Subspace Clustering of CFS Data

NYU Bioinformatics Oct 5, 2009

The Epidemiology of CFS

- Clinic populations
 - Women
 - Primarily white
 - Middle upper socioeconomic status
 - Sudden onset (recovery more likely)
 - Illness duration 5 yrs
 - 22 physician visits/year

- General population
 - Women
 - All race/ethnicities
 - Low socioeconomic
 - Gradual onset (lower recovery rates)
 - Illness duration 5 yrs
 - 15% have been diagnosed/treated

Economic impact - \$9 billion/year, \$20,000 per household

CFS Heterogeneity

- Regarding CFS heterogeneity.
- Here are some of Q's related to CFS heterogeneity...
 - Since we observe differing insults (viral or infection or stress, ... or a combination of the these) preceding the CFS state, is there a difference in what's going wrong 'under the hood' physiologically, in people with CFS?
 - Since there are natural genetic variations between people, does this lead to variations in susceptibility to the disease from these insults?
 - What is an exhaustive list of disturbed biological pathways in chronic fatigued persons does this list vary by person?
 - What are the biological sequence of events (in terms of biological pathway disruptions) leading to a CFS state, and does this sequence of events vary from person to person?
 - Are there common themes in the answer to the above questions? Can we define subgroups of people with CFS from these common themes?
- Can we use these subgroups to develop optimal, targeted treatments - custom tailored to address each subgroups specific characteristic problems?

Study Subjects

This in-hospital study enrolled people who were identified with CFS according to the 1994 CFS case definition as described by Fukuda and colleagues during the 4-year longitudinal study of CFS in Wichita, KS, USA.

Pharmacogenomics

People with ISF were also enrolled, in addition to those with CFS and ISF with MDDm. NF controls were selected from people surveyed in the longitudinal study that did not report fatigue, medical and psychiatric exclusionary conditions and were similar in age, race and BMI to people with CFS and ISF. BMI: Body mass index; CFS: Chronic fatigue syndrome; ISF: Insufficient symptoms and fatigue; MDDm: Major depressive disorder with melancholy; NF: Nonfatigued.

Descriptive Data

- Body physical and clinical
- Instruments to describe symptom domains (SF-36, MFI, CDCSI)
 Psychology/psychiatric

Neuroendocrine/Immune

- HPA, HPG, HPT
- ANS
- Immune system

<u>Sleep</u>

• brain and muscle

Cognition

• CANTAB

<u>Targeted Genetics</u> • single nucleotide polymorphisms of genes involved in HPA axis function

Data Integration to Identify Biomarkers

Initial Dataset (Table List)

 \rightarrow

Blood Pressure.csv CANTAB.csv 🖳 Catecholamines.csv Class and Demo.csv Complete Blood Evaluation.csv Endocrine.csv Gynecologic History.csv Medications.csv MEDID.csv Menstrual WASI WRAT.csv MFI.csv PharmaActionTable.csv 🖳 Physical Exam.csv SF36 Summary Scores.csv Sleep Evaluation.csv Symtpom Inventory.csv Urine Profile.csv 🖳 Zuna.csv

plus cytokine data abtinfo MFI. zuna sf36 tilt_info tilt_bp symptom_inventory catecholamines cytokines. urine_profile pregnancy med_id med_usage pharma_action blood eval endocrine salivary_cortisol gynecologic_history gynecologic_surgery wasi_wrat sleep_gen sleep_nightly sleep_hr_variability cantab oxygen_saturation

abtinfo3 abtinfo_cluster abtinfo_empiric abtinfo_ethnic abtinfo_intake abtinfo_onset abtinfo_prc_class abtinfo race blood_eval2a cantab2 catecholamines2 endocrine2a avnecologic history3 gynecologic_history_gendtrs1 gynecologic_history_glapsp gynecologic_history_gothgyns gynecologic_surgery3 gynecologic_surgery_gnmsur gynecologic_surgery_gysurg1 med usade2 med_usage_dose_unit med_usage_dose_unit_index_no_seq oxygen_saturation2 pharma_action2 pharma_class pharma_class_usage pharma_class_usage_counts pregnancy2 salivary_cortisol2 salivary_summary sleep_gen2 sleep_nightly2 symptom_inventory5 symptom_inventory_freq symptom_inventory_severity symptom_inventory_yes_no tilt info3 titt_info_reason tilt_info_result_detail

