismatch sequences
as the mismatch sequence is intended to represent this non-specific hybridization.
The differences are then averaged to produce an expression level specific to each
gene.

Gene array experiments make use of alarge number of steps that are not
insulated by any means from error which, in turn, lead to noise in the resulting
expression levels. Current practice addresses problems of noisy data heuristicaly but
there has been a growing literature that deals with noise estimation specifically. In
this paper | follow the approaches of Wong and Li (2001) who model the distribution
of individua perfect match — mismatch probe differences. Once expression levels
have been estimated from the perfect match — mistmatch values, a matrix consisting
of gene expressions for each gene in each sampleisfiltered and clustered. The
filtering is necessary to exclude large amounts of data that remain unchanged from
experimental condition to experimental condition. Usudly, change in expression is
measured by that of a statistical magnitude test like that of at-test which relieson
estimating the distribution of expression levels across experiments for each gene. A
smple test like the ratio of sample standard deviation over mean expression value
across experiments can also be used to exclude genes. Clustering agorithms, for
example hierarchical clustering, have been used ubiquitously to group those genes
that are manifesting change between experiments. Two frequently cited examples of
clustering methods are due to Eisen (1998) who uses agglomerative hierarchical
clustering to group genes and Tavazoie (1999) who uses k-means clustering.
Agglomerative clustering starts at the lowest level of dissimilarity of expression
values (namely zero for each singleton cluster consisting of only one gene) and at
each level recursively merges a selected pair of clustersinto a single cluster which

produces a grouping a the next higher level with one less cluster. K-means works by



choosing K initiad means for the data and moving the means around to minimize the
variance of the mean and the points within the cluster corresponding to the particular
mean. Clustering isinitself alarge field and there remains no consensus which
clustering method is most suitable for gene expression data. Suffice it to say, many
researchers use heirarchical clustering so that the number of naturally ocurring
clusters within the data may be inferred rather than imputed. The technique by Eisen
is probably the most widely used clustering method of expression data. Thus, since
the scope of this paper goes beyond clustering, the results presented in this paper are
based on this widdly used method.

As stated microarray experiments require researchers to anayze large amounts of
gene expression data. The number of gene expressions recorded may be in the tens of
thousands and the number of experiments may well be in the hundreds. This approach leads
to adigurbingly high dimension if oneis interested in modeling gene to gene interactions and
even intimidating for within sample analysis. Even after filtering and clustering are used to
identify tenuous groups of genes in experiments that are changing, it is instructive for the
biologist to know not only which genes are clustering but aso the effect different
experiments and their corresponding treatment conditions have on such clusters. Thisthesis
addresses the following questions: what are most important experiments for the inducement
of a specific cluster?, how dissmilar are the gene expressions in this cluster compared to
those in other clusters? These are just some of the prevailing questions that are of significant
importance to the researchers pursuing functional relationships of genes via clusters.

In this thesis we approach these questions by initidly filtering and clustering the data
with the agglomerative hierarchicd clustering agorithm proposed by Eisen. For each cluster
of data aranking of the most informative experiments is computed so that we may query a
given set of conditions and find the clusters whos information ranking corresponds to those
experiments. Principal component projections are then made to reduce the experimental
space to an orthogonal subspace. This has the advantage that highly correlated experiments
will not bias the formation of possible groups of data in the subspace as it doesin the
experimental space. Methods of unsupervised learning are then used to discern possible
modes in the projected data so that we can compare or judtify the clusters in the experimenta
space with the groups of data found in the orthogonal subspace.



