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Abstract

In this thesis we develop Cancer Hybrid Automata (CHAs), a modeling

framework based on hybrid automata, to model the progression of cancers

through discrete phenotypes. Both transition timing between states as well

as the effect of drugs and clinical tests are parameters in the framework,

thus allowing for the formalization of temporal statements about the

progression as well as timed therapies. Using a game theoretical formulation

of the problem we show how existing controller synthesis algorithms can be

generalized to CHA models, so that (timed) therapies can be automatically

generated.

In the second part of this thesis we connect this formal framework

to actual cancer patient data, focusing on copy number variation (CNV)

data. The underlying process generating CNV segments is generally

assumed to be memory-less, giving rise to an exponential distribution of

segment lengths. We provide evidence from TCGA data suggesting that

this generative model is too simplistic, and that segment lengths follow

a power-law distribution instead. We show how an existing statistical

method for detecting genetic regions of relevance for cancer can be improved

through more accurate (power-law) null models.

Finally, we develop an algorithm to extract CHA-like progression mod-

els from cross-sectional patient data. Based on a performance comparison

on synthetic data, we show that our algorithm, which is based on a notion

of probabilistic causality, outperforms an existing extraction method.
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Introduction

Cancer is a disease of evolution. Its initiation and progression are caused by

dynamic alterations to the genome (such as point mutations, structural alterations

of the genome, DNA methylation and histone modification changes) [61]. These

genomic alterations are generated by random processes, and since individual

tumor cells compete for space and resources, the fittest variants are naturally

selected for. For example, if through random mutations a cell acquires the ability

to ignore anti-growth signals from the body, this cell may thrive and divide, and

its progeny may eventually dominate part of the tumor. This clonal expansion

can be seen as a discrete state of the cancer’s progression. Cancer progression

can then be thought of as a sequence of these discrete progression steps, where

the tumor acquires certain distinct properties at each state. Different progression

sequences are possible, but some are much more common than others, and not

every order is viable [60, 89].

In the last few decades, an extraordinary amount of effort and money have

been spent on trying to understand the mechanisms underlying cancer. Many

specific genes and genetic mechanisms have been identified that are involved in

different types of cancer, and targeted therapies that aim to affect the product of

these genes are now being developed at a fast pace [89]. Despite its initial promise

(such as the success of imatinib in the treatment of chronic myeloid leukemia

1
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[41], or vemurafenib as a drug to treat melanoma with a specific mutation [29]),

it is becoming more and more apparent that focusing therapy on just a single

gene will not very likely result in a cure for cancer [56, 24].

Because of its evolutionary nature – with the ability to acquire new mutations

while natural selection drives progression – cancer is complex adaptive system, for

which complex treatments are required. For example, while a specific treatment

may remove a dominant clone completely, causing the patient to be practically

tumor-free, it may be that through natural selection small drug-resistant sub-

clones grow back to full tumor size.

Effective treatments for cancer need to take into account these dynamics

of progression and resistance: they need to be timed right [35] and likely in-

clude combinations of various drugs in correct proportions and dosages [56, 86].

Moreover, rather than seeking for an ultimate cure for cancer, a more suitable

objective may be to turn the disease into a chronic one instead.

In this thesis we aim to capture the dynamics of cancer progression into a

simple unified framework, with the hope that the barriers to successful treatment

just described can be turned into opportunities instead. In doing so, we use

tools from computer science, logic, and statistics.

We start by presenting our framework called Cancer Hybrid Automaton (CHA)

that formally captures cancer progression through discrete states (in Chapter 1).

States in CHA models represent states of the progression, and directed edges

among pairs of states define possible progression paths. Transitions take certain

durations of time, and the effects of drugs are abstractly modeled, thus allowing

for the formalization of temporal statements about the progression as well as

notions of timed therapies. The framework is also extended to model partial

observability, and tests are incorporated into the definition of a therapy as actions

that reduce uncertainty about the current state of the progression.
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We illustrate our approach through a highly simplified running example of

a CHA in which states represent cancer hallmarks – states common in (early)

cancer progression originally introduced by Hanahan and Weinberg in [60]), and

progression paths represent successive hallmark acquisitions. However, the states

of the automaton can represent any set of discrete states at varying levels of

abstraction. Examples include phenotypical stages of cancer, a set of affected

pathways, and a set of specific genomic aberrations such as genetic mutations at

a more mechanistic level.

We then show (in Chapter 2) how the CHA framework not only enables us to

formally describe cancer progression, but also to manipulate its evolution to sat-

isfy certain therapeutic goals. This problem is addressed using a game theoretic

formulation of the problem, by building on existing tools and techniques from

the controller synthesis literature. We show how algorithms can be designed that

generate successful therapies automatically, such that the resulting progression

satisfies certain therapeutic goals specified using temporal logic formulas. More

precisely, the main result of Chapter 2 (Theorem 15) is that in certain restricted

settings CHA control for goals specified in Computation Tree Logic (CTL)1 is

EXPTIME complete. This theorem also extends to CHA models augmented

with partial observability.

In the second part of this thesis, we connect our formal framework to actual

patient data, by focussing on the problem of extracting progression models from

available data. In this part, we will not use hallmarks as the states of our

progression model, but instead we focus on genes and genetic mutations that

play a causal role in cancer progression. These so-called ‘driver genes’ are the

discrete states of our model, and a first step towards progression extraction is

that of finding out what the driver genes are. Towards this goal, a lot of precise
1See Section 1.2.1 and Section 2.1.1 as well as [33] for details on temporal logic and CTL in

particular.
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genetic information has been collected from tumor samples in the last couple

of decades. A widely studied type of data, and the one that we focus on in

the second part of this thesis, is Copy Number Variation (CNV) data. CNV is

structural variation in which relatively large regions of the genome are either

amplified or deleted, leading to gain- or loss-of-function of the genes contained

in the affected regions.

The underlying process generating CNV segments is generally assumed to be

memory-less, giving rise to an exponential distribution of segment lengths. In

Chapter 3, we provide evidence from TCGA data suggesting that this generative

model is too simplistic, and that segment lengths follow a power-law distribution

instead. This result is important as many tools used to analyze CNV data can

be improved by incorporating this power-law distribution hypothesis. Building

on the method described in [76], we develop a statistical method for finding

driver genes, through more accurate (power-law) null models.

Even though many cancer driver genes and core pathways have been identified

in the last few decades (see e.g. [114] for an overview of common cancer

genes, and [13, 74] for specific genetic analyses of ovarian carcinoma, and lung

adenocarcinoma respectively), relatively little is known about the dynamics

of cancer progression and the order in which these driving events (hallmarks,

genetic mutations, etc.) are likely to occur. The main reason for this state

of affairs is that information is usually obtained only at one (or a few) points

in time, rather than over the course of the disease. Extracting this dynamic

information from the available static data is a challenge.

In Chapter 4, we focus on this problem, and we propose a method to extract

progression trees and forests using a mathematical notion of probabilistic causality.

Using synthetic data we show how this method outperforms an existing tree

reconstruction algorithm based on correlation.
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Finally, we provide some insight into how the various parameters of our

model (timing, the effects of drugs), can be estimated from the available cancer

data.

Contributions within the Literature

In this section we make the contributions of this thesis explicit.

Automata-based cancer progression model The first and foremost con-

tribution of this thesis is the development of a unified automata-based framework

to describe and control cancer progression (in Chapter 1). While many mathe-

matical models of tumor growth and progression have been developed (including

stochastic [92], deterministic [105], as well as graph models[39, 11]), and cancer

biologists obviously think in terms of discrete disease progression [58], progression

timing [51], and combination therapy [24], to the best of our knowledge, no

unified framework for describing discrete progression using hybrid automata

currently exists. The framework can be used for diagnostics, prognostics (using

model checking/verification algoritms) and the development of targeted therapy

plans (using controller synthesis techniques).

Controlling continuous dynamics and a game theoretic model While

being hybrid in nature – our framework combines discrete progression with

continuous behaviors at a state – CHAs are not standard hybrid automata from

the computer science literature (see [62] for an overview). The main difference

between CHAs and existing hybrid automata is that in CHAs actions control

the dynamics at a state by controlling the rate of the clocks as opposed to

only controlling transitions taken directly. However, this difference is mainly

conceptual and we provide a way of translating our CHAs into standard hybrid
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automata in Chapter 2. In this Chapter we show how existing controller synthesis

algorithms can be adapted to control CHAs for therapeutic goals described in

temporal logic. We focus on a game-theoretic formulation of the control problem

as a two-player game played between the controller (the therapist) and a player

called ‘Nature’, in which the therapy is represented as a strategy for the controller.

Even though we are not the first to use a game theoretic framework to aid

in cancer therapy design (see e.g.,[53] and [99] for evolutionary game theoretic

frameworks), we are the first to use extensive form games in which the therapist

has many different actions to choose from and a strategy is a timed plan. We

treat cancer as a chronic disease, for which therapeutic goals may be complex

and described using temporal logic.

Partial observability and control Our CHA framework is extended to

capture the therapist’s uncertainty by including partial observability and the

notion of belief sets and tests to reduce uncertainty (Section 1.4). While we are

the first to study uncertainty and belief sets in the context of cancer progression

and therapy design, they are at the core of belief revision, a topic well-studied by

logicians and theoretical computer scientists (see e.g., [52] for a thorough overview,

and [27] for an application from the planning literature). In the context of hybrid

systems, partial observability has been studied before. The main difference

between partial observability in CHAs and in partial observability in existing

hybrid systems, is that in CHAs observations are the result of explicit actions

(performing tests), while in existing frameworks, observations are properties of

the state and are available ‘for free’ as soon as a state is reached.

Improved null model of Copy Number Variation in cancer In the sec-

ond part of the thesis our focus shifts from describing, verifying and manipulating

progression, to extracting cancer progression models from static patient data. In
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Chapter 3 we study copy number variation (CNV) data and we provide evidence

from three datasets provided by The Cancer Genome Atlas (TCGA)2, that in

cancer the lengths of the deleted or duplicated segments are not exponentially,

but power-law distributed, suggesting a generative mechanism of preferential

attachment. This result can be used to improve many tools that analyze CNV

data by incorporating this hypothesis. These tools include so-called ‘segmenters’

that reduce noise in CNV data by combining sets of neighboring data-points

in contiguous segments (e.g., GLAD [73], CBS [98], and a method developed

by Mishra’s group [36]), as well as methods that identify regions containing

genes that are relevant for the development of cancer (e.g., methods described

in [76, 15]).

As an example, we show in Section 3.2 how null models can be improved

to incorporate this finding (Proposition 16.1), so that one of the subsequent

methods can be improved, and genes that drive cancer can be more adequately

identified. We also test our model on real patient TCGA CNV data.

Probabilistic causality as a tool to extract progression models In

Chapter 4 we develop an algorithm for extracting tree models using probabilistic

causality, and probability raising in particular [107]. Probabilistic notions of

causality have been used in biomedical applications before (e.g., to find driver

genes from CNV data in [76], and to extract causes from biological time series

data in [84]), but never before to infer progression models in the absence of direct

temporal information.

In the literature, several methods have been developed that derive different

types of progression models from static data (such as [39, 102, 9, 54, 55]). The

method developed by Desper et al. in their seminal paper [39] is (to the best

2TCGA is a “comprehensive and coordinated effort to accelerate our understanding of
the molecular basis of cancer through the application of genome analysis technologies”, see
http://cancergenome.nih.gov/

http://cancergenome.nih.gov/
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of our knowledge) the only algorithm that also extracts progression trees from

patient data. Using synthetic data we show that our algorithm outperforms this

method. In addition, based on analysis on published real patient data, we show

how our method in some cases extracts different progression trees than the ones

extracted by Desper’s method. We also provide several suggestions for making

our method more robust to noise, as well as how other CHA parameters (such

as timing and the influence of drugs) can be extracted and incorporated into the

algorithm.

The chapter provides some theoretical results regarding probability raising

that are interesting in their own right. The most surprising result is Proposition

18.1, which relates probability raising between two events with the relative

frequency of their occurrence.
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Cancer Progression:

Model and Control
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Chapter 1

Cancer Hybrid Automata

The view of cancer as a progressive disease, progressing through discrete states

towards a terminal phenotype, bears a striking resemblance to formal models of

state-transition machines in computer science.

While many mathematical models of tumor growth and progression have been

developed (see e.g., [92] for a stochastic simulation, and [105] for a deterministic

model), and cancer biologists think in terms of discrete disease progression (e.g.,

[58]), to the best of our knowledge, no unified framework for describing discrete

progression currently exists.

In this chapter, we aim to fill this gap, by presenting a logical framework

called Cancer Hybrid Automaton (CHA) that allows us to formally capture

cancer progression through accumulation of successive discrete states. States

in CHA models represent states of the progression, and directed edges among

pairs of states define possible progression paths. Drugs can be thought of as

inhibiting or prolonging specific transitions in the automaton. We show how

this approach enables us to formally describe cancer progression, automatically

verify/model-check its temporal properties, and manipulate its evolution to

11
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satisfy certain therapeutic goals.

We illustrate our approach through a highly simplified running example of

a cancer hybrid automaton in which states represent so-called hallmarks, first

introduced by Hanahan and Weinberg in [60], and progression paths represent

successive hallmark acquisitions.

This chapter is organized as follows. In Section 1.1, we introduce our running

example of a CHA based on hallmarks. In Section 1.2, we introduce a basic

CHA formalism. In this section, a CHA is modeled as a finite non-deterministic

automaton. The edges, representing transitions from one progression state (e.g.,

hallmarks) to the next, are labeled with drugs that can inhibit the transition.

A therapy is defined as a function that assigns a set of drugs to each finite

progression history, or run. An execution of a therapy is defined as a run of

the CHA that respects the therapy, that is, no transition of the execution is

inhibited by the therapy. Our model includes costs by associating a cost vector

with each state and each cocktail. Therapies may be selected by comparing costs

of possible executions using a notion of Pareto dominance, in addition to the

required qualitative properties specified in CTL.

In Section 1.3 we extend the CHA framework to include real time. In this

model, transitions take certain durations of time, and drugs can prolong (or stop)

the transition process. This is modeled using a hybrid automaton with multiple

clocks.1 Clock constraints on the edges and clock invariants at the states restrict

the possible progressions of the system. Multiple clocks are needed to allow for

the scenario that a drug affects the transition to possible next states in different

ways. Possible runs and therapies of a timed CHA now include the clock values.

In Section 1.4 we introduce uncertainty into the framework. We model the

fact that the oncologist may have only partial knowledge about the tumor’s

1The continuous dynamics of these clocks justify the term hybrid in ‘cancer hybrid automa-
ton’.
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internal state, which we model by keeping track of his belief set. Tests are

incorporated into the definition of a therapy as actions that reduce uncertainty

about the current state. In our framework, tests have costs, but take no time.

To integrate the observer’s information about the system, we add epistemic

operators to Timed CTL. In Section 1.4.4 we give a translation from therapies

for timed CHAs with partial observability into conditional plans.

In Section 1.5 we briefly discuss tumor heterogeneity, and how it can be

modeled and controlled using our framework.

Finally, in Section 1.6, we present a simple liver automaton as an example

of a system of the host organism that may be affected by the therapy. These

systems can be combined with CHAs using parallel composition.

Section 1.7 concludes with a discussion of several possible extensions of our

model. Most of the ideas and results presented in this chapter and the next have

been presented in [94] and [95].

1.1 An example: the hallmarks of cancer

Among other theories, the view of cancer as a disease progressing through

discrete states, is reflected in the so-called hallmarks of cancer proposed by

Hanahan and Weinberg [60], and this theory has become one of the predominant

ways of thinking about cancer, solidified through many further publications

and experiments.2 A more recent article by the same authors [61] reviews and

consolidates the new insights of the last decade.

According to the model proposed by Hanahan and Weinberg, tumors must

necessarily acquire certain “intermediate” phenotypical progression states (which

they call hallmarks) culminating in the “final” hallmarks of tissue invasion and

2As March 2011, their original paper [60] was Cell’s most cited article http://www.

sciencedaily.com/releases/2011/03/110316113057.htm, and as of August 19 2013 it has
received more than 17,000 citations.

http://www.sciencedaily.com/releases/2011/03/110316113057.htm
http://www.sciencedaily.com/releases/2011/03/110316113057.htm
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metastasis. As the authors write,

Simply depicted, certain mutant genotypes confer selective advantage

on subclones of cells, enabling their outgrowth and eventual domi-

nance in a local tissue environment. Accordingly, multistep tumor

progression can be portrayed as a succession of clonal expansions,

each of which is triggered by the chance acquisition of an enabling

mutant genotype. [61, p. 658]

The current list of cancer hallmarks includes the abilities to reproduce

autonomously, to ignore anti-growth signals, to signal for formation of new blood

vessels, as well as handful of other phenotypes. Hallmarks can be obtained in

various different orders, but not every order is viable. Intuitively, a hallmark

can be acquired by a dominant sub-population of cells if it conveys a selective

advantage compared to the other phenotypes acquired in that population. For

example, in a wildly growing cluster of cells, the ability to signal for new blood

supply, and thus nutrients, oxygen, and waste disposal, will allow the respective

sub-population to outgrow the others.

Most hallmarks are acquired through mutations of very specific sets genes. As

a result, many of the targeted drugs, administered individually or combinatorially

in a cocktail, which have been developed in recent years, aim to influence the

function of the products of these genes [89] and thus cancer’s evolution from

specific hallmarks. For example, the vascular endothelial growth factor (VEGF)

signals for creation of new blood vessels (angiogenesis), and the drug Avastin

inhibits the associated signaling pathway, thus preventing growing tumors from

obtaining the needed blood supply. Current therapies usually target only the

observed hallmark at any instant, and rarely take into account the potential

hallmarks that may evolve in the future and the temporal structure of the

underlying evolution.
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A simple, intuitive exemplary CHA is shown in Figure 1.1. It comprises the

following hallmarks (see [60] for more details):

SSG: Self-sufficiency in growth signals. Roughly speaking, cells no longer

depend on external growth-promoting signals, but grow autonomously.

Usually, such a state is associated with a gain of function of an oncogene

or a loss of function of a tumor suppressor gene.

IAG: Insensitivity to anti-growth signals. Cells with this hallmark continue to

grow even in the presence of inhibiting signals. Usually, certain cell-cycle

checkpoints are no longer properly regulated.

Ang: Sustained angiogenesis. This state enables a cancer cell to signal for the

construction of blood vessels.

LRP: Limitless replicative potential. While most normal cells can only divide a

certain number of times, cells with this hallmark can divide without limits.

In this state, a cancer cell may upregulate telomerase to restore telomere

lengths.

EvAp: Evading apoptosis. Normally, cells have a program for controlled cell-

death, which is used to remove damaged or otherwise unwanted cells.

This program is disabled in this hallmark, which allows cells with highly

corrupted DNA to survive – thus facilitating cancer progression further.

M: Metastasis. This state enables cancer cells to spread from their original

location to other parts of the body.

Various possible progressions through these hallmarks can be seen as transi-

tions as in Figure 1.1 (note that this is a simplified and incomplete model). For

example, Ang can be acquired after SSG and IAG. Moreover, if a growing tumor

fails to acquire Ang, it may starve; in this case, a solid tumor is unable to grow
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Normal

SSG1 IAG2

IAG1 SSG2

Ang

LRP1 EvAp2

EvAp1 LRP2

M

Avastin

Avastin

Figure 1.1: A simple CHA whose progression can be stalled by a VEGF-inhibitor
such as Avastin.

further and attain the later hallmarks. For simplicity, it may be modeled as a

transition to the normal state. 3

In this example, the therapy “give the drug Avastin whenever a state leading

up to Ang is reached” will prevent the cancer from reaching M.

1.2 Formal model

In the following, we start with a preliminary and simple formalization of the

notions described above. We will successively extend the formal model in the

later sections.

We assume a global set D of drugs.

Definition 0.1. A Cancer Hybrid Automaton (CHA) is a tuple

H = (V,E, v0) ,

where

• V is a set of states,4

• E ✓ V ⇥ 2

D ⇥ V is a set of directed edges labeled with sets of drugs, and
3This is a very simplistic example, as cancer cells that are oxygen-deprived for a sustained

period of time may in fact become more invasive and dangerous [113].
4Strictly speaking, in the case of hallmarks, a state corresponds to a subset of hallmarks

that have been acquired, fot this reason we include subscripts 1 and 2.
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• v0 2 V is the initial state.

We usually omit v0 and write just (V,E).

Intuitively, an edge (v,D, v0) represents a transition from state v to state v0

that can be inhibited by any drug from the set D ✓ D. We allow several drugs

to be given simultaneously and refer to such sets C ✓ D of drugs as cocktails.

Given a cocktail C, the edge (v,D, v0) 2 E is inhibited by C if C \D 6= ;. Given

a state v and a cocktail C, v can transition to v0 under C, in symbols v
C�! v0,

if there is an edge (v,D, v0) that is not inhibited by C. Note that we allow

multiple edges (with different labels) between the same two states. To prevent a

transition between two states, all edges connecting them need to be inhibited,

which is one reason for considering cocktails rather than just single drugs. We

assume that for every state v and every cocktail C there exists some state v0

such that v
C�! v0 (possibly v0 = v, these edges were omitted in Figure 1.1).

A run of a CHA H = (V,E, v0) is a sequence of transitions in E. Let

Runs(v,H) denote the set of runs that start in v. We write Runs(H) for

Runs(v0, H), and by Runs f(v,H) we denote the set of finite runs from Runs(v,H).

We now formalize how it is possible to interfere with the progression of the

system.

Definition 0.2. A therapy is a function ⇡ : Runs f(H) ! 2

D. A possible

execution of ⇡ in H is a run

S = v0v1v2 . . . ,

such that for each i � 0, vi
⇡(Si)���! vi+1, where Si denotes the initial segment of

S up to step i.

To illustrate these definitions, consider the following example based on our

toy example automaton of Figure 1.1.
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Example 1. Given the example CHA H of Figure 1.1, a possible run of H (in

case no drugs are administered) is the sequence

Normal ;�! SSG1
;�! IAG2

;�! ANG ;�! EvAp1
;�! LRP2

;�! M.

We can define a successful therapy ⇡ for H as follows: Given a run S, let

⇡(S) = {Avastin} if the last state of S is IAG2 or SSG2, and ⇡(S) = ; otherwise.

Every possible execution of this therapy will halt the cancer progression before

angiogenesis is reached.

Definition 1.1. Costs are given by the following (overloaded) function, for

some finite dimension n:

• c : V ! Rn
�0 specifying costs of states,

• c : 2D ! Rn
�0 specifying costs of cocktails.

Thus, both states and cocktails have costs assigned to them, represented as

n-dimensional vectors. Dimensions may include toxicity of the drugs, monetary

cost of the drugs, discomfort for the patient, etc.

The cost of a possible execution S = v0v1v2 . . . of a therapy ⇡ with discount

factor 0 < d  1 is

c(S,⇡, H) =

X

i�0

di
�

c(vi) + c(⇡(Si))
�

.

The set of possible costs of ⇡ for a CHA H is

c(⇡, H) = {c(S,⇡, H) | S is possible execution of ⇡ in H}.

Now that we have a definition of the set of possible costs of a therapy, we

can compare different therapies with respect to their costs.
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Definition 1.2. A cost vector x 2 Rn Pareto-dominates another vector

x0 2 Rn, in symbols x � x0, iff for each 1  `  n we have x`  x0
` and for some

1  `  n we have x` < x0
`.

A therapy ⇡ Pareto-dominates another therapy ⇡0 in a CHA H if for each

x 2 c(⇡, H) and x0 2 c(⇡0, H) we have x � x0. The set of candidate therapies

for H is

⇥(H) = {⇡ |⇡ is not Pareto-dominated in H} .

For the special case of 1-dimensional costs (or if there is a function to

aggregate cost vectors into single scalars), the set of candidate therapies is the

set of therapies whose best-case cost is not higher than some other therapy’s

worst-case cost.

This definition of a set of candidate therapies is a very conservative one, in

that it includes any therapy that is not overtly worse than some other therapy.

There are different possibilities for defining the set of candidate therapies, or

for pruning the set further. Examples of such strategies for pruning the set

further include, i.e., choosing those strategies that lead to the best worst-case

outcome, or maximax, i.e., choosing those strategies that lead to the best best-

case outcome. However, making these decisions depends on the risk attitude of

patient and doctor which may not be fully formalizable. Therefore we include

all the potentially relevant therapies in the set of candidate therapies. 5

In order to be clinically applicable, a CHA model may need to be personalized

for any given patient or cancer type. The reason for this being that different

cancer (sub-)types have different progression paths/timings. This personalization

will result in families of CHAs, with different sets of candidate therapies for each

type. One possible application that can be used to analyze a set of such richer

5In [100], a formal game theoretic framework is introduced that allows modeling different
agents (players) using different types.
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models is the notion of universal therapies. That is, for families of automata, we

can ask whether there are any therapies that are successful for all of the included

automata. Such therapies can result in faster and cheaper treatments.