urine_profile9a urine_profile_bacteria urine_profile_epithelial_cells urine_profile_fix urine_profile_mucus urine_profile_red_blood_cells urine_profile_vol_for_microexam urine_profile_white_blood_cells urine_summary urine_summary2 wasi_wrat2 zung2 cytokine blood_eval cantab catecholamines endocrine gynecologic_history gynecologic_surgery med_usage mfi microarray_normalized microarray_raw microarray_annotation oxygen_saturation pharma_action med_id pregnancy salivary_cortisol sf36 sleep_gen sleep_hr_variability sleep_nightly symptom_inventory tilt_bp titt_info urine profile wasi_wrat zuna abtinfo

abtid	intake_index	onset_index	prc_class_in	empiric_inde	cluster_inde	years_ill	sex_bin	age	race_oid
10043905	3	2	5	8	2	26.3	0	40	3
10081101	1	2	5	2	3	18.2	0	58	6
10103103	3	2	12	8	3	12.1	0	50	6
10193601	3	2	5	8	3	8	0	57	6
10203401	1	2	3	5	1	9.8	0	54	6
10215301	5	1	11	13	2		0	57	6
10215901	5	1	15	15	1		0	35	6
10240402	1	2	2	8	3	8.7	1	43	6
10243501	5	1	11	8	2		1	41	6
10261501	5	1	11	13	2		0	53	6
10268605	2	2	5	2	4	9.3	0	54	6
10323401	5	1	11	13	2		0	58	6
10372601	1	2	3	5	1	10.7	0	54	6
10528403	1	2	1	1	1	10.7	0	45	6
10689003	1	2	5	2	3	7.6	0	47	6
10803801	3	2	5	8	3	8.6	1	59	6
10860201	5	1	11	13	3		1	39	6
20052705	3	2	6	11	1	12.5	0	43	6
20077904	1	2	6	15	1	31.3	1	37	6
20082302	1	2	5	8	3	5.3	0	53	6
20086501	2	2	9	3	1	12.3	0	61	6
20129103	5	1	15	15	1		0	65	3
20366001	3	2	6	5	1	8.8	0	48	6
20416901	2	1	3	11	1	14.3	0	62	6

Initial Datasat

2 Approaches

PCA/LCA
 Top Down

Subspace Clustering
 Bottoms Up

Utilized correlation coefficient based PCA

•

- Reduces dimensionality while preserving full variation
- Helps to establish a variable set which spans variations in the dataset

				P	ΓΔ		
PV1	PV1	PV2	PV2	PV3	PV3	PV4	PV4
Eigenvalue	28.49034	Eigenvalue	14.94629	Eigenvalue	14.19392	Eigenvalue	12.980
Percent	6.475078	Percent	3.396883	Percent	3.225891	Percent	2.9500
Cum Percer	6.475078	Cum Perce	r 9.871961	Cum Perce	r 13.09785	Cum Percent	16.047
PV1	PV1	PV2	PV2	PV3	PV3	PV4	PV4
mfi.generalfa	a -0.12066	wasi_wrat2.	0.240773	gynecologic	0.167289	oxygen_saturation2.o2lowp	-0.14
sf36.vitality	0.123514	wasi_wrat2.	0.240769	gynecologic	0.167064	gynecologic_history3.gprdbld	-0.14
sf36.social_f	i -0.10374	wasi_wrat2.	0.235238	gynecologic	0.142115	abtinfo3.waist_circum	0.1408
abtinfo3.em	-0.1406	wasi_wrat2.	0.212085	gynecologic	0.140183	gynecologic_history3.gnrmyr	-0.138
symptom_ir	0.039662	wasi_wrat2.	0.21114	gynecologic	-0.1398	gynecologic_history3.gbfryr	-0.138
zung2.sdsin	0.012426	wasi_wrat2.	0.209433	gynecologic	0.138873	gynecologic_history3.gbfrdy	-0.136
symptom_ir	n -0.02687	wasi_wrat2.	0.209421	gynecologic	-0.13223	gynecologic_history3.gnrmdy	-0.132
mfi.physicalf	0.022401	wasi_wrat2.	0.208413	gynecologic	0.127921	gynecologic_history3.gbfrmn	-0.130
symptom_ir	0.002692	wasi_wrat2.	0.205281	pharma_cla	s 0.125068	gynecologic_history3.gprdlst	-0.130
sf36.bodily_	-0.01031	wasi_wrat2.	0.197316	gynecologic	0.124138	gynecologic_history3.gprdapt	-0.129
sf36.role_ph	0.015727	wasi_wrat2.	0.196524	gynecologic	0.124031	abtinfo3.weight_lbs	0.129
mfi.activityre	0.006969	wasi_wrat2.	0.194707	pharma_cla	s 0.123418	gynecologic_history3.gnrmmn	-0.129
sf36.gnrl_hlt	0.005082	wasi_wrat2.	0.19301	gynecologic	0.123342	pharma_class_usage.antihypertensive	0.1252
symptom_ir	n -0.00025	wasi_wrat2.	0.185406	gynecologic	-0.123	sleep_nightly2.rdi	0.1247
mfi. motivatio	-0.01941	wasi_wrat2.	0.184849	gynecologic	-0.12271	abtinfo3.bmi	0.1236
mfi.mentalfa	1 0.001438	wasi_wrat2.	0.171769	gynecologic	0.122031	sleep_nightly2.apnea_hyponea_total	0.1222
abtinfo3.ons	0.018855	wasi_wrat2.	0.161124	gynecologic	0.122001	sleep_nightly2.hyponea	0.1199
sf36.phys_fi	ı -0.01398	sleep_hr_va	r -0.09508	gynecologic	0.121537	oxygen_saturation2.o2avgp	-0.116