Entropy and Mutual Information

Given an n x mmatrix of genome expression data consisting of k clusters with
g,,--»0, genesin s,..., S, experiments, biologists are interested in knowing which
experiments could be perceived as being the most important in the inducement of the cluster.
That is, if one were to choose one of the k =1,...,K clusters of genes can one estimate how

dissimilar the gene expressions or distribution of genes expressionsin cluster k are from those
inclusers 1,...,k - Lk +1,...,K . Oncethisisdonefor each cluster over each experiment we

have an ordina ranking of the importance of each experiment.
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figure 1: genesin cluster and genes outside of cluster, respecitvely,
for cluster k containing geneswith indices i ,...,1 + C,

The question then becomes, what is an appropriate estimation of dissimilarity between
gene expression digtributions for gene expressions within a given cluster to those in the other
clusters. If one can estimate the distribution of the set of gene expressions exclusive of the
genes of the cluster in question, how dissimilar will the estimated distribution be? This
motivates the use of information, more precisely mutual information or relative entropy
(equivalent to the well known Kullback-Leibler distance) thoroughly presented in Cover and
Thomas (1991) and Papoulis (1991) and derived from the work of Shannon and Weaver
(1949). Hidorically the term entropy refers to the entropy of partition U such that the entire
experiment space will be contained in the union of the mutualy exclusive Us. Referring to

figure 1, the union of the grey-shaded areas constitute the entirety of the experiment space § .



Entropy was derived to satisfy a number of postulates based on a heuristic understanding
of uncertainty. If entropy of partition U isdenoted h(U) then h must satisfy the following

postulates:
1 h(U) isacontinuous function of the probability p, = P(X;) of an event X,
over partition U.
2. If p,=---=py =1/ N then h(U) isanincreasing function of N
3. If anew partition B is formed by subdividing one of the sets of U, then
h(B)® hU).

N

It can be shown in Papoulis (1991) that h(X) = hU,) = - a p, log p, satisfiesthe
i=1

above postulates for discrete random variable X over partition U and
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h(X) =- of(¥)Inf(x)dx where P(- ¥ £ X <¥) = §f(x) dx for continous
-¥ -¥

random variable X. Smilaily, if X and Y are two discrete type random variables such

that P(X =x,Y =y;) =p,; thenthejoint entropy is defined by the entropy of the

product of their respective partitions, thatisU, *J, ={X=x,Y =y} sotha

h(X,Y)= hU,,U,) =- & & p,Inp, =E[- In p(X,Y)] in the discrete case and
i
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h(X,Y)=- of x.y)In f(x,y) =E[- In f(X,Y)] for the continuous case, where
S¥-¥

E[ ><] represents the expected value of the term in brackets. Conditional entropy, as
expected, works analogously. However the probability of one random variable will be
conditioned on the assumption that either Y =y, or U, isknown. The former condition
yields

h(X|Y=y)= - & (p;/ p)In(p,/ p;) and thelatter condition

h(X]Y)= - & p,AX|Y=y)= - & p,In(p,/ p,) for the discrete case. The

i i
continuous case yidds

¥

hXIY=y)= - of (xIyInf(x]y) dx=E[- In f(X|Y)| Y=y] and
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h(X[Y)= - of (WInh(X]y)dy=- 5 f (x.y)In f(x|y) dxdy

S¥-¥
= E[- Inf(X|Y)]|=EEE[- Inf(XIY)|Y =V]y
Mutual Information isnow amost trivially defined as the entropy over the partition
U, EU,\U, CU, ,
(U Uy )=h(Uy EU,\U, CU, ) =h(U,)+H(Uy)- h{U,U,)
=h(X)+ h(Y)- h(X,Y)
=h(X)- h(X] )
since f(X,Y)=f(X]|Y)f (Y). Intermsof expectations, the mutua information can

e u
bewritten 1(X,Y)=E élnMQ , the discrete case yields a similar expression.
e FX)f(YV)a
Thus, if continuous random variables X and Y are independent then
f(X,Y)=1(X)f(Y) sothat their shared or mutual information is zero. Inthe
parlance of our experiments, the more the independent the random variable whos

distribution is estimated from genes g;...., 9., is from the random variable whos

distribution is estimated from genes g;,..., 9 1, Gisq, 415+ 9, thelesstheinformation

shared between the two random variables. Below is a depiction of the data transformation
from an Kxmmutua information matrix to an Kx1 mutual information ranking.
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figure 2 K x m matrix of information on the left leads two aranking of the experiments by taking the
minimum information over al experimentsfor each cluster