To be able to apply therapies across different automata, their domain must be

the same. This requirement can be satisfied, for example, by considering CHAs

that contain the same set of hallmarks, and therapies that either depend only

on the current state, or that have the set of all sequences of states as domain.

The following definition applies to therapies on such unified domains.

Definition 1.3. Given a family H of CHAs, the set of (universal) candidate

therapies for H is

⇥(H) =

\

H2H
⇥(H) .

A set ✓ of therapies covers H if

✓ \⇥(H) 6= ; for all H 2 H .

Note that if ⇥(H) 6= ; then for each ⇡ 2 ⇥(H), {⇡} covers H.

1.2.1 Temporally extended goals: CTL

We have seen in the previous section that therapies can be compared according

to their costs. Thus, the problem of finding the right therapy can be viewed as

an optimization problem. It can, however, be necessary to have more detailed

control over the therapeutic objectives. Simple reachability properties can be

used as goals, such as “metastasis must never be reached”. For more expressivity

we can use Computation Tree Logic (CTL) [33] to specify goals.6

Example 2. The goal AG¬M states that metastasis is never reached. Another

6For more details on temporal logic and CTL, see Section 2.1.1.
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possible goal could be

AG(Ang ! AG¬EvAp) .

This sentence means that whenever sustained angiogenesis is acquired, then at

no point in the future the capability of evading apoptosis will be obtained.

Note that the example CHA of Figure 1.1 controlled by the therapy defined

in Example 1 satisfies both of these goals.

One may be interested in checking properties of the CHA itself, without

application of a therapy. This goal can be achieved by using CTL model checking

(see, e.g., [34]). CTL properties can also be checked on the possible executions

of a given pair of therapy and untimed CHA. Supervisory control for finite

automata with CTL goals is known to be EXPTIME-complete, and controller

synthesis algorithms exist [79].

The above representation of a cancer automaton is intuitive, but it does not

include timing. It fails to model the fact that some transitions could be very

short while others may take many years. In the next section we introduce timed

CHAs, which are automata equipped with a set of real-valued variables, denoted

as clocks, and constraints on the edges and states restrict the progression of the

system. As hinted earlier, this model will be a special kind of hybrid automaton,

justifying the word hybrid in ‘cancer hybrid automata’.

1.3 Timed CHAs

The framework we built so far is somewhat idealized in that transitions occur

spontaneously and drugs can switch off transitions completely. More realistically,

transitions would take certain durations of time. For example, in pancreatic

cancer, it takes about a year for K-ras mutations in a cell to lead to neoplasms

(so-called PanINs) [71]. Also, it has been estimated that it takes 17 years for a
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Figure 1.2: A simple timed CHA. The edges are labeled with the minimum
times needed to make the respective transitions. In the two states that lead
up to Angiogenesis, Avastin can be given to slow down the progress by half.
Those states are labeled with invariants, and depending on the precise timing,
these invariants can force the system back to Normal before the transition to
Angiogenesis is possible.

large benign tumor to evolve into an advanced cancer, but < 2 years for cells

within that cancer to acquire the ability to metastasize [80]. To model durations,

we will now add a notion of time to our CHA framework, as well as how drugs

slow down (or stop) the progression.

We start with the assumption that the acquisition of a hallmark requires a

certain minimum amount of time.7 Only after that time a given transition will

be possible, and as mentioned, drugs can be used to prolong this time. Further,

we allow states to have invariants, specifying the maximum time that the system

can remain in the respective state. For example, a tumor may only be able

to remain in a state of unbounded growth without angiogenesis for a certain

number of months.

Figure 1.2 shows the automaton from Figure 1.1 with timing information

added, illustrating this intuition. We formalize the extension in the following.

We assume a finite set X of real-valued variables called clocks, over which

7Because currently most cancer patient data is static in nature, the problem of determining
how long a transition takes is not an easy one. We will discuss this problem and several of its
possible solutions in Section 4.7.
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the set of constraints C(X) is generated according to the grammar

� ::= x � k | � ^ � ,

where k 2 N and x 2 X. A valuation of the variables in X is a mapping

val : X ! R�0. We denote the null valuation x 7! 0 by 0. By val |= � we denote

that val satisfies �.

Definition 2.1. A timed CHA is a tuple H = (V,E, v0, `, ⇢) where

• V is a set of states,

• E ✓ V ⇥ C(X) ⇥ V is a set of directed edges each labeled with a clock

constraint,

• v0 2 V is the initial state,

• ` : V ⇥X ! N is a partial function specifying the time limit (if any) for

each clock that the system can remain in a given state (this is also called

the invariant), and

• ⇢ : V ⇥ D ⇥ X ! R�0 yields a function specifying how a given drug

influences the clocks at a given state.

Intuitively, at a given state v, the drug d modifies the clock rate, by slowing

down or speeding up the clock x as specified by a multiplicative factor ⇢(v, d, x).

When the factor is 1, the drug has no effect on that clock, and when it is 0, it

effectively stops the clock from progressing 8.

If several drugs have an effect on a clock, we assume that their factors are

multiplied. We extend ⇢ to cocktails by setting ⇢(v, C, x) =
Q

d2C ⇢(v, d, x) for

any cocktail C 6= ;, and by convention, ⇢(w, ;, x) = 1.
8 The effect of drugs on the clocks can be estimated by comparing slopes of Kaplan Meier

survival curves of patients treated with different drugs [44]. We will provide more details on
this in Section 4.7.
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A directed edge (v,�, v0) represents a transition from v to v0 that can take

place once the time constraint � is satisfied.

We assume that for each state v that has a time limit for a clock x, there is

an outgoing edge (v,�, v0) such that val |= � for all val with val(x) = `(v, x).9

This edge specifies the behavior of the system if the respective clock reaches its

time limit.

The cost functions in the context of timed CHAs are the same as those for

the untimed version, but with a timed interpretation: c(v) is the cost of staying

at state v per time unit (days/weeks/months/years), and c(C) is the cost of

administering a drug cocktail C per time unit.

We next see how to adapt the definitions related to runs of a CHA to the

timed version, starting with the notion of a timed state.

Definition 2.2. A timed state of a timed CHA (V,E) is a tuple (v, val) 2
V ⇥ RX , where v is a state and val a clock valuation. There are two types of

transitions between timed states:

1. Delay transitions, in symbols (v, val)
�,C��! (v, val0), where

• � 2 R>0 represents the (real) time delay,

• C denotes the cocktail active during that time,

• val0(x) = val(x) + �⇢(v, C, x) for all x, and

• val0(x)  `(v, x) for all x with `(v, x) defined.

2. State transitions, in symbols (v, val) ! (v0, 0), where

• there is an edge (v,�, v0) 2 E with val |= �.

9Note that we may require val |= � even for valuations that exceed some other clock’s
invariant; however, this condition does not have an effect since we only allow � constraints on
the edges.
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Note that whenever a state transition takes place, the clocks are reset. This

strategy simplifies our presentation and could be replaced by explicit clock resets

as common in the literature.

This setup includes the special case where there is one clock unaffected by any

drug, representing real time. Invariants over that clock can be used to specify,

for example, the duration over which the tumor can remain in a certain state. 10

This timed setup can also emulate the concept of edges labeled with drugs

that inhibit them. This model can be constructed as follows: Suppose we want

to model an edge between two states v, v0 that can be inhibited by a drug d.

Then we can introduce a clock variable xd,v0 with ⇢(v, d, xd,v0
) = 0, and add a

constraint xd,v0 � z to the edge between v and v0, for some z > 0. As long as

drug d is given before the constraint is satisfied, the transition will be inhibited.

However, once the constraint is satisfied, the tumor has advanced too far and it

is no longer possible to inhibit the transition.

A run in the case of a timed CHA H is a non-Zeno11 sequence of delay

and state transitions. Similar as before, let Runs((v, val), H) denote the set of

runs that start in (v, val). We write Runs(H) for the set Runs((v0, 0), H), and

Runs f((v, val), H) for the set of finite runs from Runs((v, val), H).

Definition 2.3. A therapy is a function ⇡ : Runs f(H) ! 2

D. A possible

execution of ⇡ in H is a run

S = (v0, 0)(v1, val1)(v2, val2) · · ·

such that for all i with delay transitions (vi, vali)
�,C��! (vi+1, vali+1),12 for every

10This clock is implicitly included in our example CHA and is used to measure the invariant
5 of IAG2 and SSG2 in Figure 1.2

11These are sequences not containing an infinite chain of timed transitions with convergent
total duration.

12Note that vi = vi+1.
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0  �0 < �

⇡((v0, 0) . . . (vi, vali)(vi, vali + �0⇢(vi, C))) = C,

where ⇢(vi, C) denotes the partial evaluation of ⇢, i.e., the function x 7!
⇢(vi, C, x).

This last condition ensures that the therapy does not change during a

transition, or, put differently, that a change in therapy is always reflected by

starting a new transition.

Example 3. Given the example CHA H of Figure 1.2, a possible run of H (in

case no drugs are administered) is the sequence13

(Normal, 0) 4,;��! (Normal, 4) �! (SSG1, 0)
5,;��! ( SSG1, 5) �! (IAG2, 0) . . .

4.5,;���! (IAG2, 4.5) �! (Ang, 0) 4.5,;���! (Ang, 4.5) �! (EvAp1, 0) . . .

7,;��! (EvAp1, 7) �! (LRP2, 0)
4,;��! (LRP2, 4) �! (M, 0).

We can define a successful therapy ⇡ for H as follows: Let

⇡(S0(IAG2, n) ) = ⇡(S0(SSG2, n)) = {Avastin},

For every finite run S0, and ⇡(S) = ; otherwise. Similar to the untimed case, the

therapy states that the drug Avastin should be given as soon as any state directly

prior to reaching angiogenesis is reached, and nothing should be done otherwise.14

Every possible execution of this therapy will halt the cancer progression, and force
13For simplicity of exposition, only one clock is displayed, but technically the automaton

has two clocks and Avastin only inhibits one of them.
14Technically, one could start giving Avastin as late as when the clock reaches a value of

(almost) 3, because in this case due to the slowing down effect of Avastin before the value
reaches (almost) 4, and a transition to Ang becomes possible, the invariant of 5 will already
be reached.
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the system back to Normal before angiogenesis is reached15. A possible execution

of this therapy is the following run:

(Normal, 0) 4,;��! (Normal, 4) �! (SSG1, 0)
5,;��! ( SSG1, 5) . . .

�! (IAG2, 0)
5,{Avastin}��������! (IAG2, 2.5) �! (Normal, 0) . . .

For any finite run r 2 Runs f(H), we denote its duration as

⌧(r) =
X

0j<len(r)

8

>

>

<

>

>

:

� if rj
�,C��! rj+1 for some �, C

0 otherwise,

where len(r) denotes the length of the state sequence in r and ri its initial

segment of length i.

Definition 3.1. Given a CHA H and a possible execution S of a therapy ⇡, the

cost of S given ⇡ with discount factor 0 < d  1 is

c(S,⇡, H) =

X

i�0

1

d

⇣

e�d⌧(Si) � e�d⌧(Si+1)
⌘

(c(vi) + c(⇡(Si)))

(as before, by Si we denote the initial segment of S up to step i). This simple

discounting function does not necessarily capture a real patient’s preferences, but

any convergent function will work in its stead. We will consider more realistic

functions in the future, which can potentially be designed on a case-by-case basis

depending on the patient’s valuation.

The set of possible costs of ⇡ in a timed CHA H is the set of costs of possible

15assuming, of course, that the treatment starts before Ang is reached.
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executions of ⇡,

c(⇡, H) = {c(S,⇡, H) | S is possible execution of ⇡ in H}.

The notions of Pareto dominance and universal therapies carry over from

untimed CHAs.

1.3.1 Timed CTL

We can extend the CTL goals of the previous section to include time [2]. For

example, the goal AG20¬M says that metastasis is not reached within 20 time

units (e.g., 20 years). This kind of goal represents the approach of turning cancer

into a chronic disease, rather than trying to cure it completely. For example,

the above formula may be appropriate for a patient of sixty years of age, who

may then be able to get a less strenuous therapy, while for a younger patient the

time requirements may be more extensive.

Out of all the therapies satisfying a CTL goal, the best ones may be chosen

either by a separate cost optimization, or by incorporating cost requirements

into the formulas using a weighted version of CTL [19].

1.4 Partial observability and tests

So far, we assumed perfect information about the state of the system. In reality

however, a clinician will only have partial observations of the tumor’s internal

state. To reduce uncertainty about the current state of the cancer progression,

tests can be performed. In this section, we extend our formal framework to

include partial observability and tests, both for untimed and timed CHAs.
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Figure 1.3: A simple hallmark automaton with test observations o1, . . . , o4.

1.4.1 Tests in untimed CHAs

We view tests as functions mapping states to observations.16 See Figure 1.3

for an example of such a test with 4 possible observations. When the test

yields observation o2, we know that the system is in a state prior to acquiring

sustained angiogenesis, and that we can give Avastin to inhibit the progression

to a hallmark promoting construction of new blood vessels to the tumor. A more

fine-grained test, or another test with intersecting observations, would have to

be performed to determine the state more precisely, e.g., whether it is in the

upper or in the lower branch of the automaton, and thus whether other potential

drugs should be preferred.

Formally, for a CHA (V,E) we assume a set T of tests and a set O of

observations. Each test t 2 T is a function t : V ! O, inducing a partition

on the set of states. When performing test t while the system is in state v, the

resulting observation allows the conclusion that the system is in one of the states

in the equivalence class of v with respect to that partition.

We now extend the notion of therapy to include tests. We assume that tests

16The test we describe here are deterministic, i.e., for any given state, a certain test always
leads to the same observation. In the literature, non-deterministic tests are common, where
a test may lead to one of a set of possible observations. Our framework can be extended in
the same way, but from the biological perspective, that would mean that there are different
mechanistic causes for the system being in that state. In that case, we recommend refining the
model to have different states representing these different causes.
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only acquire information, without affecting the state of the system. That is,

given a test t and a state v the system can only transition to v itself: v
t�! v.

We can keep track of the information that results from tests by adding belief

sets to runs. A belief set is a subset of states that the system may be in at a

given moment. We augment states with belief sets to obtain belief states.

Definition 3.2. A belief state of a CHA (V,E) is a tuple (v, b), where

• v 2 V a state,

• b ✓ V with v 2 b is a belief set.17

There is a transition from belief state (v, b) to (v0, b0) under C 2 2

D [ T if

• v
C�! v0 and

• b0 =

8

>

>

<

>

>

:

[b] C�! if C = C 2 2

D

{v0 2 b | t(v0) = t(v)} if C = t 2 T

where [X]R denotes the image of set X under relation R, i.e., [X]R = {x0 |
(x, x0

) 2 R with x 2 X}.

In symbols, we write (v, b)
C�! (v0, b0). In addition to an initial state v0, we

now also have an initial belief set b0. So a CHA is now a tuple (V,E, v0, b0), and

a run of a CHA H is now a sequence of transitions over belief states. As before,

Runs((v, b), H) denotes the set of runs that start in (v, b). We write Runs(H)

for Runs((v0, b0), H), and by Runs f((v, b), H) we denote the set of finite runs

from Runs((v, b), H).

We now extend the notions of therapies and their execution to include tests

and belief sets.

17Note that belief states correspond to pointed models in epistemic logic, in the sense that
they consist of a set of possible states with a distinguished actual one.



1.4. PARTIAL OBSERVABILITY AND TESTS 31

Definition 3.3. A therapy is a function ⇡ : Runs f(H) ! 2

D [ T . It is

uniform if it only depends on the belief sets.18 We only consider uniform

therapies, without explicitly mentioning it.

A possible execution of ⇡ in H starting with (v0, b0) is a run

S = (v0, b0)(v1, b1)(v2, b2) . . . ,

such that for each i � 0, (vi, bi)
⇡(Si)���! (vi+1, bi+1).

Example 4. Given the example CHA H of Figure 1.3 with one test t, a possible

therapy ⇡ for H would be to perform a test immediately upon starting the

treatment, administering Avastin whenever SSG2 and IAG2 are in the resulting

belief set, and performing a new test whenever something can be learned from it

(that is, whenever the partition induced by t refines the current belief set).

A possible execution of this therapy is the following run (in which the ini-

tial belief set is {Normal,SSG1, IAG1,SSG2, IAG2, Ang}, the first test yields

observation o2, and the second o1):

({Normal,SSG1, IAG1,SSG2, IAG2, Ang}) t�! ({SSG2, IAG2}) {Avastin}�������!

({Normal,SSG2, IAG2}) t�! ({Normal}) ;�! ({Normal,SSG1, IAG1}) . . .

Note that this particular therapy does guarantee that cancer progression will

be halted and metastasis will not be reached, assuming of course that the initial

state is before Ang.

We also extend the definition of costs, using c : T ! Rn
�0 to specify costs of

18More precisely, if for any two runs r = (v0, b0)(v1, b1) . . . (vk, bk) and r0 =

(v00, b0)(v
0
1, b1) . . . (v

0
k, bk) which agree on their belief sets, we have ⇡(r) = ⇡(r0).
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tests. The definition of cost of an execution then is the same as in definition 1.1,

and we can proceed with the notion of possible costs.

Definition 4.1. The set of possible costs of ⇡ for a CHA H is

c(⇡, H) = {c(S,⇡, H) | S is a possible execution of ⇡ in H

starting with (v, b0) for any v 2 b0}.

The remaining notions such as Pareto dominance, candidate therapies, and

universal therapies remain unchanged.

1.4.2 Epistemic and temporally extended goals

Given that we now have a framework that captures not only the actual behavior

of the system but also the observer’s (e.g., oncologist’s) information about it, we

need to reflect this additional aspect in the formal language that defines goals.

This goal can be achieved by adding an epistemic modality K to the logic, which

intuitively means “it is known that”.

Instead of the previously mentioned goal AG¬M, we can now express that it

is known that metastasis is never reached by stating KAG¬M.

Another, somewhat more complex, goal is

AG
�

Ang ! �

(¬M ^ AX¬M)UKAng
��

which intuitively says that whenever the tumor acquires angiogenesis, this will be

known (strictly) before the tumor reaches metastasis.19 Any such goal formula

should implicitly be put inside an enclosing K operator to ensure that it holds

in all starting states initially considered possible.

19More precisely, the statement is that at any point in the future where Ang holds, M will
not hold at the current or the next step until Ang is known (where Ang is the Angiogenesis
hallmark and M the Metastasis hallmark).
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Model checking tools for epistemic CTL can be devised by combining CTL

model checking with a subset based construction common in epistemic logics. An

example of a logic that includes both temporal logic and epistemic component

(as well as a notion of cooperation) is Alternating-time Temporal Epistemic

Logic [112]. For this logic, model checking tools exist.

1.4.3 Tests in timed CHAs

Analogously to untimed CHAs, we also extend the timed CHA framework to

include belief sets and tests. A belief set b now is not just a set of states v,

but a set of timed states (v, val). A belief state is a tuple (v, val, b) such that

(v, val) 2 b. As before, we assume some initial belief set b0 that is used when no

other belief set is given.

Before we generalize the notions of transitions and executions of a therapy

we need to introduce a new relation. It addresses the following issue: With full

observability, we can identify the individual delay or state transitions; however,

with partial observability, a sequence of several transitions might look like just

one transition to the outside observer. We denote such multi-step transitions

using
�,C9 9 K, which relates any two states that are related by any number of

transitions under C taking a total time of �. Formally, for two timed states

(v, val) and (v0, val0), we have (v, val)
�,C9 9 K (v0, val0) if there exists a sequence

S = (v, val)(v1, val1) . . . (vk, valk)(v
0, val0)

of state or delay transitions under C, with ⌧(S) = �. (Recall that ⌧(S) denotes

the total duration of execution S.)

Definition 4.2. In timed CHAs with partial observability, there are three types

of transitions between belief states:
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1. Delay transitions, in symbols (v, val, b)
�,C��! (v, val0, b0), where

• (v, val)
�,C��! (v, val0) and

• b0 = [b] �,C9 9 K

2. State transitions, in symbols (v, val, b) ! (v0, 0, b0), where

• (v, val) ! (v0, 0) and

• b0 = [b] 0,C9 9 K, that is, all state transitions under C

3. Test transitions, in symbols (v, val, b)
t�! (v, val, b0), where

• b0 = {(v0, val0) 2 b | v0 2 t(v)}.

Note that tests in this formulation only give information about the current

state, and not about the current clock values. If deemed biologically plausible,

this formulation can be extended appropriately.

Note also that test transitions are assumed to be instantaneous. We make

this assumption because receiving the result of a test usually takes hours or days,

whereas tumors usually progress on a larger time scale (months or years).

As before, a run of a timed CHA H with tests is a non-Zeno sequence of

delay, state and test transitions.

Definition 4.3. A therapy is a function ⇡ : Runs f(H) ! 2

D [ T . Again, a

therapy is uniform if it only depends on the belief sets, and we only consider

uniform therapies, without explicitly mentioning it. A possible execution of ⇡

in H is a run

S = (v0, 0, b0)(v1, val1, b1)(v2, val2, b2) . . .

such that



1.4. PARTIAL OBSERVABILITY AND TESTS 35

• for all i with delay transition (vi, vali, bi)
�,C��! (vi+1, vali+1, bi+1) and for

every 0  �0 < �,

⇡((v0, 0, b0) . . . (vi, vali, bi)(vi, vali + �0⇢(vi, C), [bi] �0,C999K
)) = C ,

where ⇢(vi, C) denotes the partial evaluation of ⇢, i.e., the function x 7!
⇢(vi, C, x), and

• for all i with test transition (vi, vali, bi)
t�! (vi+1, vali+1, bi+1),

⇡((v0, 0, b0) . . . (vi, vali, bi)) = t .

Example 4 can straightforwardly be generalized to include timing.

The definition of costs is analogous to definition 3.1, except that tests have

to be treated separately since they take no time (and would thus add no costs).

The formula can straightforwardly be modified to count the costs of tests at

some constant rate (still discounting the future).

Again, the notions of cost of executions, Pareto dominance, universal ther-

apies, non-Zeno-ness and null therapies are the same or very similar to those

with untimed CHAs. Also, the result of Theorem 15 can be extended to include

partial observability and tests, using a similar construction as in the proof of

the theorem.

1.4.4 Therapies as conditional plans

In this section, we show how a therapy can be interpreted as a conditional plan

instead of a function from runs to actions. Intuitively, a conditional therapy

plan is a sequence of therapeutic actions, which branches after each test action

into distinct sub-cases according to the possible observations of the test. We
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give the formal translation of a therapy ⇡ into a conditional plan ⇡c below.

Before we proceed, we note that, due to uniformity, a therapy can be regarded

as a function assigning actions to sequences of belief sets (rather than executions).

We write bS for the sequence of belief sets in S. When S is clear from the context,

we drop the subscript and simply write b. By b � b we denote the sequence b

with belief set b appended.

Definition 4.4. Given a sequence of belief sets b = b0 . . . bn, a time ⌧ and a

therapy ⇡ we define a conditional plan ⇡c as follows:

• If ⇡(b) = C 2 2

D, then

⇡c(b, ⌧,⇡) = (C, ⌧);⇡c(b � [bn] �,C9 9 K, ⌧ + �,⇡) ,

where � is the minimum value such that

– ⇡(b � [bn] �,C9 9 K) 6= C, and

– ⇡(b � [bn] �0,C999K
) = C for all �0 such that 0  �0 < �.

• If ⇡(b) = t 2 T with possible observations o1, . . . , ok, then

⇡c(b, ⌧,⇡) = (t, ⌧); case

2

6

6

6

6

6

4

o1 : ⇡c(b � (bn \O1), ⌧,⇡)

. . .

ok : ⇡c(b � (bn \Ok), ⌧,⇡)

where Oi = {(v, val) 2 V ⇥ RX
�0 | t(v) = oi}, and the case statement has

the intuitive meaning, as explained below.

Given the initial belief set b0, the conditional plan that corresponds to the therapy

⇡ is defined as ⇡c(b0, 0,⇡).

The intuition behind this translation is as follows. Since a therapy only

depends on the sequence of belief sets, and the evolution of belief sets under any
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cocktail C is predetermined, we can compute when the therapy will change. For

example, starting at the initial belief set b0 with initial cocktail C, the therapy

changes at the smallest � such that ⇡([b0] �,C9 9 K) = C 0 for some C 0 6= C. The new

belief set at this moment is b1 = [b0] �,C9 9 K, and the conditional plan up to this

point is (C, 0); (C 0, �). We can continue this procedure with the sequence b0b1.

When a test is performed, the next move depends on the observation oi, which

is reflected in the branching case statement. The execution of such a therapy

plan would then continue at the branch labeled with the observation.

