Satisfiability
\(X \models \alpha \) (Model Checking)

Provability
\(X \vdash \alpha \) (Theorem Proving)

What's the relationship between them?

Soundness
\(X \vdash \alpha \) \(\implies \) \(X \models \alpha \).
(Proof by induction on formula and rule.)

Completeness
\(X \not\vdash \alpha \) \(\implies \) \(X \not\models \alpha \).

First, strengthen the statement
\(X \not\vdash \bot \land X \models \alpha \) \(\implies \) \(X \not\models \alpha \).
\(x \) consistent.

(A)

\[
\frac{x \vdash \bot}{x \vdash \beta \land \\neg \beta} \frac{x \vdash \beta}{x \vdash \alpha} \frac{x \vdash \neg \beta}{x \vdash \alpha} (\forall \alpha)
\]

(B)

\[
\frac{x, \alpha \vdash \bot}{x, \alpha \vdash \alpha} \frac{\alpha \vdash \alpha}{x, \alpha \vdash \alpha} \frac{x \vdash \alpha}{x \vdash \alpha} (\forall \alpha)
\]

\(x \not\vdash \alpha \), \(x \not\vdash \bot \) \(\implies \) \(x \not\vdash \bot, x, \neg \alpha \not\vdash \bot \)
\(\implies \) \(x \cup \neg \alpha \models \) consistent
implies \(X \not\models \alpha \).
\[Y \subseteq X \cup \neg \alpha \]

Maximally consistent superset of \(X \) containing \(\neg \alpha \)

\[Y \text{ satisfiable } \Rightarrow X \text{ satisfiable.} \]

But also \(X \cup \neg \alpha \) is satisfiable.

Completeness Proof

\[X \vdash \alpha \quad (\wedge \text{ } X \text{ consistent}) \]

\[\Rightarrow X \cup \neg \alpha \text{ consistent} \]

\[\Rightarrow \exists Y \quad Y \subseteq X \cup \neg \alpha \text{ & } Y \text{ Maximaly consistent} \]

\[\text{Lindenbaum's Lemma} \]

\[\vdash Y \text{ satisfiable} \]

\[\Rightarrow X \cup \neg \alpha \text{ satisfiable} \]

\[\Rightarrow X \vdash \alpha \quad \Box \]

Defn. (a) \(\alpha \in F \) is called **inconsistent**

\[\text{if } X \vdash \alpha \quad \forall \alpha \in F; \text{ otherwise, consistent.} \]

(b) \(Y \in F \) is called **maximally consistent**

\[\text{if } Y \text{ consistent but each } \neg \exists Y \text{ is inconsistent.} \]

Lindenbaum's Lemma:

Every consistent set \(X \in F \) can be extended to a maximally consistent set \(X \cup \neg \alpha \).

Satisfiability Lemma:

Every maximally consistent set \(Y \) is satisfiable.
Lindenbaum's Lemma:

Proof: Let \(H \) be the set of all consistent \(Y \supseteq X \), partially ordered with respect to \(\subseteq \) relation.

\[H = \{ Y | Y \supseteq X \land Y \neq \emptyset \} \]

(a) \(H \neq \emptyset \) \(\iff \) \(x \in H \)

(b) \(\exists k \in H \) \(k \) is a chain. \(\iff \forall Y, Z \in k \) \(Y \subseteq X \lor Z \subseteq Y \).

\(U \) is \(\supseteq U_k \), upper bound for the chain \(k \).

- \(U \neq \emptyset \) (\(U \) is consistent)

 Suppose not: \(U \neq \emptyset \)

 \[\Rightarrow u_0 \neq \emptyset \land u_0 \text{ is finite} \iff u_0 = \{ a_1, \ldots, a_n \} \]

 \[\therefore a_1, \ldots, a_n \neq \emptyset \]

 \[a_i \in Y, i \in K \]

 Let \(Y \) be the biggest among \(Y_1, \ldots, Y_n \).

 \[\Rightarrow a_1, \ldots, a_n \subseteq Y \]

 \[\frac{a_1, \ldots, a_n \neq \emptyset}{Y \neq \emptyset} \quad (\text{by NR}) \]

 \[\Rightarrow Y \notin H \Rightarrow \# \]

(c) By Zorn's Lemma: \(H \) has a maximal element, \(x' \).

\(x' \supseteq x \) and \(x' = \text{maximally consistent} \).

