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“Where (or of what) one cannot speak, one must pass over
in silence. ”
–Ludwig Wittgenstein, Tractatus Logico-Philosophicus, 1921.
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Conditional Probabilities

Suppose that A1 and A2 are two events such that
P(A2) 6= 0. Then the conditional probability that the event
A1 occurs, given that event A2 occurs, denoted by
P(A1|A2) is given by the formula

P(A1|A2) =
P(A1&A2)

P(A2)
.
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Bayes Rule

Suppose that A1 and A2 are two events such that
P(A1) 6= 0 and P(A2) 6= 0. Then

P(A2|A1) =
P(A2)P(A1|A2)

P(A1)
.
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Markov Models

Suppose there are n states S1, S2, . . ., Sn. And the
probability of moving to a state Sj from a state Si depends
only on Si , but not the previous history. That is:

P(s(t + 1) = Sj |s(t) = Si , s(t − 1) = Si1, . . .)

= P(s(t + 1) = Sj |s(t) = Si).

Then by Bayes rule:

P(s(0) = Si0 , s(1) = Si1, . . . , s(t − 1) = Sit−1
, s(t) = Sit )

= P(s(0) = Si0)P(Si1 |Si0) · · ·P(Sit |Sit−1).
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HMM: Hidden Markov Models

Defined with respect to an alphabet Σ

A set of (hidden) states Q,

A |Q| × |Q| matrix of state transition probabilities
A = (akl), and

A |Q| × |Σ| matrix of emission probabilities E = (ek (σ)).

States

Q is a set of states that emit symbols from the alphabet Σ.
Dynamics is determined by a state-space trajectory determined
by the state-transition probabilities.

B Mishra Bioinformatics: Biology X



Outline
Hidden Markov Models

Information Theory

Hidden Markov Models
Bayesian Interpretation of Probabilities

A Path in the HMM

Path Π = π1π2 · · · πn = a sequence of states ∈ Q∗ in the
hidden markov model, M.

x ∈ Σ∗ = sequence generated by the path Π determined
by the model M:

P(x |Π) = P(π1)

[

n
∏

i=1

P(xi |πi) · P(πi |πi+1)

]
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A Path in the HMM

Note that

P(x |Π) = P(π1)

[

n
∏

i=1

P(xi |πi) · P(πi |πi+1)

]

P(xi |πi) = eπi (xi )

P(πi |πi+1) = aπi ,πi+1

Let π0 and πn+1 be the initial (“begin”) and final (“end”)
states, respectively

P(x |Π) = aπ0,π1eπ1(x1)aπ1,π2eπ2(x2) · · · eπn(xn)aπn,πn+1

i.e.

P(x |Π) = aπ0,π1

n
∏

i=1

eπi (xi)aπi ,πi+1.
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Decoding Problem

For a given sequence x , and a given path π, the model
(Markovian) defines the probability P(x |Π)

In a casino scenario: the dealer knows Π and x , the player
knows x but not Π.
“The path of x is hidden.”
Decoding Problem : Find an optimal path π∗ for x such
that P(x |π) is maximized.

π∗ = arg max
π

P(π|x).

= arg max
π

P(x |π)P(π)/P(x).

Assume uniform non-infromative priors for P(x) and P(π).
Then, we can optimize the following:

π∗ = arg max
π

P(x |π).

B Mishra Bioinformatics: Biology X



Outline
Hidden Markov Models

Information Theory

Hidden Markov Models
Bayesian Interpretation of Probabilities

Dynamic Programming Approach

Principle of Optimality

Optimal path for the (i + 1)-prefix of x

x1x2 · · · xi+1

uses a path for an i-prefix of x that is optimal among the paths
ending in an unknown state πi = k ∈ Q.
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Dynamic Programming Approach

Recurrence: sk (i) = the probability of the most probable path
for the i-prefix ending in state k

∀k∈Q∀1≤i≤n sk (i) = ek (xi) · max
l∈Q

sl(i − 1)alk .
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Dynamic Programming

i = 0, Base case

sbegin(0) = 1, sk (0) = 0,∀k 6=begin.

0 < i ≤ n, Inductive case

sl(i + 1) = el(xi+1) · max
k∈Q

[sk (i) · akl ]

i = n + 1
P(x |π∗) = max

k∈Q
sk (n)ak ,end .
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Viterbi Algorithm

Dynamic Programing with “log-score ” function

Sl(i) = log sl(i).

Space Complexity = O(n|Q|).

Time Complexity = O(n|Q|).

Additive formula:

Sl(i + 1) = log el(xi+1) + max
k∈Q

[Sk (i) + log akl ].
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Bayesian Interpretation

Probability P(e) 7→ our certainty about whether event e is
true or false in the real world. (Given whatever information
we have available.)