1.5 Tumor heterogeneity

So far we have not discussed an important property of cancer, namely, that most

large tumors are heterogeneous. That is, they consist of several sub-populations

of tumor cells [93], each with a distinct dominant phenotype [49, 68]. Tumor

heterogeneity forms a large obstacle in therapy design, as it is often the cause

of therapeutic resistance. Namely, for any given treatment, there is likely to be

a small population of cells within the tumor that is resistant to the effects of

the drug. When the drug is given to a patient, even though the bulk of the

tumor disappears, these cells will survive and multiply which ultimately lead to

recurrence [24].

CHA models, even though presented in this chapter as models for inter -

tumor heterogeneity (that is, different tumors progress using different paths),

can also model this type of intra-tumor heterogeneity where different sub-clones

of the same tumor are assumed to follow different progression paths. In this

interpretation, the time it takes to make a transition does not only include the

stopping time of acquiring a certain mutation, but rather the time it takes for a

small clone of cells to grow to full tumor size. Similarly, a transition to a next

state does not need to indicate that the tumor acquires a certain mutation or
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property, but rather, it can also become available once the dominant clone of

the tumor has been removed e.g., by therapeutic intervention.

To control heterogeneous tumors, several possible progression paths need to

be controlled at once. This can be represented within our current framework by

exploiting our notion of partial observability, as it was just introduced. Rather

than interpreting this notion as representing that the therapist does not know the

current state of the system, it can be used to model that the therapist does can

not know exactly which sub-clones the tumor consists of, but needs to design a

therapy based on all the possibilities. The resulting therapeutic regimens will in

most cases need to make use of combination therapy.

In our framework, there is no need to make an explicit distinction between

the two types of inter-tumor versus intra-tumor genetic diversity, as they can

be included in the same model, and will result in similar therapy plans. In fact,

when extracting progression models from cross-sectional patient data, there is no

way of knowing to which degree the observed variability results from the different

types of diversity. We will return to the problem of progression extraction in

Chapter 4.

1.6 Liver and product automata

In a patient, cancer itself is not the only system of relevance. Other systems

interact with the tumor’s development, and especially during a therapeutic

intervention, they need to be monitored. For example, the immune system and

its role throughout carcinogenesis are receiving more and more attention [37],

and the liver needs to be monitored to avoid damage due to excess toxicity.

In principle, other subsystems of an organism could be modeled as hybrid

automata in the same way as our CHA, which could then be composed as an

overall model for which therapies with goals spanning all subsystems could be
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generated. Here we do not provide a general framework, but we sketch a simple

toxicity-based liver model that can be “attached” to a CHA. It has only one

clock, modeling one type of toxicity level, and a very simple discrete dynamics

governed by a sequence of thresholds. Simple as it is, this kind of model can

still capture effects that are discussed in the literature, such as the dynamics of

the toxicity level in the liver caused by Taxol [103], a drug used in breast cancer

treatment.

Definition 4.5. A liver automaton is a tuple L = (W,F,w0, `, ⇢), where

• W is a set of states,

• F ✓ W ⇥W is a set of directed edges,

• ` : W ! R gives the toxicity threshold for each state, and

• ⇢ : W ⇥D ! R�1 gives the toxicity factor for each pair of state and drug.

For simplicity, we restrict attention to linear liver automata, i.e., each state

has at most one successor. For this reason, we do not need explicit constraints

on the edges and can instead assume that a state’s outgoing edge is enabled

exactly when its toxicity threshold is reached.

We can then define the overall toxicity factor of a given cocktail in a given

state as a function ⇢ : W ⇥ 2

D ! R as follows:

⇢(w,C) =

8

>

>

<

>

>

:

Q

d2C ⇢(w, d) if C 6= ;

�1 if C = ;

Note that ⇢(w, ;) = �1, while for any C 6= ;, we have ⇢(w,C) � 1. That is, we

assume that drugs cumulatively increase the toxicity level, and that the liver

regenerates only when no drugs are given. The model can easily be extended
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to include some drugs that have no effect on the liver, or to allow for other

interactions between cocktails.

Definition 4.6. A timed state of a timed liver automaton L = (W,F,w0, `, ⇢)

is a tuple (w, c), where w 2 W is a current state and c 2 R is a current clock

value for w.

There are three types of transitions between timed states in a liver automaton:

1. Delay transitions, in symbols (w, c)
�,C��! (w, c0), where

• � 2 R>0 represents the (real) time delay,

• C denotes the cocktail active during that time,

• c0 =

8

>

>

<

>

>

:

max{0, c+ �⇢(w,C)} if w = w0, and

c+ �⇢(w,C) otherwise

• �1  c0  `(w).

2. State transitions, in symbols (w, c) ! (w0, 0), where

• c = `(w),

• (w,w0
) 2 F .

3. Regenerating transitions, in symbols (w,�1) ! (w0, c0), where

• c0 = 0,

• (w0, w) 2 F .

The exact thresholds for regenerating transitions can be modeled in more

detail where required.

A liver automaton can be combined with a CHA using standard parallel com-

position methods as the one defined in [62]. Informally, states of the new model

are combined states ((v, val), (w, c)) from the CHA and Liver model respectively.

A delay transition between two states ((v, val), (w, c)) and ((v0, val0), (w0, c0)) is
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possible if the delay transition is possible between both (v, val) and (v0, val0)

as well as (w, c) and (w0, c0) under the current therapeutic regimen. A state

transition is possible if: a state (or regeneration in case no drug is being applied)

transition is possible in one model, and in the other model the states stay the

same; or, if both models allow for a state transition at the same time. This

method can be extended to include belief sets as wel.

For the resulting product model we can formulate combined goals involving

both the CHA and the liver models. To illustrate this point, consider the

following simple example:

Example 5. Let L be a liver model with two states: L1 low toxicity, L2 high

toxicity, such that the threshold for going to L2 is 10. Assume furthermore that

the toxicity level of Avastin is 4. Thus, if we administer Avastin for a duration

of more than 2.5 time units, the liver automaton will move to the high toxic

state.

A simple therapeutic goal in the combined model of L with the example CHA

from Figure 1.2 might be to avoid a high level of toxicity (L2) while avoiding

reaching metastasis:

AG(¬M ^ ¬L2) .

This goal can be achieved by a therapy in which one administers Avastin in the

states prior to Ang as before, but does this as late as possible, so as not to reach

a high toxicity level. This kind of control can be achieved by starting drug therapy

when the clock reaches a value of (almost) 3, such that due to the slowing down

effect of Avastin in the CHA the invariant of 5 will be reached before the clock

value reaches a transition to Ang becomes possible. At the same time toxicity

levels below 10 (in fact, below 8) are maintained 20. The system will be forced

20Note that the therapy defined in example 3 does not satisfy this goal, as high toxicity
levels will be reached.
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back to Normal, and before Avastin is administered again, the liver has time to

regenerate.

1.7 Conclusion and two other phenomena

In this chapter we established a general formalism for describing cancer progres-

sion. Our goal was to design a conceptually clear framework based on realistic

biological foundations. As a case study, we have used this model to describe

cancer hallmarks and their dynamics. Before turning the problem of CHA control

in the next chapter, we conclude by mentioning two model phenomena, not yet

discussed so far, that can be modeled using our framework as i.

More general clocks: Thus far, we have referred to the clocks in CHAs as

measuring time. However, they could be measuring different properties like tumor

size, the number of stem and differentiated cells, motility or spatial properties.

For example, in the case of tumor size, the growth rate of the tumor may depend

on the current discrete states of the progression and drugs can influence this

rate. With this model one can describe tumor growth dynamics as described in

[105], by introducing two clocks: one measuring the number of stem cells and the

other the number of differentiated cells. The various mutations can be modeled

as transitions to a next state with different growth dynamics depending on the

mutations already acquired21.

Anti-hallmarks Instead of trying to slow down cancer progression, there has

recently been growing interest in approaches to speed up the process to a degree

which will make the tumor nonviable and “push it over the edge” towards collapse

(see e.g., [82]). We refer to such nonviable states as anti-hallmarks. They can
21One should note, however, that even though the progression can be described, the controller

synthesis results from the next chapter assume that clock behavior is linear at each state, and
do not carry over to a system in which clock dynamics is described by differential equations.
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Normal . . . Hallmark 1

Anti-Hallmark

Hallmark 2 . . .
x := 0
y := 0

x � 4

y � 6

x  4, y  6
⇢(d, y) = 2

Figure 1.4: Illustrating how to model an anti-hallmark using two clocks x and y
and a drug d that speeds up clock y at Hallmark 1 by a factor of 2.

be modeled by putting constraints on the transitions leading to them that will

never be satisfied, unless a drug is given which speeds up a certain clock. For

example, consider the CHA in Figure 1.4. At Hallmark 1, without interference

(both clocks increase with rate 1), the transition to Hallmark 2 will be taken

after 4 time units. A drug that speeds up clock y by a factor of 2 will instead

push the tumor to the Anti-Hallmark state, if given starting at most 1 time unit

after entering Hallmark 1.
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Chapter 2

Controller Synthesis and

Automatic Therapy Design

Given the complexity of (timed) cancer progression and the influence of various

drugs, the task of finding near-optimal therapy plans is (soon to be) beyond

manual planning, and automated computational tools are very desirable. In this

chapter we turn to the question if, and how, algorithms can be designed that

generate successful therapies automatically.

To answer this question we turn to the area of engineering called control

theory. In control theory, the objective is to manipulate a system in such a

way that the controlled system satisfies a certain desired specification. With

the ultimate goal of controlling CHAs (introduced in the previous chapter) in

mind, an overview of some of the relevant concepts and results are presented in

Sections 2.1 and 2.2. In this short overview, we discuss the problem of control

under two types of uncertainty: uncertainty of the outcome of an action (non-

determinism), and uncertainty of the state of the system (partial observability)

– both properties are important building blocks of our CHA framework. We

45
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focus on a decision- or game-theoretic formulation of the control problem as

a two-player game in which the controller is represented as a strategy for one

of the players. A strategy is winning if the goal is guaranteed to be satisfied

for every possible play of the game that conforms to that strategy. For several

formal frameworks, including finite, timed and finally hybrid automata, we study

the problem of generating winning strategies for various goals like reachability

and safety, as well as more general temporally extended goals, specified using

temporal logic such as CTL. Even though many different notational standards

exist in the literature, we aim to present the various framework in a unified way.

The most important definitions and results are presented in the body of this

chapter, while more details can be found in the appendix, or in the references

provided. While the tools and results in this short overview (Sections 2.1 and

2.2) provide our basis for designing CHA control algorithms, they are presented

in an independent fashion, and can thus be read separately, or may be skipped

all together.

In Section 2.3 we turn our focus to CHAs specifically. Untimed CHAs are a

special kind of discrete automata for which game theoretic controller synthesis

algorithms exist that can be applied to automatically design therapy-plans.

Timed CHAs, on the other hand, are a special class of hybrid automata, and

for this type of frameworks, control is not as straightforward. Unfortunately, in

the general case, even simple verification and control problems like reachability

and safety are undecidable for hybrid systems [66]. However, several decidable

subclasses of hybrid automata exist for which algorithms have been devised,

and we will see in Section 2.3, how existing results can be extended to CHAs.

Our main result is Theorem 15 which states that in a certain restricted setting

(where the players can only move at discrete moments in time), CHA control for

CTL goals is EXPTIME complete. This result can also be extended to include
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partial observability (Theorem 16).

2.1 Acting and control under uncertainty

Uncertainty interferes with decision making in two ways [87]:

1. Uncertainty of the outcome of an action. Because of uncertainties, it

may not be known what will happen when certain actions are performed,

and future states are thus not fully predictable. This kind of uncertainty

is sometimes called predictability uncertainty or simply non-determinism.

2. Uncertainty of the state of the system. As a result of uncertainties, the

current state of the system may not be not known. Information about the

state can be obtained from initial conditions, memory of the history of

play, or observations. This kind of uncertainty is sometimes called sensing

uncertainty, partial observability or imperfect information.

These two types of uncertainty are largely independent and can be studied

separately. Just as we have done when introducing CHAs, in this overview, we

will start by studying ways to model and control the first type of uncertainty

and will subsequently incorporate the second type.

Non-determinism can be modeled by introducing a decision maker called

Nature, who influences the outcome of an action. The task for the decision maker

is to make a good, or the best, decision, despite the interfering effect of Nature’s

actions.

Nature’s decision making process can be characterized using either qualitative

non-deterministic (henceforth: non-deterministic) models or probabilistic models.

Models that include probabilities are often easier to deal with since expected

utility, or expected outcome can be used to guide the decision making process. A
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best action can be determined as the action that maximizes expectation (expected

payoff, expected chance of winning, etc). However, it is not always reasonable to

assume that the agent has enough information about the situation to be able

to adequately assign probabilities to Nature’s actions, in which case the use of

non-deterministic models is required. This is one of the main reasons why we

have not included probabilities in our CHA framework.

2.1.1 Control of discrete automata: a decision theoretic

perspective

Both fields of computer science and control theory study these discrete event

systems. Traditionally, computer science has focused on system verification and

the question ‘What will the system do?’, while control theory centers around

synthesis questions ‘How can we make the system behave the way we want?’ [7].

In the latter case, the objective is to manipulate a system (“plant”) in such a

way that the controlled system (“plant + controller”) satisfies a certain desired

specification. The interaction between a controller and a plant can be seen as an

antagonistic infinite game between two players (the controller and Nature) [8].

A strategy (or a therapy in case of CHAs) for a given game is a set of rules that

tells the controller what action to take in any possible situation of the game. A

strategy is winning if no matter what actions Nature chooses during the game,

the controller is guaranteed to win. Properties that can be used to evaluate the

play include utilities or costs of outcomes, as well as more general properties

about the states visited: these can be specific properties like non-reachability

of bad states (so-called safety properties) as well as more general properties,

expressed in temporal logics such as CTL. The problem of designing a controller

for a plant now becomes that of finding a winning strategy for the controller. For

untimed systems this problem is relatively straightforward and has been studied
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for a variety of winning conditions. In the following, we discuss the simplest of

winning conditions, of safety and reachability, as well as as well as more general

goals specified using temporal logic. We refer the reader to [108] or [91] for more

general treatments of winning conditions.

In Appendix A.1, we describe extensions in which outcomes of actions have

associated numerical costs that need to be minimized while deciding on a strategy.

Discrete games

Assume two players 1 (the controller) and 2 (Nature). The players play on a

finite graph with states Q. At each moment in the game, both players choose an

action available to them, and the game progresses along an edge consistent with

the chosen actions. Formally, a two-player automaton-game is defined as follows

(along the lines of [8] and [7]):

Definition 5.1 (Game Automaton). A Game Automaton A is a tuple

hQ,Q0,⌃1,⌃2, Ei, where

• Q is a finite set of states,

• Q0 ✓ Q a set of initial states,

• ⌃

i a set of actions for player i 2 {1, 2},

• E ✓ Q⇥ ⌃

1 ⇥ ⌃

2 ⇥Q, is a set of transitions.

With T i
(q) denote the set of actions from ⌃

i that are enabled at q is denoted.

That is, T 1
(q) = {a 2 ⌃

1 | (q, a, b, q0) 2 E for some b}. It is commonly assumed

that for each q 2 Q and i 2 {1, 2}, T i
(q) 6= ; and that whenever (q, a) 2 T 1 and

(q, b) 2 T 2 there exists a transition (q, a, b, q0) 2 E for some q0 2 Q. That is,

there can be no deadlock. We write q
(a,b)���! q0 if (q, a, b, q0) 2 E. Intuitively, this

notation means that the system can move from q to q0 if the agent plays a and
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Nature plays b. A run of A is a (possibly infinite) sequence ⇣ of the form

⇣ = q0
(a0,b0)����! q1

(a1,b1)����! q2 . . .

We let L(A) denote the set of runs of A starting at a state q0 2 Q0, and

L(A)f ✓ L(A) the set of finite runs. 1

Definition 5.2 (Strategy). A strategy ⇡i for player i is a function ⇡i : Q ! ⌃

i,

such that ⇡i(q) 2 T i
(q) for each player i. Given a strategy ⇡ for player 1, a run

⇣ = q0
(a0,b0)����! q1

(a1,b1)����! q2 . . . is said to conform ⇡ if for every j, ⇡(qj) = aj.

We let L⇡(A) ✓ L(A) denote the set of runs of A that conform ⇡.

A strategy is sometimes referred to as a controller in control theory. In the

planning literature, a strategy is referred to as a feedback policy, a conditional

plan or simply a plan. And, in the context of CHAs a strategy is referred to as

a therapy.

Note that strategies in the above definition are assumed to be memory-free.

That is, they do not depend on the entire run of the game but only on the

current state. If we allow the system to possess memory, as we do in CHAs, a

controller can be defined as ⇡i : L(A)f ! ⌃

i. It should be noted however, that

if winning conditions are simple and only depend on which states are visited

during a run, like safety or reachability, allowing for memory does not improve

winning conditions. More complicated winning conditions, like those specified

using temporal logic, sometimes require more information about the history of

the game. For safety and reachability games discussed next, considering only

memory-less strategies is thus appropriate.

1In CHAs we use the less general notiation Runs f(H) to denote the set of runs of a CHA
H.
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Control of safety and reachability games

As mentioned before, in a safety game, the goal of the controller is to keep the

game outside a set of ‘bad states’ B. In a reachability game, the goal of the

controller is to eventually reach a ‘good state’ from a set F . The winning states

are all the states from which the controller is able to accomplish this. Thus,

the winning states are those such that no matter what actions Nature chooses,

the controller is able to keep the game from going outside the set of safe states

F =

¯B for safety games, and to eventually reach one of the good states for

reachability games.

Now, how do we determine if a set of states F is safe? The basic idea is

to iteratively search the space for a set of winning states F ⇤. The iterative

search starts with F0 = F , the set of safe states, and at each round i the set of

states from which the controller cannot force the game to stay in Fi are deleted.

This procedure converges to F ⇤. If Q0 ✓ F ⇤, the controller has a winning

strategy, which can be described as ‘never move out of the set of safe states’. For

reachability the argument is very similar. Instead of iteratively deleting states

that may lead to a state outside of F , now states are iteratively added that can

lead to new states inside F . The complexity of these control algorithms is linear

in the number of states.

The formal details of the controller synthesis problem for these games, as well

as well as extensions that include costs and cost-optimization to the framework

are provided in Appendix A.1.

The probabilistic counterpart of game automata are Markov Decision Processes

(MDPs). An MDP is a discrete time stochastic automaton in which a next state

is reached with a certain probability depending on the actions chosen. Just like in

the game automaton, in MDPs, the probability that a next state is reached only
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depends on the current state and action, and not on states previously visited.

In the context of probabilistic models, this property of being memory-less is

sometimes referred to as being ‘Markov’.

More general goals: temporal logic

The control problem for reachability and safety goals can be generalized to include

more general goals specified using temporal logic. The two most commonly used

temporal logics are linear temporal logic (LTL) and computation tree logic (CTL)

[31]. In LTL, a basic propositional language is extended with the temporal

operators X (Next), F (Future), G (Global) and U (Until). Intuitively the

formula X� can be read as ‘in the next state � will hold’, F� as ‘at some future

state � will hold’, G� as ‘at every future state � will hold’, and  U� as ‘ will

hold until � becomes true’. LTL satisfaction presupposes that there is only one

possible future path. That is, future time is assumed to be linear. In the case

of plays on game automata, however, this is not necessarily the case. CTL was

already introduced in Chapter 1, and is a branching time temporal logic that

has two additional operators A (for all paths) and E (there exists a path), with

the formula AF� meaning ‘At every possible path, at some point in the future

� becomes true’.

CTL⇤ is an extension of CTL that allows for arbitrary nesting of temporal

operators.

In the case of temporally extended goals, controllability no longer ensures

the existence of memory free strategies, but rather (parts of) the history of

the game need to be taken into account when deciding on a suitable move

[108]. This complicates the controller synthesis problem, but does not make it

noncomputable. In fact, much work has been done on automatically generating

controllers for game automata with LTL and CTL specifications. In [79], for

example, Kumar et al. develop an algorithm using CTL specifications, that runs
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in exponential time in the size of the formula to be satisfied. This complexity

bound is sharp, as the problem is shown to be EXPTIME complete:

Theorem 6 (Jiang and Kumar [79]). The controller synthesis problem for game

automata with CTL goals is EXPTIME complete in the size of the formula.

Adding partial observability

Up until now we have assumed that the current state of the system is always

known. But what if this is not the case? In this section we introduce the

second type of uncertainty: sensing uncertainty or partial observability. In a

case where the state of the environment is not known, there are still several ways

the controller is able to learn information about the current state [87]. Most

importantly, observations provide measurements regarding the current state of

the system. Also, information about the current state of the system can be

deduced from initial conditions like the set of initial states in an automaton, or

from actions that were already executed. However, despite all the information

available, it may not be possible to deduce the exact state of the system. Luckily,

many problems can be solved without requiring that the exact state is ever

known. For this purpose, the controller synthesis problem can be described in

terms of a sensor.

A sensor gives information about the state and consists of two components:

1) an observation space, which is the set of possible observations from the sensor,

and 2) a sensor mapping, which maps situations to the set of observations [87].

Sensor mappings can be state based, depending only on the current state,

history based, depending on the sequence of previously visited states, or state-

Nature based, depending on both the state and Natures sensing actions. Moreover,

they can be assumed to be non-deterministic or probabilistic. That is, depending

on the current state, history or Nature-state, the observation may not be fully
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determined.

In the following, we assume that the sensor mapping is state-based and

non-deterministic. But these definitions can easily be adapted to incorporate

other types of sensor mappings. One way of defining a partially observable game

automaton is as follows:

Definition 6.1 (Partially observable game automaton). A Game Automaton

A is a tuple

hQ,Q0,⌃1,⌃2, E,O, Si, where

• Q is a finite set of states,

• Q0 ✓ Q a set of initial states,

• ⌃

i a set of actions for player i 2 {1, 2},

• E ✓ Q⇥ ⌃

1 ⇥ ⌃

2 ⇥Q, is a set of transitions,

• O is a set of observations,

• S : Q ! 2

O is a sensor mapping, associating to each state a set of possible

observations.

The simplest memory-free strategy in a game automaton with partial observ-

ability is a mapping from observations to actions, ⇡ : O ! ⌃. However, because

in this case the agent is likely to obtain information about the current state

of the system by keeping track of previous actions and observations, it is more

likely that a strategy is a function assigning actions to more general contexts 2,

⇡ : C ! ⌃. These contexts could simply be finite histories of observations, in

which case ⇡ : On ! ⌃, but can possibly include previous actions by Nature or

sets of states that are considered possible, i.e. belief sets.
2in fact, in [104] Reif shows that even safety games of partial information cannot always be

won using memory-less strategies
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Algorithms for the control problem of a partially observable automaton

usually proceed by translating the partially observable model to one with full

observability where states are subsets of the original state space representing

possible knowledge states of the agent. An example of such a method can be

found in [16], where Bertoli studies the controller synthesis problem (formu-

lated as a planning problem) under partial observability with CTL goals, and

proposes a somewhat more sophisticated algorithm. The algorithm based on a

forward-chaining approach, that incrementally progresses so-called belief-desires

structures. These structures relate sets of states, or beliefs about the current

state compatible with past actions and observations to sub-goals that have to

be achieved from such states. Once a new state is reached the beliefs and the

associated goals are updated. The algorithm assumes a single agent structure,

that is, Nature makes no explicit moves. However, their transition relation is

assumed to be non-deterministic, and could be formulated as a two-player game.

The probabilistic counterpart of a game automaton with partial observability

is a Partially Observable Markov Decision Processes (POMDP). A POMDP is

an extension of a markov decision process in which the agent cannot directly

observe the actual state of the system. Instead, it must maintain a probability

distribution over the set of possible states, based on a set of observations, the

probabilities of these observations, and the underlying MDP.

2.2 Control of timed systems

Thus far, we discussed simple frameworks in which all transitions in the automa-

ton take one ‘unit’ of time. For many applications however, the exact timing and

duration of transitions are crucial to the analysis of the system. In this second

part of this short survey, we introduce extensions of discrete (game) automata
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to timed and hybrid (game) automata, and study their corresponding control

problems.

2.2.1 Timed automata

Modeling real time

First we extend the theory of discrete games to timed games. Timed games are

based on so-called timed automata that have been introduced by Alur and Dill

in their seminal article [3]. Timed automata provide the theoretical foundation

for the study of the behavior of real time systems.

A timed automaton is defined as a finite state transition system extended

with a finite set of real-valued variables called clocks. Constraints on the clock

values are used to restrict the behavior of the system.

Timed game automata

Definition 6.2 (Clock constraints and clock interpretations). Given a set X of

clocks, the set �(X) is the set of clock constraints � defined by

� := x ⇠ c | x� y ⇠ c | �1 ^ �2

where x, y are clocks in X, c is a constant in Z and ⇠2 {, <,=, >,�}. A clock

interpretation or valuation v is a mapping from X to the reals R.

For a � 2 R, v + � denotes the clock interpretation that maps every clock x

to the value v(x) + �. For a set Y ✓ X, the function v[Y := 0] assigns 0 to all

clocks in Y and agrees with v on the clocks x /2 Y .

