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“Where (or of what) one cannot speak, one must pass over
in silence. ”
—Ludwig Wittgenstein, Tractatus Logico-Philosophicus, 1921.
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Summary of the lecture / discussion points
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Hidden Markov Models
Bayesian Interpretation of Probabilities

Conditional Probabilities

@ Suppose that A; and A, are two events such that
P(Az) # 0. Then the conditional probability that the event
A1 occurs, given that event A, occurs, denoted by
P(A1|Az) is given by the formula

P(A1&A)

P(A1|A2) = P(Az)
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Hidden Markov Models

Hidden Markov Models
Bayesian Interpretation of Probabilities

Bayes Rule

@ Suppose that A; and A, are two events such that
P(A1) # 0and P(Az) # 0. Then

P(A2)P(A1|A2)

P(A2|Al) = P(Al)
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Hidden Markov Models
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Markov Models

@ Suppose there are n states Si, Sy, ..., Sp. And the
probability of moving to a state S; from a state S; depends
only on S;, but not the previous history. That is:

P(s(t+1) = Sjs(t) = Si,s(t —1) =S;;,...)
= P(s(t+1)=Sj|s(t) =S)).

Then by Bayes rule:

P(s(0) = Si;,s(1) = Siy,...,s(t —1) = Sj_,,s(t) = S;)
= P( ( ) SIO)P(Sll‘SIO) : P(Sit‘sit,l)-
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Hidden Markov Models
Bayesian Interpretation of Probabilities

HMM: Hidden Markov Models

Defined with respect to an alphabet %
@ A set of (hidden) states Q,

@ A |QJ x |Q| matrix of state transition probabilities
A= (ak|), and

@ A |Q| x |X| matrix of emission probabilites E = (ex(0)).

Q is a set of states that emit symbols from the alphabet ¥_.
Dynamics is determined by a state-space trajectory determined
by the state-transition probabilities.
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Hidden Markov Models

Hidden Markov Models
Bayesian Interpretation of Probabilities

A Path in the HMM

@ Path 1 = w7y - - - m, = a sequence of states € Q* in the
hidden markov model, M.

@ X € ¥* = sequence generated by the path I determined
by the model M:

n

P(x|M) = P(m) [P ilmi) - P(milmisa)
=il
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Hidden Markov Models
Bayesian Interpretation of Probabilities

A Path in the HMM

@ Note that
P(xIM) = P(m) [[[Pilm) - P(milmiya)
i—1
P(xilm) = ex(x)
P(milmit1) = a7

@ Let mp and 71 be the initial (*begin”) and final (“end”)
states, respectively

P(X ‘ |_|) = aﬂoﬂrleﬂl (Xl)aﬂlﬂfzeﬂz (XZ) €, (Xn)aﬂnﬂmrl
i.e.

n

P(X|M) = any.m [ ] €x (%) ar s
i=1
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Hidden Markov Models
Bayesian Interpretation of Probabilities

Decoding Problem

@ For a given sequence x, and a given path «, the model
(Markovian) defines the probability P (x|I)

@ In a casino scenario: the dealer knows I1 and x, the player
knows x but not I1.

@ “The path of x is hidden.”

@ Decoding Problem : Find an optimal path 7* for x such
that P (x|m) is maximized.

7 = argmaxP(x|x).
= argmaxP(x|7)P(x)/P(x).
Assume uniform non-infromative priors for P(x) and P ().
Then, we can optimize the following:

" = argmaxP (X|r).
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Hidden Markov Models
Bayesian Interpretation of Probabilities

Dynamic Programming Approach

Principle of Optimality

Optimal path for the (i + 1)-prefix of x

X1X2 - Xiy1

uses a path for an i-prefix of x that is optimal among the paths
ending in an unknown state m = k € Q.
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Hidden Markov Models
Bayesian Interpretation of Probabilities

Dynamic Programming Approach

Recurrence: si (i) = the probability of the most probable path
for the i-prefix ending in state k

vkerlgign Sk(i) = ek(xi) . rlne%x S|(i = 1)a|k.
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Hidden Markov Models
Bayesian Interpretation of Probabilities

Dynamic Programming

@ i = 0, Base case

Sbegin(o) =1, Sk(o) = oavk;«ébegin-

® 0 < i < n, Inductive case
si(i +1) = e(Xiy1) - max[s(i) - au]
keQ

@i=n+1
P(x|7*) = max sy (n)a end-
keQ
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Hidden Markov Models
Bayesian Interpretation of Probabilities

Viterbi Algorithm

@ Dynamic Programing with “log-score ” function
Si(i) = logsi(i).

@ Space Complexity = O(n|Q]).
@ Time Complexity = O(n|Q|).
@ Additive formula:

Si(i +1) = loge(Xi1) + Tg[sk(i) + loga].
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Bayesian Interpretation

@ Probability P(e) — our certainty about whether event e is
true or false in the real world. (Given whatever information
we have available.)