“Degree of Belief. ”

More rigorously, we should write

Conditional probability P(e|L) 7→ Represents a
degree of belief with respect to L — The
background information upon which our belief is
based.
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Probability as a Dynamic Entity

We update the “degree of belief” as more data arrives:
using Bayes Theorem :

P(e|D) =
P(D|e)P(e)

P(D)
.

Posterior is proportional to the prior in a manner that
depends on the data P(D|e)/P(D).

Prior Probability : P(e) is one’s belief in the event e before
any data is observed.

Posterior Probability : P(e|D) is one’s updated belief in e
given the observed data.

Likelihood : P(D|e) 7→ Probability of the data under the
assumption e
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Dynamics

Note:

P(e|D1, D2) =
P(D2|D1, e)P(e|D1)

P(D2|D1)

=
P(D2|D1, e)P(D1|e)P(e)

P(D2D1)

Further, note: The effects of prior diminish as the number
of data points increase.

The Law of Large Number:

With large number of data points, Bayesian and
frequentist viewpoints become indistinguishable.
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Parameter Estimation

Functional form for a model M
1 Model depends on some parameters Θ
2 What is the best estimation of Θ?

Typically the parameters Θ are a set of real-valued
numbers

Both prior P(Θ) and posterior P(Θ|D) are defining
probability density functions.
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MAP Method: Maximum A Posteriori

Find the set of parameters Θ
1 Maximizing the posterior P(Θ|D) or minimizing a score

− log P(Θ|D)

E ′(Θ) = − log P(Θ|D)

= − log P(D|Θ) − log P(Θ) + log P(D)

2 Same as minimizing

E(Θ) = − log P(D|Θ) − log P(Θ)

3 If prior P(Θ) is uniform over the entire parameter space
(i.e., uninformative)

min argΘ EL(Θ) = − log P(D|Θ).

Maximum Likelihood Solution
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Information theory is based on probability theory (and
statistics).

Basic concepts : Entropy (the information in a random
variable) and Mutual Information (the amount of
information in common between two random variables).

The most common unit of information is the bit (based log
2). Other units include the nat , and the hartley .
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Entropy

The entropy H of a discrete random variable X is a
measure of the amount uncertainty associated with the
value X .

Suppose one transmits 1000 bits (0s and 1s). If these bits
are known ahead of transmission (to be a certain value
with absolute probability), logic dictates that no information
has been transmitted. If, however, each is equally and
independently likely to be 0 or 1, 1000 bits (in the
information theoretic sense) have been transmitted.
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Between these two extremes, information can be
quantified as follows.

If X is the set of all messages x that X could be, and p(x)
is the probability of X given x , then the entropy of X is
defined as

H(x) = EX [I(x)] = −
∑

x∈X

p(x) log p(x).

Here, I(x) is the self-information, which is the entropy
contribution of an individual message, and EX is the
expected value.
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An important property of entropy is that it is maximized
when all the messages in the message space are
equiprobable p(x) = 1/n, i.e., most unpredictable, in which
case H(X ) = log n.

The binary entropy function (for a random variable with two
outcomes ∈ {0, 1} or ∈ {H, T}:

Hb(p, q) = −p log p − q log q, p + q = 1.
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Joint entropy

The joint entropy of two discrete random variables X and Y
is merely the entropy of their pairing: 〈X , Y 〉.

Thus, if X and Y are independent, then their joint entropy
is the sum of their individual entropies.

H(X , Y ) = EX ,Y [− log p(x , y)] = −
∑

x,y

p(x , y) log p(x , y).

For example, if (X,Y) represents the position of a chess
piece — X the row and Y the column, then the joint entropy
of the row of the piece and the column of the piece will be
the entropy of the position of the piece.

B Mishra Bioinformatics: Biology X



Outline
Hidden Markov Models

Information Theory

Conditional Entropy or Equivocation

The conditional entropy or conditional uncertainty of X
given random variable Y (also called the equivocation of X
about Y ) is the average conditional entropy over Y :

H(X |Y ) = EY [H(X |y)]

= −
∑

y∈Y

p(y)
∑

x∈X

p(x |y) log p(x |y)

= −
∑

x,y

p(x , y) log
p(x , y)

p(y)

A basic property of this form of conditional entropy is that:

H(X |Y ) = H(X , Y ) − H(Y ).
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Mutual Information (Transinformation)

Mutual information measures the amount of information
that can be obtained about one random variable by
observing another.

The mutual information of X relative to Y is given by:

I(X ; Y ) = EX ,Y [SI(x , y)] =
∑

x,y

p(x , y) log
p(x , y)

p(x)p(y)
.

where SI (Specific mutual Information ) is the pointwise
mutual information.
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A basic property of the mutual information is that

I(X ; Y ) = H(X )−H(X |Y ) = H(X )+H(Y )−H(X , Y ) = I(Y ; X ).

That is, knowing Y , we can save an average of I(X ; Y ) bits
in encoding X compared to not knowing Y . Note that
mutual information is symmetric .