A timed game automaton is defined as follows (along the lines of [91]).

Assume a finite set of clocks X.



2.2. CONTROL OF TIMED SYSTEMS 57

Definition 6.3 (Timed Game Automaton). A timed game automaton A is a

tuple

hQ, V,Q0,⌃1,⌃2, E, Ii, where

• Q is a finite set of states,

• V = RX , the set of clock valuations,

• Q0 ✓ Q a set of initial states,

• ⌃

i a set of actions for player i 2 {1, 2},

• E ✓ Q ⇥ ⌃

1 [ ⌃

2 ⇥ �(X) ⇥ 2

X ⇥ Q, is a set of transitions, each of the

form (q, c,�, Y, q0) where c 2 ⌃

1 [ ⌃

2, � 2 �(X) is the clock constraint on

the edge and Y ✓ X is the set of clocks to be reset by the transition.

• I : Q ! �(X), associates with each state its invariant.

As before, we write q
c,�,Y���! q0 if (q, c,�, Y, q0) 2 E. Note that contrary to

the discrete case, edges are labeled with only one action. The reason for this

modification is that it is no longer necessary for two agents two play at exactly

the same time. It may be possible that two edges between states exist indicating

that the new state can be reached either by a controlled action by the agent or

an uncontrollable action by Nature.

The semantics of a timed automaton is defined as an infinite state transition

system where a timed state is a pair (q, v) of the current state of the automaton

q and the current clock valuation v.

Just as is the case with timed CHAs, there are two types of transitions

between two states: delay transitions where just time passes and state transitions

when the actual state of the automaton changes. Formally, these two transitions

are defined as follows.

Definition 6.4 (Timed Automata: semantics). Two types of transitions exist.
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• (Delay transition)(q, v) ��! (q, v+ �), with � � 0 if for all 0  �0  �, v+ �0

satisfies the invariant I(q).

• (State transition)(q, v) c�! (q0, v[Y := 0]) if there is an edge q
�,c,Y���! q0 such

that v satisfies � and v[Y := 0] satisfies I(q0).

A run is a (possibly infinite) sequence of alternating Delay and State transitions.

As before, L(A) denotes the set of runs of A starting at a state (q0, v0) with

q0 2 Q0 and v0(x) = 0 for all x 2 X.

With T i
(q, v) we denote the set of actions from ⌃

i that are enabled at (q, v).

That is, T 1
(q, v) = {a 2 ⌃

1 | (q, v) a�! (q0, v[Y := 0]) for some q0}.
Intuitively, the system can stay in a state q as long as the local state invariant

I(q) remains satisfied. A transition to a next state using action c can be taken

when the clock constraint, or guard, � on the edge is satisfied. The transition

resets all the clocks on the edge to 0, while the values of other clocks remain the

same. It is now up to the controller not only to choose an appropriate action at

each state, but also the exact time at which this action is best to be preformed.

While making this choice, the controller must remain cognizant of the fact that

at any time in the interval it chooses to delay its next action, Nature is free to

make any available moves.

Control of timed safety and reachability games

The backward search algorithm for safety and reachability is very similar to that

of the untimed case, except that now, not only the possible consequences of the

agent’s actions are important to keep track of, but also the moments when the

agent is not acting.

To compute the set of winning states for safety and reachability we can apply

the same fixed point algorithm as for the discrete case. However, because we

are now iterating over an infinite set, it remains to be shown that the algorithm
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actually converges. In the discrete case, this was immediate since the iteration

was over a finite domain. In the timed case, so-called regions and zones guarantee

convergence. Regions and zones provide a finite partition of the state space

such that within a given region, the behavior of the system is indistinguishable.

Stated differently, the states within a given region are bisimilar. Using this

bisimilar graph, there are actually a finite number of states that the algorithm

iterates over. For a more detailed description of control of timed automata,

including regions and zones, as well as extensions involving optimizing time and

cost, see Appendix A.2.

In [26] an efficient algorithm for solving the controller reachability and safety

problem for timed games has been proposed that makes use of the zone graph.

Based on the on-the-fly algorithm proposed in [88] for linear-time model-checking

of finite-state systems, this algorithm combines the backward propagation of

winning states with simultaneous forward computation of states to explore. The

main idea underlying the algorithm is the same as for the untimed case: to keep

the game in a set of ‘safe’ states.

The reachability and safety control problems in timed game automata have

been shown to be EXPTIME complete [65]:

Theorem 7. The controller synthesis problem for timed game automata with

safety and reachability goals is EXPTIME complete in the size of the game.

More general goals and control problems

The control problem of timed games (without weights) has also been studied

for specifications given as temporal formulas. For LTL goals the problem is

2EXPTIME complete, for CTL goals EXPTIME complete [47], and for MTL - a

timed extension of LTL - the control problem is only shown to be decidable [21]:

Theorem 8 ( Faella et al. [47]). The controller synthesis problem for timed
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game automata with LTL (CTL) goals is 2EXPTIME (EXPTIME) complete in

the size of the formula.

Adding partial observability

Partial observability of the state space has also been studied in the context

of timed automata. Contrary to discrete event systems, where adding partial

observability does not affect decidability of the control problem, timed control

under partial observability is generally undecidable (while the analogous problem

under complete observability is decidable) [20]:

Theorem 9 (Bouyer et al. [20]). Timed control of timed game automata with

partial observability is undecidable for a general class of goals (including safety

and reachability).

However, in the same paper it is shown that fixing the resources of the

controller (i.e. a maximum number of clocks and maximum allowed constants in

guards) restores decidability.

Cassez et al. have developed efficient on-the-fly algorithms for timed games

with partial information and reachability goals using zone-based approaches

[27, 25, 20]. In their model, sensors map timed states (that is, states of the form

(q, v)) to a finite set of observations. Strategies are assumed to be observation

based and stuttering free. That is, the controller decides based on a sequence of

observations corresponding to a run, such that successive identical observations

are collapsed to one. In this case, when an agent decides to play a controllable

or a delay an action, he cannot play until the observation changes. That is, once

the controller makes a move, he cannot make another move until the system

reaches a new observation state. In the meantime, Nature is allowed to make

any move to influence the behavior of the system.

Similar in spirit to subset-based construction for the untimed case, Cassez
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et al. solve the control problem by reducing it to a game of full observability.

Their reduction makes use of a knowledge based subset construction introduced

in [109, 30]. States in the reduction are sets of symbolic states that represent

the knowledge of the controller.

The reduced graph corresponds to a timed game and efficient algorithms can

be used to solve the reachability problem.

Note that this algorithm assumes that the controller cannot gain any infor-

mation about the current state by keeping track of the time himself, nor by

keeping track of the history of play.

A tool support for these and other algorithms is available in Uppaal-Tiga

(see e.g. [12])

2.2.2 Hybrid automata

Hybrid automata extend timed automata to allow for non-synchronous continuous

evolution. More precisely, while in timed automata clocks increase synchronously

at the same rate, clocks in so-called hybrid automata can run at different rates,

which can change independently with the transition to another state. Thus,

hybrid automata combine the discrete dynamics of a finite automata with the

continuous dynamics of a dynamical system. Just like in timed games, when

playing in a hybrid game, the controller may choose an action that results in a

discrete move in the automaton. The controller is not able to influence the rate

of the clocks.

In hybrid games, even simple verification and control problems like reachabil-

ity are undecidable [66]:

Theorem 10 (Henzinger et al. [66]). The verification of reachability of hybrid

automata is undecidable.

From this theorem it follows that the controller synthesis problem is undecid-
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able as well. However, several decidable subclasses of hybrid automata exist for

which algorithms have been devised. Here we will focus on rectangular hybrid

automata and discretized hybrid automata.

Rectangular hybrid game automata

An important class of hybrid game automata is the class of rectangular hybrid

automata. A rectangular automaton is an automaton in which the clock con-

straint on each edge is a rectangular region of continuous states, and the clock

speed at each state is bounded from below and above.

Rectangular hybrid systems are important for various reasons [67]. First,

They form a natural system in between timed and hybrid systems. Second,

they can approximate with arbitrary precision the behavior of full hybrid games,

as long as all clock rate function satisfy a strong form of uniform continuity

called Lipschitz continuity [64]. Third, they form a most general class of hybrid

automata for which even the reachability model checking problem is decidable

[66, 67]. Since the controller synthesis problem for a class of hybrid systems is

at least as hard as model checking for the same class, it follows from this that

the control problem for more general hybrid games cannot be decidable.

Formally, a rectangle for the set X with dimension n is a subset of Rn that

is the cartesian product of n possibly unbounded intervals, all of whose finite

endpoints are integers. We let RX be the set of all rectangles for X.

Remark 11. Note that rectangles for a set X are very much like zones. In

fact, they are restricted type of ‘rectangular’ zones of X: they do not allow for

comparing the values of different clocks e.g x� y < 10.

A rectangular hybrid game is defined as follows (along the lines of [67]).

Definition 11.1 (Rectangular Hybrid Game Automaton). A timed game au-

tomaton A is a tuple
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hQ, V,Q0,⌃1,⌃2, E, I, f lowi, where

• Q is a finite set of states,

• V = RX , the set of clock valuations,

• Q0 ✓ Q a set of initial states,

• ⌃

i a set of actions for player i 2 {1, 2},

• E ✓ Q ⇥ ⌃

1 [ ⌃

2 ⇥ RX ⇥ 2

X ⇥ RX ⇥ Q, is a set of transitions, each of

the form (q, c,�, Y, , q0) where c 2 ⌃

1 [ ⌃

2, � is the clock constraint on

the edge, Y is the set of clocks whose values may change when the discrete

transition takes place, and  is the rectangle restricting the new state of

the variables at the arriving state.

• I : Q ! �(X), associates with each state its invariant.

• flow : Q ! RX , maps to each state a bounded rectangle that constraints

the clock speeds at this state.

Given a rectangle  , the interval constraint for x imposed by  is denoted

by  (x).

An important requirement on rectangular hybrid games is that of initialization

or constant reset. Initialization is the property that for every edge (q, c,�, Y, , q0)

if flow(q)k 6= flow(q0)k then k 2 Y . That is, whenever the speed of a clock

changes, the value of the variable is reinitialized. This property cannot be

relaxed, as it would make the control problem undecidable [66]:

Theorem 12 (Follows from Henzinger et al. [66]). The reachability controller

synthesis problem for hybdrid games not satisfying initialization is undecidable.
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Just like in the timed game, if the controller decides to make a move a 2 ⌃

1

while at a state (q, v), the game will evolve to a next state (q0, v0) along an

available edge (q, c,�, Y, , q0). The new continuous state will be as follows. For

each clock x, such that x 2 Y , the value of x is non-deterministically assigned to

a new value in the interval  (x). For each x /2 Y , v0(x) = v(x), and will move

at a speed non-deterministically determined to be in the interval flow(q0)(x).

In [67],Henzinger et al. show that the control problem with LTL specifications

is decidable:

Theorem 13 (Henzinger et al. [67]). The controller synthesis problem of rect-

angular hybrid automata with LTL goals is EXPTIME-complete in the size of

the game, and 2EXPTIME-complete in the size of the formula.

The decidability result hinges on the fact that a rectangular hybrid automaton

can be translated into a singular game automaton. A singular game automaton

is a restricted versions of a rectangular game, in which the rate of the clock

is unique at each state, and after each transition the new value of the clock is

uniquely determined. For this class of games, which is very similar to the class of

timed games3, the same useful properties of zones that guaranteed decidability

in the timed case, now guarantee decidability in the hybrid case.

Discretizing the control problem

The above result is very nice but depends heavily on a set of restricting assump-

tions on the behavior of the system. If any of the assumptions like initialization

are relaxed, decidability cannot be retained [66]. The simplest way around the

undecidability of the hybrid automata control problem is to allow for control

moves only at integer times. Henzinger and Kopke [65] give an exponential-

time algorithm for discrete-time safety control of rectangular hybrid automata
3the main difference between the two being that in the case of timed games the clock rate

is always 1, while in singular games this can be any number.
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with bounded and non-decreasing variables. Their algorithm is based on a

finite reduction to a bisimilar model, and does not assume initialization of the

automata.

Theorem 14 (Henzinger and Kopke [65]). The discrete time safety controller

synthesis problem for rectangular hyrbid automata (without initialization) is

decidable.

However, the algorithm as presented in [65] only applies to hybrid automata

and not to hybrid games. That is, it assumes that all discrete moves are made

by the controller and not by Nature.

This result has been extended by De Wulf et al. by using a fixed-point theory

to include partial observability of the state in [38]. Just as in the case of timed

automata, observations are associated with timed states (in fact, they are unions

of timed states) and become available automatically when the system enters a

state of that observation.

Other decidable classes of hybrid automata

Another decidable subclass of hybrid automata are so-called O-minimal hybrid

automata. These are hybrid systems with a very rich continuous dynamics

(polynomial and exponential functions can be used to describe clock behavior),

but have limited discrete behavior (all variables are reset after each discrete

transition). For safety and reachability goals the control problem of o-minimal

hybrid systems is decidable [17].

Weighted timed automata as discussed in Section A.2, form an intermediate

class between timed automata and hybrid automata for which decidability results

are retained [23]. In the case of weighted timed automata, the undecidability of

hybrid automata is avoided because information about costs cannot be used as

constraints on the edges. Rather, costs are available to the observer, but do not
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influence the discrete behavior of the system.

Algorithms to control timed and hybrid games have been applied to many

real-life systems. Examples include synthesis of online schedulers [1], synthesis

of climate control for pig stables [77], automatic synthesis of robust and near-

optimal controllers for industrial hydraulic pumps [28], and conflict resolution

for air traffic control [110]. In the next section we will see whether/how CHAs

can be controlled using hybrid games as well.

2.3 Automatic therapy design for CHAs

Untimed CHAs are a special kind of discrete automata for which controller

synthesis algorithms exist and can be applied to automatically design therapy-

plans (see e.g. [91] for control using safety goals and [79] for an algorithm that

uses CTL specifications).

In this section we investigate how automatic therapy design can be solved

for timed CHAs using game theoretical notions, by extending existing controller

synthesis results for hybrid systems. The idea to use game theoretic notions to

describe cancer progression and to automatically design therapeutic regimens is

not a new one, and has for example been studied in [99].

From timed CHAs to rectangular hybrid game automata Timed CHAs

bear a striking resemblance to rectangular hybrid automata, and it is thus worth

exploring whether some of the controller synthesis results and algorithms can

be applied to CHA models as well. Unfortunately, existing decidability results

do not carry over directly because of some important differences between CHAs

and (rectangular) hybrid automata.

First, in the hybrid automata literature, the rates of the clocks are generally
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assumed to be constant at any given state4 and what is controllable are (some

of) the transitions between states. In the CHA framework, in contrast, the

rates of the clocks are what can be affected by control actions (drugs), while the

transitions (tumor progression) cannot be directly manipulated. However, this

difference is mainly conceptual as a timed CHA can be translated to a hybrid

automaton as follows:

Given a set of drugs D and a CHA H with states V , we construct a hybrid

automaton RH in the following way: For each state v 2 V and each cocktail

C 2 2

D, RH contains a state (v, C) with the same clock invariants as v. For

any edge between two states v, v0 2 V , RH contains an uncontrollable edge

between (v, C) and (v0, C), for each cocktail C, with the same clock constraints

and resets as on the CHA edge. In addition to the uncontrollable edges, there

are controllable directed edges from (v, C) to (v, C 0
) for each v, C and C 0. These

edges represent changes of therapies, and have no clock constraints or resets. At

a state (v, C), the rate of each clock x 2 X is fixed, given by ⇢(v, C, x). This

translation yields an automaton of size exponential in the number of drugs,

but linear in the number of CHA states. We can model tumor progression and

therapy as a game in which the therapist chooses therapeutic regimens and the

cancer chooses which state to progress to next. For this purpose, we specify that

the controller is only allowed to make moves that include a change of therapy:

from C to C 0 at state v by moving from (v, C) to (v, C 0
), and cancer is only

allowed to pick an accessible new CHA state from the available ((v, C)(v0, C))

transition. The result is a rectangular hybrid game automaton with two players:

nature and controller (the therapist).

For a detailed definition of the translation as well as correctness arguments,

we refer to the appendix Section A.3.

4One exception occurs in the context of so-called differential games [90], but their theory
has not been well developed.
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To illustrate this translation, consider our example timed CHA of Figure 1.2.

Translating this CHA into a hybrid automaton using the above construction,

would result in two copies of the original CHA, with two copies of each state

from the original automaton: one in which the VEGF inhibitor drug Avastin is

administered, and one in which it is not. For example, we have a state (Ang, ;),
and a state (Ang, {Avastin}). Within each copy of the CHA (drug-controlled

versus non-drug-controlled) the original transitions and timing constraints apply,

and the rate of the clocks is now fixed: 1 in the no-drug states of the form

(Hallmark, ;), 0.5 in the Avastin-states (Hallmark, {Avastin}). The original

transitions of cancer progression can not be influenced by the therapist and are

controlled by nature. But, in addition, there exists a bi-directional edge connect-

ing all states (Hallmark, ;) and (Hallmark, {Avastin}), reflecting stopping, or

starting drug administration. These transitions are controlled by the therapist.

Contrary to uncontrolled CHA edges, which reset the clocks, when transitions of

this type are taken, the clock values (measuring the degree of cancer progression

at a state) are kept intact, and only their rate changes.

In the case of only one drug, the result is an automaton twice the size of the

original one. With n drugs, however, the resulting automaton will be 2

n times

the sizes of the original CHA.

A timed CHA can thus be reduced to a rectangular hybrid game automaton.

Given this reduction, it should be noted that a CHA could, in principle, be defined

as a special sub-class of hybrid game automata, using a state of each possible pair

of progression state and cocktail, rather than having drugs influence the rate of

progression directly. We chose to represent CHAs using the current framework,

because we believe that clock control is a very natural way of describing how

therapy affects progression, and provides and powerful intuition. Moreover, the

current CHA formulation is concise and (we believe) easier to understand.
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Initialization and discretized control A problem with the above transla-

tion is that the translated CHA does not satisfy an important property that the

positive results from [67] rely on: initialization or constant reset. Initialization

states that whenever the speed of a clock changes after a transition, the value of

the variable is reinitialized to a fixed value (or a value in a fixed interval). This

property cannot be relaxed without making the control problem undecidable

[66]. Thus, the results of Henzinger et al. do not apply.

To see why initialization is not satisfied, recall that the clock values (indicating

progression time) are kept along controllable (change of cocktail) transitions while

changing the rates of the clock, for example, when starting Avastin administration

at a state SSG2 (or, making a controlled move from (SSG2, ;), to (SSG2,

{Avastin})).

Luckily, there is a rather simple way around the undecidability of the control

problem for rectangular hybrid automata that do not satisfy initialization. It

is achieved by allowing for control moves only at discrete instants of time.

Henzinger and Kopke [65] give an exponential-time algorithm for discrete-time

safety control of rectangular hybrid automata with bounded and non-decreasing

variables. They also show the problem to be EXPTIME-hard and discrete-time

verification of rectangular hybrid automata to be solvable in PSPACE.

Even though our definition of timed CHAs does not require clocks to be

bounded, such a restriction would not impose a severe limitation. By bounding

the clocks by some value that even the healthiest patient will never reach, we

can thus aim for decidability without forfeiting any meaningful therapy. We

let m denote this upper bound on the clocks. The algorithms from [65] do not

directly apply to CHAs as their framework requires all discrete transitions to

be controllable, whereas our cancer progression transitions are uncontrollable.

However, they can be extended to include our framework via the following
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theorem.

Theorem 15 (Discrete control of bounded CHAs). The controller synthesis

problem of bounded discretized CHAs for CTL formulas can be solved in EXP-

TIME.

The proof of this theorem can be found in Appendix A.3. The (bisimilarity

quotient of the) translated discretized automaton used to prove this result has

at most (|V |⇥ 2

|D|
)⇥ (2m+ 2)

(n+1) states, where |V | is the size of the original

state space, |D| is the total number of drugs, m is the bound on the clocks, and

n is the number of clocks.

The controller synthesis problem is also EXPTIME-hard. This result follows

immediately from the fact that for simple discrete event systems the controller

synthesis problem for CTL goals is shown to be EXPTIME-complete [79].

Automatic therapy design Using the construction from the above result,

therapies can be automatically generated as follows. Given a timed CHA H and

a therapeutic goal � specified using CTL, a therapy can be generated such that

the controlled CHA H satisfies �, by the following two steps:

1. Translate H into a discretized hybrid game (using the construction of

Theorem 15).

2. Use existing controller synthesis algorithms for discrete event systems,

such as the one developed in [78], on the resulting (bisimilarity quotient

of) discrete automaton to generate a therapy for � (or show that this is

impossible).

It should be noted that even though the problem of automatic therapy design

is solvable, it is very complex: both the translation and discretization steps

lead to state explosion, and even for discrete event systems controller synthesis
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problems are EXPTIME complete. For example, for our simple sample timed

CHA from Figure 1.2 with one drug, two clocks and (for example) a clock bound

of 10 the translation would give rise to a discrete automaton with thousands of

states.

However, we believe that at this point the complexity should not pose an

actual problem for the applicability of automatic therapy design. Partly, this is

because current progression models are small and require few and granular clocks.

Also, the control algorithm is not required to work very quickly or ‘on-the-fly’,

but rather therapies can be computed using powerful computational machines,

and may take a while.

Finally, it should be noted that Theorem 15 extends to partially observable

CHAs as well.

Theorem 16 (Discrete control of bounded CHAs). The controller synthesis

problem of bounded discretized CHAs with partial observability for epistemic

CTL formulas can be solved in EXPTIME.

The proof uses standard subset-based techniques such as the one in [27]

common in epsitemic logic and is omitted. Basically, a new state is created for

every set of states in the discretized hybrid automata that are indistinguishable

to the therapist. This construction leads to another state explosion, exponential

in the number of states of the discretized CHA. In this translation, tests are

treated as actions, and are the only way observations can be obtained.
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Chapter 3

CNV Data Analysis and

Driver Gene Detection

Up to now, we have developed a formal model to describe cancer progression, and

we have shown how, given a progression model, therapies can be automatically

generated. The second part of this thesis revolves around a specific, perhaps

more fundamental, problem of extracting progression models from available

patient data.

With the initiation of the The Cancer Genome Atlas (TCGA) project1, a lot

of precise genetic information has been collected from tumor cells from many

different patients with different kinds of cancers. However, this information

is usually obtained only at one (or a few) points in time, and there is not a

lot of (direct) dynamic data about the cancer’s progression. The main reason

underlying this situation is that obtaining timed data over the course of the

disease is expensive compared to collecting data from the current pool of patients,

which is thus much less common. It is thus an important challenge to extract

1
http://cancergenome.nih.gov/

75

http://cancergenome.nih.gov/
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this dynamic information from the available static data.

A first step towards cancer progression extraction is finding which genes are

driving cancer progression, the so-called ‘driver genes’.

In the next section, we provide genetic evidence that CNV segment lengths

are not exponentially distributed, but most likely power-law distributed instead.

Based on this evidence, many tools that are used to analyze this type of data can

be improved. In this chapter, we focus on one such statistical method developed

in [76] for finding the driver genes through more accurate statistical null-models

in Section 3.2.

Using these selected driver genes, we will develop (and test) algorithms to

extract cancer progression models from static data in Chapter 4 . Most of the

ideas and results presented in this chapter are presented in [97].

3.1 Copy Number Variation data: improved null

model

One type of genomic cancer-patient data that has become commonly available is

Copy Number Variation (CNV) data. Recall that CNV is structural variation

in which relatively large regions of the genome are either amplified or deleted,

leading to gain-of-function or loss-of-function of the genes contained in the

affected regions.

CNV data consists of copy-number values of thousands of markers corre-

sponding to different locations in the genome. To reduce the noise in this data,

sets of neighboring markers are often combined resulting in contiguous segments

of equal copy number, classified into normal, amplified, or deleted segments.

Examples of such tools, usually called ‘segmenters,’ include GLAD [73], CBS

[98], and a method developed by Mishra’s group [36]. The abnormal segments
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correspond to duplication or deletion events and are used as input data to identify

regions containing genes that are relevant for the development of cancer. (e.g.,

methods described in [76, 15]).

The underlying process generating these CNV segments is generally assumed

to be memory-less, giving rise to an exponential distribution of segment lengths.

In this chapter, we provide evidence from cancer patient data, which suggests

that this generative model is too simplistic, and that segment lengths follow a

power-law distribution instead . We conjecture a simple preferential attachment

generative model that provides the basis for the observed power-law distribution.

From a thorough understanding of the statistical properties of genomic copy-

number data in cancer, one expects to discover (either directly or indirectly)

improved oncogenomics features, using statistical inference tools which build upon

more accurate null-models (examples of these tools include [73, 98, 36, 76, 15]).

