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“Where (or of what) one cannot speak, one must pass over
in silence.”
–Ludwig Wittgenstein, Tractatus Logico-Philosophicus, 1921.
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Random Variables

A (discrete) random variable is a numerical quantity that in
some experiment (involving randomness) takes a value
from some (discrete) set of possible values.

More formally, these are measurable maps

X (ω), ω ∈ Ω,

from a basic probability space (Ω, F , P) (≡ outcomes, a
sigma field of subsets of Ω and probability measure P on
F ).

Events
...{ω ∈ Ω|X (ω) = xi}...

same as {X = xi} [X assumes the value xi ].
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Few Examples

Example 1: Rolling of two six-sided dice. Random Variable
might be the sum of the two numbers showing on the dice.
The possible values of the random variable are 2, 3, . . .,
12.

Example 2: Occurrence of a specific word GAATTC in a
genome. Random Variable might be the number of
occurrence of this word in a random genome of length
3 × 109. The possible values of the random variable are 0,
1, 2, . . ., 3 × 109.
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The Probability Distribution

The probability distribution of a discrete random variable Y
is the set of values that this random variable can take,
together with the set of associated probabilities.

Probabilities are numbers in the range between zero and
one (inclusive) that always add up to one when summed
over all possible values of the random variable.
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Bernoulli Trial

A Bernoulli trial is a single trial with two possible outcomes:
“success” & “failure.”

P(success) = p and P(failure) = 1 − p ≡ q.

Random variable S takes the value −1 if the trial results in
failure and +1 if it results in success.

PS(s) = p(1+s)/2q(1−s)/2, s = −1,+1.
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The Binomial Distribution

A Binomial random variable is the number of successes in
a fixed number n of independent Bernoulli trials (with
success probability = p).

Random variable Y denotes the total number of successes
in the n trials.

PY (y) =

(

n
y

)

pyqn−y , y = 0, 1, . . . , n.

B Mishra Bioinformatics: Biology X



Outline
A Short Introduction to Probability

Hidden Markov Models

The Uniform Distribution

A random variable Y has the uniform distribution if the
possible values of Y are a, a + 1, . . ., a + b − 1 for two
integer constants a and b, and the probability that Y takes
any specified one of these b possible values is b−1.

PY (y) = b−1, y = a, a + 1, . . . , a + b − 1.
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The Geometric Distribution

Suppose that a sequence of independent Bernoulli trials is
conducted, each trial having probability p of success. The
random variable of interest is the number Y of trials before
but not including the first failure. The possible values of Y
are 0, 1, 2, . . ..

PY (y) = pyq, y = 0, 1, . . . .
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The Poisson Distribution

A random variable Y has a Poisson distribution (with
parameter λ > 0) if

PY (y) =
e−λλy

y!
, y = 0, 1, . . . .

The Poisson distribution often arises as a limiting form of
the binomial distribution.
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Continuous Random Variables

We denote a continuous random variable by X and
observed value of the random variable by x .

Each random variable X with range I has an associated
density function fX (x) which is defined, positive for all x
and integrates to one over the range I.

Prob(a < X < b) =

∫ b

a
fX (x)dx .
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The Normal Distribution

A random variable X has a normal or Gaussian distribution
if it has range (−∞,∞) and density function

fX (x) =
1√
2πσ

e−
(x−µ)2

2σ2 ,

where µ and σ > 0 are parameters of the distribution.
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Expectation

For a random variable Y , and any function g(Y ) of Y , the
expected value of g(Y ) is

E(g(Y )) =
∑

y

g(y)PY (y),

when Y is discrete; and

E(g(Y )) =

∫

y
g(y)fY (y) dy ,

when Y is continuous.