@ “Degree of Belief. ”

@ More rigorously, we should write

Conditional probability P(e|L) — Represents a
degree of belief with respectto L — The
background information upon which our belief is
based.
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\dden Markov Models Bayesian Interpretation of Probabilities

Probability as a Dynamic Entity

@ We update the “degree of belief” as more data arrives:
using Bayes Theorem :

P(e|D) = 7P(DP“(9[))';(6)

Posterior is proportional to the prior in a manner that
depends on the data P(Dl|e)/P (D).

@ Prior Probability : P(e) is one’s belief in the event e before
any data is observed.

@ Posterior Probability : P(e|D) is one’s updated belief in e
given the observed data.

@ Likelihood : P(D|e) — Probability of the data under the
assumption e
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Hidden Markov Models
Bayesian Interpretation of Probabilities

Hidden Markov Models

Dynamics
@ Note:
P(elDy.Dy) — O2DLEPERY
P(D2|D1,e)P(Dy|e)P(e)
P(D2D1)

@ Further, note: The effects of prior diminish as the number
of data points increase.

@ The Law of Large Number:

With large number of data points, Bayesian and
frequentist viewpoints become indistinguishable.
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Hidden Markov Model . .
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Parameter Estimation

@ Functional form for a model M

© Model depends on some parameters ©
© What is the best estimation of ©?

@ Typically the parameters © are a set of real-valued
numbers

@ Both prior P(©) and posterior P(©|D) are defining
probability density functions.
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MAP Method: Maximum A Posteriori

@ Find the set of parameters ©
© Maximizing the posterior P(©|D) or minimizing a score
—logP(©|D)

E'(®) = -—logP(©|D)
= —logP(D|®) —logP(©) + logP(D)

© Same as minimizing
E(©) = — logP(D|®) — log P(©)

@ If prior P(©) is uniform over the entire parameter space
(i.e., uninformative)

minargg E| (©) = —log P(D|©).

Maximum Likelihood Solution
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Information Theory

Information theory

@ Information theory is based on probability theory (and
statistics).

@ Basic concepts : Entropy (the information in a random
variable) and Mutual Information (the amount of
information in common between two random variables).

@ The most common unit of information is the bit (based log
2). Other units include the nat, and the hartley .

B Mishra Bioinformatics: Biology X



Information Theory

Entropy

@ The entropy H of a discrete random variable X is a
measure of the amount uncertainty associated with the
value X.

@ Suppose one transmits 1000 bits (0s and 1s). If these bits
are known ahead of transmission (to be a certain value
with absolute probability), logic dictates that no information
has been transmitted. If, however, each is equally and
independently likely to be 0 or 1, 1000 bits (in the
information theoretic sense) have been transmitted.
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Information Theory

Entropy

@ Between these two extremes, information can be
guantified as follows.

@ If X is the set of all messages x that X could be, and p(x)
is the probability of X given x, then the entropy of X is
defined as

H(x) = Ex[I(x)] = = >_ p(x)log p(x

xeX

Here, I(x) is the self-information, which is the entropy
contribution of an individual message, and Ey is the
expected value.
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Information Theory

@ An important property of entropy is that it is maximized
when all the messages in the message space are
equiprobable p(x) = 1/n, i.e., most unpredictable, in which
case H(X) = logn.

@ The binary entropy function (for a random variable with two
outcomes € {0,1} or € {H, T }:

Hp(p,q) = —plogp —qloggq, p+q=1.
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Information Theory

Joint entropy

@ The joint entropy of two discrete random variables X and Y
is merely the entropy of their pairing: (X,Y).

@ Thus, if X and Y are independent, then their joint entropy
is the sum of their individual entropies.

H(X,Y) = Exy[-logp(x,y)] = = > p(x,y)logp(x,y).
X,y

@ For example, if (X,Y) represents the position of a chess
piece — X the row and Y the column, then the joint entropy
of the row of the piece and the column of the piece will be
the entropy of the position of the piece.
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Information Theory

Conditional Entropy or Equivocation

@ The conditional entropy or conditional uncertainty of X
given random variable Y (also called the equivocation of X
about Y) is the average conditional entropy over Y:

H(X|Y) = Ey[H(X]y)]
= —> py) ) p(xly)logp(xly)

yeY xeX

= —> p(x,y)log PX.y)
X,y

p(y)
@ A basic property of this form of conditional entropy is that:

H(X|Y) = H(X,Y) = H(Y).
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Information Theory

Mutual Information (Transinformation)

@ Mutual information measures the amount of information
that can be obtained about one random variable by
observing another.

@ The mutual information of X relative to Y is given by:

p(X,Y)

I(X:Y) = Exy[SI06Y)] = 3 plxy)log Drais.

X7y

where Sl (Specific mutual Information ) is the pointwise
mutual information.
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Information Theory

@ A basic property of the mutual information is that
I(X;Y)=HX)-H(X]Y)=HX)+H(Y)-H(X,Y) = I(Y; X).