In Section 3.2, we provide one such improved estimator to an existing statistical

method (due to Ionita et al. [76]) for detecting genetic regions relevant to cancer,

which we achieve by incorporating the power-law distribution in the null. We

use it to analyze three TCGA CNV data sets.

3.1.1 Evidence and fitting

We analyzed three CNV data sets from The Cancer Genome Atlas (TCGA):

Lung Squamous Cell Carcinoma (LUSC 201 patients), Glioblastoma (GBM 299

patients), and Ovarian Serous Cystadenocarcinoma (OV 337 patients)2. The

level 2 data was segmented using the segmentation algorithm of Daruwala et

al. [36] and the empirical segment-length distributions of amplifications and

deletions were fit to both power-law (cx�↵) and exponential (ce��x) distributions.

Figure 3.1 shows the segment length distribution and fitted functions for the

2
http://cancergenome.nih.gov/ The datasets used are: LUSC HMS_HG-CGH-

415K_G4124A, GBM HMS_HG-CGH-244A, and OV HMS_HG-CGH-415K_G4124A.

http://cancergenome.nih.gov/
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deleted segments of the OV dataset, and Table 3.1 lists the numerical values of

all fits, as well as their R2 goodness of fit. Plots for the remaining data sets can

be found in figure B.1 of Appendix B.1.

Figure 3.1: Segment length distribution and fitted functions of deleted segments
from the OV dataset. The best power-law fit is shown on the left and the best
exponential fit on the right. See Appendix B.1 Figure B.1 for the images showing
the fits for all other data sets.

best exponential fit best power-law fit
function R2 function R2

LUSC Amp e�0.014x 0.65 x�1.27 0.86
LUSC Del e�0.008x 0.45 x�0.89 0.79
OV Amp e�0.014x 0.67 x�1.39 0.91
OV Del e�0.013x 0.64 x�1.30 0.91
GBM Amp e�0.015x 0.39 x�1.01 0.71
GBM Del e�0.012x 0.60 x�1.20 0.78

Table 3.1: for three TCGA data sets: LUSC, OV, and GBM.

To determine threshold values for amplifications and deletions, we suitably

modify the method described in [75], which implies that a segment is treated as

an amplification (or resp. a deletion) if its value greater (or reps. smaller) than

the mean plus (or resp. minus) twice the standard distribution (AV G± 2STD).

The fit was estimated by collecting all the segment-lengths of segments above the

amplification threshold value or below the deletion threshold value and taking a

histogram of the segment lengths. To make the fit particularly sensitive to the

tail of the distribution, we chose to fit the log of the data against the log of the

exponential and power-law distributions.



3.1. CNV DATA: IMPROVED NULL MODEL 79

As shown in Table 3.1, in all three datasets, the power-law fits the segment-

length distributions better than the exponential one.

Several remarks about this result are due at this point. First, the remaining

segments that are not considered amplifications or deletions (the ‘Normals’), are

not clearly power-law (nor exponentially) distributed (see Appendix B.1 Table

B.1 for the actual fits, and Figure B.2 for an illustrative figure). The power-law

distribution only appears to fit segments above (or below) a certain threshold.

In Appendix B.1, we provide some analysis of the fits relative to a selected

threshold. Second, taking the logarithm of the data is a way to magnify the

difference between the power-law and exponential fit, which occurs mostly in the

tail. It should be noted, however, that it does not affect the relative goodness

of the exponential and power-law fit, as can be verified by the results listed in

Table B.3 in Appendix B.1.

Also, it should be remarked that the segmenter that was used to reduce noise

in the data uses a non-informative prior, consistent with the assumption of an

exponential distribution of segment-lengths [36]. Thus, the result presented here

cannot be an artifact of the segmenter. To the contrary, the fact that we observe

this distribution despite its use is quite striking, and we expect that if the null

model of this method is improved, the results would be even more apparent (see

Section 3.3, for some more discussions and other suggestions for future work).

3.1.2 Generative model

The observed power-law distributions for amplifications and deletions can be

explained by a mechanism of preferential attachment. That is, once a region

has large aberrations, it is more likely to acquire even more numerous large

aberrations. One straightforward reason that could underlie this mechanism is

that large amplifications or deletions lead to genomic instability and hence allow
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for subsequent large copy number aberrations.

3.2 Improving tools through more accurate sta-

tistical null-models

Most of the tools that are developed to analyze genomic data assume a non-

informative exponential null-model for segment length distribution (e.g., seg-

menters [36] and tools for detecting cancer genes [76]). Knowledge of the fact

that segment lengths are not exponentially distributed allows us to improve our

null models and hence our tools. This resulting prior is especially important

when there is not sufficient data available to accurately predict null-models from

the data. In the next section we show how an existing tool for detecting cancer

genes can be improved.

3.2.1 Statistical method for detecting cancer genes

In this section we adopt a method described in [76] for finding cancer driver

genes from copy number variation data by building upon the assumption that

segment lengths are power-law distributed.

Cancer genes are generally divided into two types: tumor suppressor genes

(TSGs) and oncogenes (OGs). TSGs prevent tumor development by regulating

cell growth. A loss or reduction in its function (for example by a deletion), can

lead to uncontrolled cell division and allows the cancer to progress. Oncogenes, on

the other hand, are genes whose function promote proliferation. Gain-of-function

mutations (like amplifications), or overexpression, promote tumor progression. In

the case of TSGs a deletion of a part of the gene will cause a loss-of function, while

for OGs the gene needs to be amplified as a whole to cause a gain-of-function.

The algorithm for finding TSGs and OGs enumerates all possible intervals
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and assigns to them a score function that measures the likelihood of this being a

driver gene. This score function can be described as follows:

For any interval I the strength of the association between deletions in I or

amplifications of I and the disease is quantified by analyzing the genomic data for

many individuals with a specific type of cancer. For this purpose, a metric called

Relative Risk (RR event I ) assigns a numerical value to any event, a deletion or

amplification of an interval, which thus compares the probability of the disease

occurring with or without the event. Informally, RR event I measures the degree

to which the occurrence of event I raises the probability of the disease incidence.

Probability raising is an important ingredient of probabilistic causality developed

by Suppes in [107]. In Chapter 4 we will develop a progression extraction method

based on this notion, and we will examine its properties in great detail.

Formally, RR event I is defined as follows:

RR event I = ln P( disease | event I )
P ( disease | NOT event I )

= ln
h

P( event I | disease )
P( NOT event I | disease ) ⇥ P( NOT event I )

P( event I )

i

= ln
h

P( event I | disease )
P( NOT event I | disease )

i

+

n

�ln
h

P( event I )
P( NOT event I )

io

, (1)

where, in case of a deletion, “event I” denotes the event that at least part of I is

deleted. We call this event ‘I lost’. In case of an amplification “event I” denotes

the event that there exists an amplified interval that fully includes I. We call

this event ‘I gained’.

The first term in equation (1) can be computed from the available tumor

samples:
P( event I | disease )

P( NOT event I | disease )

=

n event I

n NOT event I
,

where n event I (or n NOT event I ) is the number of patients in whose tumor

genomes the event I occurs (or does not occur). Note that becasue of the

intrinsic differences between TSGs and OGs in case of deletions, the longer the
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segment the larger n event I

n NOT event I
whereas in case of amplifications the situation is

reversed: longer segments have smaller n event I

n NOT event I
. This imbalance is corrected

for by the second part of (1),

�ln

 P( event I )

P( NOT event I )

�

,

which incorporates prior information inherent in the statistical distribution of

amplifications and deletions.

To compute the prior score, we assume that, at any genomic location, a

breakpoint (starting point) may occur as a Poisson process at a rate of µ � 0.

We consider two different µ’s: one for amplifications µAMP and the other for

deletions µDEL, but we drop the subscript when no confusion arises. Segments

are modeled as vectors. Starting at a breakpoint and moving left (or right)

with probability 1
2 . The length t of each segment is distributed according to

a power-law distribution: t�↵, with 1  ↵  2. Let ✏ be the constant that

represents the shortest length an interval could possibly have.

Given these assumptions we can derive the prior probability that an interval

I is amplified or deleted.

Proposition 16.1. Assuming that segment lengths are power-law distributed :

1. The probability that an interval I = [a, b] is lost is as follows:

P([a, b] lost) = 1� e�µ(b�a)⇥
e
�µ ✏↵�1

2

h
a2�↵�✏2�↵

2�↵

i

⇥

e
�µ ✏↵�1

2


(G�b)2�↵�✏2�↵

2�↵

�

;
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2. The probability that an interval I = [a, b] is gained is as follows:

P([a, b] gained) = 1� e�µ ✏↵�1

2

h

b2�↵�(b�a+✏)2�↵

2�↵

i

⇥

e
�µ ✏↵�1

2


(G�a)2�↵�(b�a+✏)2�↵

2�↵

�

;

where [0, G] represents the region of interest (e.g. a chromosome) and [a, b] is

an interval within this region. It is assumed that ✏⌧ G.

⇤

The proof of this proposition can be found in Appendix 16.1.

The parameter ↵ can be estimated from the data as described in Section

3.1.1. The values of the µDEL and µAMP parameters are the mean number of

amplifications and deletions per unit length respectively and can be computed

directly from the segmented data as well.

The constant ✏ can take any value. If we assume the value of ✏ is 1 unit

(corresponding to a single probe in microarray data or a single base in sequencing

data) the probability that a segment is lost approaches:

P([a, b] lost) = 1� e�µ(b�a)⇥
e
�µ 1

2

h
a2�↵

2�↵

i

⇥

e
�µ 1

2


(G�b)2�↵

2�↵

�

;

Similarly for amplifications:

P([a, b] gained) = 1� e�µ 1
2

h

b2�↵�(b�a)2�↵

2�↵

i

⇥

e
�µ 1

2


(G�a)2�↵�(b�a)2�↵

2�↵

�

.

The RR score can be used to estimate the location of tumor suppressor genes

and oncogenes. The simplest algorithm first computes the score for all intervals

with value in a range determined by lower and upper bounds, and then picks
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the highest scoring interval on each chromosome. Many other algorithms can be

imagined. For example, one can use two scoring functions to compute the left

and right boundaries of the interval separately. The final step of the algorithm

is significance testing of the obtained intervals. The methods as described in [76]

for tumor suppressor genes, and in [75] for oncogenes can be directly applied.

Both methods assign a p-value for every putative TSG or oncogene using tools

from scan statistics [115].

We have implemented the algorithm by computing the RR score for each

interval while keeping track of the highest scoring interval. Because each interval

needs to be visited only once the time complexity is linear in the number of

intervals.

Instead of finding only the interval with maximum score on each chromosome

we can let the algorithm pick higher scoring intervals. One straightforward way

is to pick the n non-overlapping significantly amplified/deleted intervals with

the highest score, by keeping track of a list of results while going through the

set of all intervals. One shortcoming of this method if that if we want to go

through the list of intervals only once (or a linear number of times), the order in

which the intervals are scored and stored may influence the result. More refined

methods, that optimize total score and/or use multiple hypothesis testing, can

be imagined.

3.2.2 Performance comparison

To be able to test the influence of the improved null model, we have applied

the previously described algorithm with both the original exponential and the

power-law null models to the three TCGA datasets: OV, LUSC and GMB.

To compare the two models we asked which of the commonly amplified or

deleted genes in the three cancer types were found by the respective algorithms.
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The results are summarized in table 3.2. Consistent with our expectation, the

power-law based model performs (slightly) better than the exponential model.

Cancer Gene Power-law Exponential
OV BRCA1 no no

BRCA2 no no
ERBB2 no no
K-ras yes yes
AKT2 no no
PIK3CA no no
c-MYC next no
p53 no no

LUSC SOX2 no no
PDGFRA no no
FGFR1 yes no
WHSC1L1 next no
CDKN2A yes yes

GBM EGFR next next
MDM2 no no
PDGFR no no
CDK4 no no
Rb no no
CDKN2A yes yes

Table 3.2: List of genes that are commonly altered in OV, LUSC and GBM cancer
cells, and whether or not they were found by the power-law and exponential
methods using the three highest scoring non-overlapping intervals. A more
detailed version of this table can be found in Table B.6 in Appendix B.3.

Note that despite the (slightly) better performance of the algorithm with the

power-law null model over the exponential model, the difference between the two

performances is comparable and both algorithms appear to miss many cancer

genes. These false negatives are indicative of the inadequacy of both genomic

resolution in the data and sample sizes, currently available. Both methods can

be further improved by including additional information (e.g., gene-ontologies,

gene-networks or pathways). In such settings, as well as when regions for many

more genes are checked, the contribution from more accurate null model is

expected to be more pronounced.

We offer several explanations for the missing genes. For example, the al-
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gorithm only picks out a few (in this case three) high scoring intervals per

chromosome. Often, these intervals are in the same region close to a single

gene, which causes other regions of interest to be overlooked. For example, in

the OV dataset, all three deleted intervals that were found on chromosome 17

were close to (but not exactly overlapping with) BRCA1. It became therefore

impossible to find P53, which also lies on chromosome 17, as well. This problem

can be resolved by adopting more sophisticated statistical methods for selecting

high-scoring intervals.

In addition, regions either right next to actual genes or close to the centromere

were often identified as likely cancer genes. We expect this type of error to

disappear as methods for CNV data collection become more precise. In the next

section, we briefly mention several other possible ways to improve the method

for finding driver genes.

3.3 Conclusion

In this chapter, we have provided evidence suggesting that the segment lengths

of CNV amplifications and deletions in cancer cells follow a power-law distribu-

tion instead of the commonly assumed exponential distribution. This evidence

suggests a generative mechanism of preferential attachment: many long amplifi-

cations and deletions lead to even more long amplifications and deletions. Even

though our data analysis rules out exponentially distributed segment lengths,

and the evidence for power-law distribution is compelling, other distributions

(such as log-normal or stretched exponential, see Table B.4 in Appendix B.1)

cannot be completely excluded on the basis of this evidence.

Especially in cases where only a small sample of data is available to estimate

the prior distribution from the data, knowledge about the statistics of CNV data

allows us to improve our analytic tools. As an example, we have demonstrated
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how the technique for finding cancer driver genes described in [76] can be modified

to incorporate the power-law distribution and, as our preliminary results indicate,

how the power-law-based scan-statistics algorithm outperforms the exponential

one. Once inferred, the set of cancer driver genes can be used as input to

cancer progression extraction algorithms to derive progression models from static

cancer patient data (see e.g., [39, 40, 55, 54]), leading to improved diagnostics,

prognostics, and targeted therapies.

The tool to find cancer driver genes can be further improved in several ways.

For example, we will need to incorporate a preferential attachment model to the

segmenter that analyzes the genomic data from each cell-type; use more accurate

priors of the distribution of breakpoints that are known to occur in different cell-

types; apply more sophisticated statistical tools for picking high-scoring intervals

by incorporating prior biological knowledge; and include such information (i.e.,

how pathways affect the cell-states) in combination with precise correction for

multiple hypothesis testing in order to make the final results more meaningful.

In the next chapter we will build progression models, or CHAs, form the

output of driver gene detection algorithms as the one discussed in this chapter.

Given a set of states (such as mutated genes, or hallmarks), we will aim to

answer questions such as what are the likely orders in which these states occur,

and whether more can be inferred about the causality governing them.
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Chapter 4

Progression Extraction

We have arrived at the final chapter of this thesis, where we extract progression

models from cross-sectional data.

As we have mentioned before, a lot of precise and comprehensive genetic

information has been collected in the last couple of decades from tumor samples,

and sets of specific ‘driver events’ (e.g., genetic mutations, CNVs, expression

profiles, hallmarks, etc.) have been identified that drive each cancer’s progression,

using a variety of methods (the method described in Chapter 3 being one of

them. Another well-known method using CNV data is [15]).

However, despite this flood of information, relatively little is known about

the dynamics of cancer progression and the order in which these driving events

are likely to occur. The main reason for this situation is that information is

usually obtained only at one (or a few) points in time, rather than over the

course of the disease. Because obtaining precise timed information from patient

data still lies far ahead in the future, it is an important challenge to extract this

dynamic information from the available static data.

In this chapter, we propose a method to extract progression trees and forests

89
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using mathematical notions of probabilistic causality. Using synthetic data we

show how this method outperforms an existing tree reconstruction algorithm.

The problem of reconstructing progression models from cross-sectional patient

data is not a new one, and several progression extraction methods have been

proposed. Most notable among them, for our discussion, is the seminal paper by

Desper et al. in which they developed a tree reconstruction algorithm, called

‘oncotrees’ [39]. In their framework, which we will discuss in detail in Section

4.2, nodes represent amplified or deleted driver genes, and edges correspond to

possible progressions from one genetic event to the next. The choice of which

edges to include in a branching tree is based on a functional that assigns a weight

wa,b to each pair of events a, b based on how often each event occurs, and how

often they occur together in the same tumor – thus measuring correlation. The

oncotree is constructed as the rooted tree whose total weight (sum of all the

weights of the edges) is maximized. The oncotree method has been used to

derive progression trees for various types of cancers such as breast cancer [83],

head and neck carcinoma [72] and melanoma [102].

In this chapter we present a new tree reconstruction algorithm that improves

upon Desper’s algorithm. In Section 4.1 and Section 4.2 we formally introduce

the problem and the method introduced by Desper et al. In Section 4.3 we

will discuss our main tool, namely probabilistic causality and probability raising

in particular. We show several theoretical results regarding this notion, the

most unexpected one being Proposition 18.1, which connects probability raising

between two events with the relative frequency of their occurrence. In Section 4.4

we present the reconstruction technique, and in Section 4.5 we compare our

method against Desper’s method, using both simulated and synthetic data,

concluding that our method outperforms Desper’s one. In Section 4.6 we discuss

and implement several techniques to increase robustness against noise. Finally,
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in Section 4.7 we connect our progression extraction algorithm back to CHAs,

and we discuss how our algorithm can be extended to reconstruct complete

CHAs including some of the missing CHA parameters such as timing and the

effects of drugs.

Many of the ideas and results presented in this chapter are presented in [96].

4.1 The problem

The set-up of the extraction problem may be described as follows. Assuming

that we have a set G of n events (tumor genes, CNVs, etc.) and m samples,

we represent a dataset as a m ⇥ n boolean matrix. In this matrix, an entry

(k, l) = 1 if the event l was observed in sample k, and 0 otherwise. The problem

we aim to solve in this chapter is that of trying to extract a progression tree

(G,E) structure from this matrix. More precisely, we aim to reconstruct proper

rooted trees that satisfy the basic requirements: (i) each node has at most one

incoming edge, (ii) there is no incoming edge to the root, and finally (iii) there

are no cycles. The root of the tree can be modeled using a special node, not

included in the set of samples. In this case, the root is used to connect several

disconnected components, in which event the reconstruction problem generalizes

to that of reconstructing forests.

We assume that each progression tree labeled with ↵(e), denoting the proba-

bility of each edge, generates a distribution where the probability of observing a

sample with set of alterations G⇤ ✓ G is

Y

e2E0

↵(e) ·
Y

(u,v)2E
u2G⇤,v 62G

h

1� ↵(u, v)
i

,

where E0 ✓ E is the set of edges connecting the root, denoted ⇧ to the events in
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G⇤. 1

4.2 Oncotrees

In [39, 40] Desper et al. developed an algorithm to extract progression trees,

called ‘oncotrees’, from static CNV data. In these trees nodes represent amplified

or deleted driver genes, and edges correspond to possible progressions from one

CNV event to the next. The problem is exactly as described above, and each

tree is rooted in the special root ⇧, not among the set of events.

The choice of which edges to include in a tree is based on a functional that

assigns a weight wa,b to each pair of events a, b based on how often each event

occurs, and how often they occur together in the same tumor – thus measuring

correlation. Formally, the weight functional is defined as follows:

wa,b = log

 P(a)

P(a) + P(b)
· P(a, b)

P(a)P(b)

�

. (4.1)

Weights also include the fake root ⇧, added to each sample of the dataset.

In this definition the rightmost term is the (symmetric) likelihood ratio for a

and b occurring together. The leftmost term guarantees asymmetry and reflects

temporal priority, measured by rate of occurrence. That is, if a occurs more

often than b, then it likely occurs earlier, and the inequality

P(a)

P(a) + P(b)
>

P(b)

P(a) + P(b)

holds.

The oncotree tree is constructed as the rooted tree whose total weight (sum

1Note that in this chapter we assume that edges are independent events. This implies
that at a state in the progression with two outgoing edges, it is possible to acquire either
one of the successors next, or both. In CHA models, on the contrary, each unit can progress
along one progression path at a time. We will come back to this difference in greater detail in
Section 4.7.1, where we also suggest how to consolidate this difference in future work.
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of all the weights of the edges) is maximized. If n is the total number of genetic

events, the optimal tree is reconstructed in O(n2
) steps using Edmond’s seminal

result [42].

By construction, the resulting graph is a proper tree rooted in ⇧, such that

each event occurs only once in the oncotree, and confluences are absent, i.e. any

event is caused by at most one other event.

The oncotree method has been used to derive progression trees for various

cancer data sets (e.g.,[83, 72, 102]), and even though several extensions of

the method exist that derive different graph models, to this day, it is the

only reconstruction method that reconstructs trees and forests as described in

Section 4.1.

4.3 Probabilistic causality

We will develop our reconstruction algorithm based on precise notion of proba-

bilistic causality. But, before we present this method, we review the notion of

probabilistic causality and its properties in a bit more detail.

In his seminal work [107], Suppes proposed a notion of causality which can be

summarized as follows. For any two events c and e, under the mild assumptions

that 0 < P(c),P(e) < 1, the event c causes e if

(i) the cause happens before the effect:

(tp) tc < te , (4.2)

where tc (resp. te) is the time at which c (resp. e) happens. tpis commonly

referred to as temporal priority property for causality,



94 CHAPTER 4. PROGRESSION EXTRACTION

(ii) the cause raises the probability of the effect:

(pr) P(e | c) > P(e | c) , (4.3)

pr is commonly referred to as the probability raising property of causality.

The following is an important property underlying pr.

Property 17 (Dependency). Whenever the pr holds between a and b, then the

events are statistically dependent in a positive sense, that is

P(b | a) > P(b | a) , P(a, b) > P(a)P(b) . (4.4)

This property, as well as Property 18, is a well-known fact of probability

raising, and its derivation is straightforward. For a good discussion of probabilistic

causality, including probability raising, its properties and its problems we refer

to [70].

We would like to use pr criteria to discriminate whether there exist a causality

relation between two events a and b, and when a should be placed ahead of b in

the progression tree.

Unfortunately, we cannot simply state that a causes b when

[pr a ! b]
P(b | a)
P(b | a) > 1 ,

since pr is known to be symmetric in the following sense:

Property 18 (Mutual pr). P(b | a) > P(b | a) , P(a | b) > P(a | b).

That is, if a raises the probability of b, then b raises the probability of a as

well.

Instead, to determine causes and effects among the genetic events, we can

use degree of probability raising to decide the direction of causality between two
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events. That is, if a raises the probability of b more than the other way around,

then a is a more likely cause of b than b of a. It turns out that indeed, pr is

not fully symmetric, and the direction of probability raising depends on the

relative frequencies of events. We make this asymmetry precise in the following

proposition.

Proposition 18.1 (Probability raising and probabilities). For any two events

a and b such that the probability raising P(a | b) > P(a | b) holds, we have

P(a) > P(b) () P(b | a)
P(b | a) >

P(a | b)
P(a | b) .

That is, given that probability raising holds between two events, a raises

the probability of b more than b raises the probability of a, if and only if a

occurs more frequently than b. The proof of this proposition is not completely

straightforward and can be found in Appendix C (as well as other results in this

chapter). From this result it follows that if we measure the timing of an event

by the rate of its occurrence (that is, P(a) > P(b) implies that a happens before

b), then this notion of pr subsumes the same notion of temporal priority found

in trees, analogue to Desper’s method.

Given this result, we can define pr a ! b as follows: we state that a causes

b whenever

[pr’ a ! b] P(b | a) > P(b | a) and P(a) > P(b) ,

That is, a causes b if a raises the probability of b, and a occurs more frequently

than b. We will use this notion of pr to determine causality relation to extract

progression trees in the following section.
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Algorithm 1 Tree-like reconstruction with probability raising
1: consider a set of genetic events G = {g1, . . . , gn} plus a fake event ⇧, added

to each sample of the dataset;
2: define a n⇥ n matrix M where each entry contains

mi,j =
P(j | i)� P(j | i)
P(j | i) + P(j | i)

according to the observed probability of i and j;
3: [pr causality] define a tree T = (G [ {⇧}, E, ⇧) where (i, j) 2 E for i, j 2 G

if and only if:

P(j | i)
P(j | i) > 1 and mi,j � mj,i and 8i0 2 G.mi,j > mi0,j .

4: [Correlation filter] define Gj = {gi | P(i) > P(j)}, replace edge (i, j) with
edge (⇧, j) if, for all gw 2 Gj , it holds

1

1 + P(j)
>

P(w)

P(w) + P(j)

P(w, j)

P(w)P(j)
.