Infigure2, X, , representsthe random variable of gene expressionsin cluster k of

clusy

experiment | and X the random variable of gene expressions not in cluster k of

clusE |



experiment . rank(clus,) isthe minimum of the mutua information for cluster k across

al experiments| =1,...m rank( ) can either represent the one experiment of lowest
information content or can just sort the experiments| = 1,...,min ascending order of
mutua information.

Many researchers take natural or base-2 log transfroms of the raw expression data to
impose normality on expression levels since al expression levels are greater than zero
and assumed to have alognormal distribution. |f expression levels can indeed be
imputed to be lognormal (normal after log-transforms) than the mutual information

content 1 (X X s ) becomes extremely simple to compute. For continuous

clus, | ?
random variables X and Y we can remove the mean and compute
[(X,Y)=h(X)+h(Y)- h(X,Y)

by E[- In f(X)]+E[- In f(X)]- E[- Inf(X,Y)] where

E[- |nf(xiy)]:Eg|n2stsY(1- r2yt2g , Ea

1 %)2( _ 2r ZSXSY +§0
2(1- r2)§5§ SxSy SV
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= In(2ps «Sy@-r 2)1’2)+

wheres ., =rs, s, forcorrdlation r . Itisworthwhileto noticethat s 5 s 7(1- r ) is
the determinant of the 2x2 covariance matrix for X and Y if we substitute the off-diagond

S v termswith theequivalent rs s, terms. In fact, the general form for entropy

h(X,,.., X,,) of stationary random variables { X,,..., X,} can be written éln((Zpe)”D)

where D isthe determinant of the nxn covariance matrix with off-diagonal substitutions

FS xS x, I, ] =1,..,n Papoulis (1991). Now the mutual information is
1 1 1 ) .
1(X,Y)= E|n(2pe)sX +§In(2p s, - E|n((2p €)*|Dy|). Since the number

expression valuesfrom clus, will not be equal in number to those of clus;, to compute the



sample covariance matrix one must resample the cluster with the fewer number of expression
values via the nonparametric bootstrap (Efron 1993).

There is no dearth of literature disputing the most appropriate distribution of gene
expressions. Mutud information is most easily computed for norma data but we can
compute the mutua information between two random variables with any parametric or non-
parametric distribution by using numerical quadrature. Silverman (1982) presents a very
efficient method for non-parametric density estimation which reduces to binning the raw data
and convolving the binned data with a gaussian kernel by using afast fourier transform. In
practice, some of the clusters that need to be evaluated have not more than a few data points
SO parametric assumptions are necessary. Figure 3 represents the diagram of a non-
parametric estimate using Silverman's agorithm together with a maximum-likelihood fitted
gaussian distribution. There seems to be not much difference in appearance thus justifying a
gaussian digtribution to represent the log-transformed data.
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figure 3 solid curve represents non-parametric fit to data
dotted curve represents best gaussian fit