Thus,
mean(Y ) = E(Y ) = µ(Y ),

variance(Y ) = E(Y 2) − E(Y )2 = σ2(Y ).
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Conditional Probabilities

Suppose that A1 and A2 are two events such that
P(A2) 6= 0. Then the conditional probability that the event
A1 occurs, given that event A2 occurs, denoted by
P(A1|A2) is given by the formula

P(A1|A2) =
P(A1&A2)

P(A2)
.
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Bayes Rule

Suppose that A1 and A2 are two events such that
P(A1) 6= 0 and P(A2) 6= 0. Then

P(A2|A1) =
P(A2)P(A1|A2)

P(A1)
.
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Markov Models

Suppose there are n states S1, S2, . . ., Sn. And the
probability of moving to a state Sj from a state Si depends
only on Si , but not the previous history. That is:

P(s(t + 1) = Sj |s(t) = Si , s(t − 1) = Si1, . . .)

= P(s(t + 1) = Sj |s(t) = Si).

Then by Bayes rule:

P(s(0) = Si0 , s(1) = Si1, . . . , s(t − 1) = Sit−1
, s(t) = Sit )

= P(s(0) = Si0)P(Si1 |Si0) · · ·P(Sit |Sit−1
).
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HMM: Hidden Markov Models

Defined with respect to an alphabet Σ

A set of (hidden) states Q,

A |Q| × |Q| matrix of state transition probabilities
A = (akl), and

A |Q| × |Σ| matrix of emission probabilities E = (ek (σ)).

States

Q is a set of states that emit symbols from the alphabet Σ.
Dynamics is determined by a state-space trajectory determined
by the state-transition probabilities.

B Mishra Bioinformatics: Biology X



Outline
A Short Introduction to Probability

Hidden Markov Models

A Path in the HMM

Path Π = π1π2 · · · πn = a sequence of states ∈ Q∗ in the
hidden markov model, M.

x ∈ Σ∗ = sequence generated by the path Π determined
by the model M:

P(x |Π) = P(π1)

[

n
∏

i=1

P(xi |πi) · P(πi |πi+1)

]
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A Path in the HMM

Note that

P(x |Π) = P(π1)

[

n
∏

i=1

P(xi |πi) · P(πi |πi+1)

]

P(xi |πi) = eπi (xi )

P(πi |πi+1) = aπi ,πi+1

Let π0 and πn+1 be the initial (“begin”) and final (“end”)
states, respectively

P(x |Π) = aπ0,π1eπ1(x1)aπ1,π2eπ2(x2) · · · eπn(xn)aπn,πn+1

i.e.

P(x |Π) = aπ0,π1

n
∏

i=1

eπi (xi)aπi ,πi+1.
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Decoding Problem

For a given sequence x , and a given path π, the model
(Markovian) defines the probability P(x |Π)

In a casino scenario: the dealer knows Π and x , the player
knows x but not Π.

“The path of x is hidden.”

Decoding Problem: Find an optimal path π∗ for x such
that P(x |π) is maximized.

π∗ = arg max
π

P(x |π).
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Dynamic Programming Approach

Principle of Optimality

Optimal path for the (i + 1)-prefix of x

x1x2 · · · xi+1

uses a path for an i-prefix of x that is optimal among the paths
ending in an unknown state πi = k ∈ Q.
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Dynamic Programming Approach

Recurrence: sk (i) = the probability of the most probable path
for the i-prefix ending in state k

∀k∈Q∀1≤i≤n sk (i) = ek (xi) · max
l∈Q

sl(i − 1)alk .
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Dynamic Programming

i = 0, Base case

sbegin(0) = 1, sk (0) = 0,∀k 6=begin.

0 < i ≤ n, Inductive case

sl(i + 1) = el(xi+1) · max
k∈Q

[sk (i) · akl ]

i = n + 1
P(x |π∗) = max

k∈Q
sk (n)ak ,end .
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Viterbi Algorithm

Dynamic Programing with “log-score” function

Sl(i) = log sl(i).

Space Complexity = O(n|Q|).
Time Complexity = O(n|Q|).
Additive formula:

Sl(i + 1) = log el(xi+1) + max
k∈Q

[Sk (i) + log akl ].
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[End of Lecture #3]

See you next week!
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