4.4 Using causality to derive progression trees

Our reconstruction method is described in Algorithm 1. The algorithm is

very similar in spirit to Desper’s algorithm, with the main difference being an

alternative weight functional based on probability raising. We define the weight

as follows

ma,b =
P(b | a)� P(b | a)
P(b | a) + P(b | a) .

and we include an edge (a, b) in the tree if 1) a raises the probability of b, 2)

ma,b > mb,a, and 3) compared to all other possible incoming edges of b, a raises

the probability of b the most. In the algorithm, we use a normalized version of

the pr ratio to gain a higher tolerance to samples slightly diverging from the

tree-induced distribution (see also Section 4.6). Notice that the normalization

we used is monotonic with respect to the pr ratio.
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Proposition 18.2 (Monotonic normalization). For any two events a and b we

have
P(b | a)
P(b | a) >

P(a | b)
P(a | b) () mb,a > ma,b .

Also, �1  ma,b  1. When ma,b tends to �1 the events appear disjointly

(anti-causality), when it tends to 0 no causality/anti-causality can be inferred

and when it tends to 1 the causality from a to b is robust.

Along the lines of Desper we augment the set of events with a fake root ⇧
with P(⇧) = 1 to separate trees within the forest. Algorithm 1 initially builds a

single big tree using only the new weight m based on pr criterion. Then, we

connect all the nodes that are sufficiently correlated with it, to the fake root.

More precisely, for any node j, if the correlation of j with the fake root

P(⇧)
P(⇧) + P(j)

P(⇧, j)
P(⇧)P(j)

=

1

1 + P(j)

is larger than its correlation with each elements higher up in the tree (with a

higher probability), then we remove the edge coming into j and add an edge (⇧, j)
to the forest instead. While performing this update, we keep all the children of

j intact.

Note that the weight used to discriminate whether causality is present between

nodes or the fake root ⇧ is the same as Desper’s. The reason for using correlation

in this case, and not probability raising, is that in case of an event (the root)

with probability 1, probability raising is not well-defined. This method allows us

to reconstruct forests consisting of trees rooted in the children of the fake root.

This algorithm reconstructs well-defined trees in the sense that no transitive

connections and no cycles can appear.

Theorem 19 (Algorithm correctness). Algorithm 1 reconstructs a well defined

tree T without disconnected components, transitive connections and cycles.
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The proof of this Proposition follows immediately from Proposition 18.1 and

can be found in Appendix C.

4.5 Performance comparison of both methods

4.5.1 Performance comparison using synthetic data.

To compare our Algorithm 1 with the oncotree approach by Desper, we con-

structed synthetic datasets for various random trees/forests, and applied both

methods to data-sets generated from these trees. The trees reconstructed by

both methods are compared to the original trees, and the differences between

the trees provide a measure of the respective quality of the algorithms.

Because widely branching trees are harder to reconstruct than slim trees,

we chose to generate trees that are logarithmic in depth (with respect to the

number of genetic events considered), thus representing a hard test-case for both

reconstruction algorithms.

Both the algorithms are run on the same synthetic datasets consisting of 250

random trees/forests (20 genes for each tree/forest), and 50/100/150/200/250

samples for each topology. Also, for each of these configuration we generate 25

different datasets and average the performance results. The performance of each

algorithm is measured by adopting the well-known Tree Edit Distance (TED,

[118]). Intuitively, the TED is defined as the minimum-cost sequence of node

edit operations that transform one tree into another.2 We evaluated the TED

between the reconstructed tree and the tree/forest used to generate the data,

the lower the distance the better is the reconstructed tree. In Figure ?? (left) we

show the result on data generated by a single tree, and in (right) we generalize

it to forests.

2Three operations are allowed: relabeling a node, deleting a node, and inserting a node.
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Figure 4.1: Tree-alike reconstruction: comparison on synthetic data.
Performance of both our (blue line) and the Desper’s correlation based (red line)
algorithms measure by the average Tree Edit Distance between the reconstructed
tree and the tree (left)/forest (right) used to generate the data. A lower valued
TED indicates a better performance. We used synthetic datasets consisting of
250 random trees/forests (20 genes for each tree/forest) and 50/100/150/200/250
samples for each topology. For each configuration 25 different datasets are
generated.

We observe that for our Algorithm 1 TED is, on average, lower than that of

Desper’s algorithm, indicating that our algorithm outperforms the correlation-

based technique. On trees, Algorithm 1 has an average TED of almost 7 based

on a reconstruction from 50 samples, while the correlation-based approach has

an average TED of almost 13; Algorithm 1 improves significantly when the size

of the dataset increases, as the TED drops down to 0 for 250 samples, while it

remains at a high level of almost 6 for Desper’s approach. Our algorithm performs

worse on forests, but it still performs much better than just the correlation based

approach. These results suggest that the pr approach is more suitable to infer

causality relation.

4.5.2 Performance comparison on real data

The results in the previous section indicate that our method outperforms Desper’s

Oncotree algorithm. In this section, we investigate whether and how these

theoretical differences affect progression extraction when real cancer patient



100 CHAPTER 4. PROGRESSION EXTRACTION

⇧

8q+

3q+ 4q�

5q�

8p�

1q+

Xp�

⇧

8q+

3q+
4q�

5q�

8p�

1q+

Xp�

Correlation

Probability raising

0.64
0.42

0.3

0.7 0.89 0.83

0.83

0.64
0.42

0.3

0.5 0.6 0.5

0.5

correlation

filter

PR

causality

Figure 4.2: Tree-like reconstruction of ovarian cancer progression. Trees
reconstructed with the correlation-based method by Desper and with Algorithm
1. The set of CGH events considered are gains on 8q, 3q and 1q and losses on
5q, 4q, 8p and Xp. Events on chromosomes arms containing the key genes for
ovarian cancer are in bolded circles. In the left tree all edge weights are the
observed probabilities of events. In the right the full edges are the causality
inferred with the pr and the weights represent the normalized coefficients of
Algorithm 1. Weights on dashed lines are as in the left tree.

datasets are analyzed.

To test our reconstruction approach on a real dataset we applied it to the

ovarian cancer dataset made available within the oncotree package from [39].

The data is collected through the public platform SKY/M-FISH [85], used to

allow investigators to share and compare molecular cytogenetic data. The data is

obtained by using the Comparative Genomic Hybridization technique (CGH) on

samples from papillary serous cystadenocarcinoma of the ovary. This technique

uses fluorescent staining to detect CNV data at the resolution of chromosome

arms. Presently this kind of analysis can be done at a higher resolution, making

this dataset rather outdated. Nevertheless, it can still serve as a perfectly good

test-case for our approach. The seven most commonly occurring events are

selected from the 87 samples, and the set of events are the following gains and

losses on chromosomes arms G = {8q+, 3q+, 1q+, 5q�, 4q�, 8p�, Xp�} (where

e.g., 4q� denotes a deletion of the q arm of the 4

th chromosome).
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Desper’s algorithm (overall confidence 8.3%)
! 8q+ 3q+ 5q� 4q� 8p� 1q+ Xp�
⇧ .99 .06 .51 .22 .004 .8 .06

8q+ 0 .092 .08 0.16 0.4 .02 .007
3q+ .002 0 .04 0 0 .09 .04
5q� .001 .002 0 .52 .39 .009 .16
4q� 0 0 .27 0 .14 .05 .11
8p� 0 0 .07 .08 0 .004 .59
1q+ 0 0 0 .004 0 0 0

Xp� 0 0 .003 .003 .04 .01 0

Algorithm 1 (overall confidence 8.6%)
! 8q+ 3q+ 5q� 4q� 8p� 1q+ Xp�
⇧ .99 .06 .51 .22 .004 .8 .06

8q+ 0 .92 .06 .16 .62 .01 .008
3q+ .002 0 .03 .002 0 .09 .04
5q� .001 .002 0 .5 .26 .009 .17
4q� 0 0 .29 0 .09 .05 .12
8p� 0 0 .07 .08 0 .004 .59
1q+ 0 0 0 .004 0 0 0

Xp� 0 .001 .003 .004 .01 .01 0

Figure 4.3: Estimated confidence for ovarian progression. Frequency of
edge occurrences in the non-parametric bootstrap test, for the trees shown in
Figure 4.2. Colors represent confidence: light gray is < .4%, mid gray is .4%÷.8%
and dark gray is > .8%. Bold entries are the edges recovered by the algorithms.

In Figure 4.2 we compare the trees reconstructed with correlation and pr. 3

The pr approach differs from the correlation-based predicting the causal sequence

of alterations

8q+ ! 8p� ! Xp� .

At this point, we do not have a biological interpretation for this result. However,

we do know that common cancer genes reside in these regions. (i.e.., the tumor

suppressor gene Pdgfr on 5q, and the oncogene Myc on 8q), and loss of

heterozygosity on the short arm of chromosome 8 is very common4. Recently, it

has been reported that this locations contains many cooperating cancer genes 8p

[116].

In order to assign a confidence level to these inferences we applied a both

3This Figure, as well as Figures 4.4 and 4.6 were drawn by Giulio Caravagna, and used
with permission.

4See e.g., http://www.genome.jp/kegg/

http://www.genome.jp/kegg/
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parametric and non-parametric bootstrapping methods to our results [43]. Es-

sentially, this tests consists of using the reconstructed trees (in the parametric

case), or the probability observed in the dataset (in the non-parametric case)

to generate new (synthetic) datasets, and then reconstruct progressions again.

(See e.g., [46] for an overview of these methods). The confidence is given by the

number of times the trees in Figure 4.2 are reconstructed from the generated

data. A similar approach can be used to estimate the confidence of every edge

seperately. For Desper’s algorithm the exact tree is obtained 83 times out of 1000

non-parametric resamples, so its estimated confidence is 8.3%. For our algorithm

the confidence is 8.6%. In the non- parametric case, Desper’s confidence is 17%

while our is much higher: 32%. For the non-parametric case, edges confidence

is shown inTable 4.3. Most notably, our algorithm reconstructs the inference

8q+ ! 8p� with high confidence (confidence 62%, and 26% for 5q� ! 8p�),

while the confidence of the edge 8q+ ! 5q� is only 39%, almost the same as

8p� ! 8q+ (confidence 40%).

Analysis of other datasets We report differences between the reconstructed

trees also based on datasets of gastrointestinal and oral cancer ([57, 101] respec-

tively). In the case of gastrointestinal stromal cancer, among the 13 CGH events

considered in [57] (gains on 5p, 5q and 8q, losses on 14q, 1p, 15q, 13q, 21q, 22q,

9p, 9q, 10q and 6q), the correlation identifies the path progression

1p� ! 15q� ! 13q� ! 21q�

while probability raising reconstructs the branch

1p� ! 15q� 1p� ! 13q� ! 21q � .
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In the case of oral cancer, among the 12 CGH events considered in [101] (gains

on 8q, 9q, 11q, 20q, 17p, 7p, 5p, 20p and 18p, losses on 3p, 8p and 18q), the

reconstructed trees differ since correlation identifies the path

8q+ ! 20q+ ! 20p+

while probability raising reconstructs the path

3p� ! 7p+ ! 20q+ ! 20p+ .

4.6 Increasing robustness

The results in the previous sections are very promising, and conceptually our

algorithm is very powerful. However, as is shown in figure 4.4, once we introduce

noise is into the system, the performance of our algorithm quickly degrades to

the level of Desper’s correlation based approach. In this section we suggest a

simple adaptation to the algorithm that will increase its robustness to noise.

Noise can be modeled as follows. We introduce a noise parameter 0  ⌫ < 1,

that measures the probability that a measurement is flipped (thus introducing

both false negatives and false positives), such that we have on average |G|⌫ errors

in each sample. Noise is not uncommon in this type of data and can be caused

by experimental/measuring errors as well as the presence of heterogeneity. 5

Intuitively, the reason that noise affects the performance of our algorithm a

lot, is due to the fact that rather than just using correlation, probability raising

includes the probability of an event in the absence of its cause. Because this

probability if rather small, this information is very precise and a slight divergence

5Note that the assumption that noise is uniformly distributed among the events may be
too simplistic: some events may be more robust, or easy to measure then others. In future
work one could model more sophisticated noise distributions.
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Figure 4.4: Tree and forest reconstruction: comparison on synthetic
data in the presence of noise. Specifications are exactly as in Figure 4.1,
with a noise parameter ⌫ 2 [0, 0.2] (discretized with step 0.05).

due to noise can have large effects on the weight functional.

To improve robustness to noise, we introduce correlation into our weight

functional, while keeping the beneficial effects of probability raising. The basic

idea is to combine probability raising with a correlation coefficient resembling a

normalized version of Desper’s weight. The definition is as follows:

mi,j =

P(j | i)� P(j | i)
P(j | i) + P(j | i) +

P(i, j)� P(i)P(j)

P(i, j) + P(i)P(j)

2

.

Note that we include division by a factor of 2 merely to keep our weight

functional between �1 and 1. With the new weight, the resistance to noise of

our reconstruction algorithm improves significantly, as can be seen in Figure 4.6.

Resampling Another possible way of increasing robustness to noise is by

using bootstrapping. Rather than using bootstrapping after the extraction to

determine the confidence of the reconstructed tree as in Section 4.5.2, we can

use bootstrapping to determine the progression model. Instead of extracting the
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Figure 4.5: Tree and forest reconstruction: comparison on synthetic
data with noise correction. Performance of the algorithm with noise correc-
tion. The specifications are as in Figure 4.4. As can be seen from the picture,
the algorithm is much more robust to noise.

tree structure from the whole dataset, we can use a simple resampling method,

and determine the tree based on the outcomes of the sample estimates.

A simple algorithm that uses resampling would be almost exactly as Algorithm

1 but with weights mi,j and probabilities based on the average of N (say, a 1000)

sample datasets obtained by bootstrapping [46]. These weights, and thus the

resulting reconstructed trees, are less affected by small fluctuations due to noise.

A few points should be noted about this method. First, because of the

resampling, the correctness of the algorithm no longer follows from Proposition

18.1. To guarantee the absence of cycles, we have to exclude them explicitly by

requiring that at reconstruction phase, that only nodes with higher (average

or actual) probability are considered as possible causes of each node. Second,

the algorithm just described is the simplest method using resampling. Many

straightforward extensions of this method can be imagined that do not use the

averages of the determined weights alone, but also includes the information from

distributions of the obtained weights. We plan to investigate these extensions in
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future work.

4.7 Back to CHAs

So far we have developed a method that can derive the underlying structure (in

this case a tree or forest) of the progression from patient data. We conclude this

chapter by briefly returning to our CHA models and discussing how close we

have come to extracting CHAs and how some of the missing CHA parameters

such as timing can be extracted from the data as well.

4.7.1 More general topologies

In this chapter, we have introduced basic ideas of how to reconstruct progression

models using notions of causality. We have used trees as our basic topology, but

one might argue that more general topologies are needed to more adequately

describe disease progression. In particular, a major drawback of trees (and forests)

is that they do not allow for one event to have several possible predecessors.

In fact, the CHA models introduced in Chapter 1, are of a more general type

and allow for these confluences, and can be represented as direct acyclic graphs

(DAGs).

The method by Desper et al. has been extended to include different topologies

in various ways: Most notably, mixture models have been developed to include the

possibility of extracting several trees that are accessed with a certain probability

[9], and conjunctive Bayesian networks were developed by Beerenwinkel et al.

[11, 54, 55]. In the latter, constraints (rather than possibilities) on the sequence

of genetic events along the progression are extracted in the form of conjunctive

Bayesian networks using maximum likelihood methods.

In future research we plan to extract more complex models using probability

raising. In particular, we reconstruct direct acyclic graphs. While building on
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ideas presented in this chapter, this method will make use of more sophisticated

statistical methods such as bootstrapping [43] and false discovery rate control

[45] to determine the edges of network. We also plan to make use of common

techniques from probabilistic causality to filter certain edges.

Different types of branchings It should be noted that in this chapter we

assumed that transitions are independent events. That is, imagine a state a in

the progression, with two outgoing edges to states b and c, then it is possible to

acquire b and/or c after a. The type of branching thus reflects the interpretation

of an inclusive or connective (OR). To the contrary, in CHA models, edges

are not assumed to be independent, and each unit (patient, cancer cell, tumor

subclone, etc.) progresses along a single path. That is, the branching represents

an exculsive or connective (XOR). Both type of branchings are valuable for

cancer progression models as they can be used to model different situations. For

example, a strict XOR is necessary in case two events cannot occur together (e.g.,

due to synthetic lethality [81]), and an OR is useful to model independent events,

that may occur individually or together. A similar distinction can be made at

nodes with two incoming edges: it may be that both predecessors are necessary

for the event to occur (AND, this type of confluency is modeled by Beerenwinkel’s

conjunctive boolean networks [11]), or only one of the predecessors is necessary

for the event to occur (OR).

In future work, when we extract DAGs, we plan to make use of common

techniques from probability theory to classify edges, nodes, as well as branching

and confluency points, by assigning them different connectives/logical formulas.

4.7.2 Timing

Timing of progression is of crucial importance to cancer patients, and an impor-

tant parameter of the CHA framework.
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Also, Suppes’ notion of probabilistic causality does not only involve probability

raising, but includes timing as well: The cause happens before the effect: tC < tE .

The algorithm we presented above does respect timing measured by the rate

of occurence of an event (that is, if P(a) > P(b), then a will occur before b in

the tree), but more sophisticated ways of incorporating and extracting timing

information are possible, and will improve the accuracy and applicability of our

CHA models.

As we have already mentioned in Chapter 1, timing parameters can be derived

from longitudinal studies (see e.g., [71]). However, most cancer patient data is

still static in nature (we have precise genetic information of many patients but

at only one point in time). Therefore the problem of determining how long a

transition takes is not an easy one. However, efforts have been made to extract

timing information from clinical data and using stochastic simulations [80, 10].

As more time-course data on the progression of the disease becomes available,

precise measures of timing can be more readily estimated as well.

In this section we will briefly outline several ways of measuring degree

of progression, and timings of transitions, in the absence of explicit timing

information, so that Suppes’ axiom of timing can be incorporated into our

algorithm in a more sophisticated way.

There are several ways in which we can estimate how long a cancer has

been progressing, (and from this information, how long various transitions take).

Given a sample s, a few possible measures of progression timing, ⌧(s) of a sample

are:

• ⌧(s) = (log of) the number of mutations or CNV segments (per MB) in

the sample (as in [74]).

• ⌧(s) = the number of significant aberrations present that are considered

for the progression reconstruction. If we consider n events, progression
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time ranges from 0 (no events), to n (all events).

• ⌧(s) = the stage of the cancer.

• ⌧(s) = the size of the tumor.

• ⌧(s) = determined by DNA methylation patterns [117].

• ⌧(s) = determined by survival data from the the sample.

• ⌧(s) = a combination of 1) number of aberrations, 2) stage, 3) degree of

abberations, actual copy number 4) length of segments 5) existence of ‘fire

storms’[69], 6) methylation patterns [106], 7) survival data. . .

• etcetera

Note that instead of estimating the timing of a sample directly, we can also

estimate the timing of events first, and then the timing of a sample from its

events6. Each of these methods have their own advantages and disadvantages,

and selecting a good measure is not straightforward. However, after a choice

has been made, and once we have a measure for progression of a sample, we can

extend this measure to compare sets of samples.

Given a function ⌧ that assigns to each sample s a ‘time’ ⌧(s), say

⌧(s) = log( number of exonic mutations per MB in s),

the measure used in [74], and two sets S, S0, when does ⌧(S)  ⌧(S0
) hold? Two

possibilities include:

• ⌧(S)  ⌧(S0
) if avg{⌧(s) | s 2 S}  avg{⌧(s0) | s0 2 S0}

• ⌧(S)  ⌧(S0
) if min{⌧(s) | s 2 S}  min{⌧(s0) | s0 2 S0}

6Note that timing of events directly is respected by the algorithm: e.g., the more often an
event occurs in the dataset, the earlier it happens in the tree.
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For each i 2 G, let I denote the set of samples that have event i. Given

that we have defined a notion of timing on a set of samples, we can now include

timing in the definition of our weight, so as to require that Suppes first axiom is

satisfied. For example, if we define

mt
i,j =

8

>

>

<

>

>

:

mi,j if ⌧(I) < ⌧(J)

0 otherwise
,

then the resulting tree based on Algorithm 1 with weight mt, will satisfy that

an event i happens before j in the graph only if ⌧(I) < ⌧(J).

4.7.3 The influence of drugs

The effect of drugs on the clocks can be estimated by comparing slopes of Kaplan

Meier survival curves of patients treated with different drugs [44]. To be more

precise, given a treatment option C, the clock delay ⇢ of the related transition

can be measured as the inverse of the difference between slopes of control group

and treated group. That is, if �n and �C are the slopes of the survival curves of

control group and treated group respectively, then the clock (x) at the relevant

state (v) is affected by C at the rate ⇢:

⇢(v, C, x) =
�C
�n

.



Conclusions and Future Work

In this thesis we established a general formalism for describing cancer progression,

without relying on any detailed mechanistic model of cancer pathways, or genetic

aberrations. Our goal was to design a conceptually clear framework based on

a realistic biological foundation. As a case study, we have used this model to

describe cancer hallmarks and their dynamics.

Our framework (called CHA) is based on a hybrid automaton. Transitions

from one discrete state of progression to the next are assumed to take certain

durations of time, and the effects of drugs are modeled to slow down the

progression clocks. Temporal statements about the progression as well as notions

of timed therapies are formalized using our framework. We have also extended

our model to include partial observability using the notion of belief sets, and

tests are incorporated into the definition of a therapy as actions that reduce

uncertainty about the current state of the progression.

The CHA framework not only enables us to formally describe cancer progres-

sion, but also to manipulate its evolution to satisfy certain therapeutic goals.

We have studied automatic therapy design in Chapter 2, where we adopted a

game theoretic formulation of the problem, and modeled a therapy as a strategy

in the game against Nature. Building on existing tools and techniques from the

controller synthesis literature, we showed that therapies can be automatically
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generated.

More specifically, we showed that discrete CHA control for CTL goals is

EXPTIME complete (Theorem 15). This result has been extended to include

partial observability as well (Theorem 16). The therapy plans generated by our

algorithm are timed and (are likely to) require combinations of drugs, so as to

minimize the risk of drug resistance and recurrence due to heterogeneity.

The Theorem provides a complexity result for CHAs that is relevant for

therapy design, but it is also meant to give our CHA frameworks a place within

the existing literature on hybrid systems, so as to provide a starting point for

studying these models and their algorithmic issues further.

In the second part of the thesis our focus shifted from description and

manipulation, to extraction of cancer progression models from static real patient

data. In Chapter 3 we studied copy number variation data and we presented

evidence (from three TCGA datasets) that in cancer the lengths of the deleted

or duplicated segments are not exponentially, but power-law distributed, and

we suggest a generative model for this observation. This finding is important as

many tools used to analyze cancer patient data rely on non-informative priors,

and can be improved by incorporating this information into their null models.

As an example, we have shown how this prior can be incorporated in a method

that identifies cancer driver genes [76].

In Chapter 4 we provided a method for extracting tree progression models

from cross-sectional patient data using mathematical notions of probabilistic

causality. Using synthetic data we showed how this method outperforms the

existing tree reconstruction algorithms. We have also provided some insight

into how the various parameters of our CHA formalism (timing, the effect of

drugs), can be estimated from the available cancer data, and incorporated into

our algorithm.
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Below we summarize several directions for future work.

CHA control As mentioned in Chapters 1 and 2, an important direction for

future work is to focus more on to the algorithmic side of verifying cancer hallmark

automata, automatically generating therapies (including cost minimization) and

finding promising drug targets. Even though discretized CHA control has been

shown to be EXPTIME complete for CTL goals, simpler models (such as direct

acyclic graphs), simpler goals (such as only reachability), or simpler strategies

(such as only memory-free strategies) may be controlled more efficiently. Also,

powerful tools can be imagined that use estimations, simulation-equivalence and

abstractions.

This direction of research not only involves designing more efficient algorithms

and abstractions, but also the implementation of user friendly software that

allows users to both input and modify pregression models, as well as specify

therapeutic goals and costs.

Cancer Driver Gene detection When presenting the method to find cancer

driver genes in Chapter 3, we focused on the algorithmic/mathematical nature of

the problem, and our data analysis remained largely preliminary in nature. As

already discussed in Section 3.3, the tool itself can be improved in several ways.

Here we mention four directions. First, incorporating a preferential attachment

model in to the segmenter that analyzes the genomic data from each cell-type,

will improve accuracy of the segmented data and thus our results. Second, we

can use more accurate priors of the distribution of breakpoints that are known to

occur in different cell-types. Third, several more sophisticated statistical tools

for picking high-scoring intervals can be imagined. In particular, we would like

to incorporate prior biological knowledge combined with multiple hypothesis

testing, to make the final results more meaningful. Fourth, as we have discussed
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in Section 1.5, tumors consist of a heterogeneous population of cell-types and

the cells of different types interact dynamically going through rapidly-changing

cell-states. This heterogeneity requires more sophisticated oncogenomic analysis

tools that generalize the mathematics described in Chapter 3 and Chapter 4

much further. In the case of driver gene detection, the null models can be further

improved by including a mixture of distributions, with the parameters of the

distribution fluctuating as cancer progresses.