Attribute Reduction

Dataset Name	Notes
all_data_outer	all data - with null data elements (outer join)
all_data_inner	all data - no null data elements (inner join)
hia data autor	contains only the non-survey (biological) data, remove sf36, mfi, gynecologic_history,
	symptom_inventory
solost data outor	remove blood_eval2 cols, cantab cols, endocrine2A cols, gynacoloic_history3 cols, mfi cols, sf36 cols, sleep_hr_variability cols, symptom_inventory cols, tilt_bp cols, tilt_info3
select2_data_outer	remove pharma_class_usage
select3_data_outer	remove sleep related variables
select5_data_outer	remove redundant measures such as 3 measures of testo
	remove waist_circum, cytokine cols, some endocrine cols (androstenedione), mfi cols,
select9_data_outer	sf36 cols, sleep_nightly2 cols
select10_data_outer	remove med/psych exclusions
select11_data_outer	remove men
select12_data_outer	remove DHEA
select13 data outer	remove gabdpn, years_ill_index, potassium. Wbc, rti_five_choice_reaction_time_index, soc_num_problems_solved_in_min_num_moves_index swm_num_total_errors_index, metanephrine, epinephrine, thyroxin_t4_index, lm_index, specific_gravity

Class attributes in order of significance to the solution

Class attributes	Class 1	10 52	Class 3	Class 4	Class 5	Class 6
% unrefreshing_sleep	98	13	79	78	95	100
high_sensitivity_crp	5.3	4.2	2.1	0.9	1	5.1
% sleep_problems	100	29	75	96	91	91
O ₂ lowp	85	88	86	90	89	89
%sore_throat	29	8	17	13	59	73
% photophobia	56	11	38	22	64	73
% abdominal_pain	6	5	4	35	68	45
% concentration	27	0	21	4	86	45
% joint_pain	63	32	54	30	91	82
rdi_index	3.8	1	6	0.4	0.8	1.1
insulin_serum	10	7	10	5	7	5
epworth	11	6	7	8	10	9
% short_breath	32	5	8	4	50	45
progesterone	14	12	17	35	37	0
% post_exertional_fatique	78	0	33	43	82	91
% fever	10	5	4	13	50	18
% muscle_pain	93	47	54	70	100	91
BMI	32	30	30	24	27	26
free_t3	3	2	2	2	2	2
sleep_period_time_spt	471	452	467	456	448	439
il_6	68	56	45	32	66	50
arousals_total_index_psg	18.5	11.2	13.4	13.4	9.9	17.1
neck_circum	37	35	35	33	35	33
hgb	14.2	13.8	13.6	13.5	13.6	12.8
sleep_HR variability(sdnn)	60	62	38	50	54	37
pct_free_testo_ratio	2.6	1.6	2	2.5	2.6	0.8
% headache	66	42	50	48	91	64
latency_to_sleep_onset	8	9	10	5	14	10
urine_free_cortisol_24h	17	19	10	21	20	14
ZUNG	50	35	51	48	54	55

