Social Networks

Lecture #4

Peterson Graph.

\[\forall v \in V \quad d(v) = 3 = \overline{d} \]

Regular Graph.

\[|V| = 10 \quad |E| = 15 \]

\[\sum_{v \in V} d(v) = 3 \times 10 = 30 = 2 \times 15 \]

Given a vertex \(u \in V \),

define its neighbor set

\[N(u) = \{ x \mid (x, u) \in E \} \]

= Set of vertices joined to \(u \)

\[N^c(u) = \{ x \mid (x, u) \notin E \} \]

= Set of vertices distinct from \(u \) and not joined to \(u \).

\[V = \{ u \} \cup \{ N(u) \} \cup N^c(u) \]

Def.: \(S \subseteq V \), define \(\langle S \rangle_G = \text{Subgraph of } G \)
induced by \(S \)

\[\langle S \rangle_G = \langle S, E(G) \cap S \times S \rangle \]

= Graph with vertices \(S \) and with two vertices joined in \(\langle S \rangle_G \) iff they are joined in \(G \).
A subgraph of G is a graph H s.t. $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. A spanning subgraph of G is a subgraph H s.t. $V(H) = V(G)$. Note $E(H) \subseteq E(G)$.

$\delta(G)$: The minimum degree of G

$= \min_{v \in V} d(v)$.

$\Delta(G)$: The maximum degree of G

$= \max_{v \in V} d(v)$.

$\sum_{v \in V} d(v) = 2|E| \Rightarrow$ The number of odd degree vertices in a graph is even.

$\forall v \in V \ d(v) = k \Rightarrow G$ is k-regular graph.

k-odd $\Rightarrow |V|$ is even.

\Rightarrow Graph is of even order.

Walk: A walk in a graph consists of an alternating sequence of vertices and edges:

$x_0 \ e_1 \ x_1 \ ... \ e_t \ x_t$

$\forall 1 \leq i \leq t \ e_i = (x_{i-1}, x_i)$

$x_0 x_t$ - walk

A walk is closed, if $x_0 = x_t$; otherwise, open.
A path is an open walk with no repeated vertex.

A cycle is a closed walk with no repeated vertex.

The number of edges in a walk (path, cycle) is its length.

n: \(W_n, P_n, C_n \).

Defn: The girth of a graph \(G \),

\[g(G) \]

is the minimum length of a cycle in a graph.

Lemma: (i) If \(G \) is a graph, then \(G \) contains a path of length \(s(G) \).

(ii) If \(s(G) \geq 2 \), then

\[g(G) \geq s(G) + 1. \]

Proof:

(i) \(u_0, u_1, \ldots, u_r = P \) = A path of max. length \(r \) in \(G \).

\[\Rightarrow N(u_r) \subseteq \{ u_0, u_1, \ldots, u_r \} \] (why?)

\[\Rightarrow s(G) \leq r \]

(ii) Vertex joined to \(u_0 \) with,

\[u_0 \ldots u_m \ldots u_r \ldots u_{r-1} \] min. index.

\[u_m \ldots u_r \ldots u_{r-1} \]

= cycle of length \(\geq s(G) + 1 \).
Petersen Graph

\[\delta(G) = \Delta(G) = 3 \]

\[g(G) = 5 \quad g(G) \geq \delta(G) + 1. \]

\[\text{A graph is connected if for each pair of vertices, there is a path connecting them} \]

\[u \rightarrow u, \quad u \rightarrow v \rightarrow u \quad \& \]

\[u \rightarrow v, \quad v \rightarrow w \Rightarrow u \rightarrow w. \]

\[\text{The relation "connectivity" is an equivalence relation}. \]

\[\Rightarrow \text{The equivalence classes are the connected components of } G. \]

\[\text{The (geodesic)-distance between two vertices is the length of the shortest path connecting them}. \]

\[d(u, v) = \text{Geodesic distance between } u \text{ and } v. \]

\[\text{The maximal geodesic distance in a graph is its diameter } \delta(G). \]

\[\forall u, v \quad d(u, v) \leq \delta(G). \]