
Notes on Model Checking

Bud Mishra1,2

1 Courant Institute of Mathematical Sciences, NYU
2 Watson School of Biological Sciences, CSHL

Courant/NYU Bioinformatics Group

May 3, 2003



Introduction

April 2003 c©Bud Mishra, 2003 1



Model Checking & Kripke Structure

♦ Definition: Kripke Structure

♦ ...captures the intuition about behavior of a reactive sys-

tem...

♦ ...consists of a set of states, a set of transitions between

states, and a function that labels each state with a state

of properties — true in that state.

April 2003 c©Bud Mishra, 2003 2



♦ Formal Definition Let AP be a set of atomic propositions. A

Kripke Structure M over AP is a four tuple M = (S, S0, R, L)

where

− S is a finite set of states.

− S0 ⊆ S is a set of initial states.

− R ⊆ S × S is a transition relation that must be total, that

is, for every state s ∈ S there is a state s′ ∈ S such that

R(s, s′).

− L : S ← 2AP is a function that labels each state with the

state of atomic propositions that are true in that state.

April 2003 c©Bud Mishra, 2003 3



First Order Representation

♦ Logical Connectives: and ∧, or ∨, not ¬, implies →, so on.

♦ Quantifiers: universal quantifiers ∀, existential quantifiers ∃, so on.

♦ A logic is propositional, if it consists of atomic propositions and formulas
created with the logical connectives... but no quantifiers.

♦ A logic is first order if the atomic propositions take values in a domain

(not necessarily finite) and in addition the formulas are quantified over

the domain.

April 2003 c©Bud Mishra, 2003 4



Example

♦

∀initial cell mass,c,k1<c<k2
[CellIn(S,0)→ ∀t>0CellIn(S, t)]

∧ ∀initial cell mass,c,c>k2
[CellIn(S,0)→ ∃t>0CellIn(M, t)]

April 2003 c©Bud Mishra, 2003 5



Temporal Logic

♦ Temporal Logic is a formalism for describing a sequence of

transitions between states in a reactive system...

♦ In this logic, time is never mentioned explicitly with a met-

ric... but in a “topological” manner

April 2003 c©Bud Mishra, 2003 6



♦ “Eventually something happens”... “Always something is

true”... “Something is never true” ... “Something else holds

almost always”... “This is true infinitely often”...

♦ Main modes or temporal operators are X , F, G, U and R.

♦ Main path quantifiers are A and E.

April 2003 c©Bud Mishra, 2003 7



Computation Tree Logic CTL

♦ CTL formulas describe properties of computation trees.

♦ The tree is formed by designating a state in a Kripke struc-

ture as the initial state and then unwinding the structure into

an infinite tree with the designated state at the root...

♦ The tree shows all possible execution paths in the tree...

♦ CTL formulas are composed of path quantifiers and temporal

operators.

April 2003 c©Bud Mishra, 2003 8



Computation Tree Logic CTL

♦ Next Time: X P ... property P holds in the second state of the path.

♦ Eventually: F P ... property P will hold at some state on the path (in
the future)

♦ Always: G P ... property P holds at every state on the path (globally)

♦ Until: P U Q ... property Q holds at some state on the path and property
P holds at all preceding states

♦ Release: P R Q ... property Q holds along the path up to and including
the first state at which P holds (if it does at all)

April 2003 c©Bud Mishra, 2003 9



Computation Tree Logic CTL

♦ There are two types of formulas in CTL: state formulas and

path formulas... state formulas are true in a specific state...

path formulas are true along a specific path...

April 2003 c©Bud Mishra, 2003 10



♦ Let AP be the set of atomic proposition names.

♦ The syntax of state formulas:

− If p ∈ AP , then p is a state formula.

− If f and g are state formulas, then ¬f , f ∨ g and f ∧ g are

state formulas.

− If f is a path formula then E f and A f are state formulas.

April 2003 c©Bud Mishra, 2003 11



♦ The syntax of path formulas:

− If f is a state formula, then f is also a path formula.

− If f and g are path formulas, then ¬f , f ∨g, f ∧g, Xf , Ff ,

Gf , fUg and fRg are path formulas.