Progression Extraction In Chapter 4, we have presented a first exploration

of the problem of extracting progression models, and the use of probabilistic

causality as a main tool to do so. In the chapter, we already mentioned several

extensions that we wish to develop in future work. First, we wish to extract

more general CHA-like progression models, that allow for confluencies. In

particular, we reconstruct direct acyclic graphs (DAGs), whereby we extend not

only Desper’s and our tree extraction method, but also other existing methods

that are used to extract different types of models, such as the one developed in

[54]. While building on ideas presented in this paper, to improve robustness to

noise this method will make use of more sophisticated statistical methods such

as bootstrapping [43] and false discovery rate control [45] to derive the edges of

network. Also, we would like to use common techniques from the probabilistic

causality literature as well as (modal) logic, to filter and classify edges and nodes

(see Section 4.7). Another important extension to the model is to include timing

into the model in a sophisticated manner. Finally, we plan to use our tool to

extract new progression models from real cancer patient data, with the hope

that, among others, new therapies can be generated and promising drug targets

can be more adequately identified.
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Appendix A

Automatic Therapy Design

for CHAs

A.1 Control of discrete automata

Control of safety and reachability games Formally, the controller syn-

thesis problem for safety and reachability games on discrete game automata is

defined as follows (Along the lines of [91]).

Let L(A,F,⇤) ✓ L(A) be the set of runs that always stay inside F , and

L(A,F,⌃) ✓ L(A) the set of runs that eventually reach F .

Definition 19.1 (Controller synthesis for safety and reachability games). Given

a game automaton A, a set of states F , the synthesis problem Synth(A,F,⇤)

(resp Synth(A,F,⌃)) is: Find a strategy ⇡ for the controller such that L⇡(A) ✓
L(A,F,⇤) (resp L⇡(A) ✓ L(A,F,⌃) ), or otherwise show that such a controller

does not exist.

More generally, if we let ⌦ be any acceptance condition and L(A,⌦) the set

of runs such that the acceptance condition is satisfied, a more general controller
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synthesis problem can be defined as follows:

Definition 19.2 (Controller synthesis problem). Given a game automaton A, an

acceptance condition ⌦, the synthesis problem Synth(A,⌦) is: Find a strategy ⇡

for the controller such L⇡(A) ✓ L(A,⌦), or otherwise show that such a controller

does not exist.

Now, let us focus on finding a strategy that controls the automaton for a

set of safe states F . The basic idea is to iteratively search the space for a set

of winning states F ⇤. The iterative search starts with F0 = F , the set of safe

states, and at each round i the set of states from which the controller cannot

force the game to stay in Fi are deleted. This procedure converges to F ⇤. If

Q0 ✓ F ⇤, the controller has a winning strategy. Formally, (adopted from [91])

Definition 19.3 (Controllable predecessors). Given a game automaton A =

hQ,Q0,⌃1,⌃2, Ei, the function f : 2

Q ! 2

Q assigns a set of states to its

controllable predecessors:

f(P ) = {q | 9a 2 ⌃

1, 8b 2 ⌃

2, 8(q, a, b, q0) 2 E, q0 2 P}

Thus, f(P ) is the set of states from which the controller can force the

automaton into P in one step. In the planning literature, the set of controllable

predecessors of P is called the strong backprojection of P [87]. The algorithm

for calculating the winning states works as a straightforward backward search:

The strategy for every q 2 Q can be extracted as follows.

F0 := F
for i = 0, 1, . . . repeat
Fi+1 := Fi \ f(Fi)

until Fi+1 = Fi

F ⇤
:= Fi
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⇡(q) =

8

>

>

<

>

>

:

p(T 1
(q)) if q /2 F ⇤

p({a 2 T 1
(q) | 8b 2 T 2

(q), (q, a, b, q0) 2 E, q0 2 F ⇤}) otherwise

where p(S) is a choice-function that picks one element from the set S, for example

the first. Note that if q /2 F ⇤, the controller has no way of winning the game

and thus it does not matter what action it chooses. It follows immediately by

the construction of the algorithm that if a winning strategy exists, the algorithm

will output one.

Remark 20. Note that to improve complexity, the strategy space could be

calculated iteratively together with the set F ⇤.

For reachability the argument is very similar. Instead of iteratively deleting

states that may lead outside of F , now states are iteratively added that lead

inside F . In this case the iterative procedure can be described as:

F0 := ;
for i = 0, 1, . . . repeat
fi+1 := Fi [ f(Fi)

until Fi+1 = Fi

F ⇤
:= Fi

Strategy extraction is the same as for safety games.

Other goals that can be solved using very similar algorithms using only

memory-free strategies like ‘eventually remaining in a set F ’ and ‘visiting states

from F infinitely often’, can be found in [91].

Adding costs to the control problem

In this section we extend the control problem to include costs of runs. This

problem has mostly been studied in the planning literature, where the focus

usually lies on arriving at a goal state (reachability), while minimizing the
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cost [87]. Even though it is not the most commonly used framework in the

planning literature, this planning problem can be expressed using a directed

state transition graph, or game automaton, as introduced in the previous section.

Game automata with costs A game automaton A can be made into a

weighted game automaton by associating with each edge a cost C(q, a, b, q0). It

is the cost of taking transition q
(a,b)���! q0.

For finite runs, ⇣ = q0
(a0,b0)����! q1

(a1,b1)����! . . .
(an�1,bn�1)��������! qn, the cost of the

run is simply the cost of the sum of the edges:

C(⇣) =
n�1
X

i=0

C(qi, ai, bi, qi+1).

In the case of infinite runs, a discount factor 0  d  1 can be applied to avoid

infinite costs. However, if the goal is to reach a certain state, never reaching that

state can be considered a failed run in which case infinite cost may be reasonable.

As mentioned before in the single-step case, this definition can be generalized

to include vectors of costs, in which case a notion of Pareto-optimality can be

used to pick out good outcomes.

In the planning literature the cost of a strategy (or plan, in their terminology)

is defined to be the worst-case cost of all the possible runs of the controlled game.

Formally,

C(⇡, q0) = max{C(⇣) | ⇣ 2 L⇡(A) starting at q0}.

Since the strategy is assumed to guarantee reachability, this cost is also referred

to as the cost-to-go (to a goal state). If the goal state is never reached, the

cost-to-go is infinite. Note that this way of defining the cost of a strategy

implicitly assumes a worst-case analysis of the problem. Hence, by optimizing

the cost of a strategy, the algorithms discussed in the next section optimize the
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worst-case outcome of a strategy.

Algorithms for computing strategies Two well-known and generally ap-

plicable algorithms for computing strategies for the reachability problem with

costs are Value Iteration and Policy Iteration. Value iteration computes and

updates the optimal cost-to-go for each state in the system iteratively. That is,

for each state k a plan that minimizes the worst-case cost-to-go is determined

based on the already calculated optimal plans of length k � 1. The algorithm

terminates when the worst-case cost-to-go no longer changes for any state.

In policy iteration, the state space of all strategies is searched iteratively. An

initial policy (strategy) is picked and then two steps are performed iteratively:

value determination, which calculates the cost-to-go for each state given that

policy, and policy improvement, which updates the current strategy if any

improvement is possible. The algorithm terminates when the strategy stabilizes.

Both value iteration and policy iteration are guaranteed to terminate, but both

have their shortcomings: Value iteration is inefficient in trying to compute the

cost-to-go of states that already have optimal costs assigned to them, or states

for which the goal has not yet been reached. Policy iteration does not have

this problem but is only suitable for small state spaces. The reason for this

limitation is that large system of linear equations must be solved at each step of

the iteration.

In some cases, graph search algorithms like Dijkstra’s algorithm can be

extended to find optimal strategies efficiently. We refer the reader to [87] (

chapter 10) for a detailed discussion of both methods as well as Dijkstra’s graph

search method.
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A.2 Control of timed automata

Control of timed safety and reachability games

Definition 20.1 (Strategy). A strategy ⇡i for player i is a function ⇡i : (Q⇥
V ) ! ⌃

i [ {e} such that ⇡i((q, v)) 2 T i
(q, v) for each player i. The action e is

the empty action of doing nothing or letting time pass.

Given a strategy ⇡ for player 1, a run

⇣ = (q0, v0)
↵0�! (q1, v1)

↵1�! (q2, v2)
↵2�! . . .

is said to conform ⇡ if for every j the following holds:

• ↵j = �: for every �0  �, ⇡(qi, vi + �0) = e.

• ↵j = c: either c 2 ⌃

1 and ⇡(qi, vi) = c or c 2 ⌃

2.

We let L⇡(A) ✓ L(A) denote the set of runs of A that conform ⇡.

Thus, a state transition (q, c,�, Y, q0) is taken when either the controller

decides to play c, or Nature decides to play c. The transition is only possible

when the current clock valuation satisfies �. A delay transition is possible as

long as both the controller and Nature decide not to perform an action and the

state invariant is still satisfied.

Note that, as before, we can allow for memory by defining a strategy as

⇡i : L(A)f ! ⌃

i [ {e}.

Definition 20.2. Given a timed game automaton A, and a finite union of

symbolic states F ✓ Q ⇥ V , the controller synthesis problem Synth(A,F,⇤)

(resp Synth(A,F,⌃)) is: Find a strategy ⇡ for the controller such that L⇡(A) ✓
L(A,F,⇤) (resp L⇡(A) ✓ L(A,F,⌃) ), or otherwise show that such a controller

does not exist.
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The backward search algorithm is very similar to the untimed case, except

that now, not only the possible consequences of the agent’s actions are important

to keep track of, but also the moments when the agent is not acting.

To define the notion of controllable predecessor as before, we need to take

into account both the controlled and uncontrolled discrete predecessors, as well

as safe timed predecessors (from [25]). Given a set P , the set of i-controlled

predecessors fi(P ) is defined as follows.

fi(P ) = {(q, v) | 9c 2 ⌃

i, (q0, v0) 2 P s.t. (q, v)
c�! (q0, v0)}.

These are the set of timed states from which player i can reach P by perform-

ing one action. Intuitively, the set of safe timed predecessors f�(P,U) of a set P

with respect to a set U is the set of states (q, v) such that a state (q0, v0) 2 P can

be reached by letting time elapse, and while waiting states from U are avoided.

Formally,

f�(P,U) = {(q, v) | 9�s.t.(q, v) ��! (q, v + �), (q, v + �) 2 P and p[0,�](q, v) ✓ ¯U}

where p[0,�](q, v) = {(q, v + �0) | �0 2 [0, �]}.
Given these definitions, the controllable predecessors operator can be defined

as follows:

f(P ) = f�(P [ f1(P ), f2( ¯P ))

Remark 21. Note that according to this definition, a situation where Nature

is forced to make an action that helps the agent to win will not happen. A

discrete action must be performed by the agent to reach a winning state, and

uncontrollable actions can only spoil the game. This constraint has tacitly been
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assumed in most works on timed control e.g.[7, 8], but has been made explicit by

Cassez in [26].

To compute the set of winning states for safety and reachability we can apply

the same fixed point algorithm as for the discrete case. However, because we

are now iterating over an infinite set, it remains to be shown that the algorithm

actually converges. In the discrete case, this was immediate since the iteration

was over a finite domain. In the timed case, so-called regions and zones guarantee

convergence. The main idea is that the timed automaton can be translated into

a bisimilar finite region or zone graph, and thus that there are actually a finite

number of states that the algorithm iterates over. To be more explicit, if F is a

finite union of states, then f(F ) is again a finite union of states, and effectively

computable. The iterative process of finding F ⇤, will converge after finitely many

steps, which guarantees decidability. Correctness follows from construction, and

a detailed proof can be found in [91].

In the next section we will elaborate on the concept of regions and zones, as

they form the heart of the analysis and decidability of verification and control of

timed automata.

Regions, zones and symbolic states

The region automaton Because the clocks in timed automata take real

values, the semantics of a timed automaton is an infinite transition system.

However, this infinity can be dealt with by reasoning symbolically. The main

ingredient for the analysis of timed (game) automata is the notion of regions

[3]. Regions provide a finite partition of the state space such that within a given

region, the behavior of the system is indistinguishable. That is, the states within

a given region are bisimilar.
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The definition of a region is such that all the states inside a region agree on

the integral parts of all the clock values, and also on the ordering on the the

fractional parts of all clock values. The integral parts of the clock values are

needed to determine whether or not a clock constraint will be satisfied, and the

ordering of the fractional parts is needed to decide which clock will change its

integral value first [4].

For each x 2 X, let cx be the largest integer such that cx appears as a clock

constraint of x in the automaton. Then, two clock valuations v, v0 are region

equivalent v ⇠ v0 if the following conditions hold:

• For all x 2 X, bv(x)c = bv0(x)c or v(x) > cx and v0(x) > cx

• For all x, y 2 X, with v(x)  cx and v(y)  cx, fract(v(x))  fract(v(y))

iff fract(v0(x))  fract(v0(y))

• For all x 2 X, with v(x)  cx, fract(v(x)) = 0 iff fract(v0(x)) = 0

A clock region for an automaton A is an equivalence class of clock interpretations

induced by ⇠. Finiteness of the set of clock regions is guaranteed by the maximal

clock constraints cx. The region graph of A is a set of states (q,R) such that

q 2 Q and R is a region. Transitions extend the transition of the original graph:

that is, (q0, R0
) can be reached from (q,R) by action a if (q0, v0) can be reached

by action a from (q, v) for v 2 R and v0 2 R0. Note that this definition for timed

automata extends to timed game automata as well.

The region automaton preserves many properties such as reachability, safety

and temporal formula and can thus be used as an abstraction to study the

behavior of the automaton.

Zone graphs Even though the region automata provides a powerful tool for

proving decidability of many verification and controller synthesis algorithms, it
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is impractical, as the number of regions grows exponentially with the number of

clocks, and hence all algorithms are exponential time.

Luckily, another abstraction has been proposed that allows for polynomial-

time algorithms [63]. This abstraction partitions the set of clock valuations into

zones.

A zone is a subset of valuations RX that is the solution set of a clock

constraint. With [[�]] we denote the zone of clock constraint �. A zone graph

of A is a set of states (q, Z) such that q 2 Q and Z is a zone. States of type

are called symbolic states and the zone graph is sometimes referred to as the

symbolic graph. Transitions extend the transition of the original graph: that

is, (q0, Z 0
) can be reached from (q, Z) by action a if (q, c,�, Y, q0) 2 E and Z 0

is such that it is a set of timed successors of (Z \ [[�]])[Y := 0] satisfying the

invariant of q0. Finiteness of the zone graph can be achieved using a technique

called normalization [18], but the number of zones is still much larger than

the number of regions. However, the reason for zone-based algorithms to be

efficient in practice, is that algorithms don’t need to explore the entire state

space, but rather work on-the-fly. Moreover, zones can be represented using

difference-bound matrices (DBMs) which allows for efficient operations on zones

[22]. We refer the reader to [14] for a more thorough overview of regions, zones

and their implementations.

Optimal timed, and weighted timed games

The algorithms discussed in Chapter 2 provide winning strategies for both safety

and reachability games, by assigning at each moment of the game any action that

keeps the game in the set of winning states. In the case of reachability games,

this implies that no preference is given to actions that will guarantee to move

the game to a goal state sooner rather than later. It seems natural, however, to

require that the goal state is reached as soon as possible, or within a certain time
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frame. Games with such goals are called optimal timed games. In [6], optimal

timed games are shown to be decidable, and a quantified generalization of the

backward search algorithm is presented that guarantees that the goal set F is

reached in minimal time. The approach that is used is similar in spirit to value

and policy iteration and iterates over the value function which gives an upper

bound on arrival times to the set F . As always in the case of timed systems, the

use of zones are sufficient to ensure decidability. For details, see [6].

Of course, time is not the only measure of the cost of a run. It may be

that some states or trajectories are undesirable or expensive for other reasons.

Timed automata have been extended to include general cost information both on

locations and edges of the automata. This framework presents a generalization of

optimal timed games, which are now weighted timed games where cost represent

time elapsing. Weighted timed games have been and are extensively studied and

have many applications (see [23] for an overview). To name an example, in [111],

optimal timed games with general costs are studied and a 2EXPTIME algorithm

is designed for synthesizing optimal controllers for acyclic games. This algorithm

has further been improved (to single EXPTIME) in [5].

Theorem 22 (Alur et al. [5]). The controller synthesis problem for optimal

timed game automata can be solved in EXPTIME in the size of the game.

The problem of optimal runs has also been studied on infinite runs using

discount factors (see e.g. [48]). Also for stochastic timed games the expected

time to reach a target has been studied (see e.g. [50]).
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A.3 Proof of Theorem 15 (Discrete control of bounded

CHAs)

Theorem (Discrete control of bounded CHAs). The controller synthesis problem

of bounded discretized CHAs for CTL formulae can be solved in EXPTIME.

Proof. First, we translate the bounded CHA H into an equivalent rectangular

hybrid game automaton RGH in Section A.3. Then, in Section A.3 we translate

the RGH into a sampling control game DRGH in which the players can only

make one move every time unit. Since this game can be finitely represented

using a two-player bisimulation it follows from [79] that controller synthesis of

discretized bounded CHAs with CTL goals is solvable in EXPTIME.

We will start with a recalling a few necessary definitions

Definition 22.1 (CTL satisfaction on timed runs). Given a timed run S =

(l0, val0)(l1, val0)(l2, val2) . . ., and � a CTL formula, S satisfies � if the underlying

path of discrete states v0v1v2 . . . satisfies � (for more details on CTL satisfaction

in discrete systems see e.g., [32] ).

Definition 22.2 (CTL control). Given a timed system H, a strategy/therapy f

and � a CTL formula, f controls H for �, if every run conform f satisfies �.

CHA H to rectangular hybrid game automaton RGH

Definition 22.3. (from [65]) Let X be a set on n real-valued variables. A

rectangular inequality over X is a formula of the form xi ⇠ d, where d is an

integer and ⇠2 {<,, >,�}. A rectangular predicate over X is a conjunction

of rectangular inequalities. The set of all rectangular predicates over X is denoted

Rect(X). Given a valuation val : X ! R, and a rectangular predicate �, we say
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that val ` � if �[X := val(X)] is true. Similarly xi ` �i if �i[xi := val(xi)] is

true.

Note that both the clock constraints on edges and the invariants on states of

the CHA are rectangular predicates.

In the following we will show that a CHA H can be translated into an

equivalent rectangular game automaton RGH . First, we recall the definition of

a rectangular hybrid game. 1

Definition 22.4. (from [67]) A Rectangular Hybrid Game is a tuple

R = (X,L,M1,M2, enabled1, enabled2, f low,E, jump, post) ,

where

• X is a set of n variables,

• L is a set of discrete states,

• Mi is the set of moves for player i. M time
i = Mi [ {time} where time

denotes a move that permits the passage of time.

• enabledi : M time
i ⇥ L ! Rect(X), which specifies for each move of player

i and each location, the rectangle in which the move is enabled. Given a

location l, the rectangle enabled1(time, l) \ enabled2(time, l) is said to be

the invariant region of l, and is denoted inv(l).

• flow : V ! Rect( ˙X), constraints the behavior of the first derivatives of

the variables.

• E ✓ (L⇥M1 ⇥M time
2 ⇥ L) [ (L⇥M time

1 ⇥M2 ⇥ L) a set of edges,
1Actually, this definition is slightly different from the one presented in the body of Chapter

2. Both definitions are equivalent and used interchangeably in the literature. Here we chose to
use this formulation, as it makes the translation from CHAs easier.
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• jump : E ! 2

{1,...,n} maps each edge to the indices of those variables

whose values may change when the discrete state proceeds along that edge.

• post : E ! Rect(X), maps each edge to a bounded rectangle that contains

the new continuous state when the discrete state proceeds along that edge.

Definition 22.5 (Hybrid Game Structure). With a hybrid game R, the following

game structure is associated:

GR = (QR, L, hi,M time
1 ,M time

2 , Enabled1, Enabled2, �) ,

where QR = {(l, val) 2 L⇥Rn | val 2 inv(l)}, h(l, val)i = {l}, Enabledi(a) =

{(l, val) 2 QR | x 2 enabledi(a, l)}, and (l0, val0) 2 �((l, val), a1, a2) is either of

the following two conditions is met:

• Time step of duration t and slope s. We have a1 = a2 = time, l0 = l, and

val0 = val + t ⇥ s for some real vector s 2 flow(l), and some real t � 0

such that (val+ t0 ⇥ s) 2 inv(l) for all 0  t0  t.

• Discrete step along edge e. There extists an edge (l, a1, a2, l0) 2 E such that

(l, val) 2 Enabled(ai) for i = 1, 2, and val0k 2 post(e)k for all k 2 jump(e),

and val0k = valk for all k /2 jump(e).

Runs and traces of R are inherited from the game structure GR. A strategy

for player i is a function fi : Q+ ! 2

Movesi .

A CHA H = (V,E, v0, `, ⇢) can be translated into a hybrid game RG as

follows:

Given a set of drugs D and a CHA H with states V , we construct a hybrid

game automaton RGH in the following way: For each state v 2 V and each

cocktail C 2 2

D, the automaton RHG contains a state (v, C) with the same

clock invariants as v. For any edge between two states v, v0 2 V , and C 2 2

D,
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RGH contains an edge between (v, C) and (v0, C) controlled by player 2 (nature)

with the same clock constraints and resets as on the CHA edge. In addition,

there are controllable directed edges from (v, C) to (v, C 0
) for each v, C and C 0.

These edges represent changes of therapy controlled by player 1, and have no

clock constraints or resets. At a state (v, C), the rate of each clock x 2 X is

fixed, given by ⇢(v, C, x).

Thus therapists can change a therapy from C to C 0 at state v by moving

from (v, C) to (v, C 0
), and cancer picks an accessible new CHA state from the

available ((v, C)(v0, C)) transitions. Formally, the translation is as follows:

Definition 22.6. Given a timed CHA H = (V,E, v0, `, ⇢) we define a (CHA-

based) rectangular game automaton

RGH = (X,L,M1,M2, enabled1, enabled2, f low,E, jump, post)

as follows.

• L = {(v, C) | v 2 V,C 2 2

D},

• M1 = 2

D, M2 = V ,

• enabled1(C 0, (v, C)) = `(v) enabled2(v0, (v, C)) = � such that (v,�, v0) 2
E.

• flow((v, C))(x) = ⇢(v, C, x).

•

E = {((v, C), v0, time, (v0, C)) | (v,�, v0) 2 E for some �}
[ {((v, C), time,C 0, (v, C 0

)) | 8C 6= C 0 2 2

D}
[ {((v, C), v0, C 0, (v0, C 0

)) | (v,�, v0) 2 E for some �8C 6= C 0 2 2

D}

• jump(((v, C), (v, C 0
))) = ;, jump(((v, C), (v0, C))) = {1, . . . , n},
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• post(((v, C), (v, C 0
)))i = [0,m]i, where m denotes the upper bound on the

clocks, and

post(((v, C), (v, C 0
))) = [X := 0], all clock values are reset to 0.

By construction, the resulting automaton is a rectangular hybrid game

automaton. Moreover, the automaton RGH exactly captures the CHA H. To

see how, note the following properties:

• The fact that the therapist can change his therapy at any time, is captured

by the fact that every action C 0 is enabled at every state as long as the

invariant is satisfied: enabled1(C 0, (v, C)) = `(v)

• The cancer can move to a new state of the progression, as long as the edge

constraint is satisfied: enabled2(v0, (v, C)) = � such that (v,�, v0) 2 E, and

clocks are reset: post(((v, C), (v, C 0
))) = [X := 0] and jump(((v, C), (v0, C))) =

{1, . . . , n}.

• The clock dynamics is controlled by the drugs administered: flow((v, C))(x) =

⇢(v, C, x), and changing drugs does not change the clock values

: jump(((v, C), (v, C 0
))) = ;.

• Therapies and strategies are both functions from partial runs to actions.

To be more precise, the two automata H and RGH are trace equivalent in

the following sense:

Proposition 22.1. For every run (v0, val0) !0 (v1, val1) !1 (v2, val2) !2 . . .

in H there exist an equivalent run (l0, val0) !0 (l1, val1) !1 (l2, val2) !2 . . . of

RGH such that for every i: li = (vi, Ci) and if it is the case that (vi, vali) !i

(vi+1, vali+1) is a delay transition (vi, vali)
�,C��! (vi+1, vali+1), then Ci = C.

Proof. Follows immediately from the construction of RGH and the preceding

remarks.
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The reverse holds as well: for every run of RGH there exists an equivalent

run of H.