Class 1: OBESE, HYPNOEIC, FATIGUED & PAINED Class 2: WELL Class3: HYPNOEIC, **OBESE, STRESSED** - LOW CORTISOL Class 4: YOUNG, normal BMI, fewer symptoms besides **SLEEP** Class 5: INTEROCEPTIVE, depressed & symptomatic Class 6: SYMPTOMATIC, OLDer, THINer, DEPRESSED, STRESSED, poor sleep, NO SEX,

CFS is Heterogeneous

Gene Expression Differentiates Fatigue

1. **Vac14**: regulates phosphatidylinositol kinases (stress response and membrane trafficking)

2. **SLC1A6**: an excitatory aa transporter (glutatmate/aspartate)

3. **Fbxo7:** Fbxo7 has been characterised as a selective enhancer of cdk6 activity (regulate major cell cycle transitions)

4. **ZNF350**: crucial roles in ubiquitination events involved in diverse cellular processes including signal transduction (MAPK), differentiation and apoptosis

- 1. <u>PTCH2</u>: receptor for shh signaling which is active in T cell growth and differentiation and proliferation
- 2. <u>TCL1A:</u> TCL1A regulates the growth and survival of peripheral T cells

CFS Heterogeneity

- Problems with PCA/LCA approach.
 - Are we studying illness end-stage symptomatology rather than more helpful subgroups?
- More helpful subgroups may answer these Q's related to CFS heterogeneity...
 - Since we observe differing insults (viral or infection or stress, ... or a combination of the these) preceding the CFS state, is there a difference in what's going wrong 'under the hood' physiologically, in people with CFS?
 - Since there are natural genetic variations between people, does this lead to variations in susceptibility to the disease from these insults?
 - What is an exhaustive list of disturbed biological pathways in chronic fatigued persons – does this list vary by person?
 - What are the biological sequence of events (in terms of biological pathway disruptions) leading to a CFS state, and does this sequence of events vary from person to person?
 - Are there common themes in the answer to the above questions? Can we define subgroups of people with CFS from these common themes?
- Can we use these subgroups to develop optimal, targeted treatments custom tailored to address each subgroups specific characteristic problems?

Clustering

 Clustering algorithms find associations between sets of variables and subjects by identifying regions or clusters of closely spaced values

vvny Clustering?

- Differs from variance
 based calculations
- Can elucidates trends obscured through heterogeneous data

Why Subspace Clustering?

Relative high dimensionality of dataset (3686 variables) compared to the number of participants (227) favors subspace clustering algorithms

Subspace Clustering

- Subspace clustering considers all combinations of subsets of the original space
- We utilize portions of IBM's Genes@Work tool (clique) which identifies clusters under a user specified p-value
- the algorithm identifies maximally sized clusters

Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications, Agrawal et. al. (1998)

Genes@Work: an efficient algorithm for pattern discovery and multivariate feature selection in gene expression data, Lepre, J. et. al. Bioinformatics 2004

Subspace Clustering Interpretation

We utilize VENN diagrams to visualize the information in the clusters

Results

- Stringent selection of significant clusters
 - 183 of 1,042 (18%) significant clusters with (p-value = 0.005) were free of null values and analyzed further
 - Three major "themes" were identified
 - Cognition (29 clusters)
 - Sleep (31 clusters)
 - Allostatic load (7 clusters)

Cognition

The CANTAB was used to assess function in the basal ganglia (especially psychomotor retardation) and/or frontal cortex (attention shift and problem solving/planning abilities).

Sleep

Polysomnographic monitoring and multiple sleep latency tests were used to diagnose sleep pathology.

Important Clusters

Summary

- Heterogeneity at a biological level has been demonstrated through PCA/LCA and subspace clustering techniques
- subspace clustering technique validated existing results and revealed hidden associations
- Predominant themes are cognition, sleep and allostatic load

Heterogeneity Revealed