Using the gaussian estimation for the distribution, the mutua information matrix is
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Now we have away of determining which experiments most likely induce any
particular cluster of the expression data. If one experiment seems to induce most or all of the
clusters then it can likely be inferred that this specific experiment and corresponding
treatment conditions tend to overshadow the effects of the other experiments and their
corresponding trestment conditions. Removal of this experiment may result in finding
different rankings of the experiments with more subtle effects for different clusters and thus a
possible causal relationship between the set of genesin the cluster and the experiment with its
coinciding treatment conditions. Rankings of experiments in this way may aso suggest
which treatments researchers should include or exclude in an experiment to obtain clusters of
genes that reflect more subtle regulations of genes by treatment conditions. It is sometimes
the case that two or more experiments are highly correlated because of one or the confluence
of two treatments shared by al. Thus the added cost and laboratory time is lost because the
data from this experiment sheds little new light. From this perspective, it may be ingtructive
to take the nxmmatrix of gene expressions and map it to an nxp matrix in a p-dimensona
orthogonal subspace, p £ m. This motivates the use of principal component projection.
Other projection methods such as exploratory projection pursuit and independent component
analysisare also used to find "interesting” projections of the data (projections that yield
highly irregular patterns that deviate severly from normality) but are much more sophisticated
and may not be necessary if the relatively smple principal component projection produces
desirable results. Findly methods in pattern classification can be used to find distinctionsin
the projected data. All thisisto say that it may be more useful to examine projections of the
data instead of the experimental data itself — especialy when the data form different
experimentsis highly correlated.

Principal Component Analysis

Principal components analysis involves the spectral decomposition of the symmetric

covariance matrix S = ADA' where D isthe diagonal matrix of eigenvalues and A the

corresponding orthogonal matrix of eigenvectors. If the eigenvalues are distinct and ordered

OEI, £l,£..£],thenthecolumns A,.., A, of Aareunique up to sign. The random
variabl&sVj = A‘.tX, j =1,..,m have covariance matrix ASA= D . These random variables

are called principal components. They are uncorrelated and increase in variance from V, to



V... It may be of interest to compute the correlation of the jth principal component with that

of the ith experiment in order to ascribe experimental meaning to the jth principal component.
Consider the jth component V; = Aj‘X and cov(l,,XV,)=1,SA =SA =I /A since
A isthe eigenvector of sample covariance matrix S and |, the nxn identity matrix. The

covariance of X; and V, istheith element of | ; A, namely | ; A, . The standard deviation

of X, is «/s ”2 and that of A is\/i so that the correlation between the ith experiment and

N
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jth principal component is My, = . The univariate measure Rf(

depicting how each experiment X; aonerelatesto each V,,..,V, can be computed

R =417, .
j=1

The p of the p-dimensiona principal component subspace is chosen such that some
threshold of variation in the data is accounted for by these p £ m principa component
vectors. For visualization purposes one can choosep = 2 or p = 3. In most of the microarray
experiments, amost 98 percent of variation in the data is accounted for by the first two
principal components. After choosing p and making the projection, the question reducesto
unsupervised learning of structure within this new space. Clustering itsalf lies within the
realm of unsupervised learning techniques. One may also consider to another such instance
of unsupervised learning — that of non-parametrically estimating the density of log-
transformed data developed by Silverman. If principal component projection is successful
then hopes to distinguish associations among the experiments and whether or not they can be
considered as functions of a smaller set of |atent variables evinced by the modality of the
data Thus, perhapsit is possible to represent the distribution of data by a mixture of smpler
densities representing types or classes of observations. To this, the EM algorithm approach
may be use [Dempster (1977)] to distinguish the possible classes of observations and then
draw boundaries, when appropriate, to denote these possible classes.

The EM Algorithm

10



The Expectation Maximization or EM agorithm is less an agorithm than a
prescription for an agorithm. It isanumericaly stable tool for smplifying difficult
maximum likelihood problems and can easily be understood in the context of asimple
mixture model. Perhaps we have reason to believe, by insight or observation, that the
experimental data in consideration is bimodal so that estimating the distribution with asingle
Gaussian distribution would not be sufficient. Instead we could model the data X as a

mixture of two Gaussian distributions;
X, ~N,(m,S)

X; ~ N, (M, S,)
X=(1-q)X,+q X,

for g,1 {01}, Pr(@ =1) =p and N, denotes the p-dimensiona normal distribution . If
f, (X) isthe p-dimensiona normal density with parameters h; ={m,S} then the density of
Xis f, (¥) = (@- p)f, (X) +pf, (X) and the parametersto be estimated are {p, h,,h,} .