That is, knowing Y, we can save an average of I(X;Y) bits
in encoding X compared to not knowing Y . Note that
mutual information is symmetric .

@ It is important in communication where it can be used to
maximize the amount of information shared between sent
and received signals.
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Information Theory

Kullback-Leibler Divergence (Information Gain)

@ The Kullback-Leibler divergence (or information
divergence, information gain, or relative entropy) is a way
of comparing two distributions: a “true” probability
distribution p(X), and an arbitrary probability distribution

q(Xx).
D (P(X)[la(X)) = Zp )
xeX
= Y [-p(x)logq(x)] — [-p(x)log p(x)]
xeX
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Information Theory

@ If we compress data in a manner that assumes q(X) is the
distribution underlying some data, when, in reality, p(X) is
the correct distribution, the Kullback-Leibler divergence is
the number of average additional bits per datum necessary
for compression.

@ Although it is sometimes used as a ‘distance metric,’ it is
not a true metric since it is not symmetric and does not
satisfy the triangle inequality (making it a
semi-quasimetric).
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Information Theory

@ Mutual information can be expressed as the average
Kullback-Leibler divergence (information gain) of the
posterior probability distribution of X given the value of Y
to the prior distribution on X:

I(X;Y) = Ep)[Dxe(p(X]Y =y)lp(X)]
= D (p(X,Y)lIp(X)p(Y))-

In other words, mutual information I(X,Y ) is a measure of
how much, on the average, the probability distribution on X
will change if we are given the value of Y. This is often
recalculated as the divergence from the product of the
marginal distributions to the actual joint distribution.

@ Mutual information is closely related to the log-likelihood
ratio test in the context of contingency tables and the
multinomial distribution and to Pearson’s y? test.
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Information Theory

Source theory

@ Any process that generates successive messages can be
considered a source of information.

@ A memoryless source is one in which each message is an
independent identically-distributed random variable,
whereas the properties of ergodicity and stationarity
impose more general constraints. All such sources are
stochastic.
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Information Theory

Information Rate

@ Rate Information rate is the average entropy per symbol.
For memoryless sources, this is merely the entropy of each
symbol, while, in the case of a stationary stochastic
process, it is

r - Iim H(Xn|Xn_17Xn_2...)
n—oo
@ In general (e.g., nonstationary), it is defined as

.1
r = Ilm _H(Xn7Xn_1,Xn_2...)

n—oo N

@ In information theory, one may thus speak of the “rate” or
“entropy” of a language.
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Information Theory

Rate Distortion Theory

@ R(D) = Minimum achievable rate under a given constraint
on the expected distortion.

@ X = random variable; T = alphabet for a compressed
representation.

@ Ifx € X isrepresented by t € T, there is a distortion d(x,t)

R(D) = min I(T,X).
() {p(tx):(d(x,t))<D} ( )

d(x,t)) = prt (x,1)
= Zp (x)p(tx)d(x,t)

Xt
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Information Theory

@ Introduce a Lagrange multiplier parameter g and
@ Solve the following variational problem

Lenin[p(t[x)] = I(T; X) + B{d(x, t)> ()p(t]x)-

@ We need
oc
op(t|x)
Since
= Zp X)Zp t|><)|0@1 +ﬁZp Z (t}x)d (x,1),
we have

P(t[x)
p(x )[Iog o (0 + pd(x, t)} 0.

p(t[x) o e—Ad0x)
p(t)
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Information Theory

Summary

@ In summary,

PLtiX) = i€ 900 p(t) = Y p(X)p(th).
Z(x,B3) = > p(t) exp[—pd(x,t)] is a Partition Function.

@ The Lagrange parameter in this case is positive; It is
determined by the upper bound on distortion:

OR

o~ "
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Information Theory

Redescription

@ Some hidden object may be observed via two views X and
Y (two random variables.)

@ Create a common descriptor T
@ Example X = words, Y = topics.

R(D) = min I(T; X)
p(t|x):1(T:Y)>D
L = KT :X)=pKT;Y)
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Information Theory

@ Proceeding as before, we have

pltx) = %e—ﬁDKL[p(VIX)IIP(yt)]

pt) = S pX)p(tx)
p(y[t) = ﬁ;pwymmx)

p(X,y)
p(x)

@ Information Bottleneck =T.

pylx) =
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Information Theory

Blahut-Arimoto Algorithm

@ Start with the basic formulation for RDT; Can be changed
mutatis mutandis for IB.

@ Input: p(x), T,and g3
@ Output: p(t|x)
Step 1. Randomly initialize p(t)
Step 2. loop until p(t|x) converges (to a fixed point)

Step 4. p(t) := > P(X)pP(t[x)

Step 5. endloop

Convex Programming: Optimization of a convex function over
a convex set — Global optimum exists!
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Information Theory

[End of Lecture #?7]

See you next week! J
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