From the above, it follows that every therapy ⇡ for H has an equivalent

induced strategy f⇡,1 for player 1 for the game RGH , and vice versa.

It also follows that the two automata are equivalent with respect to CTL

control:

Corollary 22.1. Given a CTL formula �, ⇡ controls H for � iff f⇡,1 controls

RGH for �.

Game bisimulation

We define the notion of a game bisimulation as in [67]:

Definition 22.7 (Game bisimulation). Given a game structure

G = (W,⇧,M1,M2, enabled1, enabled2, �) ,

a binary relation ⇠
=

✓ Q ⇥ Q is a game bisimulation if p ⇠
=

q implies that the

following three conditions hold.

1. hpi = hqi

2. M1(p) = M1(q) and M2(p) = M2(q)

3. - 8m1 2 M1,m2 2 M2, p0 2 �(p,m1,m2)9q0 2 �(q,m1,m2) and p0 ⇠
=

q0.

- 8m1 2 M1,m2 2 M2, q0 2 �(q,m1,m2)9p0 2 �(p,m1,m2) and p0 ⇠
=

q0.

Proposition 22.2. Consider two states p and q of a game structure G. If p

and q are game bisimilar then for every CTL formula �, player 1 can control p

for � iff player 1 can control q for �

Proof. By induction on the size of the formula �
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The largest bisimulation on S is called the bisimilarity on S and the bisimi-

larity quotient on S is the transition system induced by the bisimilarity.

Hybrid game RGH to discretized hybrid game DRGH

Now we will extend the discretization method as given in [65] for rectangular

automata to hybrid games.

We define a sampling control game DRGH in which the players can make at

most one move every time unit.

To show that controller synthesis for sampling control games can be solved in

exponential time, we reduce the sampling control problem to discrete time control

problem. Towards this goal, we add a new variable xn+1 to make sure that every

discrete transition, a move by the cancer or the therapist, is followed by a flow

transition of exactly one time unit. We define the initial value of xn+1 as 1. Also,

at every state, the invariant of xn+1 is exactly 1 (inv((v, C), xn+1) = 1) and

flow((v, C), xn+1) = 1 for all states. Thus, no matter which current cocktail is

being administered, the clock xn+1 always runs at a rate of 1, and cannot exceed

1. Finally, for every edge e, jump(e) = jumpRGH
(e) [ {n+ 1}. It follows from

the construction that in this automaton moves by the cancer and therapist are

followed by a flow transition of duration 1.

Once the one time unit has passed, we would like both the controller and

the cancer to have the opportunity to wait another time unit, as long as the

invariant is satisfied. For this purpose we include a reflexive edge for each state

(v, C). On this edge, only the clock xn+1 is reset: jump(e) = {n+ 1} and the

actions are only enabled if the invariant will be satisfied for another time unit.

Note that the time unit needs to be chosen such that the automaton is

big enough: in the original automaton it may not be possible for a move to

be allowed only in an interval smaller than one time unit. Formally, there
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cannot be three states (q, val), (q, val0), (q, val00) and an action a and player i

such that (q, val)
��! (q, val0) and (q, val0) 1����! (q, val00) for some � 2 (0, 1)

(where 1 is the sampling interval), and (q, val), (q, val0) /2 Enabledi(a) while

(q, val00) 2 Enabledi(a).

To be able to solve the controller synthesis problem, we need a finite repre-

sentation of the game DRGH . We proceed by defining the game bisimilarity as

in [65].

First, we define an equivalence relation ⇡m
n on Rn as follows. y ⇡m

n z iff for

all 0  i  n, byic = bzic and dyie = dzie, or both yi, zi > m. Now, given two

states ((v, C), val) and ((v0, C 0
), val0) we define ((v, C), val) ⇠

=DRGH
((v0, C 0

), val0)

if v = v0, C = C 0 and val ⇡m
n val0.

Proposition 22.3. ⇠
=DRGH

is a bisimulation (and in fact the bisimilarity)

relation on the discretized hybrid game.

The bisimilarity quotient is finite in size. To be precise, the bisimilarity

quotient has no more than (|V |⇥ 2

|D|
)⇥ (2m+2)

(n+1) states, where (|V |⇥ 2

|D|
)

is the number of states of the game automaton RGH .

Corollary 22.2. The controller synthesis problem of bounded discretized CHAs

for CTL formulae can be solved in EXPTIME.

Proof. By propositions 22.2 and 22.3 it follows that we can perform supervisory

control on the bisimilarity quotient. This is a finite graph. Supervisory control

for CTL formulae in finite automata with both controllable and non-controllable

actions is shown to be EXPTIME complete and algorithms exist [79].
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Appendix B

Driver Gene Detection

B.1 Segment-length distribution

Let AV GC and STDC (resp AV GN and STDN ) denote the average segment-

length and the standard deviation of all segments derived from tumor (resp

blood-derived normal) cells.

137
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Figure B.1: :LUSC, OV, GBM. The thresholds are AV GC ± 2STDC .

Figure B.2: That is, all segments with segment values in [AV GC �
2STDC , AV GC + 2STDC ].

best exponential fit best power-law fit
function R2 function R2

LUSC Nrm e�0.020 0.70 x�1.30 0.57
OV Nrm e�0.033 0.89 x�2.65 0.92
GBM Nrm e�0.016 0.50 x�1.09 0.43

Table B.1:
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Treshold OV
AMP DEL

th PL EXP th PL EXP
↵ R2 � R2 ↵ R2 � R2

±1.0 1.00 1.41 0.90 0.024 0.64 �1.00 1.20 0.85 0.015 0.52
AV GC ± 2STDC 0.76 1.39 0.91 0.014 0.67 �0.87 1.30 0.91 0.013 0.64
AV GC ± 1.5STDC 0.59 1.79 0.93 0.031 0.81 �0.66 1.82 0.93 0.028 0.75
AV GC ± 1STDC 0.36 1.94 0.93 0.030 0.84 �0.46 1.99 0.90 0.033 0.85
AV GN ± 5STDN 0.21 2.11 0.88 0.0251 0.85 �0.27 2.21 0.85 0.0343 0.87
AV GN ± 3STDN 0.11 1.85 0.85 0.0255 0.87 �0.18 1.99 0.86 0.0343 0.89
AV GN ± 2STDN 0.06 1.79 0.83 0.025 0.89 �0.13 1.96 0.86 0.034 0.90
0.0 0.00 1.79 0.83 0.025 0.89 0.00 1.96 0.86 0.034 0.90

Table B.2: Using the OV dataset, this table shows how different tresholds
influence the power-law and exponential fits.

Figure B.3: OV deletions segment length distributions for different thresholds:
0, AV GC ± 1SDC = �0.46 and �1.

Figure B.4: Distribution of segment values of all segments (left), all positive
segment values (middle) and negative segment values (right), on a log-log scale
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best exponential fit best power-law fit
function R2 function R2

LUSC Amp e�0.27x 0.96 x�1.26 0.97
LUSC Del e�0.48x 0.94 x�1.58 0.99
OV Amp e�0.26x 0.96 x�1.50 0.99
OV Del e�0.30x 0.91 x�1.22 0.99
GBM Amp e�1.51x 1.00 x�2.71 1.00
GBM Del e�0.41x 0.91 x�1.39 0.97

Table B.3: CNV segment-length distribution exponential and power-law fits for
non-log data.

best exponential fit best power-law fit best log-normal fit
R2 R2 R2

LUSC Amp 0.65 0.86 0.82
LUSC Del 0.45 0.79 0.77
OV Amp 0.67 0.91 0.77
OV Del 0.64 0.91 0.86
GBM Amp 0.39 0.71 0.71
GBM Del 0.60 0.78 0.76

Table B.4: Exponential (ce��x), power-law (cx�↵) and log-normal

( 1
x
p
2⇡�2

e�
(ln(x)��)2

2�2 ) fits.

B.2 Proof of proposition 16.1 (Power-law null model)

The model We assume that, at any genomic location, a breakpoint (starting

point) may occur as a Poisson process at a rate of µ � 0. We consider two

different µ’s: one for amplifications µAMP and one for deletions µDEL, but we

drop the subscript when no confusion arises. Segments are modeled as vectors:

starting at a breakpoint x and moving left (or right) with probability 1
2 . The

length t of each segment is distributed according to a powerlaw distribution:

t�↵, with 1  ↵  2. Let ✏ be the constant that represents the shortest length

an interval could possibly have.

Proposition. Assuming that segment lengths are power-law distributed :

1. The probability that an interval I = [a, b] is lost is as follows:
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P([a, b] lost) = 1� e�µ(b�a)⇥
e
�µ ✏↵�1

2

h
a2�↵�✏2�↵

2�↵

i

⇥

e
�µ ✏↵�1

2


(G�b)2�↵�✏2�↵

2�↵

�

;

2. The probability that an interval I = [a, b] is gained is as follows:

P([a, b] gained) = 1� e�µ ✏↵�1

2

h

b2�↵�(b�a+✏)2�↵

2�↵

i

⇥

e
�µ ✏↵�1

2


(G�a)2�↵�(b�a+✏)2�↵

2�↵

�

.

Proof. 1. We want to calculate the probability that the interval [a, b] is ‘lost’.

This is the probability that there exists a deleted interval I that intersects

with [a, b]:

P([a, b] lost) = P(9I : I \ [a, b] 6= ; and I is deleted).

Instead, we compute P([a, b] is NOT lost) by computing:

(P1) No deletion starting in the interval [a, b],

(P2) The probability that each deletion starting in [0, a] does not overlap

[a, b], and

(P3) The probability that each deletion starting in [b,G] does not overlap

[a, b].

It follows that P([a, b] is NOT lost) = P1 ⇥ P2 ⇥ P3. And,

P([a, b] lost) = 1� P([a, b] is NOT lost).

(P1) P(no deletion starts in [a, b]) = e�µ(b�a). This follows immediately

from the assumption that breakpoints are generated by a poisson



142 APPENDIX B. DRIVER GENE DETECTION

process. Note that we drop the subscript DEL in µDEL.

(P2) P(each interval starting in [0, a] does not overlap with [a, b]) can be

broken down as the following infinite sum:

P(each interval starting in [0, a] does not overlap with [a, b]) =

P(no deletions start in [0, a])

+ P(1 deletion starts in [0, a])⇥ P(the deleted interval \ [a, b] = ;)
+ P(2 deletions start in [0, a])⇥ P(both deleted intervals \ [a, b] = ;)
+ . . .

By the assumption that breakpoints are generated as a poisson process,

the probability P(n deletions start in [0, a]) = (µa)n e�µa

n! for each n.

The probability P(1 deleted interval \ [a, b] = ;) can be computed

as follows. From our model it follows that

P( deleted interval \ [a, b] = ; | 1 deletion starts in [0, a]) is the prob-

ability that each deletion starting at x in the interval [0, a] does not

reach all the way to a:

P(deleted interval \ [a, b] = ; | 1 deletion starts in [0, a])

=

1
2 +

1
2
1
a

⇣

R a�✏
0

R a�x
✏ c✏,Gt�↵dtdx+ ✏

⌘

,

where:

– The constant c✏,G depends on the length ✏ and G and is computed

below.

– The 1
2 ’s are to take into account the possibility that the deletion

moves left instead of right.

– The last term +✏ takes into account the possibility that the

starting point of the deleted interval is in [a� ✏, a].
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This can be solved as follows: P(deleted interval \ [a, b] = ; | 1 deletion starts in [0, a])

=

1
2 +

1
2
1
a

⇣

R a�✏
0

R a�x
✏ c✏,Gt�↵dtdx+ ✏

⌘

=

1
2 +

1
2a

⇣

c✏,G
1�↵

R a�✏
0

⇥

(a� x)1�↵ � ✏1�↵
⇤

dx+ ✏
⌘

=

1
2 +

1
2a

⇣

c✏,G
1�↵

h⇣

� (a�(a�✏))2�↵

(2�↵) � ✏1�↵
(a� ✏)

⌘

+

⇣

a2�↵

2�↵

⌘i

+ ✏
⌘

=

1
2 +

1
2a

⇣

c✏,G
1�↵

h

a2�↵�✏2�↵

2�↵ � ✏1�↵
(a� ✏)

i

+ ✏
⌘

=

1
2 +

1
2a

⇣

c✏,G
(1�↵)

h

a2�↵�✏2�↵

2�↵ � ✏1�↵
(a� ✏)

i

+ ✏
⌘

There are a few things to note about this derivation

– We ignore the integration constants, as they cancel each other

out.

– Since ↵ � 1, and c✏,G, a � 0, the term c✏,G
2a(1�↵) is negative. We

thus need to show that
h

a2�↵�✏2�↵

2�↵ � ✏1�↵
(a� ✏)

i

is always neg-

ative to obtain a positive probability. This follows from the

mean-value theorem. Namely, for any function f that is concave

and increasing the following holds:

f(x)� f(x� �)  �f 0
(x� �)

the function f(x) = x2�↵

2�↵ is concave and increasing with f 0
(x) =

x1�↵. If we let x = a and � = a� ✏, then x� � = ✏ and we have

a2�↵

2� ↵
� ✏2�↵

2� ↵
 (a� ✏)✏1�↵

from which it follows that a2�↵�✏2�↵

2�↵ � ✏1�↵
(a� ✏) is negative.

The normalizing constant c✏,G can be computed as follows. It has to

be such that
Z G

✏
c✏,Gt

�↵dt = 1.
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It follows that
c✏,G = (

R G
✏ t�↵dt)�1

=

⇣

G1�↵

1�↵ � ✏1�↵

1�↵

⌘�1

=

1�↵
G1�↵�✏1�↵

Since ↵ > 1 and G >> ✏ this approaches

⇡ ↵�1
✏1�↵

Using c✏,G =

↵�1
✏1�↵ , we can simplify

P( deleted interval \ [a, b] = ; | 1 deletion starts in [0, a]) as follows:

=

1
2 +

1
2a

⇣

↵�1
✏1�↵

1
(1�↵)

h

a2�↵�✏2�↵

2�↵ � ✏1�↵
(a� ✏)

i

+ ✏
⌘

=

1
2 +

1
2a

⇣

� 1
✏1�↵

h

a2�↵�✏2�↵

2�↵ � ✏1�↵
(a� ✏)

i

+ ✏
⌘

=

1
2 +

1
2a

⇣

�✏↵�1
h

a2�↵�✏2�↵

2�↵

i

+ (a� ✏) + ✏
⌘

= 1� ✏↵�1

2a

h

a2�↵�✏2�↵

2�↵

i

Since deletions are assumed to be independent events that can

overlap it follows that

P(n deleted intervals \ [a, b] = ; | n deletions starts in [0, a]) =

P(deleted interval \ [a, b] = ; | 1 deletion starts in [0, a])n)

Hence, we get the following series:

P2 = e�µa
+ (µa)1

e�µa

1!

(1� w) + (µa)2
e�µa

2!

(1� w)2 + . . .

with w =

✏↵�1

2a

h

a2�↵�✏2�↵

2�↵

i

.

It follows that

P2 = e
�µa ✏↵�1

2a

h
a2�↵�✏2�↵

2�↵

i
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which can be simplified to

P2 = e
�µ ✏↵�1

2

h
a2�↵�✏2�↵

2�↵

i

(P3) P(each interval starting in [b,G] does not overlap with [a, b]) is com-

puted in the same way as P2, but now starting at x 2 [b,G] and moving

left. In this case P( deleted interval \ [a, b] = ; | 1 deletion starts in [b,G])

=

1
2 +

1
2

1
G�b

⇣

R G
b+✏

R x�b
✏ c✏,Gt�↵dtdx+ ✏

⌘

= 1� ✏↵�1

2(G�b)

h

(G�b)2�↵�✏2�↵

2�↵

i

and we obtain

P3 = e
�µ ✏↵�1

2


(G�b)2�↵�✏2�↵

2�↵

�

It follows that

P([a, b] lost) = 1� e�µ(b�a)⇥
e
�µ ✏↵�1

2

h
a2�↵�✏2�↵

2�↵

i

⇥

e
�µ ✏↵�1

2


(G�b)2�↵�✏2�↵

2�↵

�

2. In an analogue fashion we calculate the probability that the interval [a, b]

is‘ gained’. This is the probability that there exists a deleted interval I

that includes [a, b]:

P([a, b] gained) = P(9I : [a, b] ✓ I and I is amplified)

We compute P([a, b] is NOT gained) by computing:

(P1) The probability that each interval starting in [0, a] does not include

[a, b], and
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(P2) The probability that interval starting in [b,G] does not include [a, b].

The computation of P1 (and P2) is analogues to that of deletions, except

for the fact that we have to intergrate over all intervals reaching up to b

(down to a). In the case of P1 we solve

P([a, b] ✓ amplified interval | 1 amplification starts in [0, a])

=

1
2 +

1
2
1
a

⇣

R a�✏
0

R b�x
✏ c✏,Gt�↵dtdx+ ✏

⌘

= 1� ✏↵�1

2a

h

b2�↵�(b�a+✏)2�↵

2�↵

i

and in the case of P2

P([a, b] ✓ amplified interval | 1 amplification starts in [b,G])

=

1
2 +

1
2

1
G�b

⇣

R G
b+✏

R x�a
✏ c✏,Gt�↵dtdx+ ✏

⌘

= 1� ✏↵�1

2(G�b)

h

(G�a)2�↵�(b�a+✏)2�↵

2�↵

i

We obtain:

P([a, b] gained) = 1� e�µ ✏↵�1

2

h

b2�↵�(b�a+✏)2�↵

2�↵

i

⇥

e
�µ ✏↵�1

2


(G�a)2�↵�(b�a+✏)2�↵

2�↵

�

B.3 Detecting driver genes

Cancer amplifications deletions normals
OV (337) 13416 10237 82633
LUSC (201) 3637 1832 46215
GBM (299) 2131 3959 41458

Table B.5: Number of deleted and amplified segment for three TCGA data sets
using a threshold of AV GC ± 2STDC .
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Cancer Gene Function Location Power-law Exponential
OV BRCA1 TSG 17:(41196312..41277500) no no

BRCA2 TSG 13:(32889617..32973809) no no
ERBB2 OG 17:(37844393..37884915) no no
K-ras OG 12: (25358180..25403854) yes (25289555..25421243) yes (25177510..26726740)
AKT2 OG 19: (40736224..40791302) no no
PIK3CA OG 3: (178866311..178952500) no no
c-MYC OG 8: (128748315..128753680) next (128797789..128989029) no
p53 TSG 17: (7571720..7590868) no no

LUSC CDKN2A TSG 9: (21967751..21994490) yes (18947155..28723296) yes (21983401..21993651)
FGFR1 OG 8:(38268656..38326352) yes (38303346..38369274) no
PDGFR OG 4: (55095264..55164412) no no
SOX2 OG 3: (34650005..34652461) no no
WHSC1L1 OG 8: (38132560..38239790) next (38303346..38369274) no

GBM EGFR ONCG 7: (55086725..55275031) next (55049021..55065490) next (54998411..55043660)
MDM2 ONCG 12: (69201971..69239320) no no
PDGFR ONCG 5: (149493402..149535422)? no no
CDK4 ONCG 12: (58141510..58146230) no no
Rb TSG 13: (48877883..49056026) no no
p53 TSG 17: (7571720..7590868) no no
PTEN TSG 10: (89623195..89728532) no no
CDKN2A TSG 9: (21967751..21994490) yes (21973069..21983401) yes (21973069.. 21983401)

Table B.6: List of genes with their locations that are commonly altered in OV, LUSC and GBM cancer cells, and whether
or not they were found by the power-law and exponential methods using the three highest scoring non-overlapping intervals.
The OV and GBM genes were taken from the Kegg database ( http://www.genome.jp/dbget-bin/www_bget?ds:H00027 and
http://www.genome.jp/dbget-bin/www_bget?ds:H00042); the LUSC genes, for which no Kegg entry exists, are commonly
amplified/deleted LUSC driver genes from [59] (mentioned on page 519). A gene is considered ‘found’ if the selected interval
intersects with the region containing the gene. In this table ‘next’ indicates within 100kbp from a border of the gene interval.
The parameters µ, ↵, and � were estimated from the data as in [76] and Table 3.1, with the exception of ↵ of LUSC del which
was set to 1, as the computation of RR score assumes ↵ � 1. Segments shorter than 10

4 base pairs (corresponding to the
distance between two probes) and longer than 10

7 base pairs were excluded.

http://www.genome.jp/dbget-bin/www_bget?ds:H00027
http://www.genome.jp/dbget-bin/www_bget?ds:H00042
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Appendix C

Progression Extraction

C.1 Proof of Proposition 18.1 (Probability rais-

ing temporal priority)

Proposition (Probability raising and probabilities). For any two events a and

b such that the probability raising P(a | b) > P(a | b) holds, we have

P(a) > P(b) () P(b | a)
P(b | a) >

P(a | b)
P(a | b) .

Proof. We first prove the left-to-right direction “)”. Let x = P(a, b), y = P(a, b)

and z = P(a, b). We have two assumptions we shall use later on:

1. P(a) > P(b) which implies P(a, b) < P(a, b), i.e. x < z.

2. P(a | b) > P(a | b) which implies, by simple algebraic rearrangements when

0 < x+ y < 1, inequality

y[1� x� y � z] > xz . (C.1)

149
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We proceed by rewriting P(b | a)/P(b | a) > P(a | b)/P(a | b) as

P(a, b)P(a)

P(a, b)P(a)
>

P(a, b)P(b)

P(a, b)P(b)
,

which means that

P(b | a)
P(b | a) >

P(a | b)
P(a | b) () P(a)

P(a, b)P(a)
>

P(b)

P(a, b)P(b)
. (C.2)

We can rewrite the right side of (C.2) by using x, y, z where P(a) =

P(a | b) + P(a | b) = y + z and P(b) = P(b | a) + P(b | a) = x+ y, and then do

some algebraic manipulations. We have

1� y � z

x(y + z)

>

1� x� y

z(x+ y)

() yz � y

2
z � xz

2 � yz

2
> xy � x

2
y � x

2
z � xy

2
, (C.3)

when x(y + z) 6= 0 and z(x+ y) 6= 0. To check that the right side of (C.3) holds

we show that

(xy � x2y � x2z � xy2)� (yz � y2z � xz2 � yz2) < 0 .

First, we rearrange it to (x� z)[y � y2 � xz � y(x+ z)] < 0 so to show that

(x� z)[y(1� y � x� z)� zx] < 0 (C.4)

is always negative. By observing that by assumption 1 we have z > x and thus

(x� z) < 0, and by equation (C.1) we have y(1� y � x� z)� zx > 0 we derive

P(b | a)
P(b | a) >

P(a | b)
P(a | b) ,

which concludes the “)” direction. The other direction “(” follows imme-

diately by contraposition: assume P(a | b) > P(a | b) and P(b | a)/P(b | a) >
P(a | b)/P(a | b), and suppose P(b)  P(a). We distinguish two cases:
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1. P(b) = P(a), then P(b | a)/P(b | a) = P(a | b)/P(a | b).

2. P(b) < P(a), then by symmetry of probability raising P(b | a) > P(b | a),
and by the “)”-direction of the proposition it follows that P(b | a)/P(b | a) <
P(a | b)/P(a | b).

In both cases we have a contradiction. This finishes the proof.

C.2 Proof of Proposition 18.2 (Monotonic nor-

malization)

Proposition (Monotonic normalization). For any two events a and b we have

P(b | a)
P(b | a) >

P(a | b)
P(a | b) () mb,a > ma,b

Proof. We prove the left-to-right direction “)”, the other direction follows by a

similar argument. Let us assume

P(b | a)
P(b | a) >

P(a | b)
P(a | b) , (C.5)

then P(b | a)P(a | b) > P(a | b)P(b | a). Now, to show the righthand side of the

implication, we will show that

h

P(b | a)�P(b | a)
ih

P(a | b)+P(a | b)
i

>
h

P(b | a)+P(b | a)
ih

P(a | b)�P(a | b)
i

,

which reduces to show

P(b | a)P(a | b)� P(b | a)P(a | b) > P(b | a)P(a | b)� P(b | a)P(a | b) .
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By (C.5), two equivalent inequalities hold

P(b | a)P(a | b)� P(b | a)P(a | b) > 0

P(b | a)P(a | b)� P(b | a)P(a | b) < 0

and hence the implication holds.

C.3 Proof of Theorem 19 (Algorithm correctness)

Theorem (Algorithm correctness). Algorithm 1 reconstructs a well defined tree

T without disconnected components, transitive connections and cycles.

Proof. It is clear that Algorithm 1 does not create disconnected components

since, to each node in G, a unique parent is attached (either from G or ⇧). For

the same reason, no transitive connections can appear.

The absence of cycles results from both Proposition 18.1 and 18.2. Indeed,

suppose for contradiction that there is a cycle (a1, a2), (a2, a3), . . . , (an, a1) in

E, then by the two propositions we have

P(a1) > P(a2) > . . . > P(an) > P(a1) ,

which is a contradiction.
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