The log-likelihood using the n data pointsis

l(h; X) :én log[(1- p)f,, (%) +pf,, (x)] and the conventional maximum likelihood

i=1
method would require maximization of I(h; X) (here X isfixed and the parameters
{p,h,,h,} variables). The sum of terms inside the logarithm makes maximization

numericaly chalenging. However, if one considersthe latent variables g, such that when

g;=1 X; comesfrom f, and when g, =0 X; comesfrom f, . The new log-likeihood is

Ih; X, q) = & logl(1-q,)f,, (%) 4a,f,, (x)]- Themaximum likelihood parameter

i=1
estimates for this log-likelihood would be the sample mean vector m and sample covariance
matrix S, when g, = 0 and sample mean vector m, and sample covariance matrix when S,
when g, = 1. Thevaluesof ¢; are unknown so one must proceed iteratively subgtituting the
conditional expectation E[q; |h ,X] = Pr(g, =1|h, X) &t each observation. Thusin the

so-called Expectation step w, = Pr(g, =1|h ,X) and inthe Maximization step

11
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with mixing parameters p = 1 é w, . Initial parameter guesses may be chosen at random
i=1

and it is often advised to use multiple starting points as the EM cannot distinguish loca from

globa maximum points.
Interestingly, the ascent properties of the EM can be explained using the

ideas of entropy and relative entropy. Say the EM is used to classify observations of the
random varigble X =X into one of M classes by maximizing the likelihood estimate of the

model parameters h and the probability p that X =X belongsto class z. By Baye's

formula and using logarithms
log p(% .7 [h)=log p(z | x,h) + log p(x |h) . For unknown parameterslet p(z| x, q)

denote the probability of the class z given observation X, under the unknown parameter set.

Multiplying log p(% .z |h )=1log p(z | x,h) + log p(xh) by p(z| X q) ,summing

over z and i = 1,...,n and using the fact that é p(z | %, h)=1 then the log-likelihood for
4

h is
I(h; X) =3 log p(xa)
=& & iz Ixd)logp(x,z1h)-& & P(z1%9)logp(z |x,h).
iz iz

The entropy of the hidden parameterq is
h, =8 & p(z |%.a)log p(z| X ) . Define

f@h) P(z|x,9)logp(x,z |h)-h,

-84
=4 & p(z 1% 9)log(p(x 17, h)p(zIh))- h



and the relative entropy

s ap(z,] %, q) 6
d(q !h) - p( | ,Q)log - . -
aa Panaro8e % h 5

=& & p(z k.9)logp(z %9)- p(z|%q)logp(z | % h)

=h,- 3 a p(z|xa)logp(z| X h)
iz

0 that the log-likelihood can now be written 1(h; X) = f(g,h)+d(g,h). Now the ascent
properties of the EM become manifest. d(g,h) isnonnegative for dl h and zero when
h=q sothat f(q,h) <I(h;X) fordl h and equa when h=q. Now, if
f@@,h)>f(.,q) then I(h;X) > I(g; X). If thereative entropy term d(q,h) hasa
minimum & h =q then fi(h)/fh |, =Tf(@,h)/Th |, soif h=qisnot acritica point
for I(h; X) thenitisnot for f (q,h). Thus, starting with arbitrary parameter q = g, and

iterating the E step and M step, I(h; X) is guaranteed to converge.

Results Using Data

We use data generated for the purpose of understanding the gene funcionsin
aplant called Arabidopsis thaliana studied by a group of NY U biologists under the
direction of Dr Gloria Coruzzi. The data consists of 21 replicated experiments and a
total of 10 unreplicated experiments. There are 8297 probes in each experiment
making for a gene expression matrix of 8297 X 10. Filtering removes up to 80% -
90% of the gene probes that are considered unchanged across al experiments by
using a datigtical t-test. The genes that are considered duly changed are clustered
together. A correlation threshold of 0.85 is used to pick the clusters.