April 2003 c©Bud Mishra, 2003 12



Semantics of CTL with Kripke Structure

♦ M = 〈S, R, L〉 = a Kripke Structure. S = the set of states,

R ⊆ S × S = transition relation (total) and L : S → 2AP =

the labeling function... labels each state with a set of atomic

propositions true in that state

♦ A path in M is an infinite sequence of states π = s0, s1, . . .

such that ∀i≥0(si, si+1) ∈ R

April 2003 c©Bud Mishra, 2003 13



Semantics of CTL with Kripke Structure

♦ M, s ² p iff p ∈ L(s)

♦ M, s ² ¬f1 iff M, s 6² f1

♦ M, s ² f1 ∨ f2 iff M, s ² f1 or M, s ² f2

♦ M, s ² f1 ∧ f2 iff M, s ² f1 and M, s ² f2

♦ M, s ² Eg1 iff there is a path π from s s.t. M, π ² g1

♦ M, s ² Ag1 iff for every path π from s s.t. M, π ² g1

♦ M, π ² f1 iff s is the first state of path π and M, s ² f1

♦ M, π ² ¬g1 iff M, π 6² g1

April 2003 c©Bud Mishra, 2003 14



♦ M, π ² g1 ∨ g2 iff M, π ² g1 or M, π ² g2

♦ M, π ² g1 ∧ g2 iff M, π ² g1 and M, π ² g2

♦ M, π ² Xg1 iff M, π1 ² g1

♦ M, π ² Fg1 iff ∃k ≥ 0 s.t. M, πk ² g1

♦ M, π ² Gg1 iff ∀k ≥ 0, M, πk ² g1

♦ M, π ² g1Ug2 iff ∃k ≥ 0 s.t. M, πk ² g2 and ∀0 ≤ j < k, M, πj ² g1

♦ M, π ² g1Rg2 iff ∀k ≥ 0, if ∀0 ≤ j < k M, πj 6² g1 then M, πk ² g2



Least Fixed Point Characterization

♦ It suffices to define all path formulas in terms of: P , ¬f ,
f1 ∧ f2, AXf1, EXf1, A[f1Uf2] and E[f1Uf2]

♦ P ≡ µz.P

♦ ¬f1 ≡ µz.¬f1

♦ f1 ∧ f2 ≡ µz.f1 ∧ f2

♦ AXf1 ≡ µz.AXf1

♦ EXf1 ≡ µz.EXf1

April 2003 c©Bud Mishra, 2003 15



♦ A[f1Uf2] ≡ µz.f2 ∨ (f1 ∧ AXz)

♦ E[f1Uf2] ≡ µz.f2 ∨ (f1 ∧ EXz)



Algorithm
Label-Graph(f, M)
begin case:

♦ f = P :
while ∃s ∈ S s.t. [f 6∈ Lbl(s) and P ∈ L(s)]
Add f to Lbl(s)

♦ f = ¬f1:
Label-Graph(f1, M);
while ∃s ∈ S s.t. [f 6∈ Lbl(s) and f1 6∈ Lbl(s)]
Add f to Lbl(s)

♦ f = f1 ∧ f2:
Label-Graph(f1, M);
Label-Graph(f2, M);
while ∃s ∈ S s.t. [f 6∈ Lbl(s) and f1 ∈ Lbl(s) and f2 ∈ Lbl(s)]
Add f to Lbl(s)

♦ f = AXf1:
Label-Graph(f1, M);

April 2003 c©Bud Mishra, 2003 16



while ∃s ∈ S s.t. [f 6∈ Lbl(s) and ∀t ∈ succ(s), f1 ∈ Lbl(t)]
Add f to Lbl(s)

♦ f = EXf1:
Label-Graph(f1, M);
while ∃s ∈ S s.t. [f 6∈ Lbl(s) and ∃t ∈ succ(s), f1 ∈ Lbl(t)]
Add f to Lbl(s)

♦ f = A[f1Uf2]:
Label-Graph(f1, M);
Label-Graph(f2, M);
while ∃s ∈ S s.t. [f 6∈ Lbl(s) and (f2 ∈ Lbl(s)
or (f1 ∈ Lbl(s) and ∀t ∈ succ(s), f ∈ Lbl(t)))]
Add f to Lbl(s)

♦ f = E[f1Uf2]:
Label-Graph(f1, M);
Label-Graph(f2, M);
while ∃s ∈ S s.t. [f 6∈ Lbl(s) and (f2 ∈ Lbl(s)
or (f1 ∈ Lbl(s) and ∃t ∈ succ(s), f ∈ Lbl(t)))]
Add f to Lbl(s)



The End

April 2003 c©Bud Mishra, 2003 17