It is important in communication where it can be used to
maximize the amount of information shared between sent
and received signals.
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Kullback-Leibler Divergence (Information Gain)

The Kullback-Leibler divergence (or information
divergence, information gain, or relative entropy) is a way
of comparing two distributions: a “true” probability
distribution p(X ), and an arbitrary probability distribution
q(X ).

DKL(p(X )‖q(X )) =
∑

x∈X

p(x) log
p(x)

q(x)

=
∑

x∈X

[−p(x) log q(x)] − [−p(x) log p(x)]
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If we compress data in a manner that assumes q(X ) is the
distribution underlying some data, when, in reality, p(X ) is
the correct distribution, the Kullback-Leibler divergence is
the number of average additional bits per datum necessary
for compression.

Although it is sometimes used as a ‘distance metric,’ it is
not a true metric since it is not symmetric and does not
satisfy the triangle inequality (making it a
semi-quasimetric).
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Mutual information can be expressed as the average
Kullback-Leibler divergence (information gain) of the
posterior probability distribution of X given the value of Y
to the prior distribution on X :

I(X ; Y ) = Ep(Y )[DKL(p(X |Y = y)‖p(X )]

= DKL(p(X , Y )‖p(X )p(Y )).

In other words, mutual information I(X , Y ) is a measure of
how much, on the average, the probability distribution on X
will change if we are given the value of Y . This is often
recalculated as the divergence from the product of the
marginal distributions to the actual joint distribution.

Mutual information is closely related to the log-likelihood
ratio test in the context of contingency tables and the
multinomial distribution and to Pearson’s χ2 test.
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Source theory

Any process that generates successive messages can be
considered a source of information.

A memoryless source is one in which each message is an
independent identically-distributed random variable,
whereas the properties of ergodicity and stationarity
impose more general constraints. All such sources are
stochastic.
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Information Rate

Rate Information rate is the average entropy per symbol.
For memoryless sources, this is merely the entropy of each
symbol, while, in the case of a stationary stochastic
process, it is

r = lim
n→∞

H(Xn|Xn−1, Xn−2 . . .)

In general (e.g., nonstationary), it is defined as

r = lim
n→∞

1
n

H(Xn, Xn−1, Xn−2 . . .)

In information theory, one may thus speak of the “rate” or
“entropy” of a language.
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Rate Distortion Theory

R(D) = Minimum achievable rate under a given constraint
on the expected distortion.

X = random variable; T = alphabet for a compressed
representation.

If x ∈ X is represented by t ∈ T , there is a distortion d(x , t)

R(D) = min
{p(t|x):〈d(x,t)〉≤D}

I(T , X ).

〈d(x , t)〉 =
∑

x,t

p(x , t)d(x , t)

=
∑

x,t

p(x)p(t |x)d(x , t)
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Introduce a Lagrange multiplier parameter β and
Solve the following variational problem

Lmin[p(t |x)] = I(T ; X ) + β〈d(x , t)〉p(x)p(t|x).

We need
∂L

∂p(t |x)
= 0.

Since

L =
∑

x

p(x)
∑

t

p(t |x) log
p(t |x)

p(t)
+β

∑

x

p(x)
∑

t

p(t |x)d(x , t),

we have

p(x)

[

log
p(t |x)

p(t)
+ βd(x , t)

]

= 0.

⇒
p(t |x)

p(t)
∝ e−βd(x,t).
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Summary

In summary,

p(t |x) =
p(t)

Z (x , β)
e−βd(x,t) p(t) =

∑

x

p(x)p(t |x).

Z (x , β) =
∑

t p(t) exp[−βd(x , t)] is a Partition Function.

The Lagrange parameter in this case is positive; It is
determined by the upper bound on distortion:

∂R
∂D

= −β.
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Redescription

Some hidden object may be observed via two views X and
Y (two random variables.)

Create a common descriptor T

Example X = words, Y = topics.

R(D) = min
p(t|x):I(T :Y )≥D

I(T ; X )

L = I(T : X ) − βI(T ; Y )
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Proceeding as before, we have

p(t |x) =
p(t)

Z (x , β)
e−βDKL[p(y |x)‖p(y |t)]

p(t) =
∑

x

p(x)p(t |x)

p(y |t) =
1

p(t)

∑

x

p(x , y)p(t |x)

p(y |x) =
p(x , y)

p(x)

Information Bottleneck = T .
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Blahut-Arimoto Algorithm

Start with the basic formulation for RDT; Can be changed
mutatis mutandis for IB.

Input: p(x), T , and β

Output: p(t |x)

Step 1. Randomly initialize p(t)

Step 2. loop until p(t |x) converges (to a fixed point)

Step 3. p(t |x) := p(t)
Z (x,β)e

−βd(x,t)

Step 4. p(t) :=
∑

x p(x)p(t |x)

Step 5. endloop

Convex Programming: Optimization of a convex function over
a convex set 7→ Global optimum exists!
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[End of Lecture #??]

See you next week!
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