We have broken the complete list of experimentsinto one of two types. The
first type makes no distinction and uses al 10 experiments. The second type uses
only those experiments that are not deprived of light. For each type we use the
methods presented in this thesisin order of their appearance. We start by ranking the
importance of each experiment in the inducement of each cluster found. The gene
expressions for each cluster are projected on to atwo-dimensiond rank 2 space. We
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execute the EM agorithm choosing several different modes to describe the
digtribution of datain this space. Finaly We draw posterior boundary conditions
when the modes in the projected space are quite distinguishable. In the following
charts, ExpJ represents experiment J and CI cluster number |. Experiment list names
the actua experiments used to cluster the data. Each name in the list denotes a
treatment condition of either depriving or providing the plant with a light source,
nutrient source, nitrogen source or carbon source . It is not important to know which
names correspond to what treatment conditions, one need know only that none of the
treatment conditions are the same.

Findly, in the principal component projection plots, | have estimated the
mixture of bivariate norma distributions corresponding to the data. The black
crosses denote the covariance estimates of the distributions while the red ellipses

signify one std deviation from the means of the estimated distributions.

All Experiments (Type 1):

Experiment List:

tAndrewll7a 't138' ‘'t182T' 't188T' 't153-Control’ 't0.1XN' 't184T' 't190T' 't154-Sucrose’ t275'

Mutual Information matrix:

Expl  Exp2 Exp3 Exp4d Exp5 Exp6 Exp7 Exp8 Exp9 Expl0
Cl 22122 16958 16551 17319 17518 17586 16724 16624 1.7330
C2 21377 17966 17744 18253 19108 19109 19132 19044 1.9265
C3 21116 17557 17575 18183 18692 1899 19005 1.8933 1.9377
C4 19691 18064 17392 17584 19708 19681 17717 17768 18511
C5 21516 18026 17744 18147 19230 19282 18937 1.8810 1.9349
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Information rank:

1 2 3 45 6 7 8 9 10
C1 3 8 7 2 10 4 9 5 6 1
C2 3 2 4 8 5 6 7 10 9 1
C3 2 3 4 5 8 6 7 10 9 1
C4 3 4 7 8 2 10 9 6 1 5
C5 3 2 4 8 7 10 5 6 9 1

All experimentsin the first two rankings of the information rank matrix, with the
exception of experiment #8, have been deprived of light. Light or the absesnce of

light can be inferred to be an overwhelming condition that has large effects on the
gene expressions in each experiment

Principal Component projection

Principle Component Prajection of Clustered Genes Type |
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figure 3: PC projection, Type 1 experiment, EM with 2 modes

For experiment type 1, it does not look like there exist any naturally ocurring

distinguishable modes in the principal component projection of the data. | have used
amixture of two Gaussians to represent the data but probably only one is necessary.
One can note however that clusters 4 and 5 are mostly positive for the 2nd principal
component while the others are negative. Corrélating the principal components with
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the experiments one finds that al those experiments deprived of light have negative
correlation to the 2nd principa component while those that were treated with

sufficient light correlated positively to the 2nd principal component.

All Experiments with light (Type 2):

Experiment list
't153-Control' 't0.1XN' 't184T' 't190T' ‘t154-Sucrose 't275'

Mutual Information matrix:
Expl Exp2 Exp3 Expd Exp5 Exp6

17213 17344 17422 17522 17884 1.7591
19643 19971 19071 19073 1.9237 19174
19556 19540 19053 1.9067 1.9189 1.9001
20179 20272 19254 19256 19597 1.9498
19349 19570 1.8970 1.8949 19359 19132

FGRAICA

Information rank:

1 2 3 45 6
C1 1 2 3 4 6 5
C2 3 4 6 5 1 2
C3 6 3 4 5 2 1
C4 3 4 6 5 1 2
C5 4 3 6 1 5 2

This experiment yields a more varied selection of experiments that are the most

important for the inducement of these clusters.