\(\square \)
Satisfiability Lemma:

\[\forall \alpha \ V \vdash \alpha \iff \omega \models \alpha. \]

\(\iff \) (i.e. \(\omega \) is model for \(\forall \))

\(\forall \beta \ V \vdash \alpha, \beta \) (\(\vdash \forall \beta \ \& \ \forall \alpha \))

\(\iff \omega \models \alpha \) and \(\omega \models \beta \)

\(\iff \omega \models \alpha \land \beta. \)

\[\vdash \alpha \] (\(\vdash \) maximal of \(\forall \))

\[\iff \omega \not\models \alpha \]

\[\iff \omega \models \alpha \]

\(\vdash \alpha \land \beta \) \(\vdash \alpha \)

\(\vdash \alpha \lor \beta \)

is a consistent extension of \(\forall \)

\(\Rightarrow \) \(\forall \alpha \in \forall \)

\(\Rightarrow \forall \vdash \alpha. \)
Satisfiability: Hornsat.

Horn Clause:
A Horn clause is a disjunction of literals in which all or nearly all of the literals are complemented.
(At most one of its literals is pure.)

Example:
\[x \equiv T \equiv x \quad (w: x \mapsto 1) \]
\[\overline{x} \lor \overline{y} \equiv x \land y \equiv 1 \quad (w: x \mapsto 0, y \mapsto 0) \]
\[x \lor \overline{y} \lor z \equiv y \lor z \equiv x \quad (w: x \mapsto 1, y \mapsto 0, \\
or z \mapsto 0) \]

Hornsat Algorithm (Greedy)

1. **Initialize**
 Assign all variables false.
 (Thus initially all clauses of the following form will be satisfied.
 \[x \land y \equiv 1 \]
 \[\overline{w} \lor x \land y \equiv z \].
 But not \[T \equiv x \].

2. **Update**
 For a clause whose r.h.s. are not satisfied
 choose one & FLIP the truth assignment to true.

3. **Reevaluate** all clauses and repeat (2), until no more variable can be FLIPPED (unsatisfiable)
 or a satisfiable assignment has been found.

Clauses = m , # variables = n.
Complexity = \(O(mn) \).
PROLOG PROGRAM

Defn:
1. A ** Horn clause ** is a clause that contains at most one positive literal.
2. A ** program clause ** is one that contains exactly one positive literal.

 \[\text{A} : = \ B_1, B_2, \ldots, B_n. \]

3. If a ** program clause ** contains some negative literals it is called a rule \((n > 0)\)

4. A ** unit clause ** (fact) is one that consists of exactly one positive literal.

 \[\text{A.} \text{ or } \text{A} : = \]

5. A ** goal clause ** is one that contains no positive literals.

\[? - \]

6. A ** PROLOG program ** is a set of clauses containing only ** program clauses **.

\[\{ \text{Rules and Facts} \} \]

Lemma: If a set of Horn clauses \(S \) is unsatisfiable then \(S \) must contain at least one fact and one goal clause.

Proof: If \(S \) contains no fact, then assign every prime variable \(\text{false} \). \(S \Rightarrow \text{Satisfiable} \).

If \(S \) contains no goal clause then assign every prime variable \(\text{true} \). \(S \Rightarrow \text{Satisfiable} \).
General view of a Prolog Program:

Given: A collection of facts and rules \(\equiv \text{Program } P \).

Deduce: If a conjunction of some facts \(\exists q_1, q_2, \ldots, q_n \)

\[\text{?- } q_1, q_2, \ldots, q_n \]

is a consequence of \(P \).

\[G = \{ q_1, q_2, \ldots, q_n \} \]

Lemma: \(q_i \)'s are consequences of \(P \) iff \(P \cup G \) is unsatisfiable.

Proof: H.W.

More Complex Prolog Program (Need use 1st order logic).

parent \((x, y)\) :- mother \((x, y)\).
parent \((x, y)\) :- father \((x, y)\).
daughter \((x, y)\) :- mother \((y, x)\), female \((x)\).
son \((x, y)\) :- mother \((y, x)\), male \((x)\).
child \((x, y)\) :- son \((x, y)\).
child \((x, y)\) :- daughter \((x, y)\).
daughter \((x, y)\) :- father \((y, x)\), female \((x)\).
son \((x, y)\) :- father \((y, x)\), & male \((x)\).

male \((\text{sam})\).
male \((\text{tom})\).
female \((\text{kim})\).
father \((\text{bud, kim})\).
female \((\text{jane})\).
mother \((\text{jane, sam})\).

\[\text{?- parent } (\text{bud, sam}) \]