Social Networks Sept. 8, 2015

LECTURE #2

History of Computing "The Innovators" Walter Isaacson

1) ORIGIN OF COMPUTING:
 • Jevons, Leibnitz, Boole, Babbage
 -> Ada Lovelace
 • Vannevar Bush - Memex
 -> Norbert Weiner, Claude Shannon
 -> John von Neumann
 • Alan Turing
 -> Alonzo Church, Steven Kleene,
 John von Neumann
 • Howard Eiken
 -> Mauchly, Atanasoff, Eckert

2) ORIGIN OF DIGITAL COMPUTING
 • Konrad Zuse (Z3, Elektromechanische
 • Atanasoff -> Mauchly, Eckert
 • Turing -> Colossus
 • ENIAC, EDVAC, ...

3) ORIGIN OF PROGRAMMING
 • Grace Hopper - Compiler
 (Jean Jennings, Frances Bilas, Frances Haltiaston, Kay McNulty, Jean Backik)
4) **Origin of Integrated Circuit**
(Transistor)
- Bardeen, Brattain, Shockley
- Robert Noyce & the Traitorous Eight
- Gordon Moore & Moore's Law
- Silicon Valley
- Jack Kilby & Microprocessors.

5) **Origin of DARPA Net**
- J.C.R. Licklider
- Doug Engelbart
- Paul Baran - Packet Switching
- Taylor & Robert ARPANET
- Cerf & Kahn - TCP/IP.

6) **Origin of Augmented Intelligence**
- Alan Kay - Alto SmallTalk
- Jobs & Gates - PC, Windows/Mac
- Berners-Lee, Andreason - WWW/Mosaic
- Page, Bryn - Google.

7) **Origin of Online Community**
- Brand, Brilliant - The Well
- Steve Case - AOL
- Justin Hall - Weblog → Blog
- Ward Cunningham - WikiWiki
- Jimmy Wells - Wikipedia
- Turklema - Facebook.

- **Networks** (Graph Theory)

Ingredients

\[V = \text{Set of Actors} \]
\[E \subseteq V \times V = \text{Set of Links} \]
\[S_v = \text{Strategy Space } v \in V \]
\[u_v : \Pi S_v \rightarrow \mathbb{R}_+ = \text{Pay off functions} \]

⇒ **Social Interactions** (Strategic Interactions among Rational Agents)

⇒ (Graph Theory (Interaction Choices)

\[(V, E, S_v | v \in V, u_v | v \in V) \]

together determine a Social Network.
Defn. Graphs (Networks)

A graph $G = (V, E)$ consists of a set of vertices V together with a set of edges $E \subseteq V \times V$.

⇒ A mathematical object describing an irreflexive, symmetric binary relation on a discrete set (not necessarily finite).

Example: FRIENDS

IRREFLEXIVE: One is not his own friend

$\langle v, v \rangle \notin E$ (No self-loop)

SYMMETRIC: One is a friend to a friend.

$\langle v, w \rangle \in E \iff \langle w, v \rangle \in E$

NON-TRANSITIVE: One is not necessarily a friend to a friend's friend.

$\langle u, v \rangle \in E \land \langle v, w \rangle \in E \not\iff \langle u, w \rangle \in E$.

Friendship relation in a social network can be described by an UNDIRECTED GRAPH...