Principal Component projection

Principle Companent Prajection of Clustered Genes Type 2
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figure 4: PC projection, Type 2 Experiment, EM with 2 modes and Decision Boundary

Figure 4 shows a nice separation between the sets of clusters. The separation relies
on the 2nd principa component as clusters 4 and 5 are mostly above zero and the
others mostly below. A decision boundary is shown which divides the space into
regions where it is most probable that the data is engendered from either one of the
two modes. Correlating principal components to experiments one finds that all
experiments that included a carbon source correlated positively to principa
component two while those without a carbon source correlated negatively to the
second principa component. Thus the groupings of data here may have something to
do with the inclusion or exclusion of a carbon source.
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figure 5: Estimated Surface probability plots for figure 4

Finally, figure 5 represents the mixed Gaussian probability distribution of the dataiin figure 4.

Concluding Remarks

Microarrays and gene expression data present researchers with a powerful tool to
examine the function of known genes at the cellular level. Discriminating biochemical
pathways, identifying genes responsible for a particular phenotype or regulation of a set of
functiondly similar genes, classifying hedthy cells from tumor cells, and distinguishing
different types of tumors - each are applications of microarray technology. Using
unsupervised learning procedures such as clustering to identify functional families of genes
has been awidely used and putatively successful technique thusfar. The goal of thisthesis
was to identify ways to find the salient experiments of each cluster and the possibility of
distinguishing patterns of the data in an orthogonal subspace. Insofar asthis is concerned,
one needs away of estimating such distributions which may be multi-moda. The EM
method is a good way of doing this. It can also be used in conjunction with more
sophigticated methods such as neura networks and projection pursuit to determine patterns in
data or the best (or, most interesting insofar as the projections deviation from Gaussian) linear
projections of the data, respectively. Such methods may be found in Friedman (2001) and
Duda (2000). In the end, the analysis reduces to how quantitively we can state the effect
subsets of treatments have on certain groups of genes and the precision of how quantitatively
such effects can be determined.

18



Refer ences

Efron, B.and Tibshirani, R. (1993) An Introduction to the Bootstrap.
Chapman and Hall.

Eisen, M., Spelman, P., Brown, P., and Botgtein, D. (1998) "Cluster Analysis and
Digplay of Genome-wide Expression Patterns’. PNAS 95 pp.14863-68.

Dempgter, A., Laird, N. and Rubin, D. (1977) "Maximum Likelihood From
Incomplete Dataviathe EM Algorithm”, J.R. Statist. Soc. B. vol 39 pp. 1-38.

Duda, R. and Hart, P. (2000). Pattern Recognition, Wiley.

Friedman, J., Hastie, T., Tibshirani, R. (2001) The Elements Of Statistical Learning:
Data Mining, Inference, and Prediction. Springer.

Papoulis, A. (1991) Probability, Random Variables and Stochastic Processes,
McGraw-Hill.

Tavazoie S., Jason D. Hughes, Michael J. Campbell, Raymond J. Cho, and
George M. Church. (1999) Systematic determination of genetic
network architecture. Nature Genetics, Vol 22, 281-285

Silverman, B. (1982) "Density Estimation”, Applied Statitics, vol. 31.

Shannon, C., Weaver, W. (1949) The Mathematical Theory of Communication,
University of Illinis Press.

Thomas, J.,, Cover, T. (1991) Elements of Information Theory, Wiley.

Wong, W., Cheng Li, (2001). Model Based Analysis of Olgonucleotide Arrays:
Expression Index Computation and Outlier Detection. PNAS, January, no 1,
pp.31-36.

Wong, W., Cheng Li, "DNA Chip Andyzer", http://www.dchip.org

* All computation outside of clustering was executed with scripts and programs |'ve written in Matlab 6,
C and Matlab-C interface code.